blob: 2a1875ee80994675af983aa4ac337fa9ccb971f5 [file] [log] [blame]
Chris Lattnerc6495ee2001-09-14 03:56:45 +00001//===-- SparcInternals.h - Header file for Sparc backend ---------*- C++ -*--=//
2//
3// This file defines stuff that is to be private to the Sparc backend, but is
4// shared among different portions of the backend.
5//
6//===----------------------------------------------------------------------===//
7
8#ifndef SPARC_INTERNALS_H
9#define SPARC_INTERNALS_H
10
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +000011
12#include "SparcRegClassInfo.h"
13#include "llvm/Target/TargetMachine.h"
14#include "llvm/Target/MachineInstrInfo.h"
15
Vikram S. Adve339084b2001-09-18 13:04:24 +000016#include "llvm/Target/MachineSchedInfo.h"
Ruchira Sasankaab304c42001-09-30 23:19:57 +000017#include "llvm/CodeGen/RegClass.h"
Chris Lattnerc6495ee2001-09-14 03:56:45 +000018#include "llvm/Type.h"
Vikram S. Adve339084b2001-09-18 13:04:24 +000019
Chris Lattner46cbff62001-09-14 16:56:32 +000020#include <sys/types.h>
Chris Lattnerc6495ee2001-09-14 03:56:45 +000021
Chris Lattnerf6e0e282001-09-14 04:32:55 +000022class UltraSparc;
23
Chris Lattnerc6495ee2001-09-14 03:56:45 +000024// OpCodeMask definitions for the Sparc V9
25//
26const OpCodeMask Immed = 0x00002000; // immed or reg operand?
27const OpCodeMask Annul = 0x20000000; // annul delay instr?
28const OpCodeMask PredictTaken = 0x00080000; // predict branch taken?
29
30
31enum SparcInstrSchedClass {
32 SPARC_NONE, /* Instructions with no scheduling restrictions */
33 SPARC_IEUN, /* Integer class that can use IEU0 or IEU1 */
34 SPARC_IEU0, /* Integer class IEU0 */
35 SPARC_IEU1, /* Integer class IEU1 */
36 SPARC_FPM, /* FP Multiply or Divide instructions */
37 SPARC_FPA, /* All other FP instructions */
38 SPARC_CTI, /* Control-transfer instructions */
39 SPARC_LD, /* Load instructions */
40 SPARC_ST, /* Store instructions */
41 SPARC_SINGLE, /* Instructions that must issue by themselves */
42
43 SPARC_INV, /* This should stay at the end for the next value */
44 SPARC_NUM_SCHED_CLASSES = SPARC_INV
45};
46
Chris Lattnerc6495ee2001-09-14 03:56:45 +000047
48//---------------------------------------------------------------------------
49// enum SparcMachineOpCode.
50// const MachineInstrDescriptor SparcMachineInstrDesc[]
51//
52// Purpose:
53// Description of UltraSparc machine instructions.
54//
55//---------------------------------------------------------------------------
56
Chris Lattnerc6495ee2001-09-14 03:56:45 +000057enum SparcMachineOpCode {
Chris Lattner9a3d63b2001-09-19 15:56:23 +000058#define I(ENUM, OPCODESTRING, NUMOPERANDS, RESULTPOS, MAXIMM, IMMSE, \
59 NUMDELAYSLOTS, LATENCY, SCHEDCLASS, INSTFLAGS) \
60 ENUM,
61#include "SparcInstr.def"
Chris Lattnerc6495ee2001-09-14 03:56:45 +000062
Chris Lattnerc6495ee2001-09-14 03:56:45 +000063 // End-of-array marker
64 INVALID_OPCODE,
65 NUM_REAL_OPCODES = RETURN+1, // number of valid opcodes
66 NUM_TOTAL_OPCODES = INVALID_OPCODE
67};
68
Chris Lattnerc6495ee2001-09-14 03:56:45 +000069
Chris Lattner9a3d63b2001-09-19 15:56:23 +000070// Array of machine instruction descriptions...
71extern const MachineInstrDescriptor SparcMachineInstrDesc[];
Chris Lattnerc6495ee2001-09-14 03:56:45 +000072
73
74//---------------------------------------------------------------------------
75// class UltraSparcInstrInfo
76//
77// Purpose:
78// Information about individual instructions.
