blob: 3564251607317b3f390d4b1376e8dc49e8012356 [file] [log] [blame]
Chris Lattnerc6495ee2001-09-14 03:56:45 +00001//===-- SparcInternals.h - Header file for Sparc backend ---------*- C++ -*--=//
2//
3// This file defines stuff that is to be private to the Sparc backend, but is
4// shared among different portions of the backend.
5//
6//===----------------------------------------------------------------------===//
7
8#ifndef SPARC_INTERNALS_H
9#define SPARC_INTERNALS_H
10
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +000011
12#include "SparcRegClassInfo.h"
13#include "llvm/Target/TargetMachine.h"
14#include "llvm/Target/MachineInstrInfo.h"
15
Vikram S. Adve339084b2001-09-18 13:04:24 +000016#include "llvm/Target/MachineSchedInfo.h"
Ruchira Sasankaab304c42001-09-30 23:19:57 +000017#include "llvm/CodeGen/RegClass.h"
Chris Lattnerc6495ee2001-09-14 03:56:45 +000018#include "llvm/Type.h"
Vikram S. Adve339084b2001-09-18 13:04:24 +000019
Chris Lattner46cbff62001-09-14 16:56:32 +000020#include <sys/types.h>
Chris Lattnerc6495ee2001-09-14 03:56:45 +000021
Chris Lattnerf6e0e282001-09-14 04:32:55 +000022class UltraSparc;
23
Chris Lattnerc6495ee2001-09-14 03:56:45 +000024// OpCodeMask definitions for the Sparc V9
25//
26const OpCodeMask Immed = 0x00002000; // immed or reg operand?
27const OpCodeMask Annul = 0x20000000; // annul delay instr?
28const OpCodeMask PredictTaken = 0x00080000; // predict branch taken?
29
30
31enum SparcInstrSchedClass {
32 SPARC_NONE, /* Instructions with no scheduling restrictions */
33 SPARC_IEUN, /* Integer class that can use IEU0 or IEU1 */
34 SPARC_IEU0, /* Integer class IEU0 */
35 SPARC_IEU1, /* Integer class IEU1 */
36 SPARC_FPM, /* FP Multiply or Divide instructions */
37 SPARC_FPA, /* All other FP instructions */
38 SPARC_CTI, /* Control-transfer instructions */
39 SPARC_LD, /* Load instructions */
40 SPARC_ST, /* Store instructions */
41 SPARC_SINGLE, /* Instructions that must issue by themselves */
42
43 SPARC_INV, /* This should stay at the end for the next value */
44 SPARC_NUM_SCHED_CLASSES = SPARC_INV
45};
46
Chris Lattnerc6495ee2001-09-14 03:56:45 +000047
48//---------------------------------------------------------------------------
49// enum SparcMachineOpCode.
50// const MachineInstrDescriptor SparcMachineInstrDesc[]
51//
52// Purpose:
53// Description of UltraSparc machine instructions.
54//
55//---------------------------------------------------------------------------
56
Chris Lattnerc6495ee2001-09-14 03:56:45 +000057enum SparcMachineOpCode {
Chris Lattner9a3d63b2001-09-19 15:56:23 +000058#define I(ENUM, OPCODESTRING, NUMOPERANDS, RESULTPOS, MAXIMM, IMMSE, \
59 NUMDELAYSLOTS, LATENCY, SCHEDCLASS, INSTFLAGS) \
60 ENUM,
61#include "SparcInstr.def"
Chris Lattnerc6495ee2001-09-14 03:56:45 +000062
Chris Lattnerc6495ee2001-09-14 03:56:45 +000063 // End-of-array marker
64 INVALID_OPCODE,
Vikram S. Advec1521632001-10-22 13:31:53 +000065 NUM_REAL_OPCODES = PHI, // number of valid opcodes
Chris Lattnerc6495ee2001-09-14 03:56:45 +000066 NUM_TOTAL_OPCODES = INVALID_OPCODE
67};
68
Chris Lattnerc6495ee2001-09-14 03:56:45 +000069
Chris Lattner9a3d63b2001-09-19 15:56:23 +000070// Array of machine instruction descriptions...
71extern const MachineInstrDescriptor SparcMachineInstrDesc[];
Chris Lattnerc6495ee2001-09-14 03:56:45 +000072
73
74//---------------------------------------------------------------------------
75// class UltraSparcInstrInfo
76//
77// Purpose:
78// Information about individual instructions.
79// Most information is stored in the SparcMachineInstrDesc array above.
80// Other information is computed on demand, and most such functions
81// default to member functions in base class MachineInstrInfo.
82//---------------------------------------------------------------------------
83
84class UltraSparcInstrInfo : public MachineInstrInfo {
85public:
86 /*ctor*/ UltraSparcInstrInfo();
87
Vikram S. Adve5684c4e2001-10-18 00:02:06 +000088 virtual bool hasResultInterlock (MachineOpCode opCode) const
Chris Lattnerc6495ee2001-09-14 03:56:45 +000089 {
90 // All UltraSPARC instructions have interlocks (note that delay slots
91 // are not considered here).
92 // However, instructions that use the result of an FCMP produce a
93 // 9-cycle stall if they are issued less than 3 cycles after the FCMP.
94 // Force the compiler to insert a software interlock (i.e., gap of
95 // 2 other groups, including NOPs if necessary).
96 return (opCode == FCMPS || opCode == FCMPD || opCode == FCMPQ);
97 }
98
Vikram S. Adve5684c4e2001-10-18 00:02:06 +000099 //-------------------------------------------------------------------------
100 // Code generation support for creating individual machine instructions
101 //-------------------------------------------------------------------------
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000102
Vikram S. Adve5684c4e2001-10-18 00:02:06 +0000103 // Create an instruction sequence to put the constant `val' into
104 // the virtual register `dest'. The generated instructions are
105 // returned in `minstrVec'. Any temporary registers (TmpInstruction)
106 // created are returned in `tempVec'.
