blob: b1b5e01aff5c13cb9646506a8fa3bec872e915a6 [file] [log] [blame]
Vikram S. Adve243dd452001-09-18 13:03:13 +00001// $Id$
Chris Lattner20b1ea02001-09-14 03:47:57 +00002//***************************************************************************
3// File:
4// SparcInstrSelection.cpp
5//
6// Purpose:
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00007// BURS instruction selection for SPARC V9 architecture.
Chris Lattner20b1ea02001-09-14 03:47:57 +00008//
9// History:
10// 7/02/01 - Vikram Adve - Created
11//**************************************************************************/
12
13#include "SparcInternals.h"
14#include "llvm/CodeGen/MachineInstr.h"
15#include "llvm/CodeGen/InstrForest.h"
16#include "llvm/CodeGen/InstrSelection.h"
17#include "llvm/Support/MathExtras.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/iTerminators.h"
20#include "llvm/iMemory.h"
21#include "llvm/iOther.h"
22#include "llvm/BasicBlock.h"
23#include "llvm/Method.h"
24#include "llvm/ConstPoolVals.h"
25
26
27//******************** Internal Data Declarations ************************/
28
29// to be used later
30struct BranchPattern {
Vikram S. Adve4cecdd22001-10-01 00:12:53 +000031 bool flipCondition; // should the sense of the test be reversed
32 BasicBlock* targetBB; // which basic block to branch to
Chris Lattner20b1ea02001-09-14 03:47:57 +000033 MachineInstr* extraBranch; // if neither branch is fall-through, then this
34 // BA must be inserted after the cond'l one
35};
36
37//************************* Forward Declarations ***************************/
38
39
Vikram S. Adve4cecdd22001-10-01 00:12:53 +000040static void SetMemOperands_Internal (MachineInstr* minstr,
41 const InstructionNode* vmInstrNode,
42 Value* ptrVal,
43 Value* arrayOffsetVal,
44 const vector<ConstPoolVal*>& idxVec,
45 const TargetMachine& target);
Chris Lattner20b1ea02001-09-14 03:47:57 +000046
47
48//************************ Internal Functions ******************************/
49
50// Convenience function to get the value of an integer constant, for an
51// appropriate integer or non-integer type that can be held in an integer.
52// The type of the argument must be the following:
Vikram S. Adve4cecdd22001-10-01 00:12:53 +000053// Signed or unsigned integer
54// Boolean
55// Pointer
Chris Lattner20b1ea02001-09-14 03:47:57 +000056//
57// isValidConstant is set to true if a valid constant was found.
58//
Vikram S. Adve243dd452001-09-18 13:03:13 +000059static int64_t
60GetConstantValueAsSignedInt(const Value *V,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +000061 bool &isValidConstant)
Vikram S. Adve243dd452001-09-18 13:03:13 +000062{
Chris Lattner1d87bcf2001-10-01 20:11:19 +000063 if (!isa<ConstPoolVal>(V))
Vikram S. Adve4cecdd22001-10-01 00:12:53 +000064 {
65 isValidConstant = false;
66 return 0;
67 }
68
Chris Lattner20b1ea02001-09-14 03:47:57 +000069 isValidConstant = true;
70
71 if (V->getType() == Type::BoolTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +000072 return (int64_t) ((ConstPoolBool*)V)->getValue();
73
74 if (V->getType()->isIntegral())
75 {
76 if (V->getType()->isSigned())
77 return ((ConstPoolSInt*)V)->getValue();
78
79 assert(V->getType()->isUnsigned());
80 uint64_t Val = ((ConstPoolUInt*)V)->getValue();
81 if (Val < INT64_MAX) // then safe to cast to signed
82 return (int64_t)Val;
83 }
Chris Lattner20b1ea02001-09-14 03:47:57 +000084
85 isValidConstant = false;
86 return 0;
87}
88
89
90
91//------------------------------------------------------------------------
92// External Function: ThisIsAChainRule
93//
94// Purpose:
95// Check if a given BURG rule is a chain rule.
96//------------------------------------------------------------------------
97
98extern bool
99ThisIsAChainRule(int eruleno)
100{
101 switch(eruleno)
102 {
103 case 111: // stmt: reg
Chris Lattner20b1ea02001-09-14 03:47:57 +0000104 case 113: // stmt: bool
Chris Lattner20b1ea02001-09-14 03:47:57 +0000105 case 123:
106 case 124:
107 case 125:
108 case 126:
109 case 127:
110 case 128:
111 case 129:
112 case 130:
113 case 131:
114 case 132:
Vikram S. Adve243dd452001-09-18 13:03:13 +0000115 case 133:
Vikram S. Adve243dd452001-09-18 13:03:13 +0000116 case 155:
117 case 221:
118 case 222:
Vikram S. Adve243dd452001-09-18 13:03:13 +0000119 case 241:
120 case 242:
121 case 243:
122 case 244:
123 return true; break;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000124
Vikram S. Adve243dd452001-09-18 13:03:13 +0000125 default:
126 return false; break;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000127 }
128}
129
130
131static inline MachineOpCode
132ChooseBprInstruction(const InstructionNode* instrNode)
133{
134 MachineOpCode opCode;
135
136 Instruction* setCCInstr =
137 ((InstructionNode*) instrNode->leftChild())->getInstruction();
138
139 switch(setCCInstr->getOpcode())
140 {
141 case Instruction::SetEQ: opCode = BRZ; break;
142 case Instruction::SetNE: opCode = BRNZ; break;
143 case Instruction::SetLE: opCode = BRLEZ; break;
144 case Instruction::SetGE: opCode = BRGEZ; break;
145 case Instruction::SetLT: opCode = BRLZ; break;
146 case Instruction::SetGT: opCode = BRGZ; break;
147 default:
148 assert(0 && "Unrecognized VM instruction!");
149 opCode = INVALID_OPCODE;
150 break;
151 }
152
153 return opCode;
154}
155
156
157static inline MachineOpCode
Chris Lattner20b1ea02001-09-14 03:47:57 +0000158ChooseBpccInstruction(const InstructionNode* instrNode,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000159 const BinaryOperator* setCCInstr)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000160{
161 MachineOpCode opCode = INVALID_OPCODE;
162
163 bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned();
164
165 if (isSigned)
166 {
167 switch(setCCInstr->getOpcode())
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000168 {
169 case Instruction::SetEQ: opCode = BE; break;
170 case Instruction::SetNE: opCode = BNE; break;
171 case Instruction::SetLE: opCode = BLE; break;
172 case Instruction::SetGE: opCode = BGE; break;
173 case Instruction::SetLT: opCode = BL; break;
174 case Instruction::SetGT: opCode = BG; break;
175 default:
176 assert(0 && "Unrecognized VM instruction!");
177 break;
178 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000179 }
180 else
181 {
182 switch(setCCInstr->getOpcode())
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000183 {
184 case Instruction::SetEQ: opCode = BE; break;
185 case Instruction::SetNE: opCode = BNE; break;
186 case Instruction::SetLE: opCode = BLEU; break;
187 case Instruction::SetGE: opCode = BCC; break;
188 case Instruction::SetLT: opCode = BCS; break;
189 case Instruction::SetGT: opCode = BGU; break;
190 default:
191 assert(0 && "Unrecognized VM instruction!");
192 break;
193 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000194 }
195
196 return opCode;
197}
198
199static inline MachineOpCode
200ChooseBFpccInstruction(const InstructionNode* instrNode,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000201 const BinaryOperator* setCCInstr)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000202{
203 MachineOpCode opCode = INVALID_OPCODE;
204
205 switch(setCCInstr->getOpcode())
206 {
207 case Instruction::SetEQ: opCode = FBE; break;
208 case Instruction::SetNE: opCode = FBNE; break;
209 case Instruction::SetLE: opCode = FBLE; break;
210 case Instruction::SetGE: opCode = FBGE; break;
211 case Instruction::SetLT: opCode = FBL; break;
212 case Instruction::SetGT: opCode = FBG; break;
213 default:
214 assert(0 && "Unrecognized VM instruction!");
215 break;
216 }
217
218 return opCode;
219}
220
221
222static inline MachineOpCode
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000223ChooseBccInstruction(const InstructionNode* instrNode,
224 bool& isFPBranch)
225{
226 InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild();
227 BinaryOperator* setCCInstr = (BinaryOperator*) setCCNode->getInstruction();
228 const Type* setCCType = setCCInstr->getOperand(0)->getType();
229
230 isFPBranch = (setCCType == Type::FloatTy || setCCType == Type::DoubleTy);
231
232 if (isFPBranch)
233 return ChooseBFpccInstruction(instrNode, setCCInstr);
234 else
235 return ChooseBpccInstruction(instrNode, setCCInstr);
236}
237
238
239static inline MachineOpCode
Chris Lattner20b1ea02001-09-14 03:47:57 +0000240ChooseMovFpccInstruction(const InstructionNode* instrNode)
241{
242 MachineOpCode opCode = INVALID_OPCODE;
243
244 switch(instrNode->getInstruction()->getOpcode())
245 {
246 case Instruction::SetEQ: opCode = MOVFE; break;
247 case Instruction::SetNE: opCode = MOVFNE; break;
248 case Instruction::SetLE: opCode = MOVFLE; break;
249 case Instruction::SetGE: opCode = MOVFGE; break;
250 case Instruction::SetLT: opCode = MOVFL; break;
251 case Instruction::SetGT: opCode = MOVFG; break;
252 default:
253 assert(0 && "Unrecognized VM instruction!");
254 break;
255 }
256
257 return opCode;
258}
259
260
261// Assumes that SUBcc v1, v2 -> v3 has been executed.
262// In most cases, we want to clear v3 and then follow it by instruction
263// MOVcc 1 -> v3.
264// Set mustClearReg=false if v3 need not be cleared before conditional move.