79// Most information is stored in the SparcMachineInstrDesc array above.
80// Other information is computed on demand, and most such functions
81// default to member functions in base class MachineInstrInfo.
82//---------------------------------------------------------------------------
83
84class UltraSparcInstrInfo : public MachineInstrInfo {
85public:
86 /*ctor*/ UltraSparcInstrInfo();
87
88 virtual bool hasResultInterlock (MachineOpCode opCode)
89 {
90 // All UltraSPARC instructions have interlocks (note that delay slots
91 // are not considered here).
92 // However, instructions that use the result of an FCMP produce a
93 // 9-cycle stall if they are issued less than 3 cycles after the FCMP.
94 // Force the compiler to insert a software interlock (i.e., gap of
95 // 2 other groups, including NOPs if necessary).
96 return (opCode == FCMPS || opCode == FCMPD || opCode == FCMPQ);
97 }
98
Ruchira Sasankaab304c42001-09-30 23:19:57 +000099
100
101
102
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000103};
104
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000105
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000106
107class LiveRange;
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000108class UltraSparc;
109
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000110
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000111
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000112class UltraSparcRegInfo : public MachineRegInfo
113{
114
115 private:
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000116
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000117 // The actual register classes in the Sparc
118
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000119 enum RegClassIDs {
120 IntRegClassID,
121 FloatRegClassID,
122 IntCCRegClassID,
123 FloatCCRegClassID
124 };
125
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000126
127 // Type of registers available in Sparc. There can be several reg types
128 // in the same class. For instace, the float reg class has Single/Double
129 // types
130 enum RegTypes {
131 IntRegType,
132 FPSingleRegType,
133 FPDoubleRegType,
134 IntCCRegType,
135 FloatCCRegType
136 };
137
138
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000139 // WARNING: If the above enum order must be changed, also modify
140 // getRegisterClassOfValue method below since it assumes this particular
141 // order for efficiency.
142
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000143
144 // reverse pointer to get info about the ultra sparc machine
145 const UltraSparc *const UltraSparcInfo;
146
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000147 // Both int and float rguments can be passed in 6 int regs -
148 // %o0 to %o5 (cannot be changed)
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000149 unsigned const NumOfIntArgRegs;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000150 unsigned const NumOfFloatArgRegs;
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000151 unsigned const InvalidRegNum;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000152
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000153 //void setCallArgColor(LiveRange *const LR, const unsigned RegNo) const;
154
155 void setCallOrRetArgCol(LiveRange *const LR, const unsigned RegNo,
156 const MachineInstr *MI,AddedInstrMapType &AIMap)const;
157
158 MachineInstr * getCopy2RegMI(const Value *SrcVal, const unsigned Reg,
159 unsigned RegClassID) const ;
160
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000161 Value *getValue4ReturnAddr( const MachineInstr * MInst ) const ;
162
163 int getRegType(const LiveRange *const LR) const {
164
165 unsigned Typ;
166
167 switch( (LR->getRegClass())->getID() ) {
168
169 case IntRegClassID: return IntRegType;
170
171 case FloatRegClassID:
172 Typ = LR->getTypeID();
173 if( Typ == Type::FloatTyID )
174 return FPSingleRegType;
175 else if( Typ == Type::DoubleTyID )
176 return FPDoubleRegType;
177 else assert(0 && "Unknown type in FloatRegClass");
178
179 case IntCCRegClassID: return IntCCRegType;
180
181 case FloatCCRegClassID: return FloatCCRegType ;
182
183 default: assert( 0 && "Unknown reg class ID");
184
185 }
186
187 }
188
189 int getRegType(const Value *const Val) const {
190
191 unsigned Typ;
192
193 switch( getRegClassIDOfValue(Val) ) {
194
195 case IntRegClassID: return IntRegType;
196
197 case FloatRegClassID:
198 Typ = (Val->getType())->getPrimitiveID();
199 if( Typ == Type::FloatTyID )
200 return FPSingleRegType;
201 else if( Typ == Type::DoubleTyID )
202 return FPDoubleRegType;
203 else assert(0 && "Unknown type in FloatRegClass");
204
205 case IntCCRegClassID: return IntCCRegType;
206
207 case FloatCCRegClassID: return FloatCCRegType ;
208
209 default: assert( 0 && "Unknown reg class ID");
210
211 }
212
213 }
214
215
216
217
218 MachineInstr * cpReg2RegMI(const unsigned SrcReg, const unsigned DestReg,
219 const int RegType) const;
220
221 MachineInstr * cpValue2RegMI(Value * Val, const unsigned DestReg,
222 const int RegType) const;
223
224
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000225 public:
226
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000227
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000228 UltraSparcRegInfo(const UltraSparc *const USI ) : UltraSparcInfo(USI),
229 NumOfIntArgRegs(6),
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000230 NumOfFloatArgRegs(32),
231 InvalidRegNum(1000)
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000232 {
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000233 MachineRegClassArr.push_back( new SparcIntRegClass(IntRegClassID) );
234 MachineRegClassArr.push_back( new SparcFloatRegClass(FloatRegClassID) );
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000235 MachineRegClassArr.push_back( new SparcIntCCRegClass(IntCCRegClassID) );
236 MachineRegClassArr.push_back( new SparcFloatCCRegClass(FloatCCRegClassID));
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000237
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000238 assert( SparcFloatRegOrder::StartOfNonVolatileRegs == 32 &&
239 "32 Float regs are used for float arg passing");
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000240 }
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000241
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000242 // ***** TODO Delete
243 ~UltraSparcRegInfo(void) { } // empty destructor
244
245
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000246 inline const UltraSparc & getUltraSparcInfo() const {
247 return *UltraSparcInfo;
248 }
249
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000250
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000251
252 inline unsigned getRegClassIDOfValue (const Value *const Val,
253 bool isCCReg = false) const {
254
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000255 Type::PrimitiveID ty = (Val->getType())->getPrimitiveID();
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000256
257 unsigned res;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000258
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000259 if( (ty && ty <= Type::LongTyID) || (ty == Type::LabelTyID) ||
260 (ty == Type::MethodTyID) || (ty == Type::PointerTyID) )
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000261 res = IntRegClassID; // sparc int reg (ty=0: void)
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000262 else if( ty <= Type::DoubleTyID)
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000263 res = FloatRegClassID; // sparc float reg class
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000264 else {
265 cout << "TypeID: " << ty << endl;
266 assert(0 && "Cannot resolve register class for type");
267
268 }
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000269
270 if(isCCReg)
271 return res + 2; // corresponidng condition code regiser
272
273 else
274 return res;
275
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000276 }
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000277
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000278 // returns the register tha contains always zero
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000279 // this is the unified register number
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000280 inline int getZeroRegNum() const { return SparcIntRegOrder::g0; }
281
282 // returns the reg used for pushing the address when a method is called.
283 // This can be used for other purposes between calls
284 unsigned getCallAddressReg() const { return SparcIntRegOrder::o7; }
285
286
287 // and when we return from a method. It should be made sure that this
288 // register contains the return value when a return instruction is reached.
289 unsigned getReturnAddressReg() const { return SparcIntRegOrder::i7; }
290
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000291 void suggestRegs4MethodArgs(const Method *const Meth,
292 LiveRangeInfo& LRI) const;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000293
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000294 void suggestRegs4CallArgs(const CallInst *const CallI,
295 LiveRangeInfo& LRI, vector<RegClass *> RCL) const;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000296
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000297 void suggestReg4RetValue(const ReturnInst *const RetI,
298 LiveRangeInfo& LRI) const;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000299
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000300
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000301 void colorMethodArgs(const Method *const Meth, LiveRangeInfo& LRI,
302 AddedInstrns *const FirstAI) const;
303
304 void colorCallArgs(const CallInst *const CallI, LiveRangeInfo& LRI,
305 AddedInstrns *const CallAI) const;
306
307 void colorRetValue(const ReturnInst *const RetI, LiveRangeInfo& LRI,
308 AddedInstrns *const RetAI) const;
309
310
311 bool handleSpecialMInstr(const MachineInstr * MInst,
312 LiveRangeInfo& LRI, vector<RegClass *> RCL) const;
313
314
315 static void printReg(const LiveRange *const LR) ;
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000316
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000317 // this method provides a unique number for each register
318 inline int getUnifiedRegNum(int RegClassID, int reg) const {
319
320 if( RegClassID == IntRegClassID && reg < 32 )
321 return reg;
322 else if ( RegClassID == FloatRegClassID && reg < 64)
323 return reg + 32; // we have 32 int regs
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000324 else if( RegClassID == FloatCCRegClassID && reg < 4)
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000325 return reg + 32 + 64; // 32 int, 64 float
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000326 else if( RegClassID == IntCCRegClassID )
327 return 4+ 32 + 64; // only int cc reg
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000328 else if (reg==1000) //****** TODO: Remove
329 return 1000;
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000330 else
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000331 assert(0 && "Invalid register class or reg number");
332
333 }
334
335 // given the unified register number, this gives the name
336 inline const string getUnifiedRegName(int reg) const {
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000337 if( reg < 32 )
338 return SparcIntRegOrder::getRegName(reg);
339 else if ( reg < (64 + 32) )
340 return SparcFloatRegOrder::getRegName( reg - 32);
341 else if( reg < (64+32+4) )
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000342 return SparcFloatCCRegOrder::getRegName( reg -32 - 64);
343 else if ( reg == 64+32+4)
344 return "xcc"; // only integer cc reg
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000345
346 else if (reg==1000) //****** TODO: Remove
347 return "<*NoReg*>";
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000348 else
349 assert(0 && "Invalid register number");
350 }
351
352
353};
354
355
356
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000357/*---------------------------------------------------------------------------
358Scheduling guidelines for SPARC IIi:
359
360I-Cache alignment rules (pg 326)
361-- Align a branch target instruction so that it's entire group is within
362 the same cache line (may be 1-4 instructions).
363** Don't let a branch that is predicted taken be the last instruction
364 on an I-cache line: delay slot will need an entire line to be fetched
365-- Make a FP instruction or a branch be the 4th instruction in a group.
366 For branches, there are tradeoffs in reordering to make this happen
367 (see pg. 327).
368** Don't put a branch in a group that crosses a 32-byte boundary!
369 An artificial branch is inserted after every 32 bytes, and having
370 another branch will force the group to be broken into 2 groups.
371
372iTLB rules:
373-- Don't let a loop span two memory pages, if possible
374
375Branch prediction performance:
376-- Don't make the branch in a delay slot the target of a branch
377-- Try not to have 2 predicted branches within a group of 4 instructions
378 (because each such group has a single branch target field).
379-- Try to align branches in slots 0, 2, 4 or 6 of a cache line (to avoid
380 the wrong prediction bits being used in some cases).
381
382D-Cache timing constraints:
383-- Signed int loads of less than 64 bits have 3 cycle latency, not 2
384-- All other loads that hit in D-Cache have 2 cycle latency
385-- All loads are returned IN ORDER, so a D-Cache miss will delay a later hit
386-- Mis-aligned loads or stores cause a trap. In particular, replace
387 mis-aligned FP double precision l/s with 2 single-precision l/s.
388-- Simulations of integer codes show increase in avg. group size of
389 33% when code (including esp. non-faulting loads) is moved across
390 one branch, and 50% across 2 branches.
391
392E-Cache timing constraints:
393-- Scheduling for E-cache (D-Cache misses) is effective (due to load buffering)
394
395Store buffer timing constraints:
396-- Stores can be executed in same cycle as instruction producing the value
397-- Stores are buffered and have lower priority for E-cache until
398 highwater mark is reached in the store buffer (5 stores)
399
400Pipeline constraints:
401-- Shifts can only use IEU0.
402-- CC setting instructions can only use IEU1.
403-- Several other instructions must only use IEU1:
404 EDGE(?), ARRAY(?), CALL, JMPL, BPr, PST, and FCMP.
405-- Two instructions cannot store to the same register file in a single cycle
406 (single write port per file).
407
408Issue and grouping constraints:
409-- FP and branch instructions must use slot 4.
410-- Shift instructions cannot be grouped with other IEU0-specific instructions.
411-- CC setting instructions cannot be grouped with other IEU1-specific instrs.
412-- Several instructions must be issued in a single-instruction group:
413 MOVcc or MOVr, MULs/x and DIVs/x, SAVE/RESTORE, many others
414-- A CALL or JMPL breaks a group, ie, is not combined with subsequent instrs.
415--
416--
417
418Branch delay slot scheduling rules:
419-- A CTI couple (two back-to-back CTI instructions in the dynamic stream)
420 has a 9-instruction penalty: the entire pipeline is flushed when the
421 second instruction reaches stage 9 (W-Writeback).
422-- Avoid putting multicycle instructions, and instructions that may cause
423 load misses, in the delay slot of an annulling branch.
424-- Avoid putting WR, SAVE..., RESTORE and RETURN instructions in the
425 delay slot of an annulling branch.
426
427 *--------------------------------------------------------------------------- */
428
429//---------------------------------------------------------------------------
430// List of CPUResources for UltraSPARC IIi.
431//---------------------------------------------------------------------------
432
433const CPUResource AllIssueSlots( "All Instr Slots", 4);
434const CPUResource IntIssueSlots( "Int Instr Slots", 3);
435const CPUResource First3IssueSlots("Instr Slots 0-3", 3);
436const CPUResource LSIssueSlots( "Load-Store Instr Slot", 1);
437const CPUResource CTIIssueSlots( "Ctrl Transfer Instr Slot", 1);
438const CPUResource FPAIssueSlots( "Int Instr Slot 1", 1);
439const CPUResource FPMIssueSlots( "Int Instr Slot 1", 1);
440
441// IEUN instructions can use either Alu and should use IAluN.
442// IEU0 instructions must use Alu 1 and should use both IAluN and IAlu0.
443// IEU1 instructions must use Alu 2 and should use both IAluN and IAlu1.
444const CPUResource IAluN("Int ALU 1or2", 2);
445const CPUResource IAlu0("Int ALU 1", 1);
446const CPUResource IAlu1("Int ALU 2", 1);
447
448const CPUResource LSAluC1("Load/Store Unit Addr Cycle", 1);
449const CPUResource LSAluC2("Load/Store Unit Issue Cycle", 1);
450const CPUResource LdReturn("Load Return Unit", 1);
451
452const CPUResource FPMAluC1("FP Mul/Div Alu Cycle 1", 1);
453const CPUResource FPMAluC2("FP Mul/Div Alu Cycle 2", 1);
454const CPUResource FPMAluC3("FP Mul/Div Alu Cycle 3", 1);
455
456const CPUResource FPAAluC1("FP Other Alu Cycle 1", 1);
457const CPUResource FPAAluC2("FP Other Alu Cycle 2", 1);
458const CPUResource FPAAluC3("FP Other Alu Cycle 3", 1);
459
460const CPUResource IRegReadPorts("Int Reg ReadPorts", INT_MAX); // CHECK
461const CPUResource IRegWritePorts("Int Reg WritePorts", 2); // CHECK
462const CPUResource FPRegReadPorts("FP Reg Read Ports", INT_MAX); // CHECK
463const CPUResource FPRegWritePorts("FP Reg Write Ports", 1); // CHECK
464
465const CPUResource CTIDelayCycle( "CTI delay cycle", 1);
466const CPUResource FCMPDelayCycle("FCMP delay cycle", 1);
467
468
469//---------------------------------------------------------------------------
470// const InstrClassRUsage SparcRUsageDesc[]
471//
472// Purpose:
473// Resource usage information for instruction in each scheduling class.
474// The InstrRUsage Objects for individual classes are specified first.
475// Note that fetch and decode are decoupled from the execution pipelines
476// via an instr buffer, so they are not included in the cycles below.
477//---------------------------------------------------------------------------
478
479const InstrClassRUsage NoneClassRUsage = {
480 SPARC_NONE,
481 /*totCycles*/ 7,
482
483 /* maxIssueNum */ 4,
484 /* isSingleIssue */ false,
485 /* breaksGroup */ false,
486 /* numBubbles */ 0,
487
488 /*numSlots*/ 4,
489 /* feasibleSlots[] */ { 0, 1, 2, 3 },
490
491 /*numEntries*/ 0,
492 /* V[] */ {
493 /*Cycle G */
494 /*Cycle E */
495 /*Cycle C */
496 /*Cycle N1*/
497 /*Cycle N1*/
498 /*Cycle N1*/
499 /*Cycle W */
500 }
501};
502
503const InstrClassRUsage IEUNClassRUsage = {
504 SPARC_IEUN,
505 /*totCycles*/ 7,
506
507 /* maxIssueNum */ 3,
508 /* isSingleIssue */ false,
509 /* breaksGroup */ false,
510 /* numBubbles */ 0,
511
512 /*numSlots*/ 3,
513 /* feasibleSlots[] */ { 0, 1, 2 },
514
515 /*numEntries*/ 4,
516 /* V[] */ {
517 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
518 { IntIssueSlots.rid, 0, 1 },
519 /*Cycle E */ { IAluN.rid, 1, 1 },
520 /*Cycle C */
521 /*Cycle N1*/
522 /*Cycle N1*/
523 /*Cycle N1*/
524 /*Cycle W */ { IRegWritePorts.rid, 6, 1 }
525 }
526};
527
528const InstrClassRUsage IEU0ClassRUsage = {
529 SPARC_IEU0,
530 /*totCycles*/ 7,
531
532 /* maxIssueNum */ 1,
533 /* isSingleIssue */ false,
534 /* breaksGroup */ false,
535 /* numBubbles */ 0,
536
537 /*numSlots*/ 3,
538 /* feasibleSlots[] */ { 0, 1, 2 },
539
540 /*numEntries*/ 5,
541 /* V[] */ {
542 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
543 { IntIssueSlots.rid, 0, 1 },
544 /*Cycle E */ { IAluN.rid, 1, 1 },
545 { IAlu0.rid, 1, 1 },
546 /*Cycle C */
547 /*Cycle N1*/
548 /*Cycle N1*/
549 /*Cycle N1*/
550 /*Cycle W */ { IRegWritePorts.rid, 6, 1 }
551 }
552};
553
554const InstrClassRUsage IEU1ClassRUsage = {
555 SPARC_IEU1,
556 /*totCycles*/ 7,
557
558 /* maxIssueNum */ 1,
559 /* isSingleIssue */ false,
560 /* breaksGroup */ false,
561 /* numBubbles */ 0,
562
563 /*numSlots*/ 3,
564 /* feasibleSlots[] */ { 0, 1, 2 },
565
566 /*numEntries*/ 5,
567 /* V[] */ {
568 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
569 { IntIssueSlots.rid, 0, 1 },
570 /*Cycle E */ { IAluN.rid, 1, 1 },
571 { IAlu1.rid, 1, 1 },
572 /*Cycle C */
573 /*Cycle N1*/
574 /*Cycle N1*/
575 /*Cycle N1*/
576 /*Cycle W */ { IRegWritePorts.rid, 6, 1 }
577 }
578};
579
580const InstrClassRUsage FPMClassRUsage = {
581 SPARC_FPM,
582 /*totCycles*/ 7,
583
584 /* maxIssueNum */ 1,
585 /* isSingleIssue */ false,
586 /* breaksGroup */ false,
587 /* numBubbles */ 0,
588
589 /*numSlots*/ 4,
590 /* feasibleSlots[] */ { 0, 1, 2, 3 },
591
592 /*numEntries*/ 7,
593 /* V[] */ {
594 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
595 { FPMIssueSlots.rid, 0, 1 },
596 /*Cycle E */ { FPRegReadPorts.rid, 1, 1 },
597 /*Cycle C */ { FPMAluC1.rid, 2, 1 },
598 /*Cycle N1*/ { FPMAluC2.rid, 3, 1 },
599 /*Cycle N1*/ { FPMAluC3.rid, 4, 1 },
600 /*Cycle N1*/
601 /*Cycle W */ { FPRegWritePorts.rid, 6, 1 }
602 }
603};
604
605const InstrClassRUsage FPAClassRUsage = {
606 SPARC_FPA,
607 /*totCycles*/ 7,
608
609 /* maxIssueNum */ 1,
610 /* isSingleIssue */ false,
611 /* breaksGroup */ false,
612 /* numBubbles */ 0,
613
614 /*numSlots*/ 4,
615 /* feasibleSlots[] */ { 0, 1, 2, 3 },
616
617 /*numEntries*/ 7,
618 /* V[] */ {
619 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
620 { FPAIssueSlots.rid, 0, 1 },
621 /*Cycle E */ { FPRegReadPorts.rid, 1, 1 },
622 /*Cycle C */ { FPAAluC1.rid, 2, 1 },
623 /*Cycle N1*/ { FPAAluC2.rid, 3, 1 },
624 /*Cycle N1*/ { FPAAluC3.rid, 4, 1 },
625 /*Cycle N1*/
626 /*Cycle W */ { FPRegWritePorts.rid, 6, 1 }
627 }
628};
629
630const InstrClassRUsage LDClassRUsage = {
631 SPARC_LD,
632 /*totCycles*/ 7,
633
634 /* maxIssueNum */ 1,
635 /* isSingleIssue */ false,
636 /* breaksGroup */ false,
637 /* numBubbles */ 0,
638
639 /*numSlots*/ 3,
640 /* feasibleSlots[] */ { 0, 1, 2, },
641
642 /*numEntries*/ 6,
643 /* V[] */ {
644 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
645 { First3IssueSlots.rid, 0, 1 },
646 { LSIssueSlots.rid, 0, 1 },
647 /*Cycle E */ { LSAluC1.rid, 1, 1 },
648 /*Cycle C */ { LSAluC2.rid, 2, 1 },
649 { LdReturn.rid, 2, 1 },
650 /*Cycle N1*/
651 /*Cycle N1*/
652 /*Cycle N1*/
653 /*Cycle W */ { IRegWritePorts.rid, 6, 1 }
654 }
655};
656
657const InstrClassRUsage STClassRUsage = {
658 SPARC_ST,
659 /*totCycles*/ 7,
660
661 /* maxIssueNum */ 1,
662 /* isSingleIssue */ false,
663 /* breaksGroup */ false,
664 /* numBubbles */ 0,
665
666 /*numSlots*/ 3,
667 /* feasibleSlots[] */ { 0, 1, 2 },
668
669 /*numEntries*/ 4,
670 /* V[] */ {
671 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
672 { First3IssueSlots.rid, 0, 1 },
673 { LSIssueSlots.rid, 0, 1 },
674 /*Cycle E */ { LSAluC1.rid, 1, 1 },
675 /*Cycle C */ { LSAluC2.rid, 2, 1 }
676 /*Cycle N1*/
677 /*Cycle N1*/
678 /*Cycle N1*/
679 /*Cycle W */
680 }
681};
682
683const InstrClassRUsage CTIClassRUsage = {
684 SPARC_CTI,
685 /*totCycles*/ 7,
686
687 /* maxIssueNum */ 1,
688 /* isSingleIssue */ false,
689 /* breaksGroup */ false,
690 /* numBubbles */ 0,
691
692 /*numSlots*/ 4,
693 /* feasibleSlots[] */ { 0, 1, 2, 3 },
694
695 /*numEntries*/ 4,
696 /* V[] */ {
697 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
698 { CTIIssueSlots.rid, 0, 1 },
699 /*Cycle E */ { IAlu0.rid, 1, 1 },
700 /*Cycles E-C */ { CTIDelayCycle.rid, 1, 2 }
701 /*Cycle C */
702 /*Cycle N1*/
703 /*Cycle N1*/
704 /*Cycle N1*/
705 /*Cycle W */
706 }
707};
708
709const InstrClassRUsage SingleClassRUsage = {
710 SPARC_SINGLE,
711 /*totCycles*/ 7,
712
713 /* maxIssueNum */ 1,
714 /* isSingleIssue */ true,
715 /* breaksGroup */ false,
716 /* numBubbles */ 0,
717
718 /*numSlots*/ 1,
719 /* feasibleSlots[] */ { 0 },
720
721 /*numEntries*/ 5,
722 /* V[] */ {
723 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
724 { AllIssueSlots.rid, 0, 1 },
725 { AllIssueSlots.rid, 0, 1 },
726 { AllIssueSlots.rid, 0, 1 },
727 /*Cycle E */ { IAlu0.rid, 1, 1 }
728 /*Cycle C */
729 /*Cycle N1*/
730 /*Cycle N1*/
731 /*Cycle N1*/
732 /*Cycle W */
733 }
734};
735
736
737const InstrClassRUsage SparcRUsageDesc[] = {
738 NoneClassRUsage,
739 IEUNClassRUsage,
740 IEU0ClassRUsage,
741 IEU1ClassRUsage,
742 FPMClassRUsage,
743 FPAClassRUsage,
744 CTIClassRUsage,
745 LDClassRUsