blob: 12ad4297ef6e160fce7c74c360eb0522eaffaad5 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000072#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000073#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000074#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000075#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000076#include "llvm/Support/CommandLine.h"
Chris Lattnerb3364092006-10-04 21:49:37 +000077#include "llvm/Support/Compiler.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000078#include "llvm/Support/ConstantRange.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000079#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000080#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000081#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000082#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000083#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000084#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000085#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000086#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000087#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000088using namespace llvm;
89
Chris Lattner3b27d682006-12-19 22:30:33 +000090STATISTIC(NumArrayLenItCounts,
91 "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93 "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95 "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97 "Number of loops with trip counts computed by force");
98
Dan Gohman844731a2008-05-13 00:00:25 +000099static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000102 "symbolically execute a constant "
103 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000104 cl::init(100));
105
Dan Gohman844731a2008-05-13 00:00:25 +0000106static RegisterPass<ScalarEvolution>
107R("scalar-evolution", "Scalar Evolution Analysis", false, true);
Devang Patel19974732007-05-03 01:11:54 +0000108char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000109
110//===----------------------------------------------------------------------===//
111// SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000117
Chris Lattner53e677a2004-04-02 20:23:17 +0000118SCEV::~SCEV() {}
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000119
Chris Lattner53e677a2004-04-02 20:23:17 +0000120void SCEV::dump() const {
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000121 print(errs());
122 errs() << '\n';
123}
124
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000125bool SCEV::isZero() const {
126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
127 return SC->getValue()->isZero();
128 return false;
129}
130
Dan Gohman70a1fe72009-05-18 15:22:39 +0000131bool SCEV::isOne() const {
132 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
133 return SC->getValue()->isOne();
134 return false;
135}
Chris Lattner53e677a2004-04-02 20:23:17 +0000136
Dan Gohman4d289bf2009-06-24 00:30:26 +0000137bool SCEV::isAllOnesValue() const {
138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
139 return SC->getValue()->isAllOnesValue();
140 return false;
141}
142
Owen Anderson753ad612009-06-22 21:57:23 +0000143SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohmanc050fd92009-07-13 20:50:19 +0000144 SCEV(FoldingSetNodeID(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000145
Chris Lattner53e677a2004-04-02 20:23:17 +0000146bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000147 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000148 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000149}
150
151const Type *SCEVCouldNotCompute::getType() const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000153 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000154}
155
156bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Chris Lattner53e677a2004-04-02 20:23:17 +0000158 return false;
159}
160
Dan Gohmanfef8bb22009-07-25 01:13:03 +0000161bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163 return false;
Chris Lattner4dc534c2005-02-13 04:37:18 +0000164}
165
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Chris Lattner53e677a2004-04-02 20:23:17 +0000167 OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171 return S->getSCEVType() == scCouldNotCompute;
172}
173
Dan Gohman0bba49c2009-07-07 17:06:11 +0000174const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000175 FoldingSetNodeID ID;
176 ID.AddInteger(scConstant);
177 ID.AddPointer(V);
178 void *IP = 0;
179 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
180 SCEV *S = SCEVAllocator.Allocate<SCEVConstant>();
Dan Gohmanc050fd92009-07-13 20:50:19 +0000181 new (S) SCEVConstant(ID, V);
Dan Gohman1c343752009-06-27 21:21:31 +0000182 UniqueSCEVs.InsertNode(S, IP);
183 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000184}
Chris Lattner53e677a2004-04-02 20:23:17 +0000185
Dan Gohman0bba49c2009-07-07 17:06:11 +0000186const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000187 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000188}
189
Dan Gohman0bba49c2009-07-07 17:06:11 +0000190const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000191ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Owen Anderson9adc0ab2009-07-14 23:09:55 +0000192 return getConstant(
Owen Andersoneed707b2009-07-24 23:12:02 +0000193 ConstantInt::get(cast<IntegerType>(Ty), V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000194}
195
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000196const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000197
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000198void SCEVConstant::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000199 WriteAsOperand(OS, V, false);
200}
Chris Lattner53e677a2004-04-02 20:23:17 +0000201
Dan Gohmanc050fd92009-07-13 20:50:19 +0000202SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeID &ID,
203 unsigned SCEVTy, const SCEV *op, const Type *ty)
204 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000205
Dan Gohman84923602009-04-21 01:25:57 +0000206bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
207 return Op->dominates(BB, DT);
208}
209
Dan Gohman6e70e312009-09-27 15:26:03 +0000210bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
211 return Op->properlyDominates(BB, DT);
212}
213
Dan Gohmanc050fd92009-07-13 20:50:19 +0000214SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeID &ID,
215 const SCEV *op, const Type *ty)
216 : SCEVCastExpr(ID, scTruncate, op, ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +0000217 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
218 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000219 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000220}
Chris Lattner53e677a2004-04-02 20:23:17 +0000221
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000222void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000223 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000224}
225
Dan Gohmanc050fd92009-07-13 20:50:19 +0000226SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeID &ID,
227 const SCEV *op, const Type *ty)
228 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +0000229 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
230 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000231 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000232}
233
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000234void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000235 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000236}
237
Dan Gohmanc050fd92009-07-13 20:50:19 +0000238SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeID &ID,
239 const SCEV *op, const Type *ty)
240 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +0000241 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
242 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000243 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000244}
245
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000246void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000247 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmand19534a2007-06-15 14:38:12 +0000248}
249
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000250void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000251 assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
252 const char *OpStr = getOperationStr();
253 OS << "(" << *Operands[0];
254 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
255 OS << OpStr << *Operands[i];
256 OS << ")";
257}
258
Dan Gohmanecb403a2009-05-07 14:00:19 +0000259bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000260 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
261 if (!getOperand(i)->dominates(BB, DT))
262 return false;
263 }
264 return true;
265}
266
Dan Gohman6e70e312009-09-27 15:26:03 +0000267bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
268 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
269 if (!getOperand(i)->properlyDominates(BB, DT))
270 return false;
271 }
272 return true;
273}
274
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000275bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
276 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
277}
278
Dan Gohman6e70e312009-09-27 15:26:03 +0000279bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
280 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
281}
282
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000283void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000284 OS << "(" << *LHS << " /u " << *RHS << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000285}
286
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000287const Type *SCEVUDivExpr::getType() const {
Dan Gohman91bb61a2009-05-26 17:44:05 +0000288 // In most cases the types of LHS and RHS will be the same, but in some
289 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
290 // depend on the type for correctness, but handling types carefully can
291 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
292 // a pointer type than the RHS, so use the RHS' type here.
293 return RHS->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000294}
295
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000296bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
Dan Gohmana3035a62009-05-20 01:01:24 +0000297 // Add recurrences are never invariant in the function-body (null loop).
Dan Gohmane890eea2009-06-26 22:17:21 +0000298 if (!QueryLoop)
299 return false;
300
301 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
302 if (QueryLoop->contains(L->getHeader()))
303 return false;
304
305 // This recurrence is variant w.r.t. QueryLoop if any of its operands
306 // are variant.
307 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
308 if (!getOperand(i)->isLoopInvariant(QueryLoop))
309 return false;
310
311 // Otherwise it's loop-invariant.
312 return true;
Chris Lattner53e677a2004-04-02 20:23:17 +0000313}
314
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000315void SCEVAddRecExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000316 OS << "{" << *Operands[0];
317 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
318 OS << ",+," << *Operands[i];
319 OS << "}<" << L->getHeader()->getName() + ">";
320}
Chris Lattner53e677a2004-04-02 20:23:17 +0000321
Dan Gohmanc40f17b2009-08-18 16:46:41 +0000322void SCEVFieldOffsetExpr::print(raw_ostream &OS) const {
323 // LLVM struct fields don't have names, so just print the field number.
324 OS << "offsetof(" << *STy << ", " << FieldNo << ")";
325}
326
327void SCEVAllocSizeExpr::print(raw_ostream &OS) const {
328 OS << "sizeof(" << *AllocTy << ")";
329}
330
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000331bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
332 // All non-instruction values are loop invariant. All instructions are loop
333 // invariant if they are not contained in the specified loop.
Dan Gohmana3035a62009-05-20 01:01:24 +0000334 // Instructions are never considered invariant in the function body
335 // (null loop) because they are defined within the "loop".
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000336 if (Instruction *I = dyn_cast<Instruction>(V))
Dan Gohmana3035a62009-05-20 01:01:24 +0000337 return L && !L->contains(I->getParent());
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000338 return true;
339}
Chris Lattner53e677a2004-04-02 20:23:17 +0000340
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000341bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
342 if (Instruction *I = dyn_cast<Instruction>(getValue()))
343 return DT->dominates(I->getParent(), BB);
344 return true;
345}
346
Dan Gohman6e70e312009-09-27 15:26:03 +0000347bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
348 if (Instruction *I = dyn_cast<Instruction>(getValue()))
349 return DT->properlyDominates(I->getParent(), BB);
350 return true;
351}
352
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000353const Type *SCEVUnknown::getType() const {
354 return V->getType();
355}
Chris Lattner53e677a2004-04-02 20:23:17 +0000356
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000357void SCEVUnknown::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000358 WriteAsOperand(OS, V, false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000359}
360
Chris Lattner8d741b82004-06-20 06:23:15 +0000361//===----------------------------------------------------------------------===//
362// SCEV Utilities
363//===----------------------------------------------------------------------===//
364
Dan Gohmanc40f17b2009-08-18 16:46:41 +0000365static bool CompareTypes(const Type *A, const Type *B) {
366 if (A->getTypeID() != B->getTypeID())
367 return A->getTypeID() < B->getTypeID();
368 if (const IntegerType *AI = dyn_cast<IntegerType>(A)) {
369 const IntegerType *BI = cast<IntegerType>(B);
370 return AI->getBitWidth() < BI->getBitWidth();
371 }
372 if (const PointerType *AI = dyn_cast<PointerType>(A)) {
373 const PointerType *BI = cast<PointerType>(B);
374 return CompareTypes(AI->getElementType(), BI->getElementType());
375 }
376 if (const ArrayType *AI = dyn_cast<ArrayType>(A)) {
377 const ArrayType *BI = cast<ArrayType>(B);
378 if (AI->getNumElements() != BI->getNumElements())
379 return AI->getNumElements() < BI->getNumElements();
380 return CompareTypes(AI->getElementType(), BI->getElementType());
381 }
382 if (const VectorType *AI = dyn_cast<VectorType>(A)) {
383 const VectorType *BI = cast<VectorType>(B);
384 if (AI->getNumElements() != BI->getNumElements())
385 return AI->getNumElements() < BI->getNumElements();
386 return CompareTypes(AI->getElementType(), BI->getElementType());
387 }
388 if (const StructType *AI = dyn_cast<StructType>(A)) {
389 const StructType *BI = cast<StructType>(B);
390 if (AI->getNumElements() != BI->getNumElements())
391 return AI->getNumElements() < BI->getNumElements();
392 for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i)
393 if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) ||
394 CompareTypes(BI->getElementType(i), AI->getElementType(i)))
395 return CompareTypes(AI->getElementType(i), BI->getElementType(i));
396 }
397 return false;
398}
399
Chris Lattner8d741b82004-06-20 06:23:15 +0000400namespace {
401 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
402 /// than the complexity of the RHS. This comparator is used to canonicalize
403 /// expressions.
Dan Gohman72861302009-05-07 14:39:04 +0000404 class VISIBILITY_HIDDEN SCEVComplexityCompare {
405 LoopInfo *LI;
406 public:
407 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
408
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000409 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000410 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
411 if (LHS == RHS)
412 return false;
413
Dan Gohman72861302009-05-07 14:39:04 +0000414 // Primarily, sort the SCEVs by their getSCEVType().
415 if (LHS->getSCEVType() != RHS->getSCEVType())
416 return LHS->getSCEVType() < RHS->getSCEVType();
417
418 // Aside from the getSCEVType() ordering, the particular ordering
419 // isn't very important except that it's beneficial to be consistent,
420 // so that (a + b) and (b + a) don't end up as different expressions.
421
422 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
423 // not as complete as it could be.
424 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
425 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
426
Dan Gohman5be18e82009-05-19 02:15:55 +0000427 // Order pointer values after integer values. This helps SCEVExpander
428 // form GEPs.
429 if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType()))
430 return false;
431 if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType()))
432 return true;
433
Dan Gohman72861302009-05-07 14:39:04 +0000434 // Compare getValueID values.
435 if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
436 return LU->getValue()->getValueID() < RU->getValue()->getValueID();
437
438 // Sort arguments by their position.
439 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
440 const Argument *RA = cast<Argument>(RU->getValue());
441 return LA->getArgNo() < RA->getArgNo();
442 }
443
444 // For instructions, compare their loop depth, and their opcode.
445 // This is pretty loose.
446 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
447 Instruction *RV = cast<Instruction>(RU->getValue());
448
449 // Compare loop depths.
450 if (LI->getLoopDepth(LV->getParent()) !=
451 LI->getLoopDepth(RV->getParent()))
452 return LI->getLoopDepth(LV->getParent()) <
453 LI->getLoopDepth(RV->getParent());
454
455 // Compare opcodes.
456 if (LV->getOpcode() != RV->getOpcode())
457 return LV->getOpcode() < RV->getOpcode();
458
459 // Compare the number of operands.
460 if (LV->getNumOperands() != RV->getNumOperands())
461 return LV->getNumOperands() < RV->getNumOperands();
462 }
463
464 return false;
465 }
466
Dan Gohman4dfad292009-06-14 22:51:25 +0000467 // Compare constant values.
468 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
469 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Nick Lewyckyd1ec9892009-07-04 17:24:52 +0000470 if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth())
471 return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth();
Dan Gohman4dfad292009-06-14 22:51:25 +0000472 return LC->getValue()->getValue().ult(RC->getValue()->getValue());
473 }
474
475 // Compare addrec loop depths.
476 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
477 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
478 if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
479 return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
480 }
Dan Gohman72861302009-05-07 14:39:04 +0000481
482 // Lexicographically compare n-ary expressions.
483 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
484 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
485 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
486 if (i >= RC->getNumOperands())
487 return false;
488 if (operator()(LC->getOperand(i), RC->getOperand(i)))
489 return true;
490 if (operator()(RC->getOperand(i), LC->getOperand(i)))
491 return false;
492 }
493 return LC->getNumOperands() < RC->getNumOperands();
494 }
495
Dan Gohmana6b35e22009-05-07 19:23:21 +0000496 // Lexicographically compare udiv expressions.
497 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
498 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
499 if (operator()(LC->getLHS(), RC->getLHS()))
500 return true;
501 if (operator()(RC->getLHS(), LC->getLHS()))
502 return false;
503 if (operator()(LC->getRHS(), RC->getRHS()))
504 return true;
505 if (operator()(RC->getRHS(), LC->getRHS()))
506 return false;
507 return false;
508 }
509
Dan Gohman72861302009-05-07 14:39:04 +0000510 // Compare cast expressions by operand.
511 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
512 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
513 return operator()(LC->getOperand(), RC->getOperand());
514 }
515
Dan Gohmanc40f17b2009-08-18 16:46:41 +0000516 // Compare offsetof expressions.
517 if (const SCEVFieldOffsetExpr *LA = dyn_cast<SCEVFieldOffsetExpr>(LHS)) {
518 const SCEVFieldOffsetExpr *RA = cast<SCEVFieldOffsetExpr>(RHS);
519 if (CompareTypes(LA->getStructType(), RA->getStructType()) ||
520 CompareTypes(RA->getStructType(), LA->getStructType()))
521 return CompareTypes(LA->getStructType(), RA->getStructType());
522 return LA->getFieldNo() < RA->getFieldNo();
523 }
524
525 // Compare sizeof expressions by the allocation type.
526 if (const SCEVAllocSizeExpr *LA = dyn_cast<SCEVAllocSizeExpr>(LHS)) {
527 const SCEVAllocSizeExpr *RA = cast<SCEVAllocSizeExpr>(RHS);
528 return CompareTypes(LA->getAllocType(), RA->getAllocType());
529 }
530
Torok Edwinc23197a2009-07-14 16:55:14 +0000531 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman72861302009-05-07 14:39:04 +0000532 return false;
Chris Lattner8d741b82004-06-20 06:23:15 +0000533 }
534 };
535}
536
537/// GroupByComplexity - Given a list of SCEV objects, order them by their
538/// complexity, and group objects of the same complexity together by value.
539/// When this routine is finished, we know that any duplicates in the vector are
540/// consecutive and that complexity is monotonically increasing.
541///
542/// Note that we go take special precautions to ensure that we get determinstic
543/// results from this routine. In other words, we don't want the results of
544/// this to depend on where the addresses of various SCEV objects happened to
545/// land in memory.
546///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000547static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000548 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000549 if (Ops.size() < 2) return; // Noop
550 if (Ops.size() == 2) {
551 // This is the common case, which also happens to be trivially simple.
552 // Special case it.
Dan Gohman72861302009-05-07 14:39:04 +0000553 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
Chris Lattner8d741b82004-06-20 06:23:15 +0000554 std::swap(Ops[0], Ops[1]);
555 return;
556 }
557
558 // Do the rough sort by complexity.
Dan Gohman72861302009-05-07 14:39:04 +0000559 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
Chris Lattner8d741b82004-06-20 06:23:15 +0000560
561 // Now that we are sorted by complexity, group elements of the same
562 // complexity. Note that this is, at worst, N^2, but the vector is likely to
563 // be extremely short in practice. Note that we take this approach because we
564 // do not want to depend on the addresses of the objects we are grouping.
Chris Lattner2d584522004-06-20 17:01:44 +0000565 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
Dan Gohman35738ac2009-05-04 22:30:44 +0000566 const SCEV *S = Ops[i];
Chris Lattner8d741b82004-06-20 06:23:15 +0000567 unsigned Complexity = S->getSCEVType();
568
569 // If there are any objects of the same complexity and same value as this
570 // one, group them.
571 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
572 if (Ops[j] == S) { // Found a duplicate.
573 // Move it to immediately after i'th element.
574 std::swap(Ops[i+1], Ops[j]);
575 ++i; // no need to rescan it.
Chris Lattner541ad5e2004-06-20 20:32:16 +0000576 if (i == e-2) return; // Done!
Chris Lattner8d741b82004-06-20 06:23:15 +0000577 }
578 }
579 }
580}
581
Chris Lattner53e677a2004-04-02 20:23:17 +0000582
Chris Lattner53e677a2004-04-02 20:23:17 +0000583
584//===----------------------------------------------------------------------===//
585// Simple SCEV method implementations
586//===----------------------------------------------------------------------===//
587
Eli Friedmanb42a6262008-08-04 23:49:06 +0000588/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000589/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000590static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000591 ScalarEvolution &SE,
592 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000593 // Handle the simplest case efficiently.
594 if (K == 1)
595 return SE.getTruncateOrZeroExtend(It, ResultTy);
596
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000597 // We are using the following formula for BC(It, K):
598 //
599 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
600 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000601 // Suppose, W is the bitwidth of the return value. We must be prepared for
602 // overflow. Hence, we must assure that the result of our computation is
603 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
604 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000605 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000606 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000607 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000608 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
609 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000610 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000611 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000612 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000613 // This formula is trivially equivalent to the previous formula. However,
614 // this formula can be implemented much more efficiently. The trick is that
615 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
616 // arithmetic. To do exact division in modular arithmetic, all we have
617 // to do is multiply by the inverse. Therefore, this step can be done at
618 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000619 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000620 // The next issue is how to safely do the division by 2^T. The way this
621 // is done is by doing the multiplication step at a width of at least W + T
622 // bits. This way, the bottom W+T bits of the product are accurate. Then,
623 // when we perform the division by 2^T (which is equivalent to a right shift
624 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
625 // truncated out after the division by 2^T.
626 //
627 // In comparison to just directly using the first formula, this technique
628 // is much more efficient; using the first formula requires W * K bits,
629 // but this formula less than W + K bits. Also, the first formula requires
630 // a division step, whereas this formula only requires multiplies and shifts.
631 //
632 // It doesn't matter whether the subtraction step is done in the calculation
633 // width or the input iteration count's width; if the subtraction overflows,
634 // the result must be zero anyway. We prefer here to do it in the width of
635 // the induction variable because it helps a lot for certain cases; CodeGen
636 // isn't smart enough to ignore the overflow, which leads to much less
637 // efficient code if the width of the subtraction is wider than the native
638 // register width.
639 //
640 // (It's possible to not widen at all by pulling out factors of 2 before
641 // the multiplication; for example, K=2 can be calculated as
642 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
643 // extra arithmetic, so it's not an obvious win, and it gets
644 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000645
Eli Friedmanb42a6262008-08-04 23:49:06 +0000646 // Protection from insane SCEVs; this bound is conservative,
647 // but it probably doesn't matter.
648 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000649 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000650
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000651 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000652
Eli Friedmanb42a6262008-08-04 23:49:06 +0000653 // Calculate K! / 2^T and T; we divide out the factors of two before
654 // multiplying for calculating K! / 2^T to avoid overflow.
655 // Other overflow doesn't matter because we only care about the bottom
656 // W bits of the result.
657 APInt OddFactorial(W, 1);
658 unsigned T = 1;
659 for (unsigned i = 3; i <= K; ++i) {
660 APInt Mult(W, i);
661 unsigned TwoFactors = Mult.countTrailingZeros();
662 T += TwoFactors;
663 Mult = Mult.lshr(TwoFactors);
664 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000665 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000666
Eli Friedmanb42a6262008-08-04 23:49:06 +0000667 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000668 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000669
670 // Calcuate 2^T, at width T+W.
671 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
672
673 // Calculate the multiplicative inverse of K! / 2^T;
674 // this multiplication factor will perform the exact division by
675 // K! / 2^T.