107 //
108 virtual void CreateCodeToLoadConst(Value* val,
109 Instruction* dest,
110 vector<MachineInstr*>& minstrVec,
111 vector<TmpInstruction*>& tempVec) const;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000112};
113
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000114
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000115
116class LiveRange;
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000117class UltraSparc;
118
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000119
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000120
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000121class UltraSparcRegInfo : public MachineRegInfo
122{
123
124 private:
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000125
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000126 // The actual register classes in the Sparc
127
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000128 enum RegClassIDs {
129 IntRegClassID,
130 FloatRegClassID,
131 IntCCRegClassID,
132 FloatCCRegClassID
133 };
134
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000135
136 // Type of registers available in Sparc. There can be several reg types
137 // in the same class. For instace, the float reg class has Single/Double
138 // types
139 enum RegTypes {
140 IntRegType,
141 FPSingleRegType,
142 FPDoubleRegType,
143 IntCCRegType,
144 FloatCCRegType
145 };
146
147
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000148 // WARNING: If the above enum order must be changed, also modify
149 // getRegisterClassOfValue method below since it assumes this particular
150 // order for efficiency.
151
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000152
153 // reverse pointer to get info about the ultra sparc machine
154 const UltraSparc *const UltraSparcInfo;
155
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000156 // Both int and float rguments can be passed in 6 int regs -
157 // %o0 to %o5 (cannot be changed)
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000158 unsigned const NumOfIntArgRegs;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000159 unsigned const NumOfFloatArgRegs;
Ruchira Sasankac4d4b762001-10-16 01:23:19 +0000160 int const InvalidRegNum;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000161
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000162 //void setCallArgColor(LiveRange *const LR, const unsigned RegNo) const;
163
164 void setCallOrRetArgCol(LiveRange *const LR, const unsigned RegNo,
165 const MachineInstr *MI,AddedInstrMapType &AIMap)const;
166
167 MachineInstr * getCopy2RegMI(const Value *SrcVal, const unsigned Reg,
168 unsigned RegClassID) const ;
169
Ruchira Sasankacc3ccac2001-10-15 16:25:28 +0000170
171 void suggestReg4RetAddr(const MachineInstr * RetMI,
172 LiveRangeInfo& LRI) const;
173
Ruchira Sasankab3b6f532001-10-21 16:43:41 +0000174 void suggestReg4CallAddr(const MachineInstr * CallMI, LiveRangeInfo& LRI,
175 vector<RegClass *> RCList) const;
Ruchira Sasankacc3ccac2001-10-15 16:25:28 +0000176
177
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000178 Value *getValue4ReturnAddr( const MachineInstr * MInst ) const ;
179
180 int getRegType(const LiveRange *const LR) const {
181
182 unsigned Typ;
183
184 switch( (LR->getRegClass())->getID() ) {
185
186 case IntRegClassID: return IntRegType;
187
188 case FloatRegClassID:
189 Typ = LR->getTypeID();
190 if( Typ == Type::FloatTyID )
191 return FPSingleRegType;
192 else if( Typ == Type::DoubleTyID )
193 return FPDoubleRegType;
194 else assert(0 && "Unknown type in FloatRegClass");
195
196 case IntCCRegClassID: return IntCCRegType;
197
198 case FloatCCRegClassID: return FloatCCRegType ;
199
200 default: assert( 0 && "Unknown reg class ID");
201
202 }
203
204 }
205
206 int getRegType(const Value *const Val) const {
207
208 unsigned Typ;
209
210 switch( getRegClassIDOfValue(Val) ) {
211
212 case IntRegClassID: return IntRegType;
213
214 case FloatRegClassID:
215 Typ = (Val->getType())->getPrimitiveID();
216 if( Typ == Type::FloatTyID )
217 return FPSingleRegType;
218 else if( Typ == Type::DoubleTyID )
219 return FPDoubleRegType;
220 else assert(0 && "Unknown type in FloatRegClass");
221
222 case IntCCRegClassID: return IntCCRegType;
223
224 case FloatCCRegClassID: return FloatCCRegType ;
225
226 default: assert( 0 && "Unknown reg class ID");
227
228 }
229
230 }
231
232
233
Ruchira Sasankac4d4b762001-10-16 01:23:19 +0000234 // ***TODO: See this method is necessary
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000235
236 MachineInstr * cpValue2RegMI(Value * Val, const unsigned DestReg,
237 const int RegType) const;
238
Ruchira Sasankab3b6f532001-10-21 16:43:41 +0000239 const Value *getCallInstRetAddr(const MachineInstr *CallMI) const;
240 const unsigned getCallInstNumArgs(const MachineInstr *CallMI) const;
241
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000242
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000243 public:
244
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000245
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000246 UltraSparcRegInfo(const UltraSparc *const USI ) : UltraSparcInfo(USI),
247 NumOfIntArgRegs(6),
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000248 NumOfFloatArgRegs(32),
249 InvalidRegNum(1000)
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000250 {
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000251 MachineRegClassArr.push_back( new SparcIntRegClass(IntRegClassID) );
252 MachineRegClassArr.push_back( new SparcFloatRegClass(FloatRegClassID) );
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000253 MachineRegClassArr.push_back( new SparcIntCCRegClass(IntCCRegClassID) );
254 MachineRegClassArr.push_back( new SparcFloatCCRegClass(FloatCCRegClassID));
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000255
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000256 assert( SparcFloatRegOrder::StartOfNonVolatileRegs == 32 &&
257 "32 Float regs are used for float arg passing");
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000258 }
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000259
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000260 // ***** TODO Delete
261 ~UltraSparcRegInfo(void) { } // empty destructor
262
263
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000264 inline const UltraSparc & getUltraSparcInfo() const {
265 return *UltraSparcInfo;
266 }
267
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000268
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000269
270 inline unsigned getRegClassIDOfValue (const Value *const Val,
271 bool isCCReg = false) const {
272
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000273 Type::PrimitiveID ty = (Val->getType())->getPrimitiveID();
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000274
275 unsigned res;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000276
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000277 if( (ty && ty <= Type::LongTyID) || (ty == Type::LabelTyID) ||
278 (ty == Type::MethodTyID) || (ty == Type::PointerTyID) )
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000279 res = IntRegClassID; // sparc int reg (ty=0: void)
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000280 else if( ty <= Type::DoubleTyID)
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000281 res = FloatRegClassID; // sparc float reg class
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000282 else {
Chris Lattner1e23ed72001-10-15 18:15:27 +0000283 cerr << "TypeID: " << ty << endl;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000284 assert(0 && "Cannot resolve register class for type");
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000285 }
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000286
287 if(isCCReg)
288 return res + 2; // corresponidng condition code regiser
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000289 else
290 return res;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000291 }
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000292
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000293 // returns the register tha contains always zero
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000294 // this is the unified register number
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000295 inline int getZeroRegNum() const { return SparcIntRegOrder::g0; }
296
297 // returns the reg used for pushing the address when a method is called.