265// Set valueToMove=0 if we want to conditionally move 0 instead of 1
266// (i.e., we want to test inverse of a condition)
Vikram S. Adve243dd452001-09-18 13:03:13 +0000267// (The latter two cases do not seem to arise because SetNE needs nothing.)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000268//
269static MachineOpCode
270ChooseMovpccAfterSub(const InstructionNode* instrNode,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000271 bool& mustClearReg,
272 int& valueToMove)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000273{
274 MachineOpCode opCode = INVALID_OPCODE;
275 mustClearReg = true;
276 valueToMove = 1;
277
278 switch(instrNode->getInstruction()->getOpcode())
279 {
Vikram S. Adve243dd452001-09-18 13:03:13 +0000280 case Instruction::SetEQ: opCode = MOVE; break;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000281 case Instruction::SetLE: opCode = MOVLE; break;
282 case Instruction::SetGE: opCode = MOVGE; break;
283 case Instruction::SetLT: opCode = MOVL; break;
284 case Instruction::SetGT: opCode = MOVG; break;
Vikram S. Adve243dd452001-09-18 13:03:13 +0000285 case Instruction::SetNE: assert(0 && "No move required!"); break;
286 default: assert(0 && "Unrecognized VM instr!"); break;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000287 }
288
289 return opCode;
290}
291
292
293static inline MachineOpCode
294ChooseConvertToFloatInstr(const InstructionNode* instrNode,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000295 const Type* opType)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000296{
297 MachineOpCode opCode = INVALID_OPCODE;
298
299 switch(instrNode->getOpLabel())
300 {
301 case ToFloatTy:
302 if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000303 opCode = FITOS;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000304 else if (opType == Type::LongTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000305 opCode = FXTOS;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000306 else if (opType == Type::DoubleTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000307 opCode = FDTOS;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000308 else if (opType == Type::FloatTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000309 ;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000310 else
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000311 assert(0 && "Cannot convert this type to FLOAT on SPARC");
Chris Lattner20b1ea02001-09-14 03:47:57 +0000312 break;
313
314 case ToDoubleTy:
315 if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000316 opCode = FITOD;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000317 else if (opType == Type::LongTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000318 opCode = FXTOD;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000319 else if (opType == Type::FloatTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000320 opCode = FSTOD;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000321 else if (opType == Type::DoubleTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000322 ;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000323 else
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000324 assert(0 && "Cannot convert this type to DOUBLE on SPARC");
Chris Lattner20b1ea02001-09-14 03:47:57 +0000325 break;
326
327 default:
328 break;
329 }
330
331 return opCode;
332}
333
334static inline MachineOpCode
335ChooseConvertToIntInstr(const InstructionNode* instrNode,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000336 const Type* opType)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000337{
338 MachineOpCode opCode = INVALID_OPCODE;;
339
340 int instrType = (int) instrNode->getOpLabel();
341
342 if (instrType == ToSByteTy || instrType == ToShortTy || instrType == ToIntTy)
343 {
344 switch (opType->getPrimitiveID())
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000345 {
Chris Lattner20b1ea02001-09-14 03:47:57 +0000346 case Type::FloatTyID: opCode = FSTOI; break;
347 case Type::DoubleTyID: opCode = FDTOI; break;
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000348 default:
349 assert(0 && "Non-numeric non-bool type cannot be converted to Int");
350 break;
351 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000352 }
353 else if (instrType == ToLongTy)
354 {
355 switch (opType->getPrimitiveID())
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000356 {
Chris Lattner20b1ea02001-09-14 03:47:57 +0000357 case Type::FloatTyID: opCode = FSTOX; break;
358 case Type::DoubleTyID: opCode = FDTOX; break;
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000359 default:
360 assert(0 && "Non-numeric non-bool type cannot be converted to Long");
361 break;
362 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000363 }
364 else
365 assert(0 && "Should not get here, Mo!");
366
367 return opCode;
368}
369
370
371static inline MachineOpCode
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000372ChooseAddInstructionByType(const Type* resultType)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000373{
374 MachineOpCode opCode = INVALID_OPCODE;
375
Chris Lattner20b1ea02001-09-14 03:47:57 +0000376 if (resultType->isIntegral() ||
Chris Lattner1d87bcf2001-10-01 20:11:19 +0000377 isa<PointerType>(resultType) ||
378 isa<MethodType>(resultType) ||
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000379 resultType->isLabelType() ||
380 resultType == Type::BoolTy)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000381 {
382 opCode = ADD;
383 }
384 else
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000385 switch(resultType->getPrimitiveID())
386 {
387 case Type::FloatTyID: opCode = FADDS; break;
388 case Type::DoubleTyID: opCode = FADDD; break;
389 default: assert(0 && "Invalid type for ADD instruction"); break;
390 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000391
392 return opCode;
393}
394
395
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000396static inline MachineOpCode
397ChooseAddInstruction(const InstructionNode* instrNode)
398{
399 return ChooseAddInstructionByType(instrNode->getInstruction()->getType());
400}
401
402
Chris Lattner20b1ea02001-09-14 03:47:57 +0000403static inline MachineInstr*
404CreateMovFloatInstruction(const InstructionNode* instrNode,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000405 const Type* resultType)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000406{
407 MachineInstr* minstr = new MachineInstr((resultType == Type::FloatTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000408 ? FMOVS : FMOVD);
Chris Lattner20b1ea02001-09-14 03:47:57 +0000409 minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000410 instrNode->leftChild()->getValue());
Chris Lattner20b1ea02001-09-14 03:47:57 +0000411 minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000412 instrNode->getValue());
Chris Lattner20b1ea02001-09-14 03:47:57 +0000413 return minstr;
414}
415
416static inline MachineInstr*
417CreateAddConstInstruction(const InstructionNode* instrNode)
418{
419 MachineInstr* minstr = NULL;
420
421 Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
Chris Lattner1d87bcf2001-10-01 20:11:19 +0000422 assert(isa<ConstPoolVal>(constOp));
Chris Lattner20b1ea02001-09-14 03:47:57 +0000423
424 // Cases worth optimizing are:
425 // (1) Add with 0 for float or double: use an FMOV of appropriate type,
426 // instead of an FADD (1 vs 3 cycles). There is no integer MOV.
427 //
428 const Type* resultType = instrNode->getInstruction()->getType();
429
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000430 if (resultType == Type::FloatTy ||
431 resultType == Type::DoubleTy)
432 {
433 double dval = ((ConstPoolFP*) constOp)->getValue();
434 if (dval == 0.0)
435 minstr = CreateMovFloatInstruction(instrNode, resultType);
436 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000437
438 return minstr;
439}
440
441
442static inline MachineOpCode
443ChooseSubInstruction(const InstructionNode* instrNode)
444{
445 MachineOpCode opCode = INVALID_OPCODE;
446
447 const Type* resultType = instrNode->getInstruction()->getType();
448
449 if (resultType->isIntegral() ||
450 resultType->isPointerType())
451 {
452 opCode = SUB;
453 }
454 else
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000455 switch(resultType->getPrimitiveID())
456 {
457 case Type::FloatTyID: opCode = FSUBS; break;
458 case Type::DoubleTyID: opCode = FSUBD; break;
459 default: assert(0 && "Invalid type for SUB instruction"); break;
460 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000461
462 return opCode;
463}
464
465
466static inline MachineInstr*
467CreateSubConstInstruction(const InstructionNode* instrNode)
468{
469 MachineInstr* minstr = NULL;
470
471 Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
Chris Lattner1d87bcf2001-10-01 20:11:19 +0000472 assert(isa<ConstPoolVal>(constOp));
Chris Lattner20b1ea02001-09-14 03:47:57 +0000473
474 // Cases worth optimizing are:
475 // (1) Sub with 0 for float or double: use an FMOV of appropriate type,
476 // instead of an FSUB (1 vs 3 cycles). There is no integer MOV.
477 //
478 const Type* resultType = instrNode->getInstruction()->getType();
479
480 if (resultType == Type::FloatTy ||
481 resultType == Type::DoubleTy)
482 {
483 double dval = ((ConstPoolFP*) constOp)->getValue();
484 if (dval == 0.0)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000485 minstr = CreateMovFloatInstruction(instrNode, resultType);
Chris Lattner20b1ea02001-09-14 03:47:57 +0000486 }
487
488 return minstr;
489}
490
491
492static inline MachineOpCode
493ChooseFcmpInstruction(const InstructionNode* instrNode)
494{
495 MachineOpCode opCode = INVALID_OPCODE;
496
497 Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
498 switch(operand->getType()->getPrimitiveID()) {
499 case Type::FloatTyID: opCode = FCMPS; break;
500 case Type::DoubleTyID: opCode = FCMPD; break;
501 default: assert(0 && "Invalid type for FCMP instruction"); break;
502 }
503
504 return opCode;
505}
506
507
508// Assumes that leftArg and rightArg are both cast instructions.