676 APInt Mod = APInt::getSignedMinValue(W+1);
677 APInt MultiplyFactor = OddFactorial.zext(W+1);
678 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
679 MultiplyFactor = MultiplyFactor.trunc(W);
680
681 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000682 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
683 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000684 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000685 for (unsigned i = 1; i != K; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000686 const SCEV *S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000687 Dividend = SE.getMulExpr(Dividend,
688 SE.getTruncateOrZeroExtend(S, CalculationTy));
689 }
690
691 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000692 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000693
694 // Truncate the result, and divide by K! / 2^T.
695
696 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
697 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000698}
699
Chris Lattner53e677a2004-04-02 20:23:17 +0000700/// evaluateAtIteration - Return the value of this chain of recurrences at
701/// the specified iteration number. We can evaluate this recurrence by
702/// multiplying each element in the chain by the binomial coefficient
703/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
704///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000705/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000706///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000707/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000708///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000709const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000710 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000711 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000712 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000713 // The computation is correct in the face of overflow provided that the
714 // multiplication is performed _after_ the evaluation of the binomial
715 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000716 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000717 if (isa<SCEVCouldNotCompute>(Coeff))
718 return Coeff;
719
720 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000721 }
722 return Result;
723}
724
Chris Lattner53e677a2004-04-02 20:23:17 +0000725//===----------------------------------------------------------------------===//
726// SCEV Expression folder implementations
727//===----------------------------------------------------------------------===//
728
Dan Gohman0bba49c2009-07-07 17:06:11 +0000729const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000730 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000731 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000732 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000733 assert(isSCEVable(Ty) &&
734 "This is not a conversion to a SCEVable type!");
735 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000736
Dan Gohmanc050fd92009-07-13 20:50:19 +0000737 FoldingSetNodeID ID;
738 ID.AddInteger(scTruncate);
739 ID.AddPointer(Op);
740 ID.AddPointer(Ty);
741 void *IP = 0;
742 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
743
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000744 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000745 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000746 return getConstant(
747 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000748
Dan Gohman20900ca2009-04-22 16:20:48 +0000749 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000750 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000751 return getTruncateExpr(ST->getOperand(), Ty);
752
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000753 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000754 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000755 return getTruncateOrSignExtend(SS->getOperand(), Ty);
756
757 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000758 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000759 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
760
Dan Gohman6864db62009-06-18 16:24:47 +0000761 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000762 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000763 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000764 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000765 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
766 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000767 }
768
Dan Gohmanc050fd92009-07-13 20:50:19 +0000769 // The cast wasn't folded; create an explicit cast node.
770 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +0000771 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
772 SCEV *S = SCEVAllocator.Allocate<SCEVTruncateExpr>();
Dan Gohmanc050fd92009-07-13 20:50:19 +0000773 new (S) SCEVTruncateExpr(ID, Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000774 UniqueSCEVs.InsertNode(S, IP);
775 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000776}
777
Dan Gohman0bba49c2009-07-07 17:06:11 +0000778const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000779 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000780 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000781 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000782 assert(isSCEVable(Ty) &&
783 "This is not a conversion to a SCEVable type!");
784 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000785
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000786 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000787 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000788 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +0000789 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
790 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000791 return getConstant(cast<ConstantInt>(C));
Dan Gohman2d1be872009-04-16 03:18:22 +0000792 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000793
Dan Gohman20900ca2009-04-22 16:20:48 +0000794 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000795 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000796 return getZeroExtendExpr(SZ->getOperand(), Ty);
797
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000798 // Before doing any expensive analysis, check to see if we've already
799 // computed a SCEV for this Op and Ty.
800 FoldingSetNodeID ID;
801 ID.AddInteger(scZeroExtend);
802 ID.AddPointer(Op);
803 ID.AddPointer(Ty);
804 void *IP = 0;
805 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
806
Dan Gohman01ecca22009-04-27 20:16:15 +0000807 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000808 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000809 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000810 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000811 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000812 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000813 const SCEV *Start = AR->getStart();
814 const SCEV *Step = AR->getStepRecurrence(*this);
815 unsigned BitWidth = getTypeSizeInBits(AR->getType());
816 const Loop *L = AR->getLoop();
817
Dan Gohmaneb490a72009-07-25 01:22:26 +0000818 // If we have special knowledge that this addrec won't overflow,
819 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000820 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000821 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
822 getZeroExtendExpr(Step, Ty),
823 L);
824
Dan Gohman01ecca22009-04-27 20:16:15 +0000825 // Check whether the backedge-taken count is SCEVCouldNotCompute.
826 // Note that this serves two purposes: It filters out loops that are
827 // simply not analyzable, and it covers the case where this code is
828 // being called from within backedge-taken count analysis, such that
829 // attempting to ask for the backedge-taken count would likely result
830 // in infinite recursion. In the later case, the analysis code will
831 // cope with a conservative value, and it will take care to purge
832 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000833 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000834 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000835 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000836 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000837
838 // Check whether the backedge-taken count can be losslessly casted to
839 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000840 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000841 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000842 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000843 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
844 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +0000845 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000846 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000847 const SCEV *ZMul =
Dan Gohmana1af7572009-04-30 20:47:05 +0000848 getMulExpr(CastedMaxBECount,
Dan Gohman01ecca22009-04-27 20:16:15 +0000849 getTruncateOrZeroExtend(Step, Start->getType()));
Dan Gohman0bba49c2009-07-07 17:06:11 +0000850 const SCEV *Add = getAddExpr(Start, ZMul);
851 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000852 getAddExpr(getZeroExtendExpr(Start, WideTy),
853 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
854 getZeroExtendExpr(Step, WideTy)));
855 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000856 // Return the expression with the addrec on the outside.
857 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
858 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000859 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000860
861 // Similar to above, only this time treat the step value as signed.
862 // This covers loops that count down.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000863 const SCEV *SMul =
Dan Gohmana1af7572009-04-30 20:47:05 +0000864 getMulExpr(CastedMaxBECount,
Dan Gohman01ecca22009-04-27 20:16:15 +0000865 getTruncateOrSignExtend(Step, Start->getType()));
Dan Gohmanac70cea2009-04-29 22:28:28 +0000866 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000867 OperandExtendedAdd =
868 getAddExpr(getZeroExtendExpr(Start, WideTy),
869 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
870 getSignExtendExpr(Step, WideTy)));
871 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000872 // Return the expression with the addrec on the outside.
873 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
874 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000875 L);
876 }
877
878 // If the backedge is guarded by a comparison with the pre-inc value
879 // the addrec is safe. Also, if the entry is guarded by a comparison
880 // with the start value and the backedge is guarded by a comparison
881 // with the post-inc value, the addrec is safe.
882 if (isKnownPositive(Step)) {
883 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
884 getUnsignedRange(Step).getUnsignedMax());
885 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
886 (isLoopGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
887 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
888 AR->getPostIncExpr(*this), N)))
889 // Return the expression with the addrec on the outside.
890 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
891 getZeroExtendExpr(Step, Ty),
892 L);
893 } else if (isKnownNegative(Step)) {
894 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
895 getSignedRange(Step).getSignedMin());
896 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) &&
897 (isLoopGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) ||
898 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
899 AR->getPostIncExpr(*this), N)))
900 // Return the expression with the addrec on the outside.
901 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
902 getSignExtendExpr(Step, Ty),
903 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000904 }
905 }
906 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000907
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000908 // The cast wasn't folded; create an explicit cast node.
909 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +0000910 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
911 SCEV *S = SCEVAllocator.Allocate<SCEVZeroExtendExpr>();
Dan Gohmanc050fd92009-07-13 20:50:19 +0000912 new (S) SCEVZeroExtendExpr(ID, Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000913 UniqueSCEVs.InsertNode(S, IP);
914 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000915}
916
Dan Gohman0bba49c2009-07-07 17:06:11 +0000917const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000918 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000919 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000920 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000921 assert(isSCEVable(Ty) &&
922 "This is not a conversion to a SCEVable type!");
923 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000924
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000925 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000926 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000927 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +0000928 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
929 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000930 return getConstant(cast<ConstantInt>(C));
Dan Gohman2d1be872009-04-16 03:18:22 +0000931 }
Dan Gohmand19534a2007-06-15 14:38:12 +0000932
Dan Gohman20900ca2009-04-22 16:20:48 +0000933 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000934 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000935 return getSignExtendExpr(SS->getOperand(), Ty);
936
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000937 // Before doing any expensive analysis, check to see if we've already
938 // computed a SCEV for this Op and Ty.
939 FoldingSetNodeID ID;
940 ID.AddInteger(scSignExtend);
941 ID.AddPointer(Op);
942 ID.AddPointer(Ty);
943 void *IP = 0;
944 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
945
Dan Gohman01ecca22009-04-27 20:16:15 +0000946 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +0000947 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000948 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +0000949 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000950 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000951 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000952 const SCEV *Start = AR->getStart();
953 const SCEV *Step = AR->getStepRecurrence(*this);
954 unsigned BitWidth = getTypeSizeInBits(AR->getType());
955 const Loop *L = AR->getLoop();
956
Dan Gohmaneb490a72009-07-25 01:22:26 +0000957 // If we have special knowledge that this addrec won't overflow,
958 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000959 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000960 return getAddRecExpr(getSignExtendExpr(Start, Ty),
961 getSignExtendExpr(Step, Ty),
962 L);
963
Dan Gohman01ecca22009-04-27 20:16:15 +0000964 // Check whether the backedge-taken count is SCEVCouldNotCompute.
965 // Note that this serves two purposes: It filters out loops that are
966 // simply not analyzable, and it covers the case where this code is
967 // being called from within backedge-taken count analysis, such that
968 // attempting to ask for the backedge-taken count would likely result
969 // in infinite recursion. In the later case, the analysis code will
970 // cope with a conservative value, and it will take care to purge
971 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000972 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000973 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000974 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000975 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000976
977 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +0000978 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000979 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000980 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000981 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000982 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
983 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +0000984 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000985 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000986 const SCEV *SMul =
Dan Gohmana1af7572009-04-30 20:47:05 +0000987 getMulExpr(CastedMaxBECount,
Dan Gohman01ecca22009-04-27 20:16:15 +0000988 getTruncateOrSignExtend(Step, Start->getType()));
Dan Gohman0bba49c2009-07-07 17:06:11 +0000989 const SCEV *Add = getAddExpr(Start, SMul);
990 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000991 getAddExpr(getSignExtendExpr(Start, WideTy),
992 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
993 getSignExtendExpr(Step, WideTy)));
994 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000995 // Return the expression with the addrec on the outside.
996 return getAddRecExpr(getSignExtendExpr(Start, Ty),
997 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000998 L);
Dan Gohman850f7912009-07-16 17:34:36 +0000999
1000 // Similar to above, only this time treat the step value as unsigned.
1001 // This covers loops that count up with an unsigned step.
1002 const SCEV *UMul =
1003 getMulExpr(CastedMaxBECount,
1004 getTruncateOrZeroExtend(Step, Start->getType()));
1005 Add = getAddExpr(Start, UMul);
1006 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001007 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001008 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1009 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +00001010 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +00001011 // Return the expression with the addrec on the outside.
1012 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1013 getZeroExtendExpr(Step, Ty),
1014 L);
Dan Gohman85b05a22009-07-13 21:35:55 +00001015 }
1016
1017 // If the backedge is guarded by a comparison with the pre-inc value
1018 // the addrec is safe. Also, if the entry is guarded by a comparison
1019 // with the start value and the backedge is guarded by a comparison
1020 // with the post-inc value, the addrec is safe.
1021 if (isKnownPositive(Step)) {
1022 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1023 getSignedRange(Step).getSignedMax());
1024 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
1025 (isLoopGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
1026 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1027 AR->getPostIncExpr(*this), N)))
1028 // Return the expression with the addrec on the outside.
1029 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1030 getSignExtendExpr(Step, Ty),
1031 L);
1032 } else if (isKnownNegative(Step)) {
1033 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1034 getSignedRange(Step).getSignedMin());
1035 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
1036 (isLoopGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
1037 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1038 AR->getPostIncExpr(*this), N)))
1039 // Return the expression with the addrec on the outside.
1040 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1041 getSignExtendExpr(Step, Ty),
1042 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001043 }
1044 }
1045 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001046
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001047 // The cast wasn't folded; create an explicit cast node.
1048 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001049 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1050 SCEV *S = SCEVAllocator.Allocate<SCEVSignExtendExpr>();
Dan Gohmanc050fd92009-07-13 20:50:19 +00001051 new (S) SCEVSignExtendExpr(ID, Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001052 UniqueSCEVs.InsertNode(S, IP);
1053 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001054}
1055
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001056/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1057/// unspecified bits out to the given type.
1058///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001059const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001060 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001061 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1062 "This is not an extending conversion!");
1063 assert(isSCEVable(Ty) &&
1064 "This is not a conversion to a SCEVable type!");
1065 Ty = getEffectiveSCEVType(Ty);
1066
1067 // Sign-extend negative constants.
1068 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1069 if (SC->getValue()->getValue().isNegative())
1070 return getSignExtendExpr(Op, Ty);
1071
1072 // Peel off a truncate cast.
1073 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001074 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001075 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1076 return getAnyExtendExpr(NewOp, Ty);
1077 return getTruncateOrNoop(NewOp, Ty);
1078 }
1079
1080 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001081 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001082 if (!isa<SCEVZeroExtendExpr>(ZExt))
1083 return ZExt;
1084
1085 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001086 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001087 if (!isa<SCEVSignExtendExpr>(SExt))
1088 return SExt;
1089
1090 // If the expression is obviously signed, use the sext cast value.
1091 if (isa<SCEVSMaxExpr>(Op))
1092 return SExt;
1093
1094 // Absent any other information, use the zext cast value.
1095 return ZExt;
1096}
1097
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001098/// CollectAddOperandsWithScales - Process the given Ops list, which is
1099/// a list of operands to be added under the given scale, update the given
1100/// map. This is a helper function for getAddRecExpr. As an example of
1101/// what it does, given a sequence of operands that would form an add
1102/// expression like this:
1103///
1104/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1105///
1106/// where A and B are constants, update the map with these values:
1107///
1108/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1109///
1110/// and add 13 + A*B*29 to AccumulatedConstant.
1111/// This will allow getAddRecExpr to produce this:
1112///
1113/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1114///
1115/// This form often exposes folding opportunities that are hidden in
1116/// the original operand list.
1117///
1118/// Return true iff it appears that any interesting folding opportunities
1119/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1120/// the common case where no interesting opportunities are present, and
1121/// is also used as a check to avoid infinite recursion.
1122///
1123static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001124CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1125 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001126 APInt &AccumulatedConstant,
Dan Gohman0bba49c2009-07-07 17:06:11 +00001127 const SmallVectorImpl<const SCEV *> &Ops,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001128 const APInt &Scale,
1129 ScalarEvolution &SE) {
1130 bool Interesting = false;
1131
1132 // Iterate over the add operands.
1133 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1134 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1135 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1136 APInt NewScale =
1137 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1138 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1139 // A multiplication of a constant with another add; recurse.
1140 Interesting |=
1141 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1142 cast<SCEVAddExpr>(Mul->getOperand(1))
1143 ->getOperands(),
1144 NewScale, SE);
1145 } else {
1146 // A multiplication of a constant with some other value. Update
1147 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001148 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1149 const SCEV *Key = SE.getMulExpr(MulOps);
1150 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001151 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001152 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001153 NewOps.push_back(Pair.first->first);
1154 } else {
1155 Pair.first->second += NewScale;
1156 // The map already had an entry for this value, which may indicate
1157 // a folding opportunity.
1158 Interesting = true;
1159 }
1160 }
1161 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1162 // Pull a buried constant out to the outside.
1163 if (Scale != 1 || AccumulatedConstant != 0 || C->isZero())
1164 Interesting = true;
1165 AccumulatedConstant += Scale * C->getValue()->getValue();
1166 } else {
1167 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001168 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001169 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001170 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001171 NewOps.push_back(Pair.first->first);
1172 } else {
1173 Pair.first->second += Scale;
1174 // The map already had an entry for this value, which may indicate
1175 // a folding opportunity.
1176 Interesting = true;
1177 }
1178 }
1179 }
1180
1181 return Interesting;
1182}
1183
1184namespace {
1185 struct APIntCompare {
1186 bool operator()(const APInt &LHS, const APInt &RHS) const {
1187 return LHS.ult(RHS);
1188 }
1189 };
1190}
1191
Dan Gohman6c0866c2009-05-24 23:45:28 +00001192/// getAddExpr - Get a canonical add expression, or something simpler if
1193/// possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001194const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001195 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001196 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001197#ifndef NDEBUG
1198 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1199 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1200 getEffectiveSCEVType(Ops[0]->getType()) &&
1201 "SCEVAddExpr operand types don't match!");
1202#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001203
1204 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001205 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001206
1207 // If there are any constants, fold them together.
1208 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001209 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001210 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001211 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001212 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001213 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001214 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1215 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001216 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001217 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001218 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001219 }
1220
1221 // If we are left with a constant zero being added, strip it off.
Reid Spencercae57542007-03-02 00:28:52 +00001222 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001223 Ops.erase(Ops.begin());
1224 --Idx;
1225 }
1226 }
1227
Chris Lattner627018b2004-04-07 16:16:11 +00001228 if (Ops.size() == 1) return Ops[0];
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001229
Chris Lattner53e677a2004-04-02 20:23:17 +00001230 // Okay, check to see if the same value occurs in the operand list twice. If
1231 // so, merge them together into an multiply expression. Since we sorted the
1232 // list, these values are required to be adjacent.
1233 const Type *Ty = Ops[0]->getType();
1234 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1235 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
1236 // Found a match, merge the two values into a multiply, and add any
1237 // remaining values to the result.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001238 const SCEV *Two = getIntegerSCEV(2, Ty);
1239 const SCEV *Mul = getMulExpr(Ops[i], Two);
Chris Lattner53e677a2004-04-02 20:23:17 +00001240 if (Ops.size() == 2)
1241 return Mul;
1242 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1243 Ops.push_back(Mul);
Dan Gohman246b2562007-10-22 18:31:58 +00001244 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001245 }
1246
Dan Gohman728c7f32009-05-08 21:03:19 +00001247 // Check for truncates. If all the operands are truncated from the same
1248 // type, see if factoring out the truncate would permit the result to be
1249 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1250 // if the contents of the resulting outer trunc fold to something simple.
1251 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1252 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1253 const Type *DstType = Trunc->getType();
1254 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001255 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001256 bool Ok = true;
1257 // Check all the operands to see if they can be represented in the
1258 // source type of the truncate.
1259 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1260 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1261 if (T->getOperand()->getType() != SrcType) {
1262 Ok = false;
1263 break;
1264 }
1265 LargeOps.push_back(T->getOperand());
1266 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1267 // This could be either sign or zero extension, but sign extension
1268 // is much more likely to be foldable here.
1269 LargeOps.push_back(getSignExtendExpr(C, SrcType));
1270 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001271 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001272 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1273 if (const SCEVTruncateExpr *T =
1274 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1275 if (T->getOperand()->getType() != SrcType) {
1276 Ok = false;
1277 break;
1278 }
1279 LargeMulOps.push_back(T->getOperand());
1280 } else if (const SCEVConstant *C =
1281 dyn_cast<SCEVConstant>(M->getOperand(j))) {
1282 // This could be either sign or zero extension, but sign extension
1283 // is much more likely to be foldable here.
1284 LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1285 } else {
1286 Ok = false;
1287 break;
1288 }
1289 }
1290 if (Ok)
1291 LargeOps.push_back(getMulExpr(LargeMulOps));
1292 } else {
1293 Ok = false;
1294 break;
1295 }
1296 }
1297 if (Ok) {
1298 // Evaluate the expression in the larger type.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001299 const SCEV *Fold = getAddExpr(LargeOps);
Dan Gohman728c7f32009-05-08 21:03:19 +00001300 // If it folds to something simple, use it. Otherwise, don't.
1301 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1302 return getTruncateExpr(Fold, DstType);
1303 }
1304 }
1305
1306 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001307 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1308 ++Idx;
1309
1310 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001311 if (Idx < Ops.size()) {
1312 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001313 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001314 // If we have an add, expand the add operands onto the end of the operands
1315 // list.
1316 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1317 Ops.erase(Ops.begin()+Idx);
1318 DeletedAdd = true;
1319 }
1320
1321 // If we deleted at least one add, we added operands to the end of the list,
1322 // and they are not necessarily sorted. Recurse to resort and resimplify
1323 // any operands we just aquired.
1324 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001325 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001326 }
1327
1328 // Skip over the add expression until we get to a multiply.
1329 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1330 ++Idx;
1331
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001332 // Check to see if there are any folding opportunities present with
1333 // operands multiplied by constant values.
1334 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1335 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001336 DenseMap<const SCEV *, APInt> M;
1337 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001338 APInt AccumulatedConstant(BitWidth, 0);
1339 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1340 Ops, APInt(BitWidth, 1), *this)) {
1341 // Some interesting folding opportunity is present, so its worthwhile to
1342 // re-generate the operands list. Group the operands by constant scale,
1343 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001344 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1345 for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001346 E = NewOps.end(); I != E; ++I)
1347 MulOpLists[M.find(*I)->second].push_back(*I);
1348 // Re-generate the operands list.
1349 Ops.clear();
1350 if (AccumulatedConstant != 0)
1351 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001352 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1353 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001354 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001355 Ops.push_back(getMulExpr(getConstant(I->first),
1356 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001357 if (Ops.empty())
1358 return getIntegerSCEV(0, Ty);
1359 if (Ops.size() == 1)
1360 return Ops[0];
1361 return getAddExpr(Ops);
1362 }
1363 }
1364
Chris Lattner53e677a2004-04-02 20:23:17 +00001365 // If we are adding something to a multiply expression, make sure the
1366 // something is not already an operand of the multiply. If so, merge it into
1367 // the multiply.