298 // This can be used for other purposes between calls
299 unsigned getCallAddressReg() const { return SparcIntRegOrder::o7; }
300
301
302 // and when we return from a method. It should be made sure that this
303 // register contains the return value when a return instruction is reached.
304 unsigned getReturnAddressReg() const { return SparcIntRegOrder::i7; }
305
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000306 void suggestRegs4MethodArgs(const Method *const Meth,
307 LiveRangeInfo& LRI) const;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000308
Ruchira Sasankacc3ccac2001-10-15 16:25:28 +0000309 void suggestRegs4CallArgs(const MachineInstr *const CallMI,
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000310 LiveRangeInfo& LRI, vector<RegClass *> RCL) const;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000311
Ruchira Sasankacc3ccac2001-10-15 16:25:28 +0000312 void suggestReg4RetValue(const MachineInstr *const RetMI,
313 LiveRangeInfo& LRI ) const;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000314
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000315
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000316 void colorMethodArgs(const Method *const Meth, LiveRangeInfo& LRI,
317 AddedInstrns *const FirstAI) const;
318
Ruchira Sasankacc3ccac2001-10-15 16:25:28 +0000319 void colorCallArgs(const MachineInstr *const CallMI, LiveRangeInfo& LRI,
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000320 AddedInstrns *const CallAI) const;
321
Ruchira Sasankacc3ccac2001-10-15 16:25:28 +0000322 void colorRetValue(const MachineInstr *const RetI, LiveRangeInfo& LRI,
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000323 AddedInstrns *const RetAI) const;
324
325
Ruchira Sasankacc3ccac2001-10-15 16:25:28 +0000326 // bool handleSpecialMInstr(const MachineInstr * MInst,
327 // LiveRangeInfo& LRI, vector<RegClass *> RCL) const;
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000328
329
330 static void printReg(const LiveRange *const LR) ;
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000331
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000332 // this method provides a unique number for each register
333 inline int getUnifiedRegNum(int RegClassID, int reg) const {
334
335 if( RegClassID == IntRegClassID && reg < 32 )
336 return reg;
337 else if ( RegClassID == FloatRegClassID && reg < 64)
338 return reg + 32; // we have 32 int regs
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000339 else if( RegClassID == FloatCCRegClassID && reg < 4)
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000340 return reg + 32 + 64; // 32 int, 64 float
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000341 else if( RegClassID == IntCCRegClassID )
342 return 4+ 32 + 64; // only int cc reg
Ruchira Sasankac4d4b762001-10-16 01:23:19 +0000343 else if (reg==InvalidRegNum)
344 return InvalidRegNum;
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000345 else
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000346 assert(0 && "Invalid register class or reg number");
347
348 }
349
350 // given the unified register number, this gives the name
351 inline const string getUnifiedRegName(int reg) const {
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000352 if( reg < 32 )
353 return SparcIntRegOrder::getRegName(reg);
354 else if ( reg < (64 + 32) )
355 return SparcFloatRegOrder::getRegName( reg - 32);
356 else if( reg < (64+32+4) )
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000357 return SparcFloatCCRegOrder::getRegName( reg -32 - 64);
358 else if ( reg == 64+32+4)
359 return "xcc"; // only integer cc reg
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000360
Vikram S. Advec1521632001-10-22 13:31:53 +0000361 else if (reg== InvalidRegNum) //****** TODO: Remove */
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000362 return "<*NoReg*>";
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000363 else
364 assert(0 && "Invalid register number");
365 }
366
Vikram S. Advec1521632001-10-22 13:31:53 +0000367 inline unsigned int getRegNumInCallersWindow(int reg) {
368 if (reg == InvalidRegNum || reg >= 32)
369 return reg;
370 return SparcIntRegOrder::getRegNumInCallersWindow(reg);
371 }
372
373 inline bool mustBeRemappedInCallersWindow(int reg) {
374 return (reg != InvalidRegNum && reg < 32);
375 }
376
Ruchira Sasankab3b6f532001-10-21 16:43:41 +0000377 const Value * getCallInstRetVal(const MachineInstr *CallMI) const;
378
Ruchira Sasankac4d4b762001-10-16 01:23:19 +0000379 MachineInstr * cpReg2RegMI(const unsigned SrcReg, const unsigned DestReg,
380 const int RegType) const;
381
382 MachineInstr * cpReg2MemMI(const unsigned SrcReg, const unsigned DestPtrReg,
383 const int Offset, const int RegType) const;
384
385 MachineInstr * cpMem2RegMI(const unsigned SrcPtrReg, const int Offset,
386 const unsigned DestReg, const int RegType) const;
387
388 inline bool isRegVolatile(const int RegClassID, const int Reg) const {
389 return (MachineRegClassArr[RegClassID])->isRegVolatile(Reg);
390 }
391
392
393 inline unsigned getFramePointer() const {
394 return SparcIntRegOrder::i6;
395 }
396
397 inline unsigned getStackPointer() const {
398 return SparcIntRegOrder::o6;
399 }
400
401 inline int getInvalidRegNum() const {
402 return InvalidRegNum;
403 }
404
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000405};
406
407
408
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000409/*---------------------------------------------------------------------------
410Scheduling guidelines for SPARC IIi:
411
412I-Cache alignment rules (pg 326)
413-- Align a branch target instruction so that it's entire group is within
414 the same cache line (may be 1-4 instructions).
415** Don't let a branch that is predicted taken be the last instruction
416 on an I-cache line: delay slot will need an entire line to be fetched
417-- Make a FP instruction or a branch be the 4th instruction in a group.
418 For branches, there are tradeoffs in reordering to make this happen
419 (see pg. 327).
420** Don't put a branch in a group that crosses a 32-byte boundary!
421 An artificial branch is inserted after every 32 bytes, and having
422 another branch will force the group to be broken into 2 groups.