509//
510static inline bool
511BothFloatToDouble(const InstructionNode* instrNode)
512{
513 InstrTreeNode* leftArg = instrNode->leftChild();
514 InstrTreeNode* rightArg = instrNode->rightChild();
515 InstrTreeNode* leftArgArg = leftArg->leftChild();
516 InstrTreeNode* rightArgArg = rightArg->leftChild();
517 assert(leftArg->getValue()->getType() == rightArg->getValue()->getType());
518
519 // Check if both arguments are floats cast to double
520 return (leftArg->getValue()->getType() == Type::DoubleTy &&
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000521 leftArgArg->getValue()->getType() == Type::FloatTy &&
522 rightArgArg->getValue()->getType() == Type::FloatTy);
Chris Lattner20b1ea02001-09-14 03:47:57 +0000523}
524
525
526static inline MachineOpCode
527ChooseMulInstruction(const InstructionNode* instrNode,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000528 bool checkCasts)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000529{
530 MachineOpCode opCode = INVALID_OPCODE;
531
532 if (checkCasts && BothFloatToDouble(instrNode))
533 {
534 return opCode = FSMULD;
535 }
536 // else fall through and use the regular multiply instructions
537
538 const Type* resultType = instrNode->getInstruction()->getType();
539
540 if (resultType->isIntegral())
541 {
542 opCode = MULX;
543 }
544 else
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000545 switch(resultType->getPrimitiveID())
546 {
547 case Type::FloatTyID: opCode = FMULS; break;
548 case Type::DoubleTyID: opCode = FMULD; break;
549 default: assert(0 && "Invalid type for MUL instruction"); break;
550 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000551
552 return opCode;
553}
554
555
556static inline MachineInstr*
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000557CreateIntNegInstruction(TargetMachine& target,
558 Value* vreg)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000559{
560 MachineInstr* minstr = new MachineInstr(SUB);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000561 minstr->SetMachineOperand(0, target.getRegInfo().getZeroRegNum());
Chris Lattner20b1ea02001-09-14 03:47:57 +0000562 minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, vreg);
563 minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, vreg);
564 return minstr;
565}
566
567
568static inline MachineInstr*
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000569CreateMulConstInstruction(TargetMachine &target,
570 const InstructionNode* instrNode,
571 MachineInstr*& getMinstr2)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000572{
573 MachineInstr* minstr = NULL;
574 getMinstr2 = NULL;
575 bool needNeg = false;
576
577 Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
Chris Lattner1d87bcf2001-10-01 20:11:19 +0000578 assert(isa<ConstPoolVal>(constOp));
Chris Lattner20b1ea02001-09-14 03:47:57 +0000579
580 // Cases worth optimizing are:
581 // (1) Multiply by 0 or 1 for any type: replace with copy (ADD or FMOV)
582 // (2) Multiply by 2^x for integer types: replace with Shift
583 //
584 const Type* resultType = instrNode->getInstruction()->getType();
585
Vikram S. Adve243dd452001-09-18 13:03:13 +0000586 if (resultType->isIntegral() || resultType->isPointerType())
Chris Lattner20b1ea02001-09-14 03:47:57 +0000587 {
588 unsigned pow;
589 bool isValidConst;
590 int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst);
591 if (isValidConst)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000592 {
593 bool needNeg = false;
594 if (C < 0)
595 {
596 needNeg = true;
597 C = -C;
598 }
599
600 if (C == 0 || C == 1)
601 {
602 minstr = new MachineInstr(ADD);
603
604 if (C == 0)
605 minstr->SetMachineOperand(0,
606 target.getRegInfo().getZeroRegNum());
607 else
608 minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
609 instrNode->leftChild()->getValue());
610 minstr->SetMachineOperand(1,target.getRegInfo().getZeroRegNum());
611 }
612 else if (IsPowerOf2(C, pow))
613 {
614 minstr = new MachineInstr((resultType == Type::LongTy)
615 ? SLLX : SLL);
616 minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
617 instrNode->leftChild()->getValue());
618 minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
619 pow);
620 }
621
622 if (minstr && needNeg)
623 { // insert <reg = SUB 0, reg> after the instr to flip the sign
624 getMinstr2 = CreateIntNegInstruction(target,
625 instrNode->getValue());
626 }
627 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000628 }
629 else
630 {
631 if (resultType == Type::FloatTy ||
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000632 resultType == Type::DoubleTy)
633 {
634 bool isValidConst;
635 double dval = ((ConstPoolFP*) constOp)->getValue();
636
637 if (isValidConst)
638 {
639 if (dval == 0)
640 {
641 minstr = new MachineInstr((resultType == Type::FloatTy)
642 ? FITOS : FITOD);
643 minstr->SetMachineOperand(0,
644 target.getRegInfo().getZeroRegNum());
645 }
646 else if (fabs(dval) == 1)
647 {
648 bool needNeg = (dval < 0);
649
650 MachineOpCode opCode = needNeg
651 ? (resultType == Type::FloatTy? FNEGS : FNEGD)
652 : (resultType == Type::FloatTy? FMOVS : FMOVD);
653
654 minstr = new MachineInstr(opCode);
655 minstr->SetMachineOperand(0,
656 MachineOperand::MO_VirtualRegister,
657 instrNode->leftChild()->getValue());
658 }
659 }
660 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000661 }
662
663 if (minstr != NULL)
664 minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000665 instrNode->getValue());
Chris Lattner20b1ea02001-09-14 03:47:57 +0000666
667 return minstr;
668}
669
670
671static inline MachineOpCode
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000672ChooseDivInstruction(TargetMachine &target,
673 const InstructionNode* instrNode)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000674{
675 MachineOpCode opCode = INVALID_OPCODE;
676
677 const Type* resultType = instrNode->getInstruction()->getType();
678
679 if (resultType->isIntegral())
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000680 opCode = resultType->isSigned()? SDIVX : UDIVX;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000681 else
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000682 switch(resultType->getPrimitiveID())
683 {
684 case Type::FloatTyID: opCode = FDIVS; break;
685 case Type::DoubleTyID: opCode = FDIVD; break;
686 default: assert(0 && "Invalid type for DIV instruction"); break;
687 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000688
689 return opCode;
690}
691
692
693static inline MachineInstr*
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000694CreateDivConstInstruction(TargetMachine &target,
695 const InstructionNode* instrNode,
696 MachineInstr*& getMinstr2)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000697{
698 MachineInstr* minstr = NULL;
699 getMinstr2 = NULL;
700
701 Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
Chris Lattner1d87bcf2001-10-01 20:11:19 +0000702 assert(isa<ConstPoolVal>(constOp));
Chris Lattner20b1ea02001-09-14 03:47:57 +0000703
704 // Cases worth optimizing are:
705 // (1) Divide by 1 for any type: replace with copy (ADD or FMOV)
706 // (2) Divide by 2^x for integer types: replace with SR[L or A]{X}
707 //
708 const Type* resultType = instrNode->getInstruction()->getType();
709
710 if (resultType->isIntegral())
711 {
712 unsigned pow;
713 bool isValidConst;
714 int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst);
715 if (isValidConst)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000716 {
717 bool needNeg = false;
718 if (C < 0)
719 {
720 needNeg = true;
721 C = -C;
722 }
723
724 if (C == 1)
725 {
726 minstr = new MachineInstr(ADD);
727 minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
728 instrNode->leftChild()->getValue());
729 minstr->SetMachineOperand(1,target.getRegInfo().getZeroRegNum());
730 }
731 else if (IsPowerOf2(C, pow))
732 {
733 MachineOpCode opCode= ((resultType->isSigned())
734 ? (resultType==Type::LongTy)? SRAX : SRA
735 : (resultType==Type::LongTy)? SRLX : SRL);
736 minstr = new MachineInstr(opCode);
737 minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
738 instrNode->leftChild()->getValue());
739 minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
740 pow);
741 }
742
743 if (minstr && needNeg)
744 { // insert <reg = SUB 0, reg> after the instr to flip the sign
745 getMinstr2 = CreateIntNegInstruction(target,
746 instrNode->getValue());
747 }
748 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000749 }
750 else
751 {
752 if (resultType == Type::FloatTy ||
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000753 resultType == Type::DoubleTy)
754 {
755 bool isValidConst;
756 double dval = ((ConstPoolFP*) constOp)->getValue();
757
758 if (isValidConst && fabs(dval) == 1)
759 {
760 bool needNeg = (dval < 0);
761
762 MachineOpCode opCode = needNeg
763 ? (resultType == Type::FloatTy? FNEGS : FNEGD)
764 : (resultType == Type::FloatTy? FMOVS : FMOVD);
765
766 minstr = new MachineInstr(opCode);
767 minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
768 instrNode->leftChild()->getValue());
769 }
770 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000771 }
772
773 if (minstr != NULL)
774 minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000775 instrNode->getValue());
Chris Lattner20b1ea02001-09-14 03:47:57 +0000776
777 return minstr;
778}
779
780
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000781static inline MachineOpCode
782ChooseLoadInstruction(const Type *DestTy)
783{
Chris Lattner71634472001-09-14 20:00:02 +0000784 switch (DestTy->getPrimitiveID()) {
785 case Type::BoolTyID:
786 case Type::UByteTyID: return LDUB;
787 case Type::SByteTyID: return LDSB;
788 case Type::UShortTyID: return LDUH;
789 case Type::ShortTyID: return LDSH;
790 case Type::UIntTyID: return LDUW;
791 case Type::IntTyID: return LDSW;
792 case Type::PointerTyID:
793 case Type::ULongTyID:
794 case Type::LongTyID: return LDX;
795 case Type::FloatTyID: return LD;
796 case Type::DoubleTyID: return LDD;
797 default: assert(0 && "Invalid type for Load instruction");
798 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000799
Chris Lattner71634472001-09-14 20:00:02 +0000800 return 0;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000801}
802
803
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000804static inline MachineOpCode
805ChooseStoreInstruction(const Type *DestTy)
806{
Chris Lattner71634472001-09-14 20:00:02 +0000807 switch (DestTy->getPrimitiveID()) {
808 case Type::BoolTyID:
809 case Type::UByteTyID:
810 case Type::SByteTyID: return STB;
811 case Type::UShortTyID:
812 case Type::ShortTyID: return STH;
813 case Type::UIntTyID:
814 case Type::IntTyID: return STW;
815 case Type::PointerTyID:
816 case Type::ULongTyID:
817 case Type::LongTyID: return STX;
818 case Type::FloatTyID: return ST;
819 case Type::DoubleTyID: return STD;
820 default: assert(0 && "Invalid type for Store instruction");
821 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000822
Chris Lattner71634472001-09-14 20:00:02 +0000823 return 0;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000824}
825
826
827//------------------------------------------------------------------------
828// Function SetOperandsForMemInstr
829//
830// Choose addressing mode for the given load or store instruction.
831// Use [reg+reg] if it is an indexed reference, and the index offset is
832// not a constant or if it cannot fit in the offset field.
833// Use [reg+offset] in all other cases.
834//
835// This assumes that all array refs are "lowered" to one of these forms:
836// %x = load (subarray*) ptr, constant ; single constant offset
837// %x = load (subarray*) ptr, offsetVal ; single non-constant offset
838// Generally, this should happen via strength reduction + LICM.
839// Also, strength reduction should take care of using the same register for
840// the loop index variable and an array index, when that is profitable.
841//------------------------------------------------------------------------
842
843static void
844SetOperandsForMemInstr(MachineInstr* minstr,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000845 const InstructionNode* vmInstrNode,
846 const TargetMachine& target)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000847{
848 MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
849
850 // Variables to hold the index vector, ptr value, and offset value.
851 // The major work here is to extract these for all 3 instruction types
852 // and then call the common function SetMemOperands_Internal().
853 //
854 const vector<ConstPoolVal*>* idxVec = & memInst->getIndexVec();
855 vector<ConstPoolVal*>* newIdxVec = NULL;
856 Value* ptrVal;
857 Value* arrayOffsetVal = NULL;
858
859 // Test if a GetElemPtr instruction is being folded into this mem instrn.
860 // If so, it will be in the left child for Load and GetElemPtr,
861 // and in the right child for Store instructions.
862 //
863 InstrTreeNode* ptrChild = (vmInstrNode->getOpLabel() == Instruction::Store
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000864 ? vmInstrNode->rightChild()
865 : vmInstrNode->leftChild());
Chris Lattner20b1ea02001-09-14 03:47:57 +0000866
867 if (ptrChild->getOpLabel() == Instruction::GetElementPtr ||
868 ptrChild->getOpLabel() == GetElemPtrIdx)
869 {
870 // There is a GetElemPtr instruction and there may be a chain of
871 // more than one. Use the pointer value of the last one in the chain.