1368 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001369 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001370 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001371 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Chris Lattner53e677a2004-04-02 20:23:17 +00001372 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohmana82752c2009-06-14 22:47:23 +00001373 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001374 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001375 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001376 if (Mul->getNumOperands() != 2) {
1377 // If the multiply has more than two operands, we must get the
1378 // Y*Z term.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001379 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001380 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001381 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001382 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001383 const SCEV *One = getIntegerSCEV(1, Ty);
1384 const SCEV *AddOne = getAddExpr(InnerMul, One);
1385 const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001386 if (Ops.size() == 2) return OuterMul;
1387 if (AddOp < Idx) {
1388 Ops.erase(Ops.begin()+AddOp);
1389 Ops.erase(Ops.begin()+Idx-1);
1390 } else {
1391 Ops.erase(Ops.begin()+Idx);
1392 Ops.erase(Ops.begin()+AddOp-1);
1393 }
1394 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001395 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001396 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001397
Chris Lattner53e677a2004-04-02 20:23:17 +00001398 // Check this multiply against other multiplies being added together.
1399 for (unsigned OtherMulIdx = Idx+1;
1400 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1401 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001402 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001403 // If MulOp occurs in OtherMul, we can fold the two multiplies
1404 // together.
1405 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1406 OMulOp != e; ++OMulOp)
1407 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1408 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001409 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001410 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001411 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1412 Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001413 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001414 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001415 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001416 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001417 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001418 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1419 OtherMul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001420 MulOps.erase(MulOps.begin()+OMulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001421 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001422 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001423 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1424 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001425 if (Ops.size() == 2) return OuterMul;
1426 Ops.erase(Ops.begin()+Idx);
1427 Ops.erase(Ops.begin()+OtherMulIdx-1);
1428 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001429 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001430 }
1431 }
1432 }
1433 }
1434
1435 // If there are any add recurrences in the operands list, see if any other
1436 // added values are loop invariant. If so, we can fold them into the
1437 // recurrence.
1438 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1439 ++Idx;
1440
1441 // Scan over all recurrences, trying to fold loop invariants into them.
1442 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1443 // Scan all of the other operands to this add and add them to the vector if
1444 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001445 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001446 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001447 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1448 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1449 LIOps.push_back(Ops[i]);
1450 Ops.erase(Ops.begin()+i);
1451 --i; --e;
1452 }
1453
1454 // If we found some loop invariants, fold them into the recurrence.
1455 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001456 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001457 LIOps.push_back(AddRec->getStart());
1458
Dan Gohman0bba49c2009-07-07 17:06:11 +00001459 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohmana82752c2009-06-14 22:47:23 +00001460 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001461 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001462
Dan Gohman0bba49c2009-07-07 17:06:11 +00001463 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001464 // If all of the other operands were loop invariant, we are done.
1465 if (Ops.size() == 1) return NewRec;
1466
1467 // Otherwise, add the folded AddRec by the non-liv parts.
1468 for (unsigned i = 0;; ++i)
1469 if (Ops[i] == AddRec) {
1470 Ops[i] = NewRec;
1471 break;
1472 }
Dan Gohman246b2562007-10-22 18:31:58 +00001473 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001474 }
1475
1476 // Okay, if there weren't any loop invariants to be folded, check to see if
1477 // there are multiple AddRec's with the same loop induction variable being
1478 // added together. If so, we can fold them.
1479 for (unsigned OtherIdx = Idx+1;
1480 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1481 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001482 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001483 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1484 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
Dan Gohman64a845e2009-06-24 04:48:43 +00001485 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1486 AddRec->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001487 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1488 if (i >= NewOps.size()) {
1489 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1490 OtherAddRec->op_end());
1491 break;
1492 }
Dan Gohman246b2562007-10-22 18:31:58 +00001493 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
Chris Lattner53e677a2004-04-02 20:23:17 +00001494 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001495 const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001496
1497 if (Ops.size() == 2) return NewAddRec;
1498
1499 Ops.erase(Ops.begin()+Idx);
1500 Ops.erase(Ops.begin()+OtherIdx-1);
1501 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001502 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001503 }
1504 }
1505
1506 // Otherwise couldn't fold anything into this recurrence. Move onto the
1507 // next one.
1508 }
1509
1510 // Okay, it looks like we really DO need an add expr. Check to see if we
1511 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001512 FoldingSetNodeID ID;
1513 ID.AddInteger(scAddExpr);
1514 ID.AddInteger(Ops.size());
1515 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1516 ID.AddPointer(Ops[i]);
1517 void *IP = 0;
1518 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1519 SCEV *S = SCEVAllocator.Allocate<SCEVAddExpr>();
Dan Gohmanc050fd92009-07-13 20:50:19 +00001520 new (S) SCEVAddExpr(ID, Ops);
Dan Gohman1c343752009-06-27 21:21:31 +00001521 UniqueSCEVs.InsertNode(S, IP);
1522 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001523}
1524
1525
Dan Gohman6c0866c2009-05-24 23:45:28 +00001526/// getMulExpr - Get a canonical multiply expression, or something simpler if
1527/// possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001528const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001529 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00001530#ifndef NDEBUG
1531 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1532 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1533 getEffectiveSCEVType(Ops[0]->getType()) &&
1534 "SCEVMulExpr operand types don't match!");
1535#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001536
1537 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001538 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001539
1540 // If there are any constants, fold them together.
1541 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001542 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001543
1544 // C1*(C2+V) -> C1*C2 + C1*V
1545 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001546 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001547 if (Add->getNumOperands() == 2 &&
1548 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001549 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1550 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001551
1552
1553 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001554 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001555 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001556 ConstantInt *Fold = ConstantInt::get(getContext(),
1557 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001558 RHSC->getValue()->getValue());
1559 Ops[0] = getConstant(Fold);
1560 Ops.erase(Ops.begin()+1); // Erase the folded element
1561 if (Ops.size() == 1) return Ops[0];
1562 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001563 }
1564
1565 // If we are left with a constant one being multiplied, strip it off.
1566 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1567 Ops.erase(Ops.begin());
1568 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001569 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001570 // If we have a multiply of zero, it will always be zero.
1571 return Ops[0];
1572 }
1573 }
1574
1575 // Skip over the add expression until we get to a multiply.
1576 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1577 ++Idx;
1578
1579 if (Ops.size() == 1)
1580 return Ops[0];
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001581
Chris Lattner53e677a2004-04-02 20:23:17 +00001582 // If there are mul operands inline them all into this expression.
1583 if (Idx < Ops.size()) {
1584 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001585 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001586 // If we have an mul, expand the mul operands onto the end of the operands
1587 // list.
1588 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1589 Ops.erase(Ops.begin()+Idx);
1590 DeletedMul = true;
1591 }
1592
1593 // If we deleted at least one mul, we added operands to the end of the list,
1594 // and they are not necessarily sorted. Recurse to resort and resimplify
1595 // any operands we just aquired.
1596 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001597 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001598 }
1599
1600 // If there are any add recurrences in the operands list, see if any other
1601 // added values are loop invariant. If so, we can fold them into the
1602 // recurrence.
1603 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1604 ++Idx;
1605
1606 // Scan over all recurrences, trying to fold loop invariants into them.
1607 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1608 // Scan all of the other operands to this mul and add them to the vector if
1609 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001610 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001611 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001612 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1613 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1614 LIOps.push_back(Ops[i]);
1615 Ops.erase(Ops.begin()+i);
1616 --i; --e;
1617 }
1618
1619 // If we found some loop invariants, fold them into the recurrence.
1620 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001621 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001622 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001623 NewOps.reserve(AddRec->getNumOperands());
1624 if (LIOps.size() == 1) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001625 const SCEV *Scale = LIOps[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001626 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman246b2562007-10-22 18:31:58 +00001627 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001628 } else {
1629 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001630 SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001631 MulOps.push_back(AddRec->getOperand(i));
Dan Gohman246b2562007-10-22 18:31:58 +00001632 NewOps.push_back(getMulExpr(MulOps));
Chris Lattner53e677a2004-04-02 20:23:17 +00001633 }
1634 }
1635
Dan Gohman0bba49c2009-07-07 17:06:11 +00001636 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001637
1638 // If all of the other operands were loop invariant, we are done.
1639 if (Ops.size() == 1) return NewRec;
1640
1641 // Otherwise, multiply the folded AddRec by the non-liv parts.
1642 for (unsigned i = 0;; ++i)
1643 if (Ops[i] == AddRec) {
1644 Ops[i] = NewRec;
1645 break;
1646 }
Dan Gohman246b2562007-10-22 18:31:58 +00001647 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001648 }
1649
1650 // Okay, if there weren't any loop invariants to be folded, check to see if
1651 // there are multiple AddRec's with the same loop induction variable being
1652 // multiplied together. If so, we can fold them.
1653 for (unsigned OtherIdx = Idx+1;
1654 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1655 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001656 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001657 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1658 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
Dan Gohman35738ac2009-05-04 22:30:44 +00001659 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman0bba49c2009-07-07 17:06:11 +00001660 const SCEV *NewStart = getMulExpr(F->getStart(),
Chris Lattner53e677a2004-04-02 20:23:17 +00001661 G->getStart());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001662 const SCEV *B = F->getStepRecurrence(*this);
1663 const SCEV *D = G->getStepRecurrence(*this);
1664 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
Dan Gohman246b2562007-10-22 18:31:58 +00001665 getMulExpr(G, B),
1666 getMulExpr(B, D));
Dan Gohman0bba49c2009-07-07 17:06:11 +00001667 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
Dan Gohman246b2562007-10-22 18:31:58 +00001668 F->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001669 if (Ops.size() == 2) return NewAddRec;
1670
1671 Ops.erase(Ops.begin()+Idx);
1672 Ops.erase(Ops.begin()+OtherIdx-1);
1673 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001674 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001675 }
1676 }
1677
1678 // Otherwise couldn't fold anything into this recurrence. Move onto the
1679 // next one.
1680 }
1681
1682 // Okay, it looks like we really DO need an mul expr. Check to see if we
1683 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001684 FoldingSetNodeID ID;
1685 ID.AddInteger(scMulExpr);
1686 ID.AddInteger(Ops.size());
1687 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1688 ID.AddPointer(Ops[i]);
1689 void *IP = 0;
1690 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1691 SCEV *S = SCEVAllocator.Allocate<SCEVMulExpr>();
Dan Gohmanc050fd92009-07-13 20:50:19 +00001692 new (S) SCEVMulExpr(ID, Ops);
Dan Gohman1c343752009-06-27 21:21:31 +00001693 UniqueSCEVs.InsertNode(S, IP);
1694 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001695}
1696
Andreas Bolka8a11c982009-08-07 22:55:26 +00001697/// getUDivExpr - Get a canonical unsigned division expression, or something
1698/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001699const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1700 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001701 assert(getEffectiveSCEVType(LHS->getType()) ==
1702 getEffectiveSCEVType(RHS->getType()) &&
1703 "SCEVUDivExpr operand types don't match!");
1704
Dan Gohman622ed672009-05-04 22:02:23 +00001705 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001706 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001707 return LHS; // X udiv 1 --> x
Dan Gohman185cf032009-05-08 20:18:49 +00001708 if (RHSC->isZero())
1709 return getIntegerSCEV(0, LHS->getType()); // value is undefined
Chris Lattner53e677a2004-04-02 20:23:17 +00001710
Dan Gohman185cf032009-05-08 20:18:49 +00001711 // Determine if the division can be folded into the operands of
1712 // its operands.
1713 // TODO: Generalize this to non-constants by using known-bits information.
1714 const Type *Ty = LHS->getType();
1715 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1716 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1717 // For non-power-of-two values, effectively round the value up to the
1718 // nearest power of two.
1719 if (!RHSC->getValue()->getValue().isPowerOf2())
1720 ++MaxShiftAmt;
1721 const IntegerType *ExtTy =
Owen Anderson1d0be152009-08-13 21:58:54 +00001722 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohman185cf032009-05-08 20:18:49 +00001723 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1724 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1725 if (const SCEVConstant *Step =
1726 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1727 if (!Step->getValue()->getValue()
1728 .urem(RHSC->getValue()->getValue()) &&
Dan Gohmanb0285932009-05-08 23:11:16 +00001729 getZeroExtendExpr(AR, ExtTy) ==
1730 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1731 getZeroExtendExpr(Step, ExtTy),
1732 AR->getLoop())) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001733 SmallVector<const SCEV *, 4> Operands;
Dan Gohman185cf032009-05-08 20:18:49 +00001734 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1735 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1736 return getAddRecExpr(Operands, AR->getLoop());
1737 }
1738 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
Dan Gohmanb0285932009-05-08 23:11:16 +00001739 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001740 SmallVector<const SCEV *, 4> Operands;
Dan Gohmanb0285932009-05-08 23:11:16 +00001741 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1742 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1743 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
Dan Gohman185cf032009-05-08 20:18:49 +00001744 // Find an operand that's safely divisible.
1745 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001746 const SCEV *Op = M->getOperand(i);
1747 const SCEV *Div = getUDivExpr(Op, RHSC);
Dan Gohman185cf032009-05-08 20:18:49 +00001748 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001749 const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
1750 Operands = SmallVector<const SCEV *, 4>(MOperands.begin(),
Dan Gohmana82752c2009-06-14 22:47:23 +00001751 MOperands.end());
Dan Gohman185cf032009-05-08 20:18:49 +00001752 Operands[i] = Div;
1753 return getMulExpr(Operands);
1754 }
1755 }
Dan Gohmanb0285932009-05-08 23:11:16 +00001756 }
Dan Gohman185cf032009-05-08 20:18:49 +00001757 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Dan Gohmanb0285932009-05-08 23:11:16 +00001758 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001759 SmallVector<const SCEV *, 4> Operands;
Dan Gohmanb0285932009-05-08 23:11:16 +00001760 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1761 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1762 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1763 Operands.clear();
Dan Gohman185cf032009-05-08 20:18:49 +00001764 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001765 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
Dan Gohman185cf032009-05-08 20:18:49 +00001766 if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1767 break;
1768 Operands.push_back(Op);
1769 }
1770 if (Operands.size() == A->getNumOperands())
1771 return getAddExpr(Operands);
1772 }
Dan Gohmanb0285932009-05-08 23:11:16 +00001773 }
Dan Gohman185cf032009-05-08 20:18:49 +00001774
1775 // Fold if both operands are constant.
Dan Gohman622ed672009-05-04 22:02:23 +00001776 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001777 Constant *LHSCV = LHSC->getValue();
1778 Constant *RHSCV = RHSC->getValue();
Owen Andersonbaf3c402009-07-29 18:55:55 +00001779 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
Dan Gohmanb8be8b72009-06-24 00:38:39 +00001780 RHSCV)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001781 }
1782 }
1783
Dan Gohman1c343752009-06-27 21:21:31 +00001784 FoldingSetNodeID ID;
1785 ID.AddInteger(scUDivExpr);
1786 ID.AddPointer(LHS);
1787 ID.AddPointer(RHS);
1788 void *IP = 0;
1789 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1790 SCEV *S = SCEVAllocator.Allocate<SCEVUDivExpr>();
Dan Gohmanc050fd92009-07-13 20:50:19 +00001791 new (S) SCEVUDivExpr(ID, LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00001792 UniqueSCEVs.InsertNode(S, IP);
1793 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001794}
1795
1796
Dan Gohman6c0866c2009-05-24 23:45:28 +00001797/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1798/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001799const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohmand1e5db62009-07-24 01:03:59 +00001800 const SCEV *Step, const Loop *L) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001801 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00001802 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00001803 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00001804 if (StepChrec->getLoop() == L) {
1805 Operands.insert(Operands.end(), StepChrec->op_begin(),
1806 StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001807 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001808 }
1809
1810 Operands.push_back(Step);
Dan Gohman246b2562007-10-22 18:31:58 +00001811 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001812}
1813
Dan Gohman6c0866c2009-05-24 23:45:28 +00001814/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1815/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00001816const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00001817ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman64a845e2009-06-24 04:48:43 +00001818 const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001819 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001820#ifndef NDEBUG
1821 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1822 assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1823 getEffectiveSCEVType(Operands[0]->getType()) &&
1824 "SCEVAddRecExpr operand types don't match!");
1825#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001826
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001827 if (Operands.back()->isZero()) {
1828 Operands.pop_back();
Dan Gohman8dae1382008-09-14 17:21:12 +00001829 return getAddRecExpr(Operands, L); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001830 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001831
Dan Gohmand9cc7492008-08-08 18:33:12 +00001832 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00001833 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmand9cc7492008-08-08 18:33:12 +00001834 const Loop* NestedLoop = NestedAR->getLoop();
1835 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001836 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohmana82752c2009-06-14 22:47:23 +00001837 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00001838 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00001839 // AddRecs require their operands be loop-invariant with respect to their
1840 // loops. Don't perform this transformation if it would break this
1841 // requirement.
1842 bool AllInvariant = true;
1843 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1844 if (!Operands[i]->isLoopInvariant(L)) {
1845 AllInvariant = false;
1846 break;
1847 }
1848 if (AllInvariant) {
1849 NestedOperands[0] = getAddRecExpr(Operands, L);
1850 AllInvariant = true;
1851 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
1852 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
1853 AllInvariant = false;
1854 break;
1855 }
1856 if (AllInvariant)
1857 // Ok, both add recurrences are valid after the transformation.
1858 return getAddRecExpr(NestedOperands, NestedLoop);
1859 }
1860 // Reset Operands to its original state.
1861 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00001862 }
1863 }
1864
Dan Gohman1c343752009-06-27 21:21:31 +00001865 FoldingSetNodeID ID;
1866 ID.AddInteger(scAddRecExpr);
1867 ID.AddInteger(Operands.size());
1868 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1869 ID.AddPointer(Operands[i]);
1870 ID.AddPointer(L);
1871 void *IP = 0;
1872 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1873 SCEV *S = SCEVAllocator.Allocate<SCEVAddRecExpr>();
Dan Gohmanc050fd92009-07-13 20:50:19 +00001874 new (S) SCEVAddRecExpr(ID, Operands, L);
Dan Gohman1c343752009-06-27 21:21:31 +00001875 UniqueSCEVs.InsertNode(S, IP);
1876 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001877}
1878
Dan Gohman9311ef62009-06-24 14:49:00 +00001879const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
1880 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001881 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001882 Ops.push_back(LHS);
1883 Ops.push_back(RHS);
1884 return getSMaxExpr(Ops);
1885}
1886
Dan Gohman0bba49c2009-07-07 17:06:11 +00001887const SCEV *
1888ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001889 assert(!Ops.empty() && "Cannot get empty smax!");
1890 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001891#ifndef NDEBUG
1892 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1893 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1894 getEffectiveSCEVType(Ops[0]->getType()) &&
1895 "SCEVSMaxExpr operand types don't match!");
1896#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001897
1898 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001899 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001900
1901 // If there are any constants, fold them together.
1902 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001903 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001904 ++Idx;
1905 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001906 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001907 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001908 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001909 APIntOps::smax(LHSC->getValue()->getValue(),
1910 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00001911 Ops[0] = getConstant(Fold);
1912 Ops.erase(Ops.begin()+1); // Erase the folded element
1913 if (Ops.size() == 1) return Ops[0];
1914 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001915 }
1916
Dan Gohmane5aceed2009-06-24 14:46:22 +00001917 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001918 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1919 Ops.erase(Ops.begin());
1920 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00001921 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
1922 // If we have an smax with a constant maximum-int, it will always be
1923 // maximum-int.
1924 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001925 }
1926 }
1927
1928 if (Ops.size() == 1) return Ops[0];
1929
1930 // Find the first SMax
1931 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1932 ++Idx;
1933
1934 // Check to see if one of the operands is an SMax. If so, expand its operands
1935 // onto our operand list, and recurse to simplify.
1936 if (Idx < Ops.size()) {
1937 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001938 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001939 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1940 Ops.erase(Ops.begin()+Idx);
1941 DeletedSMax = true;
1942 }
1943
1944 if (DeletedSMax)
1945 return getSMaxExpr(Ops);
1946 }
1947
1948 // Okay, check to see if the same value occurs in the operand list twice. If
1949 // so, delete one. Since we sorted the list, these values are required to
1950 // be adjacent.
1951 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1952 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y
1953 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1954 --i; --e;
1955 }
1956
1957 if (Ops.size() == 1) return Ops[0];
1958
1959 assert(!Ops.empty() && "Reduced smax down to nothing!");
1960
Nick Lewycky3e630762008-02-20 06:48:22 +00001961 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001962 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001963 FoldingSetNodeID ID;
1964 ID.AddInteger(scSMaxExpr);
1965 ID.AddInteger(Ops.size());
1966 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1967 ID.AddPointer(Ops[i]);
1968 void *IP = 0;
1969 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1970 SCEV *S = SCEVAllocator.Allocate<SCEVSMaxExpr>();
Dan Gohmanc050fd92009-07-13 20:50:19 +00001971 new (S) SCEVSMaxExpr(ID, Ops);
Dan Gohman1c343752009-06-27 21:21:31 +00001972 UniqueSCEVs.InsertNode(S, IP);
1973 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001974}
1975
Dan Gohman9311ef62009-06-24 14:49:00 +00001976const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
1977 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001978 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00001979 Ops.push_back(LHS);
1980 Ops.push_back(RHS);
1981 return getUMaxExpr(Ops);
1982}
1983
Dan Gohman0bba49c2009-07-07 17:06:11 +00001984const SCEV *
1985ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00001986 assert(!Ops.empty() && "Cannot get empty umax!");
1987 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001988#ifndef NDEBUG
1989 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1990 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1991 getEffectiveSCEVType(Ops[0]->getType()) &&
1992 "SCEVUMaxExpr operand types don't match!");
1993#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00001994
1995 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001996 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00001997
1998 // If there are any constants, fold them together.