423
424iTLB rules:
425-- Don't let a loop span two memory pages, if possible
426
427Branch prediction performance:
428-- Don't make the branch in a delay slot the target of a branch
429-- Try not to have 2 predicted branches within a group of 4 instructions
430 (because each such group has a single branch target field).
431-- Try to align branches in slots 0, 2, 4 or 6 of a cache line (to avoid
432 the wrong prediction bits being used in some cases).
433
434D-Cache timing constraints:
435-- Signed int loads of less than 64 bits have 3 cycle latency, not 2
436-- All other loads that hit in D-Cache have 2 cycle latency
437-- All loads are returned IN ORDER, so a D-Cache miss will delay a later hit
438-- Mis-aligned loads or stores cause a trap. In particular, replace
439 mis-aligned FP double precision l/s with 2 single-precision l/s.
440-- Simulations of integer codes show increase in avg. group size of
441 33% when code (including esp. non-faulting loads) is moved across
442 one branch, and 50% across 2 branches.
443
444E-Cache timing constraints:
445-- Scheduling for E-cache (D-Cache misses) is effective (due to load buffering)
446
447Store buffer timing constraints:
448-- Stores can be executed in same cycle as instruction producing the value
449-- Stores are buffered and have lower priority for E-cache until
450 highwater mark is reached in the store buffer (5 stores)
451
452Pipeline constraints:
453-- Shifts can only use IEU0.
454-- CC setting instructions can only use IEU1.
455-- Several other instructions must only use IEU1:
456 EDGE(?), ARRAY(?), CALL, JMPL, BPr, PST, and FCMP.
457-- Two instructions cannot store to the same register file in a single cycle
458 (single write port per file).
459
460Issue and grouping constraints:
461-- FP and branch instructions must use slot 4.
462-- Shift instructions cannot be grouped with other IEU0-specific instructions.
463-- CC setting instructions cannot be grouped with other IEU1-specific instrs.
464-- Several instructions must be issued in a single-instruction group:
465 MOVcc or MOVr, MULs/x and DIVs/x, SAVE/RESTORE, many others
466-- A CALL or JMPL breaks a group, ie, is not combined with subsequent instrs.
467--
468--
469
470Branch delay slot scheduling rules:
471-- A CTI couple (two back-to-back CTI instructions in the dynamic stream)
472 has a 9-instruction penalty: the entire pipeline is flushed when the
473 second instruction reaches stage 9 (W-Writeback).
474-- Avoid putting multicycle instructions, and instructions that may cause
475 load misses, in the delay slot of an annulling branch.
476-- Avoid putting WR, SAVE..., RESTORE and RETURN instructions in the
477 delay slot of an annulling branch.
478
479 *--------------------------------------------------------------------------- */
480
481//---------------------------------------------------------------------------
482// List of CPUResources for UltraSPARC IIi.
483//---------------------------------------------------------------------------
484
485const CPUResource AllIssueSlots( "All Instr Slots", 4);
486const CPUResource IntIssueSlots( "Int Instr Slots", 3);
487const CPUResource First3IssueSlots("Instr Slots 0-3", 3);
488const CPUResource LSIssueSlots( "Load-Store Instr Slot", 1);
489const CPUResource CTIIssueSlots( "Ctrl Transfer Instr Slot", 1);
490const CPUResource FPAIssueSlots( "Int Instr Slot 1", 1);
491const CPUResource FPMIssueSlots( "Int Instr Slot 1", 1);
492
493// IEUN instructions can use either Alu and should use IAluN.
494// IEU0 instructions must use Alu 1 and should use both IAluN and IAlu0.
495// IEU1 instructions must use Alu 2 and should use both IAluN and IAlu1.
496const CPUResource IAluN("Int ALU 1or2", 2);
497const CPUResource IAlu0("Int ALU 1", 1);
498const CPUResource IAlu1("Int ALU 2", 1);
499
500const CPUResource LSAluC1("Load/Store Unit Addr Cycle", 1);
501const CPUResource LSAluC2("Load/Store Unit Issue Cycle", 1);
502const CPUResource LdReturn("Load Return Unit", 1);
503
504const CPUResource FPMAluC1("FP Mul/Div Alu Cycle 1", 1);
505const CPUResource FPMAluC2("FP Mul/Div Alu Cycle 2", 1);
506const CPUResource FPMAluC3("FP Mul/Div Alu Cycle 3", 1);
507
508const CPUResource FPAAluC1("FP Other Alu Cycle 1", 1);
509const CPUResource FPAAluC2("FP Other Alu Cycle 2", 1);
510const CPUResource FPAAluC3("FP Other Alu Cycle 3", 1);
511
512const CPUResource IRegReadPorts("Int Reg ReadPorts", INT_MAX); // CHECK
513const CPUResource IRegWritePorts("Int Reg WritePorts", 2); // CHECK
514const CPUResource FPRegReadPorts("FP Reg Read Ports", INT_MAX); // CHECK
515const CPUResource FPRegWritePorts("FP Reg Write Ports", 1); // CHECK
516
517const CPUResource CTIDelayCycle( "CTI delay cycle", 1);
518const CPUResource FCMPDelayCycle("FCMP delay cycle", 1);
519
520
521//---------------------------------------------------------------------------
522// const InstrClassRUsage SparcRUsageDesc[]
523//
524// Purpose:
525// Resource usage information for instruction in each scheduling class.
526// The InstrRUsage Objects for individual classes are specified first.
527// Note that fetch and decode are decoupled from the execution pipelines
528// via an instr buffer, so they are not included in the cycles below.