872 // Fold the index vectors from the entire chain and from the mem
873 // instruction into one single index vector.
874 // Finally, we never fold for an array instruction so make that NULL.
875
876 newIdxVec = new vector<ConstPoolVal*>;
877 ptrVal = FoldGetElemChain((InstructionNode*) ptrChild, *newIdxVec);
878
879 newIdxVec->insert(newIdxVec->end(), idxVec->begin(), idxVec->end());
880 idxVec = newIdxVec;
881
882 assert(! ((PointerType*)ptrVal->getType())->getValueType()->isArrayType()
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000883 && "GetElemPtr cannot be folded into array refs in selection");
Chris Lattner20b1ea02001-09-14 03:47:57 +0000884 }
885 else
886 {
887 // There is no GetElemPtr instruction.
888 // Use the pointer value and the index vector from the Mem instruction.
889 // If it is an array reference, get the array offset value.
890 //
891 ptrVal = memInst->getPtrOperand();
892
893 const Type* opType =
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000894 ((const PointerType*) ptrVal->getType())->getValueType();
Chris Lattner20b1ea02001-09-14 03:47:57 +0000895 if (opType->isArrayType())
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000896 {
897 assert((memInst->getNumOperands()
898 == (unsigned) 1 + memInst->getFirstOffsetIdx())
899 && "Array refs must be lowered before Instruction Selection");
900
901 arrayOffsetVal = memInst->getOperand(memInst->getFirstOffsetIdx());
902 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000903 }
904
905 SetMemOperands_Internal(minstr, vmInstrNode, ptrVal, arrayOffsetVal,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000906 *idxVec, target);
Chris Lattner20b1ea02001-09-14 03:47:57 +0000907
908 if (newIdxVec != NULL)
909 delete newIdxVec;
910}
911
912
913static void
914SetMemOperands_Internal(MachineInstr* minstr,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000915 const InstructionNode* vmInstrNode,
916 Value* ptrVal,
917 Value* arrayOffsetVal,
918 const vector<ConstPoolVal*>& idxVec,
919 const TargetMachine& target)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000920{
921 MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
922
923 // Initialize so we default to storing the offset in a register.
924 int64_t smallConstOffset;
925 Value* valueForRegOffset = NULL;
926 MachineOperand::MachineOperandType offsetOpType =MachineOperand::MO_VirtualRegister;
927
928 // Check if there is an index vector and if so, if it translates to
929 // a small enough constant to fit in the immediate-offset field.
930 //
931 if (idxVec.size() > 0)
932 {
933 bool isConstantOffset = false;
934 unsigned offset;
935
936 const PointerType* ptrType = (PointerType*) ptrVal->getType();
937
938 if (ptrType->getValueType()->isStructType())
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000939 {
940 // the offset is always constant for structs
941 isConstantOffset = true;
942
943 // Compute the offset value using the index vector
944 offset = target.DataLayout.getIndexedOffset(ptrType, idxVec);
945 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000946 else
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000947 {
948 // It must be an array ref. Check if the offset is a constant,
949 // and that the indexing has been lowered to a single offset.
950 //
951 assert(ptrType->getValueType()->isArrayType());
952 assert(arrayOffsetVal != NULL
953 && "Expect to be given Value* for array offsets");
954
Chris Lattner1d87bcf2001-10-01 20:11:19 +0000955 if (ConstPoolVal *CPV = dyn_cast<ConstPoolVal>(arrayOffsetVal))
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000956 {
957 isConstantOffset = true; // always constant for structs
958 assert(arrayOffsetVal->getType()->isIntegral());
959 offset = (CPV->getType()->isSigned()
960 ? ((ConstPoolSInt*)CPV)->getValue()
961 : (int64_t) ((ConstPoolUInt*)CPV)->getValue());
962 }
963 else
964 {
965 valueForRegOffset = arrayOffsetVal;
966 }
967 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000968
969 if (isConstantOffset)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000970 {
971 // create a virtual register for the constant
972 valueForRegOffset = ConstPoolSInt::get(Type::IntTy, offset);
973 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000974 }
975 else
976 {
977 offsetOpType = MachineOperand::MO_SignExtendedImmed;
978 smallConstOffset = 0;
979 }
980
981 // Operand 0 is value for STORE, ptr for LOAD or GET_ELEMENT_PTR
982 // It is the left child in the instruction tree in all cases.
983 Value* leftVal = vmInstrNode->leftChild()->getValue();
984 minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, leftVal);
985
986 // Operand 1 is ptr for STORE, offset for LOAD or GET_ELEMENT_PTR
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000987 // Operand 2 is offset for STORE, result reg for LOAD or GET_ELEMENT_PTR
Chris Lattner20b1ea02001-09-14 03:47:57 +0000988 //
989 unsigned offsetOpNum = (memInst->getOpcode() == Instruction::Store)? 2 : 1;
990 if (offsetOpType == MachineOperand::MO_VirtualRegister)
991 {
992 assert(valueForRegOffset != NULL);
993 minstr->SetMachineOperand(offsetOpNum, offsetOpType, valueForRegOffset);
994 }
995 else
996 minstr->SetMachineOperand(offsetOpNum, offsetOpType, smallConstOffset);
997
998 if (memInst->getOpcode() == Instruction::Store)
999 minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, ptrVal);
1000 else
1001 minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001002 vmInstrNode->getValue());
Chris Lattner20b1ea02001-09-14 03:47:57 +00001003}
1004
1005
1006static inline MachineInstr*
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001007CreateIntSetInstruction(int64_t C, bool isSigned, Value* dest)
Chris Lattner20b1ea02001-09-14 03:47:57 +00001008{
1009 MachineInstr* minstr;
1010 if (isSigned)
1011 {
1012 minstr = new MachineInstr(SETSW);
1013 minstr->SetMachineOperand(0, MachineOperand::MO_SignExtendedImmed, C);
1014 }
1015 else
1016 {
1017 minstr = new MachineInstr(SETUW);
1018 minstr->SetMachineOperand(0, MachineOperand::MO_UnextendedImmed, C);
1019 }
1020
1021 minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, dest);
1022
1023 return minstr;
1024}
1025
1026
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001027// Create an instruction sequence to load a constant into a register.
1028// This always creates either one or two instructions.
1029// If two instructions are created, the second one is returned in getMinstr2
1030// The implicit virtual register used to hold the constant is returned in
1031// tmpReg.
1032//
Chris Lattner20b1ea02001-09-14 03:47:57 +00001033static MachineInstr*
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001034CreateLoadConstInstr(const TargetMachine &target,
1035 Instruction* vmInstr,
1036 Value* val,
1037 Instruction* dest,
1038 MachineInstr*& getMinstr2)
Chris Lattner20b1ea02001-09-14 03:47:57 +00001039{
Chris Lattner1d87bcf2001-10-01 20:11:19 +00001040 assert(isa<ConstPoolVal>(val));
Chris Lattner20b1ea02001-09-14 03:47:57 +00001041
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001042 MachineInstr* minstr1 = NULL;
Chris Lattner20b1ea02001-09-14 03:47:57 +00001043
1044 getMinstr2 = NULL;
1045
Chris Lattner20b1ea02001-09-14 03:47:57 +00001046 // Use a "set" instruction for known constants that can go in an integer reg.
1047 // Use a "set" instruction followed by a int-to-float conversion for known
1048 // constants that must go in a floating point reg but have an integer value.
1049 // Use a "load" instruction for all other constants, in particular,
1050 // floating point constants.
1051 //
1052 const Type* valType = val->getType();
1053
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001054 if (valType->isIntegral() || valType == Type::BoolTy)
Chris Lattner20b1ea02001-09-14 03:47:57 +00001055 {
1056 bool isValidConstant;
1057 int64_t C = GetConstantValueAsSignedInt(val, isValidConstant);
1058 assert(isValidConstant && "Unrecognized constant");
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001059 minstr1 = CreateIntSetInstruction(C, valType->isSigned(), dest);
Chris Lattner20b1ea02001-09-14 03:47:57 +00001060 }
1061 else
1062 {
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001063
1064#undef MOVE_INT_TO_FP_REG_AVAILABLE
1065#ifdef MOVE_INT_TO_FP_REG_AVAILABLE
1066 //
1067 // This code was written to generate the following sequence:
1068 // SET[SU]W <int-const> <int-reg>
1069 // FITO[SD] <int-reg> <fp-reg>
1070 // (it really should have moved the int-reg to an fp-reg and then FITOS).
1071 // But for now the only way to move a value from an int-reg to an fp-reg
1072 // is via memory. Leave this code here but unused.
1073 //
Chris Lattner20b1ea02001-09-14 03:47:57 +00001074 assert(valType == Type::FloatTy || valType == Type::DoubleTy);
1075 double dval = ((ConstPoolFP*) val)->getValue();
1076 if (dval == (int64_t) dval)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001077 {
1078 // The constant actually has an integer value, so use a
1079 // [set; int-to-float] sequence instead of a load instruction.
1080 //
1081 TmpInstruction* tmpReg2 = NULL;
1082 if (dval != 0.0)
1083 { // First, create an integer constant of the same value as dval
1084 ConstPoolSInt* ival = ConstPoolSInt::get(Type::IntTy,
1085 (int64_t) dval);
1086 // Create another TmpInstruction for the hidden integer register
1087 tmpReg2 = new TmpInstruction(Instruction::UserOp1, ival, NULL);
1088 vmInstr->getMachineInstrVec().addTempValue(tmpReg2);
1089
1090 // Create the `SET' instruction
1091 minstr1 = CreateIntSetInstruction((int64_t)dval, true, tmpReg2);
1092 tmpReg2->addMachineInstruction(minstr1);
1093 }
1094
1095 // In which variable do we put the second instruction?
1096 MachineInstr*& instr2 = (minstr1)? getMinstr2 : minstr1;
1097
1098 // Create the int-to-float instruction
1099 instr2 = new MachineInstr(valType == Type::FloatTy? FITOS : FITOD);
1100
1101 if (dval == 0.0)
1102 instr2->SetMachineOperand(0, target.getRegInfo().getZeroRegNum());
1103 else
1104 instr2->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
1105 tmpReg2);
1106
1107 instr2->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
1108 dest);
1109 }
Chris Lattner20b1ea02001-09-14 03:47:57 +00001110 else
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001111#endif MOVE_INT_TO_FP_REG_AVAILABLE
1112
1113 {
1114 // Make an instruction sequence to load the constant, viz:
1115 // SETSW <addr-of-constant>, tmpReg2
1116 // LOAD /*addr*/ tmpReg2, /*offset*/ 0, dest
1117 // set the offset field to 0.