1999 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002000 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002001 ++Idx;
2002 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002003 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002004 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002005 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002006 APIntOps::umax(LHSC->getValue()->getValue(),
2007 RHSC->getValue()->getValue()));
2008 Ops[0] = getConstant(Fold);
2009 Ops.erase(Ops.begin()+1); // Erase the folded element
2010 if (Ops.size() == 1) return Ops[0];
2011 LHSC = cast<SCEVConstant>(Ops[0]);
2012 }
2013
Dan Gohmane5aceed2009-06-24 14:46:22 +00002014 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002015 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2016 Ops.erase(Ops.begin());
2017 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002018 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2019 // If we have an umax with a constant maximum-int, it will always be
2020 // maximum-int.
2021 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002022 }
2023 }
2024
2025 if (Ops.size() == 1) return Ops[0];
2026
2027 // Find the first UMax
2028 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2029 ++Idx;
2030
2031 // Check to see if one of the operands is a UMax. If so, expand its operands
2032 // onto our operand list, and recurse to simplify.
2033 if (Idx < Ops.size()) {
2034 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002035 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002036 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
2037 Ops.erase(Ops.begin()+Idx);
2038 DeletedUMax = true;
2039 }
2040
2041 if (DeletedUMax)
2042 return getUMaxExpr(Ops);
2043 }
2044
2045 // Okay, check to see if the same value occurs in the operand list twice. If
2046 // so, delete one. Since we sorted the list, these values are required to
2047 // be adjacent.
2048 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2049 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y
2050 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2051 --i; --e;
2052 }
2053
2054 if (Ops.size() == 1) return Ops[0];
2055
2056 assert(!Ops.empty() && "Reduced umax down to nothing!");
2057
2058 // Okay, it looks like we really DO need a umax expr. Check to see if we
2059 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002060 FoldingSetNodeID ID;
2061 ID.AddInteger(scUMaxExpr);
2062 ID.AddInteger(Ops.size());
2063 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2064 ID.AddPointer(Ops[i]);
2065 void *IP = 0;
2066 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2067 SCEV *S = SCEVAllocator.Allocate<SCEVUMaxExpr>();
Dan Gohmanc050fd92009-07-13 20:50:19 +00002068 new (S) SCEVUMaxExpr(ID, Ops);
Dan Gohman1c343752009-06-27 21:21:31 +00002069 UniqueSCEVs.InsertNode(S, IP);
2070 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002071}
2072
Dan Gohman9311ef62009-06-24 14:49:00 +00002073const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2074 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002075 // ~smax(~x, ~y) == smin(x, y).
2076 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2077}
2078
Dan Gohman9311ef62009-06-24 14:49:00 +00002079const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2080 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002081 // ~umax(~x, ~y) == umin(x, y)
2082 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2083}
2084
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002085const SCEV *ScalarEvolution::getFieldOffsetExpr(const StructType *STy,
2086 unsigned FieldNo) {
2087 // If we have TargetData we can determine the constant offset.
2088 if (TD) {
2089 const Type *IntPtrTy = TD->getIntPtrType(getContext());
2090 const StructLayout &SL = *TD->getStructLayout(STy);
2091 uint64_t Offset = SL.getElementOffset(FieldNo);
2092 return getIntegerSCEV(Offset, IntPtrTy);
2093 }
2094
2095 // Field 0 is always at offset 0.
2096 if (FieldNo == 0) {
2097 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2098 return getIntegerSCEV(0, Ty);
2099 }
2100
2101 // Okay, it looks like we really DO need an offsetof expr. Check to see if we
2102 // already have one, otherwise create a new one.
2103 FoldingSetNodeID ID;
2104 ID.AddInteger(scFieldOffset);
2105 ID.AddPointer(STy);
2106 ID.AddInteger(FieldNo);
2107 void *IP = 0;
2108 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2109 SCEV *S = SCEVAllocator.Allocate<SCEVFieldOffsetExpr>();
2110 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2111 new (S) SCEVFieldOffsetExpr(ID, Ty, STy, FieldNo);
2112 UniqueSCEVs.InsertNode(S, IP);
2113 return S;
2114}
2115
2116const SCEV *ScalarEvolution::getAllocSizeExpr(const Type *AllocTy) {
2117 // If we have TargetData we can determine the constant size.
2118 if (TD && AllocTy->isSized()) {
2119 const Type *IntPtrTy = TD->getIntPtrType(getContext());
2120 return getIntegerSCEV(TD->getTypeAllocSize(AllocTy), IntPtrTy);
2121 }
2122
2123 // Expand an array size into the element size times the number
2124 // of elements.
2125 if (const ArrayType *ATy = dyn_cast<ArrayType>(AllocTy)) {
2126 const SCEV *E = getAllocSizeExpr(ATy->getElementType());
2127 return getMulExpr(
2128 E, getConstant(ConstantInt::get(cast<IntegerType>(E->getType()),
2129 ATy->getNumElements())));
2130 }
2131
2132 // Expand a vector size into the element size times the number
2133 // of elements.
2134 if (const VectorType *VTy = dyn_cast<VectorType>(AllocTy)) {
2135 const SCEV *E = getAllocSizeExpr(VTy->getElementType());
2136 return getMulExpr(
2137 E, getConstant(ConstantInt::get(cast<IntegerType>(E->getType()),
2138 VTy->getNumElements())));
2139 }
2140
2141 // Okay, it looks like we really DO need a sizeof expr. Check to see if we
2142 // already have one, otherwise create a new one.
2143 FoldingSetNodeID ID;
2144 ID.AddInteger(scAllocSize);
2145 ID.AddPointer(AllocTy);
2146 void *IP = 0;
2147 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2148 SCEV *S = SCEVAllocator.Allocate<SCEVAllocSizeExpr>();
2149 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2150 new (S) SCEVAllocSizeExpr(ID, Ty, AllocTy);
2151 UniqueSCEVs.InsertNode(S, IP);
2152 return S;
2153}
2154
Dan Gohman0bba49c2009-07-07 17:06:11 +00002155const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002156 // Don't attempt to do anything other than create a SCEVUnknown object
2157 // here. createSCEV only calls getUnknown after checking for all other
2158 // interesting possibilities, and any other code that calls getUnknown
2159 // is doing so in order to hide a value from SCEV canonicalization.
2160
Dan Gohman1c343752009-06-27 21:21:31 +00002161 FoldingSetNodeID ID;
2162 ID.AddInteger(scUnknown);
2163 ID.AddPointer(V);
2164 void *IP = 0;
2165 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2166 SCEV *S = SCEVAllocator.Allocate<SCEVUnknown>();
Dan Gohmanc050fd92009-07-13 20:50:19 +00002167 new (S) SCEVUnknown(ID, V);
Dan Gohman1c343752009-06-27 21:21:31 +00002168 UniqueSCEVs.InsertNode(S, IP);
2169 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002170}
2171
Chris Lattner53e677a2004-04-02 20:23:17 +00002172//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002173// Basic SCEV Analysis and PHI Idiom Recognition Code
2174//
2175
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002176/// isSCEVable - Test if values of the given type are analyzable within
2177/// the SCEV framework. This primarily includes integer types, and it
2178/// can optionally include pointer types if the ScalarEvolution class
2179/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002180bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002181 // Integers and pointers are always SCEVable.
2182 return Ty->isInteger() || isa<PointerType>(Ty);
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002183}
2184
2185/// getTypeSizeInBits - Return the size in bits of the specified type,
2186/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002187uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002188 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2189
2190 // If we have a TargetData, use it!
2191 if (TD)
2192 return TD->getTypeSizeInBits(Ty);
2193
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002194 // Integer types have fixed sizes.
2195 if (Ty->isInteger())
2196 return Ty->getPrimitiveSizeInBits();
2197
2198 // The only other support type is pointer. Without TargetData, conservatively
2199 // assume pointers are 64-bit.
2200 assert(isa<PointerType>(Ty) && "isSCEVable permitted a non-SCEVable type!");
2201 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002202}
2203
2204/// getEffectiveSCEVType - Return a type with the same bitwidth as
2205/// the given type and which represents how SCEV will treat the given
2206/// type, for which isSCEVable must return true. For pointer types,
2207/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002208const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002209 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2210
2211 if (Ty->isInteger())
2212 return Ty;
2213
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002214 // The only other support type is pointer.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002215 assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002216 if (TD) return TD->getIntPtrType(getContext());
2217
2218 // Without TargetData, conservatively assume pointers are 64-bit.
2219 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002220}
Chris Lattner53e677a2004-04-02 20:23:17 +00002221
Dan Gohman0bba49c2009-07-07 17:06:11 +00002222const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002223 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002224}
2225
Chris Lattner53e677a2004-04-02 20:23:17 +00002226/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2227/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002228const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002229 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002230
Dan Gohman0bba49c2009-07-07 17:06:11 +00002231 std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00002232 if (I != Scalars.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002233 const SCEV *S = createSCEV(V);
Dan Gohman35738ac2009-05-04 22:30:44 +00002234 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002235 return S;
2236}
2237
Dan Gohman6bbcba12009-06-24 00:54:57 +00002238/// getIntegerSCEV - Given a SCEVable type, create a constant for the
Dan Gohman2d1be872009-04-16 03:18:22 +00002239/// specified signed integer value and return a SCEV for the constant.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002240const SCEV *ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002241 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Owen Andersoneed707b2009-07-24 23:12:02 +00002242 return getConstant(ConstantInt::get(ITy, Val));
Dan Gohman2d1be872009-04-16 03:18:22 +00002243}
2244
2245/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2246///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002247const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002248 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002249 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002250 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002251
2252 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002253 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002254 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002255 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002256}
2257
2258/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002259const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002260 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002261 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002262 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002263
2264 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002265 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002266 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002267 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002268 return getMinusSCEV(AllOnes, V);
2269}
2270
2271/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2272///
Dan Gohman9311ef62009-06-24 14:49:00 +00002273const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2274 const SCEV *RHS) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002275 // X - Y --> X + -Y
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002276 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman2d1be872009-04-16 03:18:22 +00002277}
2278
2279/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2280/// input value to the specified type. If the type must be extended, it is zero
2281/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002282const SCEV *
2283ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002284 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002285 const Type *SrcTy = V->getType();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002286 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2287 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002288 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002289 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002290 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002291 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002292 return getTruncateExpr(V, Ty);
2293 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002294}
2295
2296/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2297/// input value to the specified type. If the type must be extended, it is sign
2298/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002299const SCEV *
2300ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002301 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002302 const Type *SrcTy = V->getType();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002303 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2304 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002305 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002306 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002307 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002308 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002309 return getTruncateExpr(V, Ty);
2310 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002311}
2312
Dan Gohman467c4302009-05-13 03:46:30 +00002313/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2314/// input value to the specified type. If the type must be extended, it is zero
2315/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002316const SCEV *
2317ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002318 const Type *SrcTy = V->getType();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002319 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2320 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002321 "Cannot noop or zero extend with non-integer arguments!");
2322 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2323 "getNoopOrZeroExtend cannot truncate!");
2324 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2325 return V; // No conversion
2326 return getZeroExtendExpr(V, Ty);
2327}
2328
2329/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2330/// input value to the specified type. If the type must be extended, it is sign
2331/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002332const SCEV *
2333ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002334 const Type *SrcTy = V->getType();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002335 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2336 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002337 "Cannot noop or sign extend with non-integer arguments!");
2338 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2339 "getNoopOrSignExtend cannot truncate!");
2340 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2341 return V; // No conversion
2342 return getSignExtendExpr(V, Ty);
2343}
2344
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002345/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2346/// the input value to the specified type. If the type must be extended,
2347/// it is extended with unspecified bits. The conversion must not be
2348/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002349const SCEV *
2350ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002351 const Type *SrcTy = V->getType();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002352 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2353 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002354 "Cannot noop or any extend with non-integer arguments!");
2355 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2356 "getNoopOrAnyExtend cannot truncate!");
2357 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2358 return V; // No conversion
2359 return getAnyExtendExpr(V, Ty);
2360}
2361
Dan Gohman467c4302009-05-13 03:46:30 +00002362/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2363/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002364const SCEV *
2365ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002366 const Type *SrcTy = V->getType();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002367 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2368 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002369 "Cannot truncate or noop with non-integer arguments!");
2370 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2371 "getTruncateOrNoop cannot extend!");
2372 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2373 return V; // No conversion
2374 return getTruncateExpr(V, Ty);
2375}
2376
Dan Gohmana334aa72009-06-22 00:31:57 +00002377/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2378/// the types using zero-extension, and then perform a umax operation
2379/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002380const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2381 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002382 const SCEV *PromotedLHS = LHS;
2383 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002384
2385 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2386 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2387 else
2388 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2389
2390 return getUMaxExpr(PromotedLHS, PromotedRHS);
2391}
2392
Dan Gohmanc9759e82009-06-22 15:03:27 +00002393/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2394/// the types using zero-extension, and then perform a umin operation
2395/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002396const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2397 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002398 const SCEV *PromotedLHS = LHS;
2399 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002400
2401 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2402 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2403 else
2404 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2405
2406 return getUMinExpr(PromotedLHS, PromotedRHS);
2407}
2408
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002409/// PushDefUseChildren - Push users of the given Instruction
2410/// onto the given Worklist.
2411static void
2412PushDefUseChildren(Instruction *I,
2413 SmallVectorImpl<Instruction *> &Worklist) {
2414 // Push the def-use children onto the Worklist stack.
2415 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2416 UI != UE; ++UI)
2417 Worklist.push_back(cast<Instruction>(UI));
2418}
2419
2420/// ForgetSymbolicValue - This looks up computed SCEV values for all
2421/// instructions that depend on the given instruction and removes them from
2422/// the Scalars map if they reference SymName. This is used during PHI
2423/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002424void
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002425ScalarEvolution::ForgetSymbolicName(Instruction *I, const SCEV *SymName) {
2426 SmallVector<Instruction *, 16> Worklist;
2427 PushDefUseChildren(I, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002428
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002429 SmallPtrSet<Instruction *, 8> Visited;
2430 Visited.insert(I);
2431 while (!Worklist.empty()) {
2432 Instruction *I = Worklist.pop_back_val();
2433 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002434
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002435 std::map<SCEVCallbackVH, const SCEV*>::iterator It =
2436 Scalars.find(static_cast<Value *>(I));
2437 if (It != Scalars.end()) {
2438 // Short-circuit the def-use traversal if the symbolic name
2439 // ceases to appear in expressions.
2440 if (!It->second->hasOperand(SymName))
2441 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002442
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002443 // SCEVUnknown for a PHI either means that it has an unrecognized
2444 // structure, or it's a PHI that's in the progress of being computed
2445 // by createNodeForPHI. In the former case, additional loop trip
2446 // count information isn't going to change anything. In the later
2447 // case, createNodeForPHI will perform the necessary updates on its
2448 // own when it gets to that point.
Dan Gohman42214892009-08-31 21:15:23 +00002449 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
2450 ValuesAtScopes.erase(It->second);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002451 Scalars.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002452 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002453 }
2454
2455 PushDefUseChildren(I, Worklist);
2456 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002457}
Chris Lattner53e677a2004-04-02 20:23:17 +00002458
2459/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2460/// a loop header, making it a potential recurrence, or it doesn't.
2461///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002462const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002463 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002464 if (const Loop *L = LI->getLoopFor(PN->getParent()))
Chris Lattner53e677a2004-04-02 20:23:17 +00002465 if (L->getHeader() == PN->getParent()) {
2466 // If it lives in the loop header, it has two incoming values, one
2467 // from outside the loop, and one from inside.
2468 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
2469 unsigned BackEdge = IncomingEdge^1;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002470
Chris Lattner53e677a2004-04-02 20:23:17 +00002471 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002472 const SCEV *SymbolicName = getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002473 assert(Scalars.find(PN) == Scalars.end() &&
2474 "PHI node already processed?");
Dan Gohman35738ac2009-05-04 22:30:44 +00002475 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002476
2477 // Using this symbolic name for the PHI, analyze the value coming around
2478 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002479 Value *BEValueV = PN->getIncomingValue(BackEdge);
2480 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002481
2482 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2483 // has a special value for the first iteration of the loop.
2484
2485 // If the value coming around the backedge is an add with the symbolic
2486 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002487 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002488 // If there is a single occurrence of the symbolic value, replace it
2489 // with a recurrence.
2490 unsigned FoundIndex = Add->getNumOperands();
2491 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2492 if (Add->getOperand(i) == SymbolicName)
2493 if (FoundIndex == e) {
2494 FoundIndex = i;
2495 break;
2496 }
2497
2498 if (FoundIndex != Add->getNumOperands()) {
2499 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002500 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002501 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2502 if (i != FoundIndex)
2503 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002504 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002505
2506 // This is not a valid addrec if the step amount is varying each
2507 // loop iteration, but is not itself an addrec in this loop.
2508 if (Accum->isLoopInvariant(L) ||
2509 (isa<SCEVAddRecExpr>(Accum) &&
2510 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohman64a845e2009-06-24 04:48:43 +00002511 const SCEV *StartVal =
2512 getSCEV(PN->getIncomingValue(IncomingEdge));
Dan Gohmaneb490a72009-07-25 01:22:26 +00002513 const SCEVAddRecExpr *PHISCEV =
2514 cast<SCEVAddRecExpr>(getAddRecExpr(StartVal, Accum, L));
2515
2516 // If the increment doesn't overflow, then neither the addrec nor the
2517 // post-increment will overflow.
2518 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV))
2519 if (OBO->getOperand(0) == PN &&
2520 getSCEV(OBO->getOperand(1)) ==
2521 PHISCEV->getStepRecurrence(*this)) {
2522 const SCEVAddRecExpr *PostInc = PHISCEV->getPostIncExpr(*this);
Dan Gohman5078f842009-08-20 17:11:38 +00002523 if (OBO->hasNoUnsignedWrap()) {
Dan Gohmaneb490a72009-07-25 01:22:26 +00002524 const_cast<SCEVAddRecExpr *>(PHISCEV)
Dan Gohman5078f842009-08-20 17:11:38 +00002525 ->setHasNoUnsignedWrap(true);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002526 const_cast<SCEVAddRecExpr *>(PostInc)
Dan Gohman5078f842009-08-20 17:11:38 +00002527 ->setHasNoUnsignedWrap(true);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002528 }
Dan Gohman5078f842009-08-20 17:11:38 +00002529 if (OBO->hasNoSignedWrap()) {
Dan Gohmaneb490a72009-07-25 01:22:26 +00002530 const_cast<SCEVAddRecExpr *>(PHISCEV)
Dan Gohman5078f842009-08-20 17:11:38 +00002531 ->setHasNoSignedWrap(true);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002532 const_cast<SCEVAddRecExpr *>(PostInc)
Dan Gohman5078f842009-08-20 17:11:38 +00002533 ->setHasNoSignedWrap(true);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002534 }
2535 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002536
2537 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002538 // to be symbolic. We now need to go back and purge all of the
2539 // entries for the scalars that use the symbolic expression.
2540 ForgetSymbolicName(PN, SymbolicName);
2541 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002542 return PHISCEV;
2543 }
2544 }
Dan Gohman622ed672009-05-04 22:02:23 +00002545 } else if (const SCEVAddRecExpr *AddRec =
2546 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002547 // Otherwise, this could be a loop like this:
2548 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2549 // In this case, j = {1,+,1} and BEValue is j.
2550 // Because the other in-value of i (0) fits the evolution of BEValue
2551 // i really is an addrec evolution.
2552 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002553 const SCEV *StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
Chris Lattner97156e72006-04-26 18:34:07 +00002554
2555 // If StartVal = j.start - j.stride, we can use StartVal as the
2556 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002557 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman246b2562007-10-22 18:31:58 +00002558 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002559 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002560 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002561
2562 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002563 // to be symbolic. We now need to go back and purge all of the
2564 // entries for the scalars that use the symbolic expression.
2565 ForgetSymbolicName(PN, SymbolicName);
2566 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002567 return PHISCEV;
2568 }
2569 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002570 }
2571
2572 return SymbolicName;
2573 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002574
Dan Gohmana653fc52009-07-14 14:06:25 +00002575 // It's tempting to recognize PHIs with a unique incoming value, however
2576 // this leads passes like indvars to break LCSSA form. Fortunately, such
2577 // PHIs are rare, as instcombine zaps them.
2578
Chris Lattner53e677a2004-04-02 20:23:17 +00002579 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002580 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002581}
2582
Dan Gohman26466c02009-05-08 20:26:55 +00002583/// createNodeForGEP - Expand GEP instructions into add and multiply
2584/// operations. This allows them to be analyzed by regular SCEV code.
2585///
Dan Gohmanca178902009-07-17 20:47:02 +00002586const SCEV *ScalarEvolution::createNodeForGEP(Operator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002587
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002588 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002589 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002590 // Don't attempt to analyze GEPs over unsized objects.
2591 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2592 return getUnknown(GEP);
Dan Gohman0bba49c2009-07-07 17:06:11 +00002593 const SCEV *TotalOffset = getIntegerSCEV(0, IntPtrTy);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002594 gep_type_iterator GTI = gep_type_begin(GEP);
2595 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2596 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002597 I != E; ++I) {
2598 Value *Index = *I;
2599 // Compute the (potentially symbolic) offset in bytes for this index.
2600 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2601 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002602 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002603 TotalOffset = getAddExpr(TotalOffset,
2604 getFieldOffsetExpr(STy, FieldNo));
Dan Gohman26466c02009-05-08 20:26:55 +00002605 } else {
2606 // For an array, add the element offset, explicitly scaled.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002607 const SCEV *LocalOffset = getSCEV(Index);
Dan Gohman26466c02009-05-08 20:26:55 +00002608 if (!isa<PointerType>(LocalOffset->getType()))
2609 // Getelementptr indicies are signed.
Dan Gohman85b05a22009-07-13 21:35:55 +00002610 LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002611 LocalOffset = getMulExpr(LocalOffset, getAllocSizeExpr(*GTI));
Dan Gohman26466c02009-05-08 20:26:55 +00002612 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2613 }
2614 }
2615 return getAddExpr(getSCEV(Base), TotalOffset);
2616}
2617
Nick Lewycky83bb0052007-11-22 07:59:40 +00002618/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2619/// guaranteed to end in (at every loop iteration). It is, at the same time,
2620/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2621/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002622uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002623ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002624 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002625 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002626
Dan Gohman622ed672009-05-04 22:02:23 +00002627 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002628 return std::min(GetMinTrailingZeros(T->getOperand()),
2629 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002630
Dan Gohman622ed672009-05-04 22:02:23 +00002631 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002632 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2633 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2634 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002635 }
2636
Dan Gohman622ed672009-05-04 22:02:23 +00002637 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002638 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2639 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2640 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002641 }
2642
Dan Gohman622ed672009-05-04 22:02:23 +00002643 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002644 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002645 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002646 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002647 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002648 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002649 }
2650
Dan Gohman622ed672009-05-04 22:02:23 +00002651 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002652 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002653 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2654 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002655 for (unsigned i = 1, e = M->getNumOperands();
2656 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002657 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002658 BitWidth);
2659 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002660 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002661
Dan Gohman622ed672009-05-04 22:02:23 +00002662 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002663 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002664 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002665 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002666 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002667 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002668 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002669
Dan Gohman622ed672009-05-04 22:02:23 +00002670 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002671 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002672 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002673 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002674 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002675 return MinOpRes;
2676 }
2677
Dan Gohman622ed672009-05-04 22:02:23 +00002678 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002679 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002680 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00002681 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002682 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00002683 return MinOpRes;
2684 }
2685
Dan Gohman2c364ad2009-06-19 23:29:04 +00002686 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2687 // For a SCEVUnknown, ask ValueTracking.
2688 unsigned BitWidth = getTypeSizeInBits(U->getType());
2689 APInt Mask = APInt::getAllOnesValue(BitWidth);
2690 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2691 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2692 return Zeros.countTrailingOnes();
2693 }
2694
2695 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00002696 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00002697}
Chris Lattner53e677a2004-04-02 20:23:17 +00002698
Dan Gohman85b05a22009-07-13 21:35:55 +00002699/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2700///
2701ConstantRange
2702ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002703
2704 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman85b05a22009-07-13 21:35:55 +00002705 return ConstantRange(C->getValue()->getValue());
Dan Gohman2c364ad2009-06-19 23:29:04 +00002706
Dan Gohman85b05a22009-07-13 21:35:55 +00002707 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2708 ConstantRange X = getUnsignedRange(Add->getOperand(0));
2709 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2710 X = X.add(getUnsignedRange(Add->getOperand(i)));
2711 return X;
2712 }
2713
2714 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2715 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2716 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2717 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
2718 return X;
2719 }
2720
2721 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2722 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2723 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2724 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
2725 return X;
2726 }
2727
2728 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2729 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2730 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2731 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
2732 return X;
2733 }
2734
2735 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2736 ConstantRange X = getUnsignedRange(UDiv->getLHS());
2737 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
2738 return X.udiv(Y);
2739 }
2740
2741 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2742 ConstantRange X = getUnsignedRange(ZExt->getOperand());
2743 return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
2744 }
2745
2746 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2747 ConstantRange X = getUnsignedRange(SExt->getOperand());
2748 return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
2749 }
2750
2751 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2752 ConstantRange X = getUnsignedRange(Trunc->getOperand());
2753 return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
2754 }
2755
2756 ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
2757
2758 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
2759 const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
2760 const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
2761 if (!Trip) return FullSet;
2762
2763 // TODO: non-affine addrec
2764 if (AddRec->isAffine()) {
2765 const Type *Ty = AddRec->getType();
2766 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
2767 if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
2768 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2769
2770 const SCEV *Start = AddRec->getStart();
Dan Gohmana16b5762009-07-21 00:42:47 +00002771 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00002772 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
2773
2774 // Check for overflow.
Dan Gohmana16b5762009-07-21 00:42:47 +00002775 // TODO: This is very conservative.
2776 if (!(Step->isOne() &&
2777 isKnownPredicate(ICmpInst::ICMP_ULT, Start, End)) &&
2778 !(Step->isAllOnesValue() &&
2779 isKnownPredicate(ICmpInst::ICMP_UGT, Start, End)))
Dan Gohman85b05a22009-07-13 21:35:55 +00002780 return FullSet;
2781
2782 ConstantRange StartRange = getUnsignedRange(Start);
2783 ConstantRange EndRange = getUnsignedRange(End);
2784 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
2785 EndRange.getUnsignedMin());
2786 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
2787 EndRange.getUnsignedMax());
2788 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman0d5bae42009-07-20 22:41:51 +00002789 return FullSet;
Dan Gohman85b05a22009-07-13 21:35:55 +00002790 return ConstantRange(Min, Max+1);
2791 }
2792 }
Dan Gohman2c364ad2009-06-19 23:29:04 +00002793 }
2794
2795 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2796 // For a SCEVUnknown, ask ValueTracking.
2797 unsigned BitWidth = getTypeSizeInBits(U->getType());
2798 APInt Mask = APInt::getAllOnesValue(BitWidth);
2799 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2800 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00002801 if (Ones == ~Zeros + 1)
2802 return FullSet;
2803 return ConstantRange(Ones, ~Zeros + 1);
Dan Gohman2c364ad2009-06-19 23:29:04 +00002804 }
2805
Dan Gohman85b05a22009-07-13 21:35:55 +00002806 return FullSet;
Dan Gohman2c364ad2009-06-19 23:29:04 +00002807}
2808
Dan Gohman85b05a22009-07-13 21:35:55 +00002809/// getSignedRange - Determine the signed range for a particular SCEV.
2810///
2811ConstantRange
2812ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002813
Dan Gohman85b05a22009-07-13 21:35:55 +00002814 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2815 return ConstantRange(C->getValue()->getValue());
2816
2817 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2818 ConstantRange X = getSignedRange(Add->getOperand(0));
2819 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2820 X = X.add(getSignedRange(Add->getOperand(i)));
2821 return X;
Dan Gohman2c364ad2009-06-19 23:29:04 +00002822 }
2823
Dan Gohman85b05a22009-07-13 21:35:55 +00002824 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2825 ConstantRange X = getSignedRange(Mul->getOperand(0));
2826 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2827 X = X.multiply(getSignedRange(Mul->getOperand(i)));
2828 return X;
Dan Gohman2c364ad2009-06-19 23:29:04 +00002829 }
2830
Dan Gohman85b05a22009-07-13 21:35:55 +00002831 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2832 ConstantRange X = getSignedRange(SMax->getOperand(0));
2833 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2834 X = X.smax(getSignedRange(SMax->getOperand(i)));
2835 return X;
2836 }
Dan Gohman62849c02009-06-24 01:05:09 +00002837
Dan Gohman85b05a22009-07-13 21:35:55 +00002838 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2839 ConstantRange X = getSignedRange(UMax->getOperand(0));
2840 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2841 X = X.umax(getSignedRange(UMax->getOperand(i)));
2842 return X;
2843 }
Dan Gohman62849c02009-06-24 01:05:09 +00002844
Dan Gohman85b05a22009-07-13 21:35:55 +00002845 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2846 ConstantRange X = getSignedRange(UDiv->getLHS());
2847 ConstantRange Y = getSignedRange(UDiv->getRHS());
2848 return X.udiv(Y);
2849 }
Dan Gohman62849c02009-06-24 01:05:09 +00002850
Dan Gohman85b05a22009-07-13 21:35:55 +00002851 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2852 ConstantRange X = getSignedRange(ZExt->getOperand());
2853 return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
2854 }
2855
2856 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2857 ConstantRange X = getSignedRange(SExt->getOperand());
2858 return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
2859 }
2860
2861 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2862 ConstantRange X = getSignedRange(Trunc->getOperand());
2863 return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
2864 }
2865
2866 ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
2867
2868 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
2869 const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
2870 const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
2871 if (!Trip) return FullSet;
2872
2873 // TODO: non-affine addrec
2874 if (AddRec->isAffine()) {
2875 const Type *Ty = AddRec->getType();
2876 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
2877 if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
2878 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2879
2880 const SCEV *Start = AddRec->getStart();
2881 const SCEV *Step = AddRec->getStepRecurrence(*this);
2882 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
2883
2884 // Check for overflow.
Dan Gohmana16b5762009-07-21 00:42:47 +00002885 // TODO: This is very conservative.
2886 if (!(Step->isOne() &&
Dan Gohman85b05a22009-07-13 21:35:55 +00002887 isKnownPredicate(ICmpInst::ICMP_SLT, Start, End)) &&
Dan Gohmana16b5762009-07-21 00:42:47 +00002888 !(Step->isAllOnesValue() &&
Dan Gohman85b05a22009-07-13 21:35:55 +00002889 isKnownPredicate(ICmpInst::ICMP_SGT, Start, End)))
2890 return FullSet;
2891
2892 ConstantRange StartRange = getSignedRange(Start);
2893 ConstantRange EndRange = getSignedRange(End);
2894 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
2895 EndRange.getSignedMin());
2896 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
2897 EndRange.getSignedMax());
2898 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmanc268e7c2009-07-21 00:37:45 +00002899 return FullSet;
Dan Gohman85b05a22009-07-13 21:35:55 +00002900 return ConstantRange(Min, Max+1);
Dan Gohman62849c02009-06-24 01:05:09 +00002901 }
Dan Gohman62849c02009-06-24 01:05:09 +00002902 }
Dan Gohman62849c02009-06-24 01:05:09 +00002903 }
2904
Dan Gohman2c364ad2009-06-19 23:29:04 +00002905 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2906 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman85b05a22009-07-13 21:35:55 +00002907 unsigned BitWidth = getTypeSizeInBits(U->getType());
2908 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
2909 if (NS == 1)
2910 return FullSet;
2911 return
2912 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
2913 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1);
Dan Gohman2c364ad2009-06-19 23:29:04 +00002914 }
2915
Dan Gohman85b05a22009-07-13 21:35:55 +00002916 return FullSet;
Dan Gohman2c364ad2009-06-19 23:29:04 +00002917}
2918
Chris Lattner53e677a2004-04-02 20:23:17 +00002919/// createSCEV - We know that there is no SCEV for the specified value.
2920/// Analyze the expression.
2921///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002922const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002923 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002924 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00002925
Dan Gohman6c459a22008-06-22 19:56:46 +00002926 unsigned Opcode = Instruction::UserOp1;
2927 if (Instruction *I = dyn_cast<Instruction>(V))
2928 Opcode = I->getOpcode();
2929 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2930 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00002931 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
2932 return getConstant(CI);
2933 else if (isa<ConstantPointerNull>(V))
2934 return getIntegerSCEV(0, V->getType());
2935 else if (isa<UndefValue>(V))
2936 return getIntegerSCEV(0, V->getType());
Dan Gohman26812322009-08-25 17:49:57 +00002937 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
2938 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00002939 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002940 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00002941
Dan Gohmanca178902009-07-17 20:47:02 +00002942 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00002943 switch (Opcode) {
2944 case Instruction::Add:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002945 return getAddExpr(getSCEV(U->getOperand(0)),
2946 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00002947 case Instruction::Mul:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002948 return getMulExpr(getSCEV(U->getOperand(0)),
2949 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00002950 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002951 return getUDivExpr(getSCEV(U->getOperand(0)),
2952 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00002953 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002954 return getMinusSCEV(getSCEV(U->getOperand(0)),
2955 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00002956 case Instruction::And:
2957 // For an expression like x&255 that merely masks off the high bits,
2958 // use zext(trunc(x)) as the SCEV expression.
2959 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00002960 if (CI->isNullValue())
2961 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00002962 if (CI->isAllOnesValue())
2963 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00002964 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00002965
2966 // Instcombine's ShrinkDemandedConstant may strip bits out of
2967 // constants, obscuring what would otherwise be a low-bits mask.
2968 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
2969 // knew about to reconstruct a low-bits mask value.
2970 unsigned LZ = A.countLeadingZeros();
2971 unsigned BitWidth = A.getBitWidth();
2972 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2973 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2974 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
2975
2976 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
2977
Dan Gohmanfc3641b2009-06-17 23:54:37 +00002978 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00002979 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002980 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00002981 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002982 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00002983 }
2984 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00002985
Dan Gohman6c459a22008-06-22 19:56:46 +00002986 case Instruction::Or:
2987 // If the RHS of the Or is a constant, we may have something like:
2988 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
2989 // optimizations will transparently handle this case.
2990 //
2991 // In order for this transformation to be safe, the LHS must be of the
2992 // form X*(2^n) and the Or constant must be less than 2^n.
2993 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002994 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00002995 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00002996 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00002997 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
2998 // Build a plain add SCEV.
2999 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3000 // If the LHS of the add was an addrec and it has no-wrap flags,
3001 // transfer the no-wrap flags, since an or won't introduce a wrap.
3002 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3003 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3004 if (OldAR->hasNoUnsignedWrap())
3005 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3006 if (OldAR->hasNoSignedWrap())
3007 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3008 }
3009 return S;
3010 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003011 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003012 break;
3013 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003014 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003015 // If the RHS of the xor is a signbit, then this is just an add.
3016 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003017 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003018 return getAddExpr(getSCEV(U->getOperand(0)),
3019 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003020
3021 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003022 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003023 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003024
3025 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3026 // This is a variant of the check for xor with -1, and it handles
3027 // the case where instcombine has trimmed non-demanded bits out
3028 // of an xor with -1.
3029 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3030 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3031 if (BO->getOpcode() == Instruction::And &&
3032 LCI->getValue() == CI->getValue())
3033 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003034 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003035 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003036 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003037 const Type *Z0Ty = Z0->getType();
3038 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3039
3040 // If C is a low-bits mask, the zero extend is zerving to
3041 // mask off the high bits. Complement the operand and
3042 // re-apply the zext.
3043 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3044 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3045
3046 // If C is a single bit, it may be in the sign-bit position
3047 // before the zero-extend. In this case, represent the xor
3048 // using an add, which is equivalent, and re-apply the zext.
3049 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3050 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3051 Trunc.isSignBit())
3052 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3053 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003054 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003055 }
3056 break;
3057
3058 case Instruction::Shl:
3059 // Turn shift left of a constant amount into a multiply.
3060 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3061 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
Owen Andersoneed707b2009-07-24 23:12:02 +00003062 Constant *X = ConstantInt::get(getContext(),
Dan Gohman6c459a22008-06-22 19:56:46 +00003063 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003064 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003065 }
3066 break;
3067
Nick Lewycky01eaf802008-07-07 06:15:49 +00003068 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003069 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003070 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3071 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
Owen Andersoneed707b2009-07-24 23:12:02 +00003072 Constant *X = ConstantInt::get(getContext(),
Nick Lewycky01eaf802008-07-07 06:15:49 +00003073 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003074 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003075 }
3076 break;
3077
Dan Gohman4ee29af2009-04-21 02:26:00 +00003078 case Instruction::AShr:
3079 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3080 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3081 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
3082 if (L->getOpcode() == Instruction::Shl &&
3083 L->getOperand(1) == U->getOperand(1)) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003084 unsigned BitWidth = getTypeSizeInBits(U->getType());
3085 uint64_t Amt = BitWidth - CI->getZExtValue();
3086 if (Amt == BitWidth)
3087 return getSCEV(L->getOperand(0)); // shift by zero --> noop
3088 if (Amt > BitWidth)
3089 return getIntegerSCEV(0, U->getType()); // value is undefined
Dan Gohman4ee29af2009-04-21 02:26:00 +00003090 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003091 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003092 IntegerType::get(getContext(), Amt)),
Dan Gohman4ee29af2009-04-21 02:26:00 +00003093 U->getType());
3094 }
3095 break;
3096
Dan Gohman6c459a22008-06-22 19:56:46 +00003097 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003098 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003099
3100 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003101 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003102
3103 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003104 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003105
3106 case Instruction::BitCast:
3107 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003108 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003109 return getSCEV(U->getOperand(0));
3110 break;
3111
Dan Gohmanf2411742009-07-20 17:43:30 +00003112 // It's tempting to handle inttoptr and ptrtoint, however this can
3113 // lead to pointer expressions which cannot be expanded to GEPs
3114 // (because they may overflow). For now, the only pointer-typed
3115 // expressions we handle are GEPs and address literals.
Dan Gohman2d1be872009-04-16 03:18:22 +00003116
Dan Gohman26466c02009-05-08 20:26:55 +00003117 case Instruction::GetElementPtr:
Dan Gohmanfb791602009-05-08 20:58:38 +00003118 return createNodeForGEP(U);
Dan Gohman2d1be872009-04-16 03:18:22 +00003119
Dan Gohman6c459a22008-06-22 19:56:46 +00003120 case Instruction::PHI:
3121 return createNodeForPHI(cast<PHINode>(U));
3122
3123 case Instruction::Select:
3124 // This could be a smax or umax that was lowered earlier.
3125 // Try to recover it.
3126 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3127 Value *LHS = ICI->getOperand(0);
3128 Value *RHS = ICI->getOperand(1);
3129 switch (ICI->getPredicate()) {
3130 case ICmpInst::ICMP_SLT:
3131 case ICmpInst::ICMP_SLE:
3132 std::swap(LHS, RHS);
3133 // fall through
3134 case ICmpInst::ICMP_SGT:
3135 case ICmpInst::ICMP_SGE:
3136 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003137 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman6c459a22008-06-22 19:56:46 +00003138 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
Dan Gohmanf9a9a992009-06-22 03:18:45 +00003139 return getSMinExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman6c459a22008-06-22 19:56:46 +00003140 break;
3141 case ICmpInst::ICMP_ULT:
3142 case ICmpInst::ICMP_ULE:
3143 std::swap(LHS, RHS);
3144 // fall through
3145 case ICmpInst::ICMP_UGT:
3146 case ICmpInst::ICMP_UGE:
3147 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003148 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman6c459a22008-06-22 19:56:46 +00003149 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
Dan Gohmanf9a9a992009-06-22 03:18:45 +00003150 return getUMinExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman6c459a22008-06-22 19:56:46 +00003151 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003152 case ICmpInst::ICMP_NE:
3153 // n != 0 ? n : 1 -> umax(n, 1)
3154 if (LHS == U->getOperand(1) &&
3155 isa<ConstantInt>(U->getOperand(2)) &&
3156 cast<ConstantInt>(U->getOperand(2))->isOne() &&
3157 isa<ConstantInt>(RHS) &&
3158 cast<ConstantInt>(RHS)->isZero())
3159 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2)));
3160 break;
3161 case ICmpInst::ICMP_EQ:
3162 // n == 0 ? 1 : n -> umax(n, 1)
3163 if (LHS == U->getOperand(2) &&
3164 isa<ConstantInt>(U->getOperand(1)) &&
3165 cast<ConstantInt>(U->getOperand(1))->isOne() &&
3166 isa<ConstantInt>(RHS) &&
3167 cast<ConstantInt>(RHS)->isZero())
3168 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1)));
3169 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003170 default:
3171 break;
3172 }
3173 }
3174
3175 default: // We cannot analyze this expression.
3176 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003177 }
3178
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003179 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003180}
3181
3182
3183
3184//===----------------------------------------------------------------------===//
3185// Iteration Count Computation Code
3186//
3187
Dan Gohman46bdfb02009-02-24 18:55:53 +00003188/// getBackedgeTakenCount - If the specified loop has a predictable
3189/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3190/// object. The backedge-taken count is the number of times the loop header
3191/// will be branched to from within the loop. This is one less than the
3192/// trip count of the loop, since it doesn't count the first iteration,
3193/// when the header is branched to from outside the loop.
3194///
3195/// Note that it is not valid to call this method on a loop without a
3196/// loop-invariant backedge-taken count (see
3197/// hasLoopInvariantBackedgeTakenCount).
3198///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003199const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003200 return getBackedgeTakenInfo(L).Exact;
3201}
3202
3203/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3204/// return the least SCEV value that is known never to be less than the
3205/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003206const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003207 return getBackedgeTakenInfo(L).Max;
3208}
3209
Dan Gohman59ae6b92009-07-08 19:23:34 +00003210/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3211/// onto the given Worklist.
3212static void
3213PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3214 BasicBlock *Header = L->getHeader();
3215
3216 // Push all Loop-header PHIs onto the Worklist stack.
3217 for (BasicBlock::iterator I = Header->begin();
3218 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3219 Worklist.push_back(PN);
3220}
3221
Dan Gohmana1af7572009-04-30 20:47:05 +00003222const ScalarEvolution::BackedgeTakenInfo &
3223ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003224 // Initially insert a CouldNotCompute for this loop. If the insertion
3225 // succeeds, procede to actually compute a backedge-taken count and
3226 // update the value. The temporary CouldNotCompute value tells SCEV
3227 // code elsewhere that it shouldn't attempt to request a new
3228 // backedge-taken count, which could result in infinite recursion.
Dan Gohmana1af7572009-04-30 20:47:05 +00003229 std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003230 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3231 if (Pair.second) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003232 BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
Dan Gohman1c343752009-06-27 21:21:31 +00003233 if (ItCount.Exact != getCouldNotCompute()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003234 assert(ItCount.Exact->isLoopInvariant(L) &&
3235 ItCount.Max->isLoopInvariant(L) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00003236 "Computed trip count isn't loop invariant for loop!");
3237 ++NumTripCountsComputed;
Dan Gohman01ecca22009-04-27 20:16:15 +00003238
Dan Gohman01ecca22009-04-27 20:16:15 +00003239 // Update the value in the map.
3240 Pair.first->second = ItCount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003241 } else {
Dan Gohman1c343752009-06-27 21:21:31 +00003242 if (ItCount.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003243 // Update the value in the map.
3244 Pair.first->second = ItCount;
3245 if (isa<PHINode>(L->getHeader()->begin()))
3246 // Only count loops that have phi nodes as not being computable.
3247 ++NumTripCountsNotComputed;
Chris Lattner53e677a2004-04-02 20:23:17 +00003248 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003249
3250 // Now that we know more about the trip count for this loop, forget any
3251 // existing SCEV values for PHI nodes in this loop since they are only
Dan Gohman59ae6b92009-07-08 19:23:34 +00003252 // conservative estimates made without the benefit of trip count
3253 // information. This is similar to the code in
3254 // forgetLoopBackedgeTakenCount, except that it handles SCEVUnknown PHI
3255 // nodes specially.
3256 if (ItCount.hasAnyInfo()) {
3257 SmallVector<Instruction *, 16> Worklist;
3258 PushLoopPHIs(L, Worklist);
3259
3260 SmallPtrSet<Instruction *, 8> Visited;
3261 while (!Worklist.empty()) {
3262 Instruction *I = Worklist.pop_back_val();
3263 if (!Visited.insert(I)) continue;
3264
3265 std::map<SCEVCallbackVH, const SCEV*>::iterator It =
3266 Scalars.find(static_cast<Value *>(I));
3267 if (It != Scalars.end()) {
3268 // SCEVUnknown for a PHI either means that it has an unrecognized
3269 // structure, or it's a PHI that's in the progress of being computed
Dan Gohmanba701882009-07-13 22:04:06 +00003270 // by createNodeForPHI. In the former case, additional loop trip
3271 // count information isn't going to change anything. In the later
3272 // case, createNodeForPHI will perform the necessary updates on its
3273 // own when it gets to that point.
Dan Gohman42214892009-08-31 21:15:23 +00003274 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3275 ValuesAtScopes.erase(It->second);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003276 Scalars.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00003277 }
Dan Gohman59ae6b92009-07-08 19:23:34 +00003278 if (PHINode *PN = dyn_cast<PHINode>(I))
3279 ConstantEvolutionLoopExitValue.erase(PN);
3280 }
3281
3282 PushDefUseChildren(I, Worklist);
3283 }
3284 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003285 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003286 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003287}
3288
Dan Gohman46bdfb02009-02-24 18:55:53 +00003289/// forgetLoopBackedgeTakenCount - This method should be called by the
Dan Gohman60f8a632009-02-17 20:49:49 +00003290/// client when it has changed a loop in a way that may effect
Dan Gohman46bdfb02009-02-24 18:55:53 +00003291/// ScalarEvolution's ability to compute a trip count, or if the loop
3292/// is deleted.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003293void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00003294 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003295
Dan Gohman35738ac2009-05-04 22:30:44 +00003296 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003297 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003298
Dan Gohman59ae6b92009-07-08 19:23:34 +00003299 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003300 while (!Worklist.empty()) {
3301 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003302 if (!Visited.insert(I)) continue;
3303
3304 std::map<SCEVCallbackVH, const SCEV*>::iterator It =
3305 Scalars.find(static_cast<Value *>(I));
3306 if (It != Scalars.end()) {
Dan Gohman42214892009-08-31 21:15:23 +00003307 ValuesAtScopes.erase(It->second);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003308 Scalars.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003309 if (PHINode *PN = dyn_cast<PHINode>(I))
3310 ConstantEvolutionLoopExitValue.erase(PN);
3311 }
3312
3313 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003314 }
Dan Gohman60f8a632009-02-17 20:49:49 +00003315}
3316
Dan Gohman46bdfb02009-02-24 18:55:53 +00003317/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3318/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003319ScalarEvolution::BackedgeTakenInfo
3320ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003321 SmallVector<BasicBlock*, 8> ExitingBlocks;
3322 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003323
Dan Gohmana334aa72009-06-22 00:31:57 +00003324 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003325 const SCEV *BECount = getCouldNotCompute();
3326 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003327 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003328 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3329 BackedgeTakenInfo NewBTI =
3330 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003331
Dan Gohman1c343752009-06-27 21:21:31 +00003332 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003333 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003334 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003335 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003336 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003337 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003338 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003339 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003340 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003341 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003342 }
Dan Gohman1c343752009-06-27 21:21:31 +00003343 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003344 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003345 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003346 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003347 }
3348
3349 return BackedgeTakenInfo(BECount, MaxBECount);
3350}
3351
3352/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3353/// of the specified loop will execute if it exits via the specified block.
3354ScalarEvolution::BackedgeTakenInfo
3355ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3356 BasicBlock *ExitingBlock) {
3357
3358 // Okay, we've chosen an exiting block. See what condition causes us to
3359 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003360 //
3361 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003362 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003363 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003364 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003365
Chris Lattner8b0e3602007-01-07 02:24:26 +00003366 // At this point, we know we have a conditional branch that determines whether
3367 // the loop is exited. However, we don't know if the branch is executed each
3368 // time through the loop. If not, then the execution count of the branch will
3369 // not be equal to the trip count of the loop.
3370 //
3371 // Currently we check for this by checking to see if the Exit branch goes to
3372 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003373 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003374 // loop header. This is common for un-rotated loops.
3375 //
3376 // If both of those tests fail, walk up the unique predecessor chain to the
3377 // header, stopping if there is an edge that doesn't exit the loop. If the
3378 // header is reached, the execution count of the branch will be equal to the
3379 // trip count of the loop.
3380 //
3381 // More extensive analysis could be done to handle more cases here.
3382 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003383 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003384 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003385 ExitBr->getParent() != L->getHeader()) {
3386 // The simple checks failed, try climbing the unique predecessor chain
3387 // up to the header.
3388 bool Ok = false;
3389 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3390 BasicBlock *Pred = BB->getUniquePredecessor();
3391 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003392 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003393 TerminatorInst *PredTerm = Pred->getTerminator();
3394 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3395 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3396 if (PredSucc == BB)
3397 continue;
3398 // If the predecessor has a successor that isn't BB and isn't
3399 // outside the loop, assume the worst.
3400 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003401 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003402 }
3403 if (Pred == L->getHeader()) {
3404 Ok = true;
3405 break;
3406 }
3407 BB = Pred;
3408 }
3409 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003410 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003411 }
3412
3413 // Procede to the next level to examine the exit condition expression.
3414 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3415 ExitBr->getSuccessor(0),
3416 ExitBr->getSuccessor(1));
3417}
3418
3419/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3420/// backedge of the specified loop will execute if its exit condition
3421/// were a conditional branch of ExitCond, TBB, and FBB.
3422ScalarEvolution::BackedgeTakenInfo
3423ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3424 Value *ExitCond,
3425 BasicBlock *TBB,
3426 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003427 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003428 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3429 if (BO->getOpcode() == Instruction::And) {
3430 // Recurse on the operands of the and.
3431 BackedgeTakenInfo BTI0 =
3432 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3433 BackedgeTakenInfo BTI1 =
3434 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003435 const SCEV *BECount = getCouldNotCompute();
3436 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003437 if (L->contains(TBB)) {
3438 // Both conditions must be true for the loop to continue executing.
3439 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003440 if (BTI0.Exact == getCouldNotCompute() ||
3441 BTI1.Exact == getCouldNotCompute())
3442 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003443 else
3444 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003445 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003446 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003447 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003448 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003449 else
3450 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003451 } else {
3452 // Both conditions must be true for the loop to exit.
3453 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman1c343752009-06-27 21:21:31 +00003454 if (BTI0.Exact != getCouldNotCompute() &&
3455 BTI1.Exact != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003456 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003457 if (BTI0.Max != getCouldNotCompute() &&
3458 BTI1.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003459 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3460 }
3461
3462 return BackedgeTakenInfo(BECount, MaxBECount);
3463 }
3464 if (BO->getOpcode() == Instruction::Or) {
3465 // Recurse on the operands of the or.
3466 BackedgeTakenInfo BTI0 =
3467 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3468 BackedgeTakenInfo BTI1 =
3469 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003470 const SCEV *BECount = getCouldNotCompute();
3471 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003472 if (L->contains(FBB)) {
3473 // Both conditions must be false for the loop to continue executing.
3474 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003475 if (BTI0.Exact == getCouldNotCompute() ||
3476 BTI1.Exact == getCouldNotCompute())
3477 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003478 else
3479 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003480 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003481 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003482 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003483 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003484 else
3485 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003486 } else {
3487 // Both conditions must be false for the loop to exit.
3488 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman1c343752009-06-27 21:21:31 +00003489 if (BTI0.Exact != getCouldNotCompute() &&
3490 BTI1.Exact != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003491 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003492 if (BTI0.Max != getCouldNotCompute() &&
3493 BTI1.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003494 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3495 }
3496
3497 return BackedgeTakenInfo(BECount, MaxBECount);
3498 }
3499 }
3500
3501 // With an icmp, it may be feasible to compute an exact backedge-taken count.
3502 // Procede to the next level to examine the icmp.
3503 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3504 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003505
Eli Friedman361e54d2009-05-09 12:32:42 +00003506 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00003507 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3508}
3509
3510/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3511/// backedge of the specified loop will execute if its exit condition
3512/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3513ScalarEvolution::BackedgeTakenInfo
3514ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3515 ICmpInst *ExitCond,
3516 BasicBlock *TBB,
3517 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003518
Reid Spencere4d87aa2006-12-23 06:05:41 +00003519 // If the condition was exit on true, convert the condition to exit on false
3520 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00003521 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00003522 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003523 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00003524 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003525
3526 // Handle common loops like: for (X = "string"; *X; ++X)
3527 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3528 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003529 const SCEV *ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00003530 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmana334aa72009-06-22 00:31:57 +00003531 if (!isa<SCEVCouldNotCompute>(ItCnt)) {
3532 unsigned BitWidth = getTypeSizeInBits(ItCnt->getType());
3533 return BackedgeTakenInfo(ItCnt,
3534 isa<SCEVConstant>(ItCnt) ? ItCnt :
3535 getConstant(APInt::getMaxValue(BitWidth)-1));
3536 }
Chris Lattner673e02b2004-10-12 01:49:27 +00003537 }
3538
Dan Gohman0bba49c2009-07-07 17:06:11 +00003539 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3540 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00003541
3542 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00003543 LHS = getSCEVAtScope(LHS, L);
3544 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00003545
Dan Gohman64a845e2009-06-24 04:48:43 +00003546 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00003547 // loop the predicate will return true for these inputs.
Dan Gohman70ff4cf2008-09-16 18:52:57 +00003548 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3549 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00003550 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003551 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00003552 }
3553
Chris Lattner53e677a2004-04-02 20:23:17 +00003554 // If we have a comparison of a chrec against a constant, try to use value
3555 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00003556 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3557 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00003558 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00003559 // Form the constant range.
3560 ConstantRange CompRange(
3561 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003562
Dan Gohman0bba49c2009-07-07 17:06:11 +00003563 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00003564 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00003565 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003566
Chris Lattner53e677a2004-04-02 20:23:17 +00003567 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00003568 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00003569 // Convert to: while (X-Y != 0)
Dan Gohman0bba49c2009-07-07 17:06:11 +00003570 const SCEV *TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003571 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
Chris Lattner53e677a2004-04-02 20:23:17 +00003572 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003573 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00003574 case ICmpInst::ICMP_EQ: { // while (X == Y)
3575 // Convert to: while (X-Y == 0)
Dan Gohman0bba49c2009-07-07 17:06:11 +00003576 const SCEV *TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003577 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
Chris Lattner53e677a2004-04-02 20:23:17 +00003578 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003579 }
3580 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003581 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3582 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00003583 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003584 }
3585 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003586 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3587 getNotSCEV(RHS), L, true);
3588 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00003589 break;
3590 }
3591 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003592 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3593 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00003594 break;
3595 }
3596 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003597 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3598 getNotSCEV(RHS), L, false);
3599 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00003600 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003601 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003602 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00003603#if 0
Dan Gohmanb7ef7292009-04-21 00:47:46 +00003604 errs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00003605 if (ExitCond->getOperand(0)->getType()->isUnsigned())
Dan Gohmanb7ef7292009-04-21 00:47:46 +00003606 errs() << "[unsigned] ";
3607 errs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00003608 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00003609 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00003610#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00003611 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003612 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00003613 return
Dan Gohmana334aa72009-06-22 00:31:57 +00003614 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00003615}
3616
Chris Lattner673e02b2004-10-12 01:49:27 +00003617static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00003618EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3619 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003620 const SCEV *InVal = SE.getConstant(C);
3621 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00003622 assert(isa<SCEVConstant>(Val) &&
3623 "Evaluation of SCEV at constant didn't fold correctly?");
3624 return cast<SCEVConstant>(Val)->getValue();
3625}
3626
3627/// GetAddressedElementFromGlobal - Given a global variable with an initializer
3628/// and a GEP expression (missing the pointer index) indexing into it, return
3629/// the addressed element of the initializer or null if the index expression is
3630/// invalid.
3631static Constant *
Owen Andersone922c022009-07-22 00:24:57 +00003632GetAddressedElementFromGlobal(LLVMContext &Context, GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00003633 const std::vector<ConstantInt*> &Indices) {
3634 Constant *Init = GV->getInitializer();
3635 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00003636 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00003637 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
3638 assert(Idx < CS->getNumOperands() && "Bad struct index!");
3639 Init = cast<Constant>(CS->getOperand(Idx));
3640 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
3641 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
3642 Init = cast<Constant>(CA->getOperand(Idx));
3643 } else if (isa<ConstantAggregateZero>(Init)) {
3644 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
3645 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00003646 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00003647 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
3648 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00003649 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00003650 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00003651 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00003652 }
3653 return 0;
3654 } else {
3655 return 0; // Unknown initializer type
3656 }
3657 }
3658 return Init;
3659}
3660
Dan Gohman46bdfb02009-02-24 18:55:53 +00003661/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
3662/// 'icmp op load X, cst', try to see if we can compute the backedge
3663/// execution count.
Dan Gohman64a845e2009-06-24 04:48:43 +00003664const SCEV *
3665ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
3666 LoadInst *LI,
3667 Constant *RHS,
3668 const Loop *L,
3669 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00003670 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003671
3672 // Check to see if the loaded pointer is a getelementptr of a global.
3673 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00003674 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003675
3676 // Make sure that it is really a constant global we are gepping, with an
3677 // initializer, and make sure the first IDX is really 0.
3678 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00003679 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00003680 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
3681 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00003682 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003683
3684 // Okay, we allow one non-constant index into the GEP instruction.
3685 Value *VarIdx = 0;
3686 std::vector<ConstantInt*> Indexes;
3687 unsigned VarIdxNum = 0;
3688 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
3689 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
3690 Indexes.push_back(CI);
3691 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00003692 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00003693 VarIdx = GEP->getOperand(i);
3694 VarIdxNum = i-2;
3695 Indexes.push_back(0);
3696 }
3697
3698 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
3699 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003700 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00003701 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00003702
3703 // We can only recognize very limited forms of loop index expressions, in
3704 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00003705 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Chris Lattner673e02b2004-10-12 01:49:27 +00003706 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
3707 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
3708 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00003709 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003710
3711 unsigned MaxSteps = MaxBruteForceIterations;
3712 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00003713 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00003714 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003715 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00003716
3717 // Form the GEP offset.
3718 Indexes[VarIdxNum] = Val;
3719
Owen Andersone922c022009-07-22 00:24:57 +00003720 Constant *Result = GetAddressedElementFromGlobal(getContext(), GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00003721 if (Result == 0) break; // Cannot compute!
3722
3723 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00003724 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003725 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00003726 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00003727#if 0
Dan Gohmanb7ef7292009-04-21 00:47:46 +00003728 errs() << "\n***\n*** Computed loop count " << *ItCst
3729 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
3730 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00003731#endif
3732 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003733 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00003734 }
3735 }
Dan Gohman1c343752009-06-27 21:21:31 +00003736 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003737}
3738
3739
Chris Lattner3221ad02004-04-17 22:58:41 +00003740/// CanConstantFold - Return true if we can constant fold an instruction of the
3741/// specified type, assuming that all operands were constants.
3742static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00003743 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00003744 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
3745 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003746
Chris Lattner3221ad02004-04-17 22:58:41 +00003747 if (const CallInst *CI = dyn_cast<CallInst>(I))
3748 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00003749 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00003750 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00003751}
3752
Chris Lattner3221ad02004-04-17 22:58:41 +00003753/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
3754/// in the loop that V is derived from. We allow arbitrary operations along the
3755/// way, but the operands of an operation must either be constants or a value
3756/// derived from a constant PHI. If this expression does not fit with these
3757/// constraints, return null.
3758static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
3759 // If this is not an instruction, or if this is an instruction outside of the
3760 // loop, it can't be derived from a loop PHI.
3761 Instruction *I = dyn_cast<Instruction>(V);
3762 if (I == 0 || !L->contains(I->getParent())) return 0;
3763
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00003764 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00003765 if (L->getHeader() == I->getParent())
3766 return PN;
3767 else
3768 // We don't currently keep track of the control flow needed to evaluate
3769 // PHIs, so we cannot handle PHIs inside of loops.
3770 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00003771 }
Chris Lattner3221ad02004-04-17 22:58:41 +00003772
3773 // If we won't be able to constant fold this expression even if the operands
3774 // are constants, return early.
3775 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003776
Chris Lattner3221ad02004-04-17 22:58:41 +00003777 // Otherwise, we can evaluate this instruction if all of its operands are
3778 // constant or derived from a PHI node themselves.
3779 PHINode *PHI = 0;
3780 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
3781 if (!(isa<Constant>(I->getOperand(Op)) ||
3782 isa<GlobalValue>(I->getOperand(Op)))) {
3783 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
3784 if (P == 0) return 0; // Not evolving from PHI
3785 if (PHI == 0)
3786 PHI = P;
3787 else if (PHI != P)
3788 return 0; // Evolving from multiple different PHIs.
3789 }
3790
3791 // This is a expression evolving from a constant PHI!
3792 return PHI;
3793}
3794
3795/// EvaluateExpression - Given an expression that passes the
3796/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
3797/// in the loop has the value PHIVal. If we can't fold this expression for some
3798/// reason, return null.
3799static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
3800 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00003801 if (Constant *C = dyn_cast<Constant>(V)) return C;
Dan Gohman2d1be872009-04-16 03:18:22 +00003802 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
Chris Lattner3221ad02004-04-17 22:58:41 +00003803 Instruction *I = cast<Instruction>(V);
Owen Andersone922c022009-07-22 00:24:57 +00003804 LLVMContext &Context = I->getParent()->getContext();
Chris Lattner3221ad02004-04-17 22:58:41 +00003805
3806 std::vector<Constant*> Operands;
3807 Operands.resize(I->getNumOperands());
3808
3809 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3810 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
3811 if (Operands[i] == 0) return 0;
3812 }
3813
Chris Lattnerf286f6f2007-12-10 22:53:04 +00003814 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3815 return ConstantFoldCompareInstOperands(CI->getPredicate(),
Owen Anderson50895512009-07-06 18:42:36 +00003816 &Operands[0], Operands.size(),
3817 Context);
Chris Lattnerf286f6f2007-12-10 22:53:04 +00003818 else
3819 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Owen Anderson50895512009-07-06 18:42:36 +00003820 &Operands[0], Operands.size(),
3821 Context);
Chris Lattner3221ad02004-04-17 22:58:41 +00003822}
3823
3824/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
3825/// in the header of its containing loop, we know the loop executes a
3826/// constant number of times, and the PHI node is just a recurrence
3827/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00003828Constant *
3829ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
3830 const APInt& BEs,
3831 const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00003832 std::map<PHINode*, Constant*>::iterator I =
3833 ConstantEvolutionLoopExitValue.find(PN);
3834 if (I != ConstantEvolutionLoopExitValue.end())
3835 return I->second;
3836
Dan Gohman46bdfb02009-02-24 18:55:53 +00003837 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
Chris Lattner3221ad02004-04-17 22:58:41 +00003838 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
3839
3840 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
3841
3842 // Since the loop is canonicalized, the PHI node must have two entries. One
3843 // entry must be a constant (coming in from outside of the loop), and the
3844 // second must be derived from the same PHI.
3845 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3846 Constant *StartCST =
3847 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
3848 if (StartCST == 0)
3849 return RetVal = 0; // Must be a constant.
3850
3851 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3852 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
3853 if (PN2 != PN)
3854 return RetVal = 0; // Not derived from same PHI.
3855
3856 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003857 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00003858 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00003859
Dan Gohman46bdfb02009-02-24 18:55:53 +00003860 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00003861 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00003862 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
3863 if (IterationNum == NumIterations)
3864 return RetVal = PHIVal; // Got exit value!
3865
3866 // Compute the value of the PHI node for the next iteration.
3867 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
3868 if (NextPHI == PHIVal)
3869 return RetVal = NextPHI; // Stopped evolving!
3870 if (NextPHI == 0)
3871 return 0; // Couldn't evaluate!
3872 PHIVal = NextPHI;
3873 }
3874}
3875
Dan Gohman07ad19b2009-07-27 16:09:48 +00003876/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00003877/// constant number of times (the condition evolves only from constants),
3878/// try to evaluate a few iterations of the loop until we get the exit
3879/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00003880/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00003881const SCEV *
3882ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
3883 Value *Cond,
3884 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00003885 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00003886 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00003887
3888 // Since the loop is canonicalized, the PHI node must have two entries. One
3889 // entry must be a constant (coming in from outside of the loop), and the
3890 // second must be derived from the same PHI.
3891 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3892 Constant *StartCST =
3893 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00003894 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00003895
3896 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3897 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
Dan Gohman1c343752009-06-27 21:21:31 +00003898 if (PN2 != PN) return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00003899
3900 // Okay, we find a PHI node that defines the trip count of this loop. Execute
3901 // the loop symbolically to determine when the condition gets a value of
3902 // "ExitWhen".
3903 unsigned IterationNum = 0;
3904 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
3905 for (Constant *PHIVal = StartCST;
3906 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003907 ConstantInt *CondVal =
3908 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
Chris Lattner3221ad02004-04-17 22:58:41 +00003909
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003910 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00003911 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003912
Reid Spencere8019bb2007-03-01 07:25:48 +00003913 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00003914 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00003915 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00003916 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003917
Chris Lattner3221ad02004-04-17 22:58:41 +00003918 // Compute the value of the PHI node for the next iteration.
3919 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
3920 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00003921 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00003922 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00003923 }
3924
3925 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00003926 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003927}
3928
Dan Gohmane7125f42009-09-03 15:00:26 +00003929/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00003930/// at the specified scope in the program. The L value specifies a loop
3931/// nest to evaluate the expression at, where null is the top-level or a
3932/// specified loop is immediately inside of the loop.
3933///
3934/// This method can be used to compute the exit value for a variable defined
3935/// in a loop by querying what the value will hold in the parent loop.
3936///
Dan Gohmand594e6f2009-05-24 23:25:42 +00003937/// In the case that a relevant loop exit value cannot be computed, the
3938/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003939const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00003940 // Check to see if we've folded this expression at this loop before.
3941 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
3942 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
3943 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
3944 if (!Pair.second)
3945 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00003946
Dan Gohman42214892009-08-31 21:15:23 +00003947 // Otherwise compute it.
3948 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00003949 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00003950 return C;
3951}
3952
3953const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00003954 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003955
Nick Lewycky3e630762008-02-20 06:48:22 +00003956 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00003957 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00003958 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00003959 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003960 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00003961 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
3962 if (PHINode *PN = dyn_cast<PHINode>(I))
3963 if (PN->getParent() == LI->getHeader()) {
3964 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00003965 // to see if the loop that contains it has a known backedge-taken
3966 // count. If so, we may be able to force computation of the exit
3967 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003968 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00003969 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00003970 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00003971 // Okay, we know how many times the containing loop executes. If
3972 // this is a constant evolving PHI node, get the final value at
3973 // the specified iteration number.
3974 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00003975 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00003976 LI);
Dan Gohman09987962009-06-29 21:31:18 +00003977 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00003978 }
3979 }
3980
Reid Spencer09906f32006-12-04 21:33:23 +00003981 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00003982 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00003983 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00003984 // result. This is particularly useful for computing loop exit values.
3985 if (CanConstantFold(I)) {
3986 std::vector<Constant*> Operands;
3987 Operands.reserve(I->getNumOperands());
3988 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3989 Value *Op = I->getOperand(i);
3990 if (Constant *C = dyn_cast<Constant>(Op)) {
3991 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00003992 } else {
Chris Lattner42b5e082007-11-23 08:46:22 +00003993 // If any of the operands is non-constant and if they are
Dan Gohman2d1be872009-04-16 03:18:22 +00003994 // non-integer and non-pointer, don't even try to analyze them
3995 // with scev techniques.
Dan Gohman4acd12a2009-04-30 16:40:30 +00003996 if (!isSCEVable(Op->getType()))
Chris Lattner42b5e082007-11-23 08:46:22 +00003997 return V;
Dan Gohman2d1be872009-04-16 03:18:22 +00003998
Dan Gohman85b05a22009-07-13 21:35:55 +00003999 const SCEV* OpV = getSCEVAtScope(Op, L);
Dan Gohman622ed672009-05-04 22:02:23 +00004000 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
Dan Gohman4acd12a2009-04-30 16:40:30 +00004001 Constant *C = SC->getValue();
4002 if (C->getType() != Op->getType())
4003 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4004 Op->getType(),
4005 false),
4006 C, Op->getType());
4007 Operands.push_back(C);
Dan Gohman622ed672009-05-04 22:02:23 +00004008 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
Dan Gohman4acd12a2009-04-30 16:40:30 +00004009 if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
4010 if (C->getType() != Op->getType())
4011 C =
4012 ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4013 Op->getType(),
4014 false),
4015 C, Op->getType());
4016 Operands.push_back(C);
4017 } else
Chris Lattner3221ad02004-04-17 22:58:41 +00004018 return V;
4019 } else {
4020 return V;
4021 }
4022 }
4023 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004024
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004025 Constant *C;
4026 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4027 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Owen Anderson50895512009-07-06 18:42:36 +00004028 &Operands[0], Operands.size(),
Owen Andersone922c022009-07-22 00:24:57 +00004029 getContext());
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004030 else
4031 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004032 &Operands[0], Operands.size(),
Owen Andersone922c022009-07-22 00:24:57 +00004033 getContext());
Dan Gohman09987962009-06-29 21:31:18 +00004034 return getSCEV(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004035 }
4036 }
4037
4038 // This is some other type of SCEVUnknown, just return it.
4039 return V;
4040 }
4041
Dan Gohman622ed672009-05-04 22:02:23 +00004042 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004043 // Avoid performing the look-up in the common case where the specified
4044 // expression has no loop-variant portions.
4045 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004046 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004047 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004048 // Okay, at least one of these operands is loop variant but might be
4049 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004050 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4051 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004052 NewOps.push_back(OpAtScope);
4053
4054 for (++i; i != e; ++i) {
4055 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004056 NewOps.push_back(OpAtScope);
4057 }
4058 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004059 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004060 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004061 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004062 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004063 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004064 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004065 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004066 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004067 }
4068 }
4069 // If we got here, all operands are loop invariant.
4070 return Comm;
4071 }
4072
Dan Gohman622ed672009-05-04 22:02:23 +00004073 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004074 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4075 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004076 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4077 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004078 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004079 }
4080
4081 // If this is a loop recurrence for a loop that does not contain L, then we
4082 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004083 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004084 if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
4085 // To evaluate this recurrence, we need to know how many times the AddRec
4086 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004087 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004088 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004089
Eli Friedmanb42a6262008-08-04 23:49:06 +00004090 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004091 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004092 }
Dan Gohmand594e6f2009-05-24 23:25:42 +00004093 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004094 }
4095
Dan Gohman622ed672009-05-04 22:02:23 +00004096 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004097 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004098 if (Op == Cast->getOperand())
4099 return Cast; // must be loop invariant
4100 return getZeroExtendExpr(Op, Cast->getType());
4101 }
4102
Dan Gohman622ed672009-05-04 22:02:23 +00004103 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004104 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004105 if (Op == Cast->getOperand())
4106 return Cast; // must be loop invariant
4107 return getSignExtendExpr(Op, Cast->getType());
4108 }
4109
Dan Gohman622ed672009-05-04 22:02:23 +00004110 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004111 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004112 if (Op == Cast->getOperand())
4113 return Cast; // must be loop invariant
4114 return getTruncateExpr(Op, Cast->getType());
4115 }
4116
Dan Gohmanc40f17b2009-08-18 16:46:41 +00004117 if (isa<SCEVTargetDataConstant>(V))
4118 return V;
4119
Torok Edwinc23197a2009-07-14 16:55:14 +00004120 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004121 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004122}
4123
Dan Gohman66a7e852009-05-08 20:38:54 +00004124/// getSCEVAtScope - This is a convenience function which does
4125/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004126const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004127 return getSCEVAtScope(getSCEV(V), L);
4128}
4129
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004130/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4131/// following equation:
4132///
4133/// A * X = B (mod N)
4134///
4135/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4136/// A and B isn't important.
4137///
4138/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004139static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004140 ScalarEvolution &SE) {
4141 uint32_t BW = A.getBitWidth();
4142 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4143 assert(A != 0 && "A must be non-zero.");
4144
4145 // 1. D = gcd(A, N)
4146 //
4147 // The gcd of A and N may have only one prime factor: 2. The number of
4148 // trailing zeros in A is its multiplicity
4149 uint32_t Mult2 = A.countTrailingZeros();
4150 // D = 2^Mult2
4151
4152 // 2. Check if B is divisible by D.
4153 //
4154 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4155 // is not less than multiplicity of this prime factor for D.
4156 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004157 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004158
4159 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4160 // modulo (N / D).
4161 //
4162 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4163 // bit width during computations.
4164 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4165 APInt Mod(BW + 1, 0);
4166 Mod.set(BW - Mult2); // Mod = N / D
4167 APInt I = AD.multiplicativeInverse(Mod);
4168
4169 // 4. Compute the minimum unsigned root of the equation:
4170 // I * (B / D) mod (N / D)
4171 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4172
4173 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4174 // bits.
4175 return SE.getConstant(Result.trunc(BW));
4176}
Chris Lattner53e677a2004-04-02 20:23:17 +00004177
4178/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4179/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4180/// might be the same) or two SCEVCouldNotCompute objects.
4181///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004182static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004183SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004184 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004185 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4186 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4187 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004188
Chris Lattner53e677a2004-04-02 20:23:17 +00004189 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004190 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004191 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004192 return std::make_pair(CNC, CNC);
4193 }
4194
Reid Spencere8019bb2007-03-01 07:25:48 +00004195 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004196 const APInt &L = LC->getValue()->getValue();
4197 const APInt &M = MC->getValue()->getValue();
4198 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004199 APInt Two(BitWidth, 2);
4200 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004201
Dan Gohman64a845e2009-06-24 04:48:43 +00004202 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004203 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004204 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004205 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4206 // The B coefficient is M-N/2
4207 APInt B(M);
4208 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004209
Reid Spencere8019bb2007-03-01 07:25:48 +00004210 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004211 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004212
Reid Spencere8019bb2007-03-01 07:25:48 +00004213 // Compute the B^2-4ac term.
4214 APInt SqrtTerm(B);
4215 SqrtTerm *= B;
4216 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004217
Reid Spencere8019bb2007-03-01 07:25:48 +00004218 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4219 // integer value or else APInt::sqrt() will assert.
4220 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004221
Dan Gohman64a845e2009-06-24 04:48:43 +00004222 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004223 // The divisions must be performed as signed divisions.
4224 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004225 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004226 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004227 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004228 return std::make_pair(CNC, CNC);
4229 }
4230
Owen Andersone922c022009-07-22 00:24:57 +00004231 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004232
4233 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004234 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004235 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004236 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004237
Dan Gohman64a845e2009-06-24 04:48:43 +00004238 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004239 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004240 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004241}
4242
4243/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004244/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004245const SCEV *ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004246 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004247 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004248 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004249 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004250 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004251 }
4252
Dan Gohman35738ac2009-05-04 22:30:44 +00004253 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004254 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004255 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004256
4257 if (AddRec->isAffine()) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004258 // If this is an affine expression, the execution count of this branch is
4259 // the minimum unsigned root of the following equation:
Chris Lattner53e677a2004-04-02 20:23:17 +00004260 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004261 // Start + Step*N = 0 (mod 2^BW)
Chris Lattner53e677a2004-04-02 20:23:17 +00004262 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004263 // equivalent to:
4264 //
4265 // Step*N = -Start (mod 2^BW)
4266 //
4267 // where BW is the common bit width of Start and Step.
4268
Chris Lattner53e677a2004-04-02 20:23:17 +00004269 // Get the initial value for the loop.
Dan Gohman64a845e2009-06-24 04:48:43 +00004270 const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4271 L->getParentLoop());
4272 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4273 L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00004274
Dan Gohman622ed672009-05-04 22:02:23 +00004275 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004276 // For now we handle only constant steps.
Chris Lattner53e677a2004-04-02 20:23:17 +00004277
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004278 // First, handle unitary steps.
4279 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004280 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004281 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4282 return Start; // N = Start (as unsigned)
4283
4284 // Then, try to solve the above equation provided that Start is constant.
Dan Gohman622ed672009-05-04 22:02:23 +00004285 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004286 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004287 -StartC->getValue()->getValue(),
4288 *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004289 }
Chris Lattner42a75512007-01-15 02:27:26 +00004290 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004291 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4292 // the quadratic equation to solve it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004293 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004294 *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004295 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4296 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00004297 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004298#if 0
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004299 errs() << "HFTZ: " << *V << " - sol#1: " << *R1
4300 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004301#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004302 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004303 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00004304 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00004305 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004306 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004307 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004308
Chris Lattner53e677a2004-04-02 20:23:17 +00004309 // We can only use this value if the chrec ends up with an exact zero
4310 // value at this index. When solving for "X*X != 5", for example, we
4311 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004312 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004313 if (Val->isZero())
4314 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004315 }
4316 }
4317 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004318
Dan Gohman1c343752009-06-27 21:21:31 +00004319 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004320}
4321
4322/// HowFarToNonZero - Return the number of times a backedge checking the
4323/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004324/// CouldNotCompute
Dan Gohman0bba49c2009-07-07 17:06:11 +00004325const SCEV *ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004326 // Loops that look like: while (X == 0) are very strange indeed. We don't
4327 // handle them yet except for the trivial case. This could be expanded in the
4328 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004329
Chris Lattner53e677a2004-04-02 20:23:17 +00004330 // If the value is a constant, check to see if it is known to be non-zero
4331 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004332 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004333 if (!C->getValue()->isNullValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004334 return getIntegerSCEV(0, C->getType());
Dan Gohman1c343752009-06-27 21:21:31 +00004335 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004336 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004337
Chris Lattner53e677a2004-04-02 20:23:17 +00004338 // We could implement others, but I really doubt anyone writes loops like
4339 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004340 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004341}
4342
Dan Gohman859b4822009-05-18 15:36:09 +00004343/// getLoopPredecessor - If the given loop's header has exactly one unique
4344/// predecessor outside the loop, return it. Otherwise return null.
4345///
4346BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
4347 BasicBlock *Header = L->getHeader();
4348 BasicBlock *Pred = 0;
4349 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
4350 PI != E; ++PI)
4351 if (!L->contains(*PI)) {
4352 if (Pred && Pred != *PI) return 0; // Multiple predecessors.
4353 Pred = *PI;
4354 }
4355 return Pred;
4356}
4357
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004358/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4359/// (which may not be an immediate predecessor) which has exactly one
4360/// successor from which BB is reachable, or null if no such block is
4361/// found.
4362///
4363BasicBlock *
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004364ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004365 // If the block has a unique predecessor, then there is no path from the
4366 // predecessor to the block that does not go through the direct edge
4367 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004368 if (BasicBlock *Pred = BB->getSinglePredecessor())
4369 return Pred;
4370
4371 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00004372 // If the header has a unique predecessor outside the loop, it must be
4373 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004374 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman859b4822009-05-18 15:36:09 +00004375 return getLoopPredecessor(L);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004376
4377 return 0;
4378}
4379
Dan Gohman763bad12009-06-20 00:35:32 +00004380/// HasSameValue - SCEV structural equivalence is usually sufficient for
4381/// testing whether two expressions are equal, however for the purposes of
4382/// looking for a condition guarding a loop, it can be useful to be a little
4383/// more general, since a front-end may have replicated the controlling
4384/// expression.
4385///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004386static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00004387 // Quick check to see if they are the same SCEV.
4388 if (A == B) return true;
4389
4390 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4391 // two different instructions with the same value. Check for this case.
4392 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4393 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4394 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4395 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00004396 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00004397 return true;
4398
4399 // Otherwise assume they may have a different value.
4400 return false;
4401}
4402
Dan Gohman85b05a22009-07-13 21:35:55 +00004403bool ScalarEvolution::isKnownNegative(const SCEV *S) {
4404 return getSignedRange(S).getSignedMax().isNegative();
4405}
4406
4407bool ScalarEvolution::isKnownPositive(const SCEV *S) {
4408 return getSignedRange(S).getSignedMin().isStrictlyPositive();
4409}
4410
4411bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
4412 return !getSignedRange(S).getSignedMin().isNegative();
4413}
4414
4415bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
4416 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
4417}
4418
4419bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
4420 return isKnownNegative(S) || isKnownPositive(S);
4421}
4422
4423bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
4424 const SCEV *LHS, const SCEV *RHS) {
4425
4426 if (HasSameValue(LHS, RHS))
4427 return ICmpInst::isTrueWhenEqual(Pred);
4428
4429 switch (Pred) {
4430 default:
Dan Gohman850f7912009-07-16 17:34:36 +00004431 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00004432 break;
4433 case ICmpInst::ICMP_SGT:
4434 Pred = ICmpInst::ICMP_SLT;
4435 std::swap(LHS, RHS);
4436 case ICmpInst::ICMP_SLT: {
4437 ConstantRange LHSRange = getSignedRange(LHS);
4438 ConstantRange RHSRange = getSignedRange(RHS);
4439 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
4440 return true;
4441 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
4442 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00004443 break;
4444 }
4445 case ICmpInst::ICMP_SGE:
4446 Pred = ICmpInst::ICMP_SLE;
4447 std::swap(LHS, RHS);
4448 case ICmpInst::ICMP_SLE: {
4449 ConstantRange LHSRange = getSignedRange(LHS);
4450 ConstantRange RHSRange = getSignedRange(RHS);
4451 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
4452 return true;
4453 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
4454 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00004455 break;
4456 }
4457 case ICmpInst::ICMP_UGT:
4458 Pred = ICmpInst::ICMP_ULT;
4459 std::swap(LHS, RHS);
4460 case ICmpInst::ICMP_ULT: {
4461 ConstantRange LHSRange = getUnsignedRange(LHS);
4462 ConstantRange RHSRange = getUnsignedRange(RHS);
4463 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
4464 return true;
4465 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
4466 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00004467 break;
4468 }
4469 case ICmpInst::ICMP_UGE:
4470 Pred = ICmpInst::ICMP_ULE;
4471 std::swap(LHS, RHS);
4472 case ICmpInst::ICMP_ULE: {
4473 ConstantRange LHSRange = getUnsignedRange(LHS);
4474 ConstantRange RHSRange = getUnsignedRange(RHS);
4475 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
4476 return true;
4477 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
4478 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00004479 break;
4480 }
4481 case ICmpInst::ICMP_NE: {
4482 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
4483 return true;
4484 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
4485 return true;
4486
4487 const SCEV *Diff = getMinusSCEV(LHS, RHS);
4488 if (isKnownNonZero(Diff))
4489 return true;
4490 break;
4491 }
4492 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00004493 // The check at the top of the function catches the case where
4494 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00004495 break;
4496 }
4497 return false;
4498}
4499
4500/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
4501/// protected by a conditional between LHS and RHS. This is used to
4502/// to eliminate casts.
4503bool
4504ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
4505 ICmpInst::Predicate Pred,
4506 const SCEV *LHS, const SCEV *RHS) {
4507 // Interpret a null as meaning no loop, where there is obviously no guard
4508 // (interprocedural conditions notwithstanding).
4509 if (!L) return true;
4510
4511 BasicBlock *Latch = L->getLoopLatch();
4512 if (!Latch)
4513 return false;
4514
4515 BranchInst *LoopContinuePredicate =
4516 dyn_cast<BranchInst>(Latch->getTerminator());
4517 if (!LoopContinuePredicate ||
4518 LoopContinuePredicate->isUnconditional())
4519 return false;
4520
Dan Gohman0f4b2852009-07-21 23:03:19 +00004521 return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
4522 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00004523}
4524
4525/// isLoopGuardedByCond - Test whether entry to the loop is protected
4526/// by a conditional between LHS and RHS. This is used to help avoid max
4527/// expressions in loop trip counts, and to eliminate casts.
4528bool
4529ScalarEvolution::isLoopGuardedByCond(const Loop *L,
4530 ICmpInst::Predicate Pred,
4531 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00004532 // Interpret a null as meaning no loop, where there is obviously no guard
4533 // (interprocedural conditions notwithstanding).
4534 if (!L) return false;
4535
Dan Gohman859b4822009-05-18 15:36:09 +00004536 BasicBlock *Predecessor = getLoopPredecessor(L);
4537 BasicBlock *PredecessorDest = L->getHeader();
Nick Lewycky59cff122008-07-12 07:41:32 +00004538
Dan Gohman859b4822009-05-18 15:36:09 +00004539 // Starting at the loop predecessor, climb up the predecessor chain, as long
4540 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004541 // leading to the original header.
Dan Gohman859b4822009-05-18 15:36:09 +00004542 for (; Predecessor;
4543 PredecessorDest = Predecessor,
4544 Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
Dan Gohman38372182008-08-12 20:17:31 +00004545
4546 BranchInst *LoopEntryPredicate =
Dan Gohman859b4822009-05-18 15:36:09 +00004547 dyn_cast<BranchInst>(Predecessor->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00004548 if (!LoopEntryPredicate ||
4549 LoopEntryPredicate->isUnconditional())
4550 continue;
4551
Dan Gohman0f4b2852009-07-21 23:03:19 +00004552 if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
4553 LoopEntryPredicate->getSuccessor(0) != PredecessorDest))
Dan Gohman38372182008-08-12 20:17:31 +00004554 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00004555 }
4556
Dan Gohman38372182008-08-12 20:17:31 +00004557 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00004558}
4559
Dan Gohman0f4b2852009-07-21 23:03:19 +00004560/// isImpliedCond - Test whether the condition described by Pred, LHS,
4561/// and RHS is true whenever the given Cond value evaluates to true.
4562bool ScalarEvolution::isImpliedCond(Value *CondValue,
4563 ICmpInst::Predicate Pred,
4564 const SCEV *LHS, const SCEV *RHS,
4565 bool Inverse) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004566 // Recursivly handle And and Or conditions.
4567 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
4568 if (BO->getOpcode() == Instruction::And) {
4569 if (!Inverse)
Dan Gohman0f4b2852009-07-21 23:03:19 +00004570 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4571 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004572 } else if (BO->getOpcode() == Instruction::Or) {
4573 if (Inverse)
Dan Gohman0f4b2852009-07-21 23:03:19 +00004574 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4575 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004576 }
4577 }
4578
4579 ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
4580 if (!ICI) return false;
4581
Dan Gohman85b05a22009-07-13 21:35:55 +00004582 // Bail if the ICmp's operands' types are wider than the needed type
4583 // before attempting to call getSCEV on them. This avoids infinite
4584 // recursion, since the analysis of widening casts can require loop
4585 // exit condition information for overflow checking, which would
4586 // lead back here.
4587 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00004588 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00004589 return false;
4590
Dan Gohman0f4b2852009-07-21 23:03:19 +00004591 // Now that we found a conditional branch that dominates the loop, check to
4592 // see if it is the comparison we are looking for.
4593 ICmpInst::Predicate FoundPred;
4594 if (Inverse)
4595 FoundPred = ICI->getInversePredicate();
4596 else
4597 FoundPred = ICI->getPredicate();
4598
4599 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
4600 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00004601
4602 // Balance the types. The case where FoundLHS' type is wider than
4603 // LHS' type is checked for above.