529//---------------------------------------------------------------------------
530
531const InstrClassRUsage NoneClassRUsage = {
532 SPARC_NONE,
533 /*totCycles*/ 7,
534
535 /* maxIssueNum */ 4,
536 /* isSingleIssue */ false,
537 /* breaksGroup */ false,
538 /* numBubbles */ 0,
539
540 /*numSlots*/ 4,
541 /* feasibleSlots[] */ { 0, 1, 2, 3 },
542
543 /*numEntries*/ 0,
544 /* V[] */ {
545 /*Cycle G */
Ruchira Sasankac4d4b762001-10-16 01:23:19 +0000546 /*Ccle E */
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000547 /*Cycle C */
548 /*Cycle N1*/
549 /*Cycle N1*/
550 /*Cycle N1*/
551 /*Cycle W */
552 }
553};
554
555const InstrClassRUsage IEUNClassRUsage = {
556 SPARC_IEUN,
557 /*totCycles*/ 7,
558
559 /* maxIssueNum */ 3,
560 /* isSingleIssue */ false,
561 /* breaksGroup */ false,
562 /* numBubbles */ 0,
563
564 /*numSlots*/ 3,
565 /* feasibleSlots[] */ { 0, 1, 2 },
566
567 /*numEntries*/ 4,
568 /* V[] */ {
569 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
570 { IntIssueSlots.rid, 0, 1 },
571 /*Cycle E */ { IAluN.rid, 1, 1 },
572 /*Cycle C */
573 /*Cycle N1*/
574 /*Cycle N1*/
575 /*Cycle N1*/
576 /*Cycle W */ { IRegWritePorts.rid, 6, 1 }
577 }
578};
579
580const InstrClassRUsage IEU0ClassRUsage = {
581 SPARC_IEU0,
582 /*totCycles*/ 7,
583
584 /* maxIssueNum */ 1,
585 /* isSingleIssue */ false,
586 /* breaksGroup */ false,
587 /* numBubbles */ 0,
588
589 /*numSlots*/ 3,
590 /* feasibleSlots[] */ { 0, 1, 2 },
591
592 /*numEntries*/ 5,
593 /* V[] */ {
594 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
595 { IntIssueSlots.rid, 0, 1 },
596 /*Cycle E */ { IAluN.rid, 1, 1 },
597 { IAlu0.rid, 1, 1 },
598 /*Cycle C */
599 /*Cycle N1*/
600 /*Cycle N1*/
601 /*Cycle N1*/
602 /*Cycle W */ { IRegWritePorts.rid, 6, 1 }
603 }
604};
605
606const InstrClassRUsage IEU1ClassRUsage = {
607 SPARC_IEU1,
608 /*totCycles*/ 7,
609
610 /* maxIssueNum */ 1,
611 /* isSingleIssue */ false,
612 /* breaksGroup */ false,
613 /* numBubbles */ 0,
614
615 /*numSlots*/ 3,
616 /* feasibleSlots[] */ { 0, 1, 2 },
617
618 /*numEntries*/ 5,
619 /* V[] */ {
620 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
621 { IntIssueSlots.rid, 0, 1 },
622 /*Cycle E */ { IAluN.rid, 1, 1 },
623 { IAlu1.rid, 1, 1 },
624 /*Cycle C */
625 /*Cycle N1*/
626 /*Cycle N1*/
627 /*Cycle N1*/
628 /*Cycle W */ { IRegWritePorts.rid, 6, 1 }
629 }
630};
631
632const InstrClassRUsage FPMClassRUsage = {
633 SPARC_FPM,
634 /*totCycles*/ 7,
635
636 /* maxIssueNum */ 1,
637 /* isSingleIssue */ false,
638 /* breaksGroup */ false,
639 /* numBubbles */ 0,
640
641 /*numSlots*/ 4,
642 /* feasibleSlots[] */ { 0, 1, 2, 3 },
643
644 /*numEntries*/ 7,
645 /* V[] */ {
646 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
647 { FPMIssueSlots.rid, 0, 1 },
648 /*Cycle E */ { FPRegReadPorts.rid, 1, 1 },
649 /*Cycle C */ { FPMAluC1.rid, 2, 1 },
650 /*Cycle N1*/ { FPMAluC2.rid, 3, 1 },
651 /*Cycle N1*/ { FPMAluC3.rid, 4, 1 },
652 /*Cycle N1*/
653 /*Cycle W */ { FPRegWritePorts.rid, 6, 1 }
654 }
655};
656
657const InstrClassRUsage FPAClassRUsage = {
658 SPARC_FPA,
659 /*totCycles*/ 7,
660
661 /* maxIssueNum */ 1,
662 /* isSingleIssue */ false,
663 /* breaksGroup */ false,
664 /* numBubbles */ 0,
665
666 /*numSlots*/ 4,
667 /* feasibleSlots[] */ { 0, 1, 2, 3 },
668
669 /*numEntries*/ 7,
670 /* V[] */ {
671 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
672 { FPAIssueSlots.rid, 0, 1 },
673 /*Cycle E */ { FPRegReadPorts.rid, 1, 1 },
674 /*Cycle C */ { FPAAluC1.rid, 2, 1 },
675 /*Cycle N1*/ { FPAAluC2.rid, 3, 1 },
676 /*Cycle N1*/ { FPAAluC3.rid, 4, 1 },
677 /*Cycle N1*/
678 /*Cycle W */ { FPRegWritePorts.rid, 6, 1 }
679 }
680};
681
682const InstrClassRUsage LDClassRUsage = {
683 SPARC_LD,
684 /*totCycles*/ 7,
685
686 /* maxIssueNum */ 1,
687 /* isSingleIssue */ false,
688 /* breaksGroup */ false,
689 /* numBubbles */ 0,
690
691 /*numSlots*/ 3,
692 /* feasibleSlots[] */ { 0, 1, 2, },
693
694 /*numEntries*/ 6,
695 /* V[] */ {
696 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
697 { First3IssueSlots.rid, 0, 1 },
698 { LSIssueSlots.rid, 0, 1 },
699 /*Cycle E */ { LSAluC1.rid, 1, 1 },
700 /*Cycle C */ { LSAluC2.rid, 2, 1 },
701 { LdReturn.rid, 2, 1 },
702 /*Cycle N1*/
703 /*Cycle N1*/
704 /*Cycle N1*/
705 /*Cycle W */ { IRegWritePorts.rid, 6, 1 }
706 }
707};
708
709const InstrClassRUsage STClassRUsage = {
710 SPARC_ST,
711 /*totCycles*/ 7,
712
713 /* maxIssueNum */ 1,
714 /* isSingleIssue */ false,
715 /* breaksGroup */ false,
716 /* numBubbles */ 0,
717
718 /*numSlots*/ 3,
719 /* feasibleSlots[] */ { 0, 1, 2 },
720
721 /*numEntries*/ 4,
722 /* V[] */ {
723 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
724 { First3IssueSlots.rid, 0, 1 },
725 { LSIssueSlots.rid, 0, 1 },
726 /*Cycle E */ { LSAluC1.rid, 1, 1 },
727 /*Cycle C */ { LSAluC2.rid, 2, 1 }
728 /*Cycle N1*/
729 /*Cycle N1*/
730 /*Cycle N1*/
731 /*Cycle W */
732 }
733};
734
735const InstrClassRUsage CTIClassRUsage = {
736 SPARC_CTI,
737 /*totCycles*/ 7,
738
739 /* maxIssueNum */ 1,
740 /* isSingleIssue */ false,
741 /* breaksGroup */ false,
742 /* numBubbles */ 0,
743
744 /*numSlots*/ 4,
745 /* feasibleSlots[] */ { 0, 1, 2, 3 },
746
747 /*numEntries*/ 4,
748 /* V[] */ {
749 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
750 { CTIIssueSlots.rid, 0, 1 },
751 /*Cycle E */ { IAlu0.rid, 1, 1 },
752 /*Cycles E-C */ { CTIDelayCycle.rid, 1, 2 }
753 /*Cycle C */
754 /*Cycle N1*/
755 /*Cycle N1*/
756 /*Cycle N1*/
757 /*Cycle W */
758 }
759};
760
761const InstrClassRUsage SingleClassRUsage = {
762 SPARC_SINGLE,
763 /*totCycles*/ 7,
764
765 /* maxIssueNum */ 1,
766 /* isSingleIssue */ true,
767 /* breaksGroup */ false,
768 /* numBubbles */ 0,
769
770 /*numSlots*/ 1,
771 /* feasibleSlots[] */ { 0 },
772
773 /*numEntries*/ 5,
774 /* V[] */ {
775 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
776 { AllIssueSlots.rid, 0, 1 },
777 { AllIssueSlots.rid, 0, 1 },
778 { AllIssueSlots.rid, 0, 1 },
779 /*Cycle E */ { IAlu0.rid, 1, 1 }
780 /*Cycle C */
781 /*Cycle N1*/
782 /*Cycle N1*/
783 /*Cycle N1*/
784 /*Cycle W */
785 }
786};
787
788
789const InstrClassRUsage SparcRUsageDesc[] = {
790 NoneClassRUsage,
791 IEUNClassRUsage,
792 IEU0ClassRUsage,
793 IEU1ClassRUsage,
794 FPMClassRUsage,
795 FPAClassRUsage,
796 CTIClassRUsage,
797 LDClassRUsage,
798 STClassRUsage,
799 SingleClassRUsage
800};
801
802
803//---------------------------------------------------------------------------
804// const InstrIssueDelta SparcInstrIssueDeltas[]
805//
806// Purpose:
807// Changes to issue restrictions information in InstrClassRUsage for
808// instructions that differ from other instructions in their class.
809//---------------------------------------------------------------------------
810
811const InstrIssueDelta SparcInstrIssueDeltas[] = {
812
813 // opCode, isSingleIssue, breaksGroup, numBubbles
814
815 // Special cases for single-issue only
816 // Other single issue cases are below.
817//{ LDDA, true, true, 0 },
818//{ STDA, true, true, 0 },
819//{ LDDF, true, true, 0 },
820//{ LDDFA, true, true, 0 },
821 { ADDC, true, true, 0 },
822 { ADDCcc, true, true, 0 },
823 { SUBC, true, true, 0 },
824 { SUBCcc, true, true, 0 },
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000825//{ LDSTUB, true, true, 0 },
826//{ SWAP, true, true, 0 },
827//{ SWAPA, true, true, 0 },
828//{ CAS, true, true, 0 },
829//{ CASA, true, true, 0 },
830//{ CASX, true, true, 0 },
831//{ CASXA, true, true, 0 },
832//{ LDFSR, true, true, 0 },
833//{ LDFSRA, true, true, 0 },
834//{ LDXFSR, true, true, 0 },
835//{ LDXFSRA, true, true, 0 },
836//{ STFSR, true, true, 0 },
837//{ STFSRA, true, true, 0 },
838//{ STXFSR, true, true, 0 },
839//{ STXFSRA, true, true, 0 },
840//{ SAVED, true, true, 0 },
841//{ RESTORED, true, true, 0 },
842//{ FLUSH, true, true, 9 },
843//{ FLUSHW, true, true, 9 },
844//{ ALIGNADDR, true, true, 0 },
845 { RETURN, true, true, 0 },
846//{ DONE, true, true, 0 },
847//{ RETRY, true, true, 0 },
848//{ WR, true, true, 0 },
849//{ WRPR, true, true, 4 },
850//{ RD, true, true, 0 },
851//{ RDPR, true, true, 0 },
852//{ TCC, true, true, 0 },
853//{ SHUTDOWN, true, true, 0 },
854
855 // Special cases for breaking group *before*
856 // CURRENTLY NOT SUPPORTED!
857 { CALL, false, false, 0 },
Vikram S. Advec1521632001-10-22 13:31:53 +0000858 { JMPLCALL, false, false, 0 },
859 { JMPLRET, false, false, 0 },
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000860
861 // Special cases for breaking the group *after*
862 { MULX, true, true, (4+34)/2 },
863 { FDIVS, false, true, 0 },
864 { FDIVD, false, true, 0 },
865 { FDIVQ, false, true, 0 },
866 { FSQRTS, false, true, 0 },
867 { FSQRTD, false, true, 0 },
868 { FSQRTQ, false, true, 0 },
869//{ FCMP{LE,GT,NE,EQ}, false, true, 0 },
870
871 // Instructions that introduce bubbles
872//{ MULScc, true, true, 2 },
873//{ SMULcc, true, true, (4+18)/2 },
874//{ UMULcc, true, true, (4+19)/2 },
875 { SDIVX, true, true, 68 },
876 { UDIVX, true, true, 68 },
877//{ SDIVcc, true, true, 36 },
878//{ UDIVcc, true, true, 37 },
879//{ WR, false, false, 4 },
880//{ WRPR, false, false, 4 },
881};
882
883
884//---------------------------------------------------------------------------
885// const InstrRUsageDelta SparcInstrUsageDeltas[]
886//
887// Purpose:
888// Changes to resource usage information in InstrClassRUsage for
889// instructions that differ from other instructions in their class.
890//---------------------------------------------------------------------------
891
892const InstrRUsageDelta SparcInstrUsageDeltas[] = {
893
894 // MachineOpCode, Resource, Start cycle, Num cycles
895
896 //
897 // JMPL counts as a load/store instruction for issue!
898 //
Vikram S. Advec1521632001-10-22 13:31:53 +0000899 { JMPLCALL, LSIssueSlots.rid, 0, 1 },
900 { JMPLRET, LSIssueSlots.rid, 0, 1 },
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000901
902 //
903 // Many instructions cannot issue for the next 2 cycles after an FCMP
904 // We model that with a fake resource FCMPDelayCycle.
905 //
906 { FCMPS, FCMPDelayCycle.rid, 1, 3 },
907 { FCMPD, FCMPDelayCycle.rid, 1, 3 },
908 { FCMPQ, FCMPDelayCycle.rid, 1, 3 },
909
910 { MULX, FCMPDelayCycle.rid, 1, 1 },
911 { SDIVX, FCMPDelayCycle.rid, 1, 1 },
912 { UDIVX, FCMPDelayCycle.rid, 1, 1 },
913//{ SMULcc, FCMPDelayCycle.rid, 1, 1 },
914//{ UMULcc, FCMPDelayCycle.rid, 1, 1 },
915//{ SDIVcc, FCMPDelayCycle.rid, 1, 1 },
916//{ UDIVcc, FCMPDelayCycle.rid, 1, 1 },
917 { STD, FCMPDelayCycle.rid, 1, 1 },
918 { FMOVRSZ, FCMPDelayCycle.rid, 1, 1 },
919 { FMOVRSLEZ,FCMPDelayCycle.rid, 1, 1 },
920 { FMOVRSLZ, FCMPDelayCycle.rid, 1, 1 },
921 { FMOVRSNZ, FCMPDelayCycle.rid, 1, 1 },
922 { FMOVRSGZ, FCMPDelayCycle.rid, 1, 1 },
923 { FMOVRSGEZ,FCMPDelayCycle.rid, 1, 1 },
924
925 //
926 // Some instructions are stalled in the GROUP stage if a CTI is in
927 // the E or C stage
928 //
929 { LDD, CTIDelayCycle.rid, 1, 1 },
930//{ LDDA, CTIDelayCycle.rid, 1, 1 },
931//{ LDDSTUB, CTIDelayCycle.rid, 1, 1 },
932//{ LDDSTUBA, CTIDelayCycle.rid, 1, 1 },
933//{ SWAP, CTIDelayCycle.rid, 1, 1 },
934//{ SWAPA, CTIDelayCycle.rid, 1, 1 },
935//{ CAS, CTIDelayCycle.rid, 1, 1 },
936//{ CASA, CTIDelayCycle.rid, 1, 1 },
937//{ CASX, CTIDelayCycle.rid, 1, 1 },
938//{ CASXA, CTIDelayCycle.rid, 1, 1 },
939
940 //
941 // Signed int loads of less than dword size return data in cycle N1 (not C)
942 // and put all loads in consecutive cycles into delayed load return mode.
943 //
944 { LDSB, LdReturn.rid, 2, -1 },
945 { LDSB, LdReturn.rid, 3, 1 },
946
947 { LDSH, LdReturn.rid, 2, -1 },
948 { LDSH, LdReturn.rid, 3, 1 },
949
950 { LDSW, LdReturn.rid, 2, -1 },
951 { LDSW, LdReturn.rid, 3, 1 },
952
953
954#undef EXPLICIT_BUBBLES_NEEDED
955#ifdef EXPLICIT_BUBBLES_NEEDED
956 //
957 // MULScc inserts one bubble.
958 // This means it breaks the current group (captured in UltraSparcSchedInfo)
959 // *and occupies all issue slots for the next cycle
960 //
961//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
962//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
963//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
964//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
965
966 //
967 // SMULcc inserts between 4 and 18 bubbles, depending on #leading 0s in rs1.
968 // We just model this with a simple average.
969 //
970//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
971//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
972//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
973//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
974
975 // SMULcc inserts between 4 and 19 bubbles, depending on #leading 0s in rs1.
976//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
977//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
978//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
979//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
980
981 //
982 // MULX inserts between 4 and 34 bubbles, depending on #leading 0s in rs1.
983 //
984 { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
985 { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
986 { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
987 { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
988
989 //
990 // SDIVcc inserts 36 bubbles.
991 //
992//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
993//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
994//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
995//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
996
997 // UDIVcc inserts 37 bubbles.
998//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
999//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
1000//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
1001//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
1002
1003 //
1004 // SDIVX inserts 68 bubbles.
1005 //
1006 { SDIVX, AllIssueSlots.rid, 2, 68-1 },
1007 { SDIVX, AllIssueSlots.rid, 2, 68-1 },
1008 { SDIVX, AllIssueSlots.rid, 2, 68-1 },
1009 { SDIVX, AllIssueSlots.rid, 2, 68-1 },
1010
1011 //
1012 // UDIVX inserts 68 bubbles.
1013 //
1014 { UDIVX, AllIssueSlots.rid, 2, 68-1 },
1015 { UDIVX, AllIssueSlots.rid, 2, 68-1 },
1016 { UDIVX, AllIssueSlots.rid, 2, 68-1 },
1017 { UDIVX, AllIssueSlots.rid, 2, 68-1 },
1018
1019 //
1020 // WR inserts 4 bubbles.
1021 //
1022//{ WR, AllIssueSlots.rid, 2, 68-1 },
1023//{ WR, AllIssueSlots.rid, 2, 68-1 },
1024//{ WR, AllIssueSlots.rid, 2, 68-1 },
1025//{ WR, AllIssueSlots.rid, 2, 68-1 },
1026
1027 //
1028 // WRPR inserts 4 bubbles.
1029 //
1030//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
1031//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
1032//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
1033//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
1034
1035 //
1036 // DONE inserts 9 bubbles.
1037 //
1038//{ DONE, AllIssueSlots.rid, 2, 9-1 },
1039//{ DONE, AllIssueSlots.rid, 2, 9-1 },
1040//{ DONE, AllIssueSlots.rid, 2, 9-1 },
1041//{ DONE, AllIssueSlots.rid, 2, 9-1 },
1042
1043 //
1044 // RETRY inserts 9 bubbles.
1045 //
1046//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
1047//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
1048//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
1049//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
1050
Chris Lattnere369fcb2001-10-13 06:54:54 +00001051#endif /*EXPLICIT_BUBBLES_NEEDED */
Chris Lattnerc6495ee2001-09-14 03:56:45 +00001052};
1053
1054
1055
1056// Additional delays to be captured in code:
1057// 1. RDPR from several state registers (page 349)
1058// 2. RD from *any* register (page 349)
1059// 3. Writes to TICK, PSTATE, TL registers and FLUSH{W} instr (page 349)
1060// 4. Integer store can be in same group as instr producing value to store.
1061// 5. BICC and BPICC can be in the same group as instr producing CC (pg 350)
1062// 6. FMOVr cannot be in the same or next group as an IEU instr (pg 351).
1063// 7. The second instr. of a CTI group inserts 9 bubbles (pg 351)
1064// 8. WR{PR}, SVAE, SAVED, RESTORE, RESTORED, RETURN, RETRY, and DONE that
1065// follow an annulling branch cannot be issued in the same group or in
1066// the 3 groups following the branch.
1067// 9. A predicted annulled load does not stall dependent instructions.
1068// Other annulled delay slot instructions *do* stall dependents, so
1069// nothing special needs to be done for them during scheduling.
1070//10. Do not put a load use that may be annulled in the same group as the
1071// branch. The group will stall until the load returns.
1072//11. Single-prec. FP loads lock 2 registers, for dependency checking.
1073//
1074//
1075// Additional delays we cannot or will not capture:
1076// 1. If DCTI is last word of cache line, it is delayed until next line can be
1077// fetched. Also, other DCTI alignment-related delays (pg 352)
1078// 2. Load-after-store is delayed by 7 extra cycles if load hits in D-Cache.
1079// Also, several other store-load and load-store conflicts (pg 358)
1080// 3. MEMBAR, LD{X}FSR, LDD{A} and a bunch of other load stalls (pg 358)
1081// 4. There can be at most 8 outstanding buffered store instructions
1082// (including some others like MEMBAR, LDSTUB, CAS{AX}, and FLUSH)
1083
1084
1085
1086//---------------------------------------------------------------------------
1087// class UltraSparcSchedInfo
1088//
1089// Purpose:
1090// Interface to instruction scheduling information for UltraSPARC.
1091// The parameter values above are based on UltraSPARC IIi.
1092//---------------------------------------------------------------------------
1093
1094
1095class UltraSparcSchedInfo: public MachineSchedInfo {
1096public:
1097 /*ctor*/ UltraSparcSchedInfo (const MachineInstrInfo* mii);
1098 /*dtor*/ virtual ~UltraSparcSchedInfo () {}
1099protected:
1100 virtual void initializeResources ();
1101};
1102
Chris Lattnerf6e0e282001-09-14 04:32:55 +00001103
1104//---------------------------------------------------------------------------
Vikram S. Advec1521632001-10-22 13:31:53 +00001105// class UltraSparcFrameInfo
1106//
1107// Purpose:
1108// Interface to stack frame layout info for the UltraSPARC.
1109// Note that there is no machine-independent interface to this information
1110//---------------------------------------------------------------------------
1111
1112class UltraSparcFrameInfo: public NonCopyable {
1113public:
1114 static const int MinStackFrameSize = 176;
1115 static const int FirstOutgoingArgOffsetFromSP = 128;
1116 static const int FirstOptionalOutgoingArgOffsetFromSP = 176;
1117 static const int StaticStackAreaOffsetFromFP = -1;
1118
1119 static int getFirstAutomaticVarOffsetFromFP (const Method* method);
1120 static int getRegSpillAreaOffsetFromFP (const Method* method);
1121 static int getFrameSizeBelowDynamicArea (const Method* method);
1122};
1123
1124
1125
1126//---------------------------------------------------------------------------
Chris Lattnerf6e0e282001-09-14 04:32:55 +00001127// class UltraSparcMachine
1128//
1129// Purpose:
1130// Primary interface to machine description for the UltraSPARC.
1131// Primarily just initializes machine-dependent parameters in
1132// class TargetMachine, and creates machine-dependent subclasses
Vikram S. Adve339084b2001-09-18 13:04:24 +00001133// for classes such as InstrInfo, SchedInfo and RegInfo.
Chris Lattnerf6e0e282001-09-14 04:32:55 +00001134//---------------------------------------------------------------------------
1135
1136class UltraSparc : public TargetMachine {
Vikram S. Adve339084b2001-09-18 13:04:24 +00001137private:
1138 UltraSparcInstrInfo instrInfo;
1139 UltraSparcSchedInfo schedInfo;
1140 UltraSparcRegInfo regInfo;
Vikram S. Advec1521632001-10-22 13:31:53 +00001141 UltraSparcFrameInfo frameInfo;
Chris Lattnerf6e0e282001-09-14 04:32:55 +00001142public:
1143 UltraSparc();
1144 virtual ~UltraSparc() {}
Vikram S. Adve339084b2001-09-18 13:04:24 +00001145
Chris Lattner32f600a2001-09-19 13:47:12 +00001146 virtual const MachineInstrInfo &getInstrInfo() const { return instrInfo; }
1147 virtual const MachineSchedInfo &getSchedInfo() const { return schedInfo; }
1148 virtual const MachineRegInfo &getRegInfo() const { return regInfo; }
Vikram S. Advec1521632001-10-22 13:31:53 +00001149 const UltraSparcFrameInfo &getFrameInfo() const { return frameInfo; }
1150
Vikram S. Adve339084b2001-09-18 13:04:24 +00001151
Chris Lattnerf6e0e282001-09-14 04:32:55 +00001152 // compileMethod - For the sparc, we do instruction selection, followed by
1153 // delay slot scheduling, then register allocation.
1154 //
1155 virtual bool compileMethod(Method *M);
Chris Lattner32f600a2001-09-19 13:47:12 +00001156
1157 //
1158 // emitAssembly - Output assembly language code (a .s file) for the specified
1159 // module. The specified module must have been compiled before this may be
1160 // used.
1161 //
Chris Lattnerec0a95f2001-10-15 15:54:43 +00001162 virtual void emitAssembly(const Module *M, ostream &OutStr) const;
Chris Lattnerf6e0e282001-09-14 04:32:55 +00001163};
1164
1165
Chris Lattnerc6495ee2001-09-14 03:56:45 +00001166#endif