1118 //
1119 int64_t zeroOffset = 0; // to avoid ambiguity with (Value*) 0
1120
1121 // Create another TmpInstruction for the hidden integer register
1122 TmpInstruction* tmpReg2 =
1123 new TmpInstruction(Instruction::UserOp1, val, NULL);
1124 vmInstr->getMachineInstrVec().addTempValue(tmpReg2);
1125
1126 minstr1 = new MachineInstr(SETUW);
1127 minstr1->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp,val);
1128 minstr1->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
1129 tmpReg2);
1130 tmpReg2->addMachineInstruction(minstr1);
1131
1132 getMinstr2 = new MachineInstr(ChooseLoadInstruction(val->getType()));
1133 getMinstr2->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
1134 tmpReg2);
1135 getMinstr2->SetMachineOperand(1,MachineOperand::MO_SignExtendedImmed,
1136 zeroOffset);
1137 getMinstr2->SetMachineOperand(2,MachineOperand::MO_VirtualRegister,
1138 dest);
1139 }
Chris Lattner20b1ea02001-09-14 03:47:57 +00001140 }
1141
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001142 assert(minstr1);
1143 return minstr1;
Chris Lattner20b1ea02001-09-14 03:47:57 +00001144}
1145
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001146// Special handling for constant operands:
1147// -- if the constant is 0, use the hardwired 0 register, if any;
1148// -- if the constant is of float or double type but has an integer value,
1149// use int-to-float conversion instruction instead of generating a load;
1150// -- if the constant fits in the IMMEDIATE field, use that field;
1151// -- else insert instructions to put the constant into a register, either
1152// directly or by loading explicitly from the constant pool.
1153//
1154static unsigned
1155FixConstantOperands(const InstructionNode* vmInstrNode,
1156 MachineInstr** mvec,
1157 unsigned numInstr,
1158 TargetMachine& target)
1159{
1160 static MachineInstr* loadConstVec[MAX_INSTR_PER_VMINSTR];
1161
1162 unsigned numNew = 0;
1163 Instruction* vmInstr = vmInstrNode->getInstruction();
1164
1165 for (unsigned i=0; i < numInstr; i++)
1166 {
1167 MachineInstr* minstr = mvec[i];
1168 const MachineInstrDescriptor& instrDesc =
1169 target.getInstrInfo().getDescriptor(minstr->getOpCode());
1170
1171 for (unsigned op=0; op < minstr->getNumOperands(); op++)
1172 {
1173 const MachineOperand& mop = minstr->getOperand(op);
1174
1175 // skip the result position (for efficiency below) and any other
1176 // positions already marked as not a virtual register
1177 if (instrDesc.resultPos == (int) op ||
1178 mop.getOperandType() != MachineOperand::MO_VirtualRegister ||
1179 mop.getVRegValue() == NULL)
1180 {
1181 continue;
1182 }
1183
1184 Value* opValue = mop.getVRegValue();
1185
Chris Lattner1d87bcf2001-10-01 20:11:19 +00001186 if (isa<ConstPoolVal>(opValue))
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001187 {
1188 unsigned int machineRegNum;
1189 int64_t immedValue;
1190 MachineOperand::MachineOperandType opType =
1191 ChooseRegOrImmed(opValue, minstr->getOpCode(), target,
1192 /*canUseImmed*/ (op == 1),
1193 machineRegNum, immedValue);
1194
1195 if (opType == MachineOperand::MO_MachineRegister)
1196 minstr->SetMachineOperand(op, machineRegNum);
1197 else if (opType == MachineOperand::MO_VirtualRegister)
1198 {
1199 // value is constant and must be loaded into a register.
1200 // First, create a tmp virtual register (TmpInstruction)
1201 // to hold the constant.
1202 // This will replace the constant operand in `minstr'.
1203 TmpInstruction* tmpReg =
1204 new TmpInstruction(Instruction::UserOp1, opValue, NULL);
1205 vmInstr->getMachineInstrVec().addTempValue(tmpReg);
1206 minstr->SetMachineOperand(op, opType, tmpReg);
1207
1208 MachineInstr *minstr1, *minstr2;
1209 minstr1 = CreateLoadConstInstr(target, vmInstr,
1210 opValue, tmpReg, minstr2);
1211 tmpReg->addMachineInstruction(minstr1);
1212
1213 loadConstVec[numNew++] = minstr1;
1214 if (minstr2 != NULL)
1215 loadConstVec[numNew++] = minstr2;
1216 }
1217 else
1218 minstr->SetMachineOperand(op, opType, immedValue);
1219 }
1220 }
1221 }
1222
1223 if (numNew > 0)
1224 {
1225 // Insert the new instructions *before* the old ones by moving
1226 // the old ones over `numNew' positions (last-to-first, of course!).
1227 // We do check *after* returning that we did not exceed the vector mvec.
1228 for (int i=numInstr-1; i >= 0; i--)
1229 mvec[i+numNew] = mvec[i];
1230
1231 for (unsigned i=0; i < numNew; i++)
1232 mvec[i] = loadConstVec[i];
1233 }
1234
1235 return (numInstr + numNew);
1236}
1237
1238
Chris Lattner20b1ea02001-09-14 03:47:57 +00001239//
1240// Substitute operand `operandNum' of the instruction in node `treeNode'
1241// in place the use(s) of that instruction in node `parent'.
1242//
1243static void
1244ForwardOperand(InstructionNode* treeNode,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001245 InstrTreeNode* parent,
1246 int operandNum)
Chris Lattner20b1ea02001-09-14 03:47:57 +00001247{
Vikram S. Adve243dd452001-09-18 13:03:13 +00001248 assert(treeNode && parent && "Invalid invocation of ForwardOperand");
1249
Chris Lattner20b1ea02001-09-14 03:47:57 +00001250 Instruction* unusedOp = treeNode->getInstruction();
1251 Value* fwdOp = unusedOp->getOperand(operandNum);
Vikram S. Adve243dd452001-09-18 13:03:13 +00001252
1253 // The parent itself may be a list node, so find the real parent instruction
1254 while (parent->getNodeType() != InstrTreeNode::NTInstructionNode)
1255 {
1256 parent = parent->parent();
1257 assert(parent && "ERROR: Non-instruction node has no parent in tree.");
1258 }
1259 InstructionNode* parentInstrNode = (InstructionNode*) parent;
1260
1261 Instruction* userInstr = parentInstrNode->getInstruction();
Chris Lattner20b1ea02001-09-14 03:47:57 +00001262 MachineCodeForVMInstr& mvec = userInstr->getMachineInstrVec();
1263 for (unsigned i=0, N=mvec.size(); i < N; i++)
1264 {
1265 MachineInstr* minstr = mvec[i];
1266 for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; i++)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001267 {
1268 const MachineOperand& mop = minstr->getOperand(i);
1269 if (mop.getOperandType() == MachineOperand::MO_VirtualRegister &&
1270 mop.getVRegValue() == unusedOp)
1271 {
1272 minstr->SetMachineOperand(i, MachineOperand::MO_VirtualRegister,
1273 fwdOp);
1274 }
1275 }
Chris Lattner20b1ea02001-09-14 03:47:57 +00001276 }
1277}
1278
1279
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001280MachineInstr*
1281CreateCopyInstructionsByType(const TargetMachine& target,
1282 Value* src,
1283 Instruction* dest,
1284 MachineInstr*& getMinstr2)
1285{
1286 getMinstr2 = NULL; // initialize second return value
1287
1288 MachineInstr* minstr1 = NULL;
1289
1290 const Type* resultType = dest->getType();
1291
1292 MachineOpCode opCode = ChooseAddInstructionByType(resultType);
1293 if (opCode == INVALID_OPCODE)
1294 {
1295 assert(0 && "Unsupported result type in CreateCopyInstructionsByType()");
1296 return NULL;
1297 }
1298
1299 // if `src' is a constant that doesn't fit in the immed field, generate
1300 // a load instruction instead of an add
Chris Lattner1d87bcf2001-10-01 20:11:19 +00001301 if (isa<ConstPoolVal>(src))
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001302 {
1303 unsigned int machineRegNum;
1304 int64_t immedValue;
1305 MachineOperand::MachineOperandType opType =
1306 ChooseRegOrImmed(src, opCode, target, /*canUseImmed*/ true,
1307 machineRegNum, immedValue);
1308
1309 if (opType == MachineOperand::MO_VirtualRegister)
1310 { // value is constant and cannot fit in immed field for the ADD
1311 minstr1 = CreateLoadConstInstr(target, dest, src, dest, getMinstr2);
1312 }
1313 }
1314
1315 if (minstr1 == NULL)
1316 { // Create the appropriate add instruction.
1317 // Make `src' the second operand, in case it is a constant
1318 // Use (unsigned long) 0 for a NULL pointer value.
1319 //
1320 const Type* nullValueType =
1321 (resultType->getPrimitiveID() == Type::PointerTyID)? Type::ULongTy
1322 : resultType;
1323 minstr1 = new MachineInstr(opCode);
1324 minstr1->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
1325 ConstPoolVal::getNullConstant(nullValueType));
1326 minstr1->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, src);
1327 minstr1->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, dest);
1328 }
1329
1330 return minstr1;
1331}
1332
1333
Chris Lattner20b1ea02001-09-14 03:47:57 +00001334// This function is currently unused and incomplete but will be
1335// used if we have a linear layout of basic blocks in LLVM code.
1336// It decides which branch should fall-through, and whether an
1337// extra unconditional branch is needed (when neither falls through).
1338//
1339void
1340ChooseBranchPattern(Instruction* vmInstr, BranchPattern& brPattern)
1341{
1342 BranchInst* brInstr = (BranchInst*) vmInstr;
1343
1344 brPattern.flipCondition = false;
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001345 brPattern.targetBB = brInstr->getSuccessor(0);
Chris Lattner20b1ea02001-09-14 03:47:57 +00001346 brPattern.extraBranch = NULL;
1347
1348 assert(brInstr->getNumSuccessors() > 1 &&
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001349 "Unnecessary analysis for unconditional branch");
Chris Lattner20b1ea02001-09-14 03:47:57 +00001350
1351 assert(0 && "Fold branches in peephole optimization");
1352}
1353
1354
1355//******************* Externally Visible Functions *************************/
1356
1357
1358//------------------------------------------------------------------------
1359// External Function: GetInstructionsByRule
1360//
1361// Purpose:
1362// Choose machine instructions for the SPARC according to the
1363// patterns chosen by the BURG-generated parser.
1364//------------------------------------------------------------------------
1365
1366unsigned
1367GetInstructionsByRule(InstructionNode* subtreeRoot,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001368 int ruleForNode,
1369 short* nts,
1370 TargetMachine &target,
1371 MachineInstr** mvec)
Chris Lattner20b1ea02001-09-14 03:47:57 +00001372{
1373 int numInstr = 1; // initialize for common case
1374 bool checkCast = false; // initialize here to use fall-through
1375 Value *leftVal, *rightVal;
1376 const Type* opType;
1377 int nextRule;
1378 int forwardOperandNum = -1;
Chris Lattner20b1ea02001-09-14 03:47:57 +00001379 int64_t s0 = 0; // variables holding zero to avoid
1380 uint64_t u0 = 0; // overloading ambiguities below
1381
1382 mvec[0] = mvec[1] = mvec[2] = mvec[3] = NULL; // just for safety
1383
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001384 //
1385 // Let's check for chain rules outside the switch so that we don't have
1386 // to duplicate the list of chain rule production numbers here again
1387 //
1388 if (ThisIsAChainRule(ruleForNode))
Chris Lattner20b1ea02001-09-14 03:47:57 +00001389 {
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001390 // Chain rules have a single nonterminal on the RHS.
1391 // Get the rule that matches the RHS non-terminal and use that instead.
1392 //
1393 assert(nts[0] && ! nts[1]
1394 && "A chain rule should have only one RHS non-terminal!");
1395 nextRule = burm_rule(subtreeRoot->state, nts[0]);
1396 nts = burm_nts[nextRule];
1397 numInstr = GetInstructionsByRule(subtreeRoot, nextRule, nts,target,mvec);
Chris Lattner20b1ea02001-09-14 03:47:57 +00001398 }
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001399 else
Chris Lattner20b1ea02001-09-14 03:47:57 +00001400 {
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001401 switch(ruleForNode) {
1402 case 1: // stmt: Ret
1403 case 2: // stmt: RetValue(reg)
1404 // NOTE: Prepass of register allocation is responsible
1405 // for moving return value to appropriate register.
1406 // Mark the return-address register as a hidden virtual reg.
1407 // Mark the return value register as an implicit use.
1408 {
1409 ReturnInst* returnInstr = (ReturnInst*) subtreeRoot->getInstruction();
1410 assert(returnInstr->getOpcode() == Instruction::Ret);
1411
1412 Instruction* returnReg = new TmpInstruction(Instruction::UserOp1,
1413 returnInstr, NULL);
1414 returnInstr->getMachineInstrVec().addTempValue(returnReg);
Chris Lattner20b1ea02001-09-14 03:47:57 +00001415
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001416 if (returnInstr->getReturnValue() != NULL)
1417 returnInstr->getMachineInstrVec().addImplicitUse(
1418 returnInstr->getReturnValue());
1419
1420 mvec[0] = new MachineInstr(RETURN);
1421 mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
1422 returnReg);
1423 mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,s0);
1424
1425 returnReg->addMachineInstruction(mvec[0]);
1426
1427 mvec[numInstr++] = new MachineInstr(NOP); // delay slot
1428 break;
1429 }
1430
1431 case 3: // stmt: Store(reg,reg)
1432 case 4: // stmt: Store(reg,ptrreg)
1433 mvec[0] = new MachineInstr(
1434 ChooseStoreInstruction(
1435 subtreeRoot->leftChild()->getValue()->getType()));
1436 SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
1437 break;
Chris Lattner20b1ea02001-09-14 03:47:57 +00001438
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001439 case 5: // stmt: BrUncond
1440 mvec[0] = new MachineInstr(BA);
1441 mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
1442 (Value*)NULL);
1443 mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
1444 ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
1445
1446 // delay slot
1447 mvec[numInstr++] = new MachineInstr(NOP);
1448 break;
Chris Lattner20b1ea02001-09-14 03:47:57 +00001449
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001450 case 206: // stmt: BrCond(setCCconst)
1451 // setCCconst => boolean was computed with `%b = setCC type reg1 const'
1452 // If the constant is ZERO, we can use the branch-on-integer-register
1453 // instructions and avoid the SUBcc instruction entirely.
1454 // Otherwise this is just the same as case 5, so just fall through.
1455 {
1456 InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild();
1457 assert(constNode &&
1458 constNode->getNodeType() ==InstrTreeNode::NTConstNode);
1459 ConstPoolVal* constVal = (ConstPoolVal*) constNode->getValue();
1460 bool isValidConst;
Chris Lattner20b1ea02001-09-14 03:47:57 +00001461
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001462 if ((constVal->getType()->isIntegral()
1463 || constVal->getType()->isPointerType())
1464 && GetConstantValueAsSignedInt(constVal, isValidConst) == 0
1465 && isValidConst)
1466 {
1467 // That constant is a zero after all...
1468 // Use the left child of setCC as the first argument!
1469 mvec[0] = new MachineInstr(ChooseBprInstruction(subtreeRoot));
1470 mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
1471 subtreeRoot->leftChild()->leftChild()->getValue());
1472 mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
1473 ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
Chris Lattner20b1ea02001-09-14 03:47:57 +00001474
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001475 // delay slot
1476 mvec[numInstr++] = new MachineInstr(NOP);
1477
1478 // false branch
1479 int n = numInstr++;
1480 mvec[n] = new MachineInstr(BA);
1481 mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
1482 (Value*) NULL);
1483 mvec[n]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
1484 ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
1485
1486 // delay slot
1487 mvec[numInstr++] = new MachineInstr(NOP);
1488
1489 break;
1490 }
1491 // ELSE FALL THROUGH
1492 }
1493
1494 case 6: // stmt: BrCond(bool)
1495 // bool => boolean was computed with some boolean operator
1496 // (SetCC, Not, ...). We need to check whether the type was a FP,
1497 // signed int or unsigned int, and check the branching condition in
1498 // order to choose the branch to use.
1499 //
1500 {
1501 bool isFPBranch;
1502 mvec[0] = new MachineInstr(ChooseBccInstruction(subtreeRoot,
1503 isFPBranch));
1504 mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
1505 subtreeRoot->leftChild()->getValue());
1506 mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
1507 ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
1508
1509 // delay slot
1510 mvec[numInstr++] = new MachineInstr(NOP);
1511
1512 // false branch
1513 int n = numInstr++;
1514 mvec[n] = new MachineInstr(BA);
1515 mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
1516 (Value*) NULL);
1517 mvec[n]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
1518 ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
1519
1520 // delay slot
1521 mvec[numInstr++] = new MachineInstr(NOP);
1522 break;
1523 }
1524
1525 case 208: // stmt: BrCond(boolconst)
1526 {
1527 // boolconst => boolean is a constant; use BA to first or second label
Chris Lattnercfe26c92001-10-01 18:26:53 +00001528 ConstPoolVal* constVal =
1529 cast<ConstPoolVal>(subtreeRoot->leftChild()->getValue());
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001530 unsigned dest = ((ConstPoolBool*) constVal)->getValue()? 0 : 1;
1531
1532 mvec[0] = new MachineInstr(BA);
1533 mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
1534 (Value*) NULL);
1535 mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
1536 ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(dest));
1537
1538 // delay slot
1539 mvec[numInstr++] = new MachineInstr(NOP);
1540 break;
1541 }
1542
1543 case 8: // stmt: BrCond(boolreg)
1544 // boolreg => boolean is stored in an existing register.
1545 // Just use the branch-on-integer-register instruction!
1546 //
1547 {
1548 mvec[0] = new MachineInstr(BRNZ);
1549 mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
1550 subtreeRoot->leftChild()->getValue());
1551 mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
1552 ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
1553
1554 // delay slot
1555 mvec[numInstr++] = new MachineInstr(NOP); // delay slot
1556
1557 // false branch
1558 int n = numInstr++;
1559 mvec[n] = new MachineInstr(BA);
1560 mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
1561 (Value*) NULL);
1562 mvec[n]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
1563 ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
1564
1565 // delay slot
1566 mvec[numInstr++] = new MachineInstr(NOP);
1567 break;
1568 }
Chris Lattner20b1ea02001-09-14 03:47:57 +00001569
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001570 case 9: // stmt: Switch(reg)
1571 assert(0 && "*** SWITCH instruction is not implemented yet.");
1572 numInstr = 0;
1573 break;
Chris Lattner20b1ea02001-09-14 03:47:57 +00001574
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001575 case 10: // reg: VRegList(reg, reg)
1576 assert(0 && "VRegList should never be the topmost non-chain rule");
1577 break;
1578
1579 case 21: // reg: Not(reg): Implemented as reg = reg XOR-NOT 0
1580 mvec[0] = new MachineInstr(XNOR);
1581 mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
1582 subtreeRoot->leftChild()->getValue());
1583 mvec[0]->SetMachineOperand(1, target.getRegInfo().getZeroRegNum());
1584 mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
1585 subtreeRoot->getValue());
1586 break;
1587
1588 case 322: // reg: ToBoolTy(bool):
1589 case 22: // reg: ToBoolTy(reg):
1590 opType = subtreeRoot->leftChild()->getValue()->getType();
1591 assert(opType->isIntegral() || opType == Type::BoolTy);
1592 numInstr = 0;
1593 forwardOperandNum = 0;
1594 break;
1595
1596 case 23: // reg: ToUByteTy(reg)
1597 case 25: // reg: ToUShortTy(reg)
1598 case 27: // reg: ToUIntTy(reg)
1599 case 29: // reg: ToULongTy(reg)
1600 opType = subtreeRoot->leftChild()->getValue()->getType();
1601 assert(opType->isIntegral() ||
1602 opType->isPointerType() ||
1603 opType == Type::BoolTy && "Cast is illegal for other types");
1604 numInstr = 0;
1605 forwardOperandNum = 0;
1606 break;
1607
1608 case 24: // reg: ToSByteTy(reg)
1609 case 26: // reg: ToShortTy(reg)
1610 case 28: // reg: ToIntTy(reg)
1611 case 30: // reg: ToLongTy(reg)
1612 opType = subtreeRoot->leftChild()->getValue()->getType();
1613 if (opType->isIntegral() || opType == Type::BoolTy)
1614 {
1615 numInstr = 0;
1616 forwardOperandNum = 0;
1617 }
1618 else
1619 {
1620 mvec[0] = new MachineInstr(ChooseConvertToIntInstr(subtreeRoot,
1621 opType));
1622 Set2OperandsFromInstr(mvec[0], subtreeRoot, target);
1623 }
1624 break;
1625
1626 case 31: // reg: ToFloatTy(reg):
1627 case 32: // reg: ToDoubleTy(reg):
1628 case 232: // reg: ToDoubleTy(Constant):
1629
1630 // If this instruction has a parent (a user) in the tree
1631 // and the user is translated as an FsMULd instruction,
1632 // then the cast is unnecessary. So check that first.
1633 // In the future, we'll want to do the same for the FdMULq instruction,
1634 // so do the check here instead of only for ToFloatTy(reg).
1635 //
1636 if (subtreeRoot->parent() != NULL &&
1637 ((InstructionNode*) subtreeRoot->parent())->getInstruction()->getMachineInstrVec()[0]->getOpCode() == FSMULD)
1638 {
1639 numInstr = 0;
1640 forwardOperandNum = 0;
1641 }
1642 else
1643 {
1644 opType = subtreeRoot->leftChild()->getValue()->getType();
1645 MachineOpCode opCode=ChooseConvertToFloatInstr(subtreeRoot,opType);
1646 if (opCode == INVALID_OPCODE) // no conversion needed
1647 {
1648 numInstr = 0;
1649 forwardOperandNum = 0;
1650 }
1651 else
1652 {
1653 mvec[0] = new MachineInstr(opCode);
1654 Set2OperandsFromInstr(mvec[0], subtreeRoot, target);
1655 }
1656 }
1657 break;
1658
1659 case 19: // reg: ToArrayTy(reg):
1660 case 20: // reg: ToPointerTy(reg):
1661 numInstr = 0;
1662 forwardOperandNum = 0;
1663 break;
1664
1665 case 233: // reg: Add(reg, Constant)
1666 mvec[0] = CreateAddConstInstruction(subtreeRoot);
1667 if (mvec[0] != NULL)
1668 break;
1669 // ELSE FALL THROUGH
1670
1671 case 33: // reg: Add(reg, reg)
1672 mvec[0] = new MachineInstr(ChooseAddInstruction(subtreeRoot));
1673 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1674 break;
1675
1676 case 234: // reg: Sub(reg, Constant)
1677 mvec[0] = CreateSubConstInstruction(subtreeRoot);
1678 if (mvec[0] != NULL)
1679 break;
1680 // ELSE FALL THROUGH
1681
1682 case 34: // reg: Sub(reg, reg)
1683 mvec[0] = new MachineInstr(ChooseSubInstruction(subtreeRoot));
1684 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1685 break;
1686
1687 case 135: // reg: Mul(todouble, todouble)
1688 checkCast = true;
1689 // FALL THROUGH
1690
1691 case 35: // reg: Mul(reg, reg)
1692 mvec[0] =new MachineInstr(ChooseMulInstruction(subtreeRoot,checkCast));
1693 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1694 break;
1695
1696 case 335: // reg: Mul(todouble, todoubleConst)
1697 checkCast = true;
1698 // FALL THROUGH
1699
1700 case 235: // reg: Mul(reg, Constant)
1701 mvec[0] = CreateMulConstInstruction(target, subtreeRoot, mvec[1]);
1702 if (mvec[0] == NULL)
1703 {
1704 mvec[0] = new MachineInstr(ChooseMulInstruction(subtreeRoot,
1705 checkCast));
1706 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1707 }
1708 else
1709 if (mvec[1] != NULL)
1710 ++numInstr;
1711 break;
1712
1713 case 236: // reg: Div(reg, Constant)
1714 mvec[0] = CreateDivConstInstruction(target, subtreeRoot, mvec[1]);
1715 if (mvec[0] != NULL)
1716 {
1717 if (mvec[1] != NULL)
1718 ++numInstr;
1719 }
1720 else
1721 // ELSE FALL THROUGH
1722
1723 case 36: // reg: Div(reg, reg)
1724 mvec[0] = new MachineInstr(ChooseDivInstruction(target, subtreeRoot));
1725 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1726 break;
1727
1728 case 37: // reg: Rem(reg, reg)
1729 case 237: // reg: Rem(reg, Constant)
1730 assert(0 && "REM instruction unimplemented for the SPARC.");
1731 break;
1732
1733 case 38: // reg: And(reg, reg)
1734 case 238: // reg: And(reg, Constant)
1735 mvec[0] = new MachineInstr(AND);
1736 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1737 break;
1738
1739 case 138: // reg: And(reg, not)
1740 mvec[0] = new MachineInstr(ANDN);
1741 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1742 break;
1743
1744 case 39: // reg: Or(reg, reg)
1745 case 239: // reg: Or(reg, Constant)
1746 mvec[0] = new MachineInstr(ORN);
1747 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1748 break;
1749
1750 case 139: // reg: Or(reg, not)
1751 mvec[0] = new MachineInstr(ORN);
1752 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1753 break;
1754
1755 case 40: // reg: Xor(reg, reg)
1756 case 240: // reg: Xor(reg, Constant)
1757 mvec[0] = new MachineInstr(XOR);
1758 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1759 break;
1760
1761 case 140: // reg: Xor(reg, not)
1762 mvec[0] = new MachineInstr(XNOR);
1763 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1764 break;
1765
1766 case 41: // boolconst: SetCC(reg, Constant)
1767 // Check if this is an integer comparison, and
1768 // there is a parent, and the parent decided to use
1769 // a branch-on-integer-register instead of branch-on-condition-code.
1770 // If so, the SUBcc instruction is not required.
1771 // (However, we must still check for constants to be loaded from
1772 // the constant pool so that such a load can be associated with
1773 // this instruction.)
1774 //
1775 // Otherwise this is just the same as case 42, so just fall through.
1776 //
1777 if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() &&
1778 subtreeRoot->parent() != NULL)
1779 {
1780 InstructionNode* parent = (InstructionNode*) subtreeRoot->parent();
1781 assert(parent->getNodeType() == InstrTreeNode::NTInstructionNode);
1782 const vector<MachineInstr*>&
1783 minstrVec = parent->getInstruction()->getMachineInstrVec();
1784 MachineOpCode parentOpCode;
1785 if (parent->getInstruction()->getOpcode() == Instruction::Br &&
1786 (parentOpCode = minstrVec[0]->getOpCode()) >= BRZ &&
1787 parentOpCode <= BRGEZ)
1788 {
1789 numInstr = 0; // don't forward the operand!
1790 break;
1791 }
1792 }
1793 // ELSE FALL THROUGH
1794
1795 case 42: // bool: SetCC(reg, reg):
1796 {
1797 // If result of the SetCC is only used for a single branch, we can
1798 // discard the result. Otherwise, the boolean value must go into
1799 // an integer register.
1800 //
1801 bool keepBoolVal = (subtreeRoot->parent() == NULL ||
1802 ((InstructionNode*) subtreeRoot->parent())
1803 ->getInstruction()->getOpcode() !=Instruction::Br);
1804 bool subValIsBoolVal =
1805 subtreeRoot->getInstruction()->getOpcode() == Instruction::SetNE;
1806 bool keepSubVal = keepBoolVal && subValIsBoolVal;
1807 bool computeBoolVal = keepBoolVal && ! subValIsBoolVal;
1808
1809 bool mustClearReg;
1810 int valueToMove;
1811 MachineOpCode movOpCode;
1812
1813 if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() ||
1814 subtreeRoot->leftChild()->getValue()->getType()->isPointerType())
1815 {
1816 // Integer condition: dest. should be %g0 or an integer register.
1817 // If result must be saved but condition is not SetEQ then we need
1818 // a separate instruction to compute the bool result, so discard
1819 // result of SUBcc instruction anyway.
1820 //
1821 mvec[0] = new MachineInstr(SUBcc);
1822 Set3OperandsFromInstr(mvec[0], subtreeRoot, target, ! keepSubVal);
1823
1824 // mark the 4th operand as being a CC register, and a "result"
1825 mvec[0]->SetMachineOperand(3, MachineOperand::MO_CCRegister,
1826 subtreeRoot->getValue(),/*def*/true);
1827
1828 if (computeBoolVal)
1829 { // recompute bool using the integer condition codes
1830 movOpCode =
1831 ChooseMovpccAfterSub(subtreeRoot,mustClearReg,valueToMove);
1832 }
1833 }
1834 else
1835 {
1836 // FP condition: dest of FCMP should be some FCCn register
1837 mvec[0] = new MachineInstr(ChooseFcmpInstruction(subtreeRoot));
1838 mvec[0]->SetMachineOperand(0,MachineOperand::MO_CCRegister,
1839 subtreeRoot->getValue());
1840 mvec[0]->SetMachineOperand(1,MachineOperand::MO_VirtualRegister,
1841 subtreeRoot->leftChild()->getValue());
1842 mvec[0]->SetMachineOperand(2,MachineOperand::MO_VirtualRegister,
1843 subtreeRoot->rightChild()->getValue());
1844
1845 if (computeBoolVal)
1846 {// recompute bool using the FP condition codes
1847 mustClearReg = true;
1848 valueToMove = 1;
1849 movOpCode = ChooseMovFpccInstruction(subtreeRoot);
1850 }
1851 }
1852
1853 if (computeBoolVal)
1854 {
1855 if (mustClearReg)
1856 {// Unconditionally set register to 0
1857 int n = numInstr++;
1858 mvec[n] = new MachineInstr(SETHI);
1859 mvec[n]->SetMachineOperand(0,MachineOperand::MO_UnextendedImmed,
1860 s0);
1861 mvec[n]->SetMachineOperand(1,MachineOperand::MO_VirtualRegister,
1862 subtreeRoot->getValue());
1863 }
1864
1865 // Now conditionally move `valueToMove' (0 or 1) into the register
1866 int n = numInstr++;
1867 mvec[n] = new MachineInstr(movOpCode);
1868 mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
1869 subtreeRoot->getValue());
1870 mvec[n]->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
1871 valueToMove);
1872 mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
1873 subtreeRoot->getValue());
1874 }
1875 break;
1876 }
1877
1878 case 43: // boolreg: VReg
1879 case 44: // boolreg: Constant
1880 numInstr = 0;
1881 break;
1882
1883 case 51: // reg: Load(reg)
1884 case 52: // reg: Load(ptrreg)
1885 case 53: // reg: LoadIdx(reg,reg)
1886 case 54: // reg: LoadIdx(ptrreg,reg)
1887 mvec[0] = new MachineInstr(ChooseLoadInstruction(
1888 subtreeRoot->getValue()->getType()));
1889 SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
1890 break;
1891
1892 case 55: // reg: GetElemPtr(reg)
1893 case 56: // reg: GetElemPtrIdx(reg,reg)
1894 if (subtreeRoot->parent() != NULL)
1895 {
1896 // Check if the parent was an array access.
1897 // If so, we still need to generate this instruction.
1898 MemAccessInst* memInst = (MemAccessInst*)
1899 subtreeRoot->getInstruction();
1900 const PointerType* ptrType =
1901 (const PointerType*) memInst->getPtrOperand()->getType();
1902 if (! ptrType->getValueType()->isArrayType())
1903 {// we don't need a separate instr
1904 numInstr = 0; // don't forward operand!
1905 break;
1906 }
1907 }
1908 // else in all other cases we need to a separate ADD instruction
1909 mvec[0] = new MachineInstr(ADD);
1910 SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
1911 break;
1912
1913 case 57: // reg: Alloca: Implement as 2 instructions:
1914 // sub %sp, tmp -> %sp
1915 { // add %sp, 0 -> result
1916 Instruction* instr = subtreeRoot->getInstruction();
1917 const PointerType* instrType = (const PointerType*) instr->getType();
1918 assert(instrType->isPointerType());
1919 int tsize = (int)
1920 target.findOptimalStorageSize(instrType->getValueType());
1921 assert(tsize != 0 && "Just to check when this can happen");
1922
1923 // Create a temporary Value to hold the constant type-size
1924 ConstPoolSInt* valueForTSize = ConstPoolSInt::get(Type::IntTy, tsize);
1925
1926 // Instruction 1: sub %sp, tsize -> %sp
1927 // tsize is always constant, but it may have to be put into a
1928 // register if it doesn't fit in the immediate field.
1929 //
1930 mvec[0] = new MachineInstr(SUB);
1931 mvec[0]->SetMachineOperand(0, /*regNum %sp=o6=r[14]*/(unsigned int)14);
1932 mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
1933 valueForTSize);
1934 mvec[0]->SetMachineOperand(2, /*regNum %sp=o6=r[14]*/(unsigned int)14);
1935
1936 // Instruction 2: add %sp, 0 -> result
1937 numInstr++;
1938 mvec[1] = new MachineInstr(ADD);
1939 mvec[1]->SetMachineOperand(0, /*regNum %sp=o6=r[14]*/(unsigned int)14);
1940 mvec[1]->SetMachineOperand(1, target.getRegInfo().getZeroRegNum());
1941 mvec[1]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
1942 instr);
1943 break;
1944 }
1945
1946 case 58: // reg: Alloca(reg): Implement as 3 instructions:
1947 // mul num, typeSz -> tmp
1948 // sub %sp, tmp -> %sp
1949 { // add %sp, 0 -> result
1950 Instruction* instr = subtreeRoot->getInstruction();
1951 const PointerType* instrType = (const PointerType*) instr->getType();
1952 assert(instrType->isPointerType() &&
1953 instrType->getValueType()->isArrayType());
1954 const Type* eltType =
1955 ((ArrayType*) instrType->getValueType())->getElementType();
1956 int tsize = (int) target.findOptimalStorageSize(eltType);
1957
1958 assert(tsize != 0 && "Just to check when this can happen");
1959 // if (tsize == 0)
1960 // {
1961 // numInstr = 0;
1962 // break;
1963 // }
1964 //else go on to create the instructions needed...
1965
1966 // Create a temporary Value to hold the constant type-size
1967 ConstPoolSInt* valueForTSize = ConstPoolSInt::get(Type::IntTy, tsize);
1968
1969 // Create a temporary value to hold `tmp'
1970 Instruction* tmpInstr = new TmpInstruction(Instruction::UserOp1,
1971 subtreeRoot->leftChild()->getValue(),
1972 NULL /*could insert tsize here*/);
1973 subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(tmpInstr);
1974
1975 // Instruction 1: mul numElements, typeSize -> tmp
1976 mvec[0] = new MachineInstr(MULX);
1977 mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
1978 subtreeRoot->leftChild()->getValue());
1979 mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
1980 valueForTSize);
1981 mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
1982 tmpInstr);
1983
1984 tmpInstr->addMachineInstruction(mvec[0]);
1985
1986 // Instruction 2: sub %sp, tmp -> %sp
1987 numInstr++;
1988 mvec[1] = new MachineInstr(SUB);
1989 mvec[1]->SetMachineOperand(0, /*regNum %sp=o6=r[14]*/(unsigned int)14);
1990 mvec[1]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
1991 tmpInstr);
1992 mvec[1]->SetMachineOperand(2, /*regNum %sp=o6=r[14]*/(unsigned int)14);
1993
1994 // Instruction 3: add %sp, 0 -> result
1995 numInstr++;
1996 mvec[2] = new MachineInstr(ADD);
1997 mvec[2]->SetMachineOperand(0, /*regNum %sp=o6=r[14]*/(unsigned int)14);
1998 mvec[2]->SetMachineOperand(1, target.getRegInfo().getZeroRegNum());
1999 mvec[2]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
2000 instr);
2001 break;
2002 }
2003
2004 case 61: // reg: Call
2005 // Generate a call-indirect (i.e., JMPL) for now to expose
2006 // the potential need for registers. If an absolute address
2007 // is available, replace this with a CALL instruction.
2008 // Mark both the indirection register and the return-address
2009 // register as hidden virtual registers.
2010 // Also, mark the operands of the Call as implicit operands
2011 // of the machine instruction.
2012 {
2013 CallInst* callInstr = (CallInst*) subtreeRoot->getInstruction();
2014 Method* callee = callInstr->getCalledMethod();
2015 assert(callInstr->getOpcode() == Instruction::Call);
2016
2017 Instruction* jmpAddrReg = new TmpInstruction(Instruction::UserOp1,
2018 callee, NULL);
2019 Instruction* retAddrReg = new TmpInstruction(Instruction::UserOp1,
2020 callInstr, NULL);
2021
2022 // Note temporary values and implicit uses in mvec
2023 callInstr->getMachineInstrVec().addTempValue(jmpAddrReg);
2024 callInstr->getMachineInstrVec().addTempValue(retAddrReg);
2025 for (unsigned i=0, N=callInstr->getNumOperands(); i < N; ++i)
2026 if (callInstr->getOperand(i) != callee)
2027 callInstr->getMachineInstrVec().addImplicitUse(
2028 callInstr->getOperand(i));
2029
2030 // Generate the machine instruction and its operands
2031 mvec[0] = new MachineInstr(JMPL);
2032 mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
2033 jmpAddrReg);
2034 mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
2035 (int64_t) 0);
2036 mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
2037 retAddrReg);
2038
2039 // NOTE: jmpAddrReg will be loaded by a different instruction generated
2040 // by the final code generator, so we just mark the CALL instruction
2041 // as computing that value.
2042 // The retAddrReg is actually computed by the CALL instruction.
2043 //
2044 jmpAddrReg->addMachineInstruction(mvec[0]);
2045 retAddrReg->addMachineInstruction(mvec[0]);
2046
2047 mvec[numInstr++] = new MachineInstr(NOP); // delay slot
2048 break;
2049 }
2050
2051 case 62: // reg: Shl(reg, reg)
2052 opType = subtreeRoot->leftChild()->getValue()->getType();
2053 assert(opType->isIntegral()
2054 || opType == Type::BoolTy
2055 || opType->isPointerType()&& "Shl unsupported for other types");
2056 mvec[0] = new MachineInstr((opType == Type::LongTy)? SLLX : SLL);
2057 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
2058 break;
2059
2060 case 63: // reg: Shr(reg, reg)
2061 opType = subtreeRoot->leftChild()->getValue()->getType();
2062 assert(opType->isIntegral()
2063 || opType == Type::BoolTy
2064 || opType->isPointerType() &&"Shr unsupported for other types");
2065 mvec[0] = new MachineInstr((opType->isSigned()
2066 ? ((opType == Type::LongTy)? SRAX : SRA)
2067 : ((opType == Type::LongTy)? SRLX : SRL)));
2068 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
2069 break;
2070
2071 case 64: // reg: Phi(reg,reg)
2072 { // This instruction has variable #operands, so resultPos is 0.
2073 Instruction* phi = subtreeRoot->getInstruction();
2074 mvec[0] = new MachineInstr(PHI, 1 + phi->getNumOperands());
2075 mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
2076 subtreeRoot->getValue());
2077 for (unsigned i=0, N=phi->getNumOperands(); i < N; i++)
2078 mvec[0]->SetMachineOperand(i+1, MachineOperand::MO_VirtualRegister,
2079 phi->getOperand(i));
2080 break;
2081 }
2082 case 71: // reg: VReg
2083 case 72: // reg: Constant
2084 numInstr = 0; // don't forward the value
2085 break;
2086
2087 default:
2088 assert(0 && "Unrecognized BURG rule");
2089 numInstr = 0;
2090 break;
2091 }
Chris Lattner20b1ea02001-09-14 03:47:57 +00002092 }
Chris Lattner20b1ea02001-09-14 03:47:57 +00002093
2094 if (forwardOperandNum >= 0)
2095 { // We did not generate a machine instruction but need to use operand.
2096 // If user is in the same tree, replace Value in its machine operand.
2097 // If not, insert a copy instruction which should get coalesced away
2098 // by register allocation.
2099 if (subtreeRoot->parent() != NULL)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00002100 ForwardOperand(subtreeRoot, subtreeRoot->parent(), forwardOperandNum);
Chris Lattner20b1ea02001-09-14 03:47:57 +00002101 else
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00002102 {
2103 MachineInstr *minstr1 = NULL, *minstr2 = NULL;
2104 minstr1 = CreateCopyInstructionsByType(target,
2105 subtreeRoot->getInstruction()->getOperand(forwardOperandNum),
2106 subtreeRoot->getInstruction(), minstr2);
2107 assert(minstr1);
2108 mvec[numInstr++] = minstr1;
2109 if (minstr2 != NULL)
2110 mvec[numInstr++] = minstr2;
2111 }
Chris Lattner20b1ea02001-09-14 03:47:57 +00002112 }
2113
2114 if (! ThisIsAChainRule(ruleForNode))
2115 numInstr = FixConstantOperands(subtreeRoot, mvec, numInstr, target);
2116
2117 return numInstr;
2118}
2119
2120