4604 if (getTypeSizeInBits(LHS->getType()) >
4605 getTypeSizeInBits(FoundLHS->getType())) {
4606 if (CmpInst::isSigned(Pred)) {
4607 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
4608 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
4609 } else {
4610 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
4611 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
4612 }
4613 }
4614
Dan Gohman0f4b2852009-07-21 23:03:19 +00004615 // Canonicalize the query to match the way instcombine will have
4616 // canonicalized the comparison.
4617 // First, put a constant operand on the right.
4618 if (isa<SCEVConstant>(LHS)) {
4619 std::swap(LHS, RHS);
4620 Pred = ICmpInst::getSwappedPredicate(Pred);
4621 }
4622 // Then, canonicalize comparisons with boundary cases.
4623 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4624 const APInt &RA = RC->getValue()->getValue();
4625 switch (Pred) {
4626 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4627 case ICmpInst::ICMP_EQ:
4628 case ICmpInst::ICMP_NE:
4629 break;
4630 case ICmpInst::ICMP_UGE:
4631 if ((RA - 1).isMinValue()) {
4632 Pred = ICmpInst::ICMP_NE;
4633 RHS = getConstant(RA - 1);
4634 break;
4635 }
4636 if (RA.isMaxValue()) {
4637 Pred = ICmpInst::ICMP_EQ;
4638 break;
4639 }
4640 if (RA.isMinValue()) return true;
4641 break;
4642 case ICmpInst::ICMP_ULE:
4643 if ((RA + 1).isMaxValue()) {
4644 Pred = ICmpInst::ICMP_NE;
4645 RHS = getConstant(RA + 1);
4646 break;
4647 }
4648 if (RA.isMinValue()) {
4649 Pred = ICmpInst::ICMP_EQ;
4650 break;
4651 }
4652 if (RA.isMaxValue()) return true;
4653 break;
4654 case ICmpInst::ICMP_SGE:
4655 if ((RA - 1).isMinSignedValue()) {
4656 Pred = ICmpInst::ICMP_NE;
4657 RHS = getConstant(RA - 1);
4658 break;
4659 }
4660 if (RA.isMaxSignedValue()) {
4661 Pred = ICmpInst::ICMP_EQ;
4662 break;
4663 }
4664 if (RA.isMinSignedValue()) return true;
4665 break;
4666 case ICmpInst::ICMP_SLE:
4667 if ((RA + 1).isMaxSignedValue()) {
4668 Pred = ICmpInst::ICMP_NE;
4669 RHS = getConstant(RA + 1);
4670 break;
4671 }
4672 if (RA.isMinSignedValue()) {
4673 Pred = ICmpInst::ICMP_EQ;
4674 break;
4675 }
4676 if (RA.isMaxSignedValue()) return true;
4677 break;
4678 case ICmpInst::ICMP_UGT:
4679 if (RA.isMinValue()) {
4680 Pred = ICmpInst::ICMP_NE;
4681 break;
4682 }
4683 if ((RA + 1).isMaxValue()) {
4684 Pred = ICmpInst::ICMP_EQ;
4685 RHS = getConstant(RA + 1);
4686 break;
4687 }
4688 if (RA.isMaxValue()) return false;
4689 break;
4690 case ICmpInst::ICMP_ULT:
4691 if (RA.isMaxValue()) {
4692 Pred = ICmpInst::ICMP_NE;
4693 break;
4694 }
4695 if ((RA - 1).isMinValue()) {
4696 Pred = ICmpInst::ICMP_EQ;
4697 RHS = getConstant(RA - 1);
4698 break;
4699 }
4700 if (RA.isMinValue()) return false;
4701 break;
4702 case ICmpInst::ICMP_SGT:
4703 if (RA.isMinSignedValue()) {
4704 Pred = ICmpInst::ICMP_NE;
4705 break;
4706 }
4707 if ((RA + 1).isMaxSignedValue()) {
4708 Pred = ICmpInst::ICMP_EQ;
4709 RHS = getConstant(RA + 1);
4710 break;
4711 }
4712 if (RA.isMaxSignedValue()) return false;
4713 break;
4714 case ICmpInst::ICMP_SLT:
4715 if (RA.isMaxSignedValue()) {
4716 Pred = ICmpInst::ICMP_NE;
4717 break;
4718 }
4719 if ((RA - 1).isMinSignedValue()) {
4720 Pred = ICmpInst::ICMP_EQ;
4721 RHS = getConstant(RA - 1);
4722 break;
4723 }
4724 if (RA.isMinSignedValue()) return false;
4725 break;
4726 }
4727 }
4728
4729 // Check to see if we can make the LHS or RHS match.
4730 if (LHS == FoundRHS || RHS == FoundLHS) {
4731 if (isa<SCEVConstant>(RHS)) {
4732 std::swap(FoundLHS, FoundRHS);
4733 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
4734 } else {
4735 std::swap(LHS, RHS);
4736 Pred = ICmpInst::getSwappedPredicate(Pred);
4737 }
4738 }
4739
4740 // Check whether the found predicate is the same as the desired predicate.
4741 if (FoundPred == Pred)
4742 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
4743
4744 // Check whether swapping the found predicate makes it the same as the
4745 // desired predicate.
4746 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
4747 if (isa<SCEVConstant>(RHS))
4748 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
4749 else
4750 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
4751 RHS, LHS, FoundLHS, FoundRHS);
4752 }
4753
4754 // Check whether the actual condition is beyond sufficient.
4755 if (FoundPred == ICmpInst::ICMP_EQ)
4756 if (ICmpInst::isTrueWhenEqual(Pred))
4757 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
4758 return true;
4759 if (Pred == ICmpInst::ICMP_NE)
4760 if (!ICmpInst::isTrueWhenEqual(FoundPred))
4761 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
4762 return true;
4763
4764 // Otherwise assume the worst.
4765 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00004766}
4767
Dan Gohman0f4b2852009-07-21 23:03:19 +00004768/// isImpliedCondOperands - Test whether the condition described by Pred,
4769/// LHS, and RHS is true whenever the condition desribed by Pred, FoundLHS,
4770/// and FoundRHS is true.
4771bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
4772 const SCEV *LHS, const SCEV *RHS,
4773 const SCEV *FoundLHS,
4774 const SCEV *FoundRHS) {
4775 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
4776 FoundLHS, FoundRHS) ||
4777 // ~x < ~y --> x > y
4778 isImpliedCondOperandsHelper(Pred, LHS, RHS,
4779 getNotSCEV(FoundRHS),
4780 getNotSCEV(FoundLHS));
4781}
4782
4783/// isImpliedCondOperandsHelper - Test whether the condition described by
4784/// Pred, LHS, and RHS is true whenever the condition desribed by Pred,
4785/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00004786bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00004787ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
4788 const SCEV *LHS, const SCEV *RHS,
4789 const SCEV *FoundLHS,
4790 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00004791 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00004792 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4793 case ICmpInst::ICMP_EQ:
4794 case ICmpInst::ICMP_NE:
4795 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
4796 return true;
4797 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00004798 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00004799 case ICmpInst::ICMP_SLE:
Dan Gohman85b05a22009-07-13 21:35:55 +00004800 if (isKnownPredicate(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
4801 isKnownPredicate(ICmpInst::ICMP_SGE, RHS, FoundRHS))
4802 return true;
4803 break;
4804 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00004805 case ICmpInst::ICMP_SGE:
Dan Gohman85b05a22009-07-13 21:35:55 +00004806 if (isKnownPredicate(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
4807 isKnownPredicate(ICmpInst::ICMP_SLE, RHS, FoundRHS))
4808 return true;
4809 break;
4810 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00004811 case ICmpInst::ICMP_ULE:
Dan Gohman85b05a22009-07-13 21:35:55 +00004812 if (isKnownPredicate(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
4813 isKnownPredicate(ICmpInst::ICMP_UGE, RHS, FoundRHS))
4814 return true;
4815 break;
4816 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00004817 case ICmpInst::ICMP_UGE:
Dan Gohman85b05a22009-07-13 21:35:55 +00004818 if (isKnownPredicate(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
4819 isKnownPredicate(ICmpInst::ICMP_ULE, RHS, FoundRHS))
4820 return true;
4821 break;
4822 }
4823
4824 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004825}
4826
Dan Gohman51f53b72009-06-21 23:46:38 +00004827/// getBECount - Subtract the end and start values and divide by the step,
4828/// rounding up, to get the number of times the backedge is executed. Return
4829/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004830const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00004831 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00004832 const SCEV *Step,
4833 bool NoWrap) {
Dan Gohman51f53b72009-06-21 23:46:38 +00004834 const Type *Ty = Start->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00004835 const SCEV *NegOne = getIntegerSCEV(-1, Ty);
4836 const SCEV *Diff = getMinusSCEV(End, Start);
4837 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00004838
4839 // Add an adjustment to the difference between End and Start so that
4840 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004841 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00004842
Dan Gohman1f96e672009-09-17 18:05:20 +00004843 if (!NoWrap) {
4844 // Check Add for unsigned overflow.
4845 // TODO: More sophisticated things could be done here.
4846 const Type *WideTy = IntegerType::get(getContext(),
4847 getTypeSizeInBits(Ty) + 1);
4848 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
4849 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
4850 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
4851 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
4852 return getCouldNotCompute();
4853 }
Dan Gohman51f53b72009-06-21 23:46:38 +00004854
4855 return getUDivExpr(Add, Step);
4856}
4857
Chris Lattnerdb25de42005-08-15 23:33:51 +00004858/// HowManyLessThans - Return the number of times a backedge containing the
4859/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004860/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00004861ScalarEvolution::BackedgeTakenInfo
4862ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
4863 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00004864 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman1c343752009-06-27 21:21:31 +00004865 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00004866
Dan Gohman35738ac2009-05-04 22:30:44 +00004867 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00004868 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004869 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00004870
Dan Gohman1f96e672009-09-17 18:05:20 +00004871 // Check to see if we have a flag which makes analysis easy.
4872 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
4873 AddRec->hasNoUnsignedWrap();
4874
Chris Lattnerdb25de42005-08-15 23:33:51 +00004875 if (AddRec->isAffine()) {
Nick Lewycky789558d2009-01-13 09:18:58 +00004876 // FORNOW: We only support unit strides.
Dan Gohmana1af7572009-04-30 20:47:05 +00004877 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00004878 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00004879
4880 // TODO: handle non-constant strides.
4881 const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
4882 if (!CStep || CStep->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00004883 return getCouldNotCompute();
Dan Gohman70a1fe72009-05-18 15:22:39 +00004884 if (CStep->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00004885 // With unit stride, the iteration never steps past the limit value.
4886 } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
Dan Gohman1f96e672009-09-17 18:05:20 +00004887 if (NoWrap) {
4888 // We know the iteration won't step past the maximum value for its type.
4889 ;
4890 } else if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
Dan Gohmana1af7572009-04-30 20:47:05 +00004891 // Test whether a positive iteration iteration can step past the limit
4892 // value and past the maximum value for its type in a single step.
4893 if (isSigned) {
4894 APInt Max = APInt::getSignedMaxValue(BitWidth);
4895 if ((Max - CStep->getValue()->getValue())
4896 .slt(CLimit->getValue()->getValue()))
Dan Gohman1c343752009-06-27 21:21:31 +00004897 return getCouldNotCompute();
Dan Gohmana1af7572009-04-30 20:47:05 +00004898 } else {
4899 APInt Max = APInt::getMaxValue(BitWidth);
4900 if ((Max - CStep->getValue()->getValue())
4901 .ult(CLimit->getValue()->getValue()))
Dan Gohman1c343752009-06-27 21:21:31 +00004902 return getCouldNotCompute();
Dan Gohmana1af7572009-04-30 20:47:05 +00004903 }
4904 } else
4905 // TODO: handle non-constant limit values below.
Dan Gohman1c343752009-06-27 21:21:31 +00004906 return getCouldNotCompute();
Dan Gohmana1af7572009-04-30 20:47:05 +00004907 } else
4908 // TODO: handle negative strides below.
Dan Gohman1c343752009-06-27 21:21:31 +00004909 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00004910
Dan Gohmana1af7572009-04-30 20:47:05 +00004911 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
4912 // m. So, we count the number of iterations in which {n,+,s} < m is true.
4913 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00004914 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00004915
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00004916 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00004917 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00004918
Dan Gohmana1af7572009-04-30 20:47:05 +00004919 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00004920 const SCEV *MinStart = getConstant(isSigned ?
4921 getSignedRange(Start).getSignedMin() :
4922 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00004923
Dan Gohmana1af7572009-04-30 20:47:05 +00004924 // If we know that the condition is true in order to enter the loop,
4925 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00004926 // only know that it will execute (max(m,n)-n)/s times. In both cases,
4927 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004928 const SCEV *End = RHS;
Dan Gohmana1af7572009-04-30 20:47:05 +00004929 if (!isLoopGuardedByCond(L,
Dan Gohman85b05a22009-07-13 21:35:55 +00004930 isSigned ? ICmpInst::ICMP_SLT :
4931 ICmpInst::ICMP_ULT,
Dan Gohmana1af7572009-04-30 20:47:05 +00004932 getMinusSCEV(Start, Step), RHS))
4933 End = isSigned ? getSMaxExpr(RHS, Start)
4934 : getUMaxExpr(RHS, Start);
4935
4936 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00004937 const SCEV *MaxEnd = getConstant(isSigned ?
4938 getSignedRange(End).getSignedMax() :
4939 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00004940
4941 // Finally, we subtract these two values and divide, rounding up, to get
4942 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00004943 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00004944
4945 // The maximum backedge count is similar, except using the minimum start
4946 // value and the maximum end value.
Dan Gohman1f96e672009-09-17 18:05:20 +00004947 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00004948
4949 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00004950 }
4951
Dan Gohman1c343752009-06-27 21:21:31 +00004952 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00004953}
4954
Chris Lattner53e677a2004-04-02 20:23:17 +00004955/// getNumIterationsInRange - Return the number of iterations of this loop that
4956/// produce values in the specified constant range. Another way of looking at
4957/// this is that it returns the first iteration number where the value is not in
4958/// the condition, thus computing the exit count. If the iteration count can't
4959/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004960const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00004961 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00004962 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004963 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004964
4965 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00004966 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00004967 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004968 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00004969 Operands[0] = SE.getIntegerSCEV(0, SC->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00004970 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00004971 if (const SCEVAddRecExpr *ShiftedAddRec =
4972 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00004973 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00004974 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00004975 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004976 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004977 }
4978
4979 // The only time we can solve this is when we have all constant indices.
4980 // Otherwise, we cannot determine the overflow conditions.
4981 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4982 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004983 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004984
4985
4986 // Okay at this point we know that all elements of the chrec are constants and
4987 // that the start element is zero.
4988
4989 // First check to see if the range contains zero. If not, the first
4990 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00004991 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00004992 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman6de29f82009-06-15 22:12:54 +00004993 return SE.getIntegerSCEV(0, getType());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004994
Chris Lattner53e677a2004-04-02 20:23:17 +00004995 if (isAffine()) {
4996 // If this is an affine expression then we have this situation:
4997 // Solve {0,+,A} in Range === Ax in Range
4998
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00004999 // We know that zero is in the range. If A is positive then we know that
5000 // the upper value of the range must be the first possible exit value.
5001 // If A is negative then the lower of the range is the last possible loop
5002 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005003 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005004 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5005 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005006
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005007 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005008 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005009 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005010
5011 // Evaluate at the exit value. If we really did fall out of the valid
5012 // range, then we computed our trip count, otherwise wrap around or other
5013 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005014 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005015 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005016 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005017
5018 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005019 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005020 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005021 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005022 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005023 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005024 } else if (isQuadratic()) {
5025 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5026 // quadratic equation to solve it. To do this, we must frame our problem in
5027 // terms of figuring out when zero is crossed, instead of when
5028 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005029 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005030 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005031 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005032
5033 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005034 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005035 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005036 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5037 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005038 if (R1) {
5039 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005040 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005041 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005042 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005043 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005044 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005045
Chris Lattner53e677a2004-04-02 20:23:17 +00005046 // Make sure the root is not off by one. The returned iteration should
5047 // not be in the range, but the previous one should be. When solving
5048 // for "X*X < 5", for example, we should not return a root of 2.
5049 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005050 R1->getValue(),
5051 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005052 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005053 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005054 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005055 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005056
Dan Gohman246b2562007-10-22 18:31:58 +00005057 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005058 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005059 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005060 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005061 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005062
Chris Lattner53e677a2004-04-02 20:23:17 +00005063 // If R1 was not in the range, then it is a good return value. Make
5064 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005065 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005066 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005067 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005068 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005069 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005070 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005071 }
5072 }
5073 }
5074
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005075 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005076}
5077
5078
5079
5080//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005081// SCEVCallbackVH Class Implementation
5082//===----------------------------------------------------------------------===//
5083
Dan Gohman1959b752009-05-19 19:22:47 +00005084void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005085 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005086 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5087 SE->ConstantEvolutionLoopExitValue.erase(PN);
5088 SE->Scalars.erase(getValPtr());
5089 // this now dangles!
5090}
5091
Dan Gohman1959b752009-05-19 19:22:47 +00005092void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005093 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005094
5095 // Forget all the expressions associated with users of the old value,
5096 // so that future queries will recompute the expressions using the new
5097 // value.
5098 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005099 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005100 Value *Old = getValPtr();
5101 bool DeleteOld = false;
5102 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5103 UI != UE; ++UI)
5104 Worklist.push_back(*UI);
5105 while (!Worklist.empty()) {
5106 User *U = Worklist.pop_back_val();
5107 // Deleting the Old value will cause this to dangle. Postpone
5108 // that until everything else is done.
5109 if (U == Old) {
5110 DeleteOld = true;
5111 continue;
5112 }
Dan Gohman69fcae92009-07-14 14:34:04 +00005113 if (!Visited.insert(U))
5114 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005115 if (PHINode *PN = dyn_cast<PHINode>(U))
5116 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman69fcae92009-07-14 14:34:04 +00005117 SE->Scalars.erase(U);
5118 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5119 UI != UE; ++UI)
5120 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005121 }
Dan Gohman69fcae92009-07-14 14:34:04 +00005122 // Delete the Old value if it (indirectly) references itself.
Dan Gohman35738ac2009-05-04 22:30:44 +00005123 if (DeleteOld) {
5124 if (PHINode *PN = dyn_cast<PHINode>(Old))
5125 SE->ConstantEvolutionLoopExitValue.erase(PN);
5126 SE->Scalars.erase(Old);
5127 // this now dangles!
5128 }
5129 // this may dangle!
5130}
5131
Dan Gohman1959b752009-05-19 19:22:47 +00005132ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005133 : CallbackVH(V), SE(se) {}
5134
5135//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005136// ScalarEvolution Class Implementation
5137//===----------------------------------------------------------------------===//
5138
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005139ScalarEvolution::ScalarEvolution()
Dan Gohman1c343752009-06-27 21:21:31 +00005140 : FunctionPass(&ID) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005141}
5142
Chris Lattner53e677a2004-04-02 20:23:17 +00005143bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005144 this->F = &F;
5145 LI = &getAnalysis<LoopInfo>();
5146 TD = getAnalysisIfAvailable<TargetData>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005147 return false;
5148}
5149
5150void ScalarEvolution::releaseMemory() {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005151 Scalars.clear();
5152 BackedgeTakenCounts.clear();
5153 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005154 ValuesAtScopes.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00005155 UniqueSCEVs.clear();
5156 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00005157}
5158
5159void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5160 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00005161 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman2d1be872009-04-16 03:18:22 +00005162}
5163
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005164bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005165 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00005166}
5167
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005168static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00005169 const Loop *L) {
5170 // Print all inner loops first
5171 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5172 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005173
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005174 OS << "Loop " << L->getHeader()->getName() << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005175
Devang Patelb7211a22007-08-21 00:31:24 +00005176 SmallVector<BasicBlock*, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005177 L->getExitBlocks(ExitBlocks);
5178 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005179 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005180
Dan Gohman46bdfb02009-02-24 18:55:53 +00005181 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5182 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005183 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005184 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005185 }
5186
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005187 OS << "\n";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00005188 OS << "Loop " << L->getHeader()->getName() << ": ";
5189
5190 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5191 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5192 } else {
5193 OS << "Unpredictable max backedge-taken count. ";
5194 }
5195
5196 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005197}
5198
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005199void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005200 // ScalarEvolution's implementaiton of the print method is to print
5201 // out SCEV values of all instructions that are interesting. Doing
5202 // this potentially causes it to create new SCEV objects though,
5203 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00005204 // observable from outside the class though, so casting away the
5205 // const isn't dangerous.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005206 ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005207
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005208 OS << "Classifying expressions for: " << F->getName() << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005209 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmand9c1c852009-04-30 01:30:18 +00005210 if (isSCEVable(I->getType())) {
Dan Gohmanc902e132009-07-13 23:03:05 +00005211 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00005212 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005213 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005214 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005215
Dan Gohman0c689c52009-06-19 17:49:54 +00005216 const Loop *L = LI->getLoopFor((*I).getParent());
5217
Dan Gohman0bba49c2009-07-07 17:06:11 +00005218 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00005219 if (AtUse != SV) {
5220 OS << " --> ";
5221 AtUse->print(OS);
5222 }
5223
5224 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00005225 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005226 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmand594e6f2009-05-24 23:25:42 +00005227 if (!ExitValue->isLoopInvariant(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005228 OS << "<<Unknown>>";
5229 } else {
5230 OS << *ExitValue;
5231 }
5232 }
5233
Chris Lattner53e677a2004-04-02 20:23:17 +00005234 OS << "\n";
5235 }
5236
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005237 OS << "Determining loop execution counts for: " << F->getName() << "\n";
5238 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5239 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005240}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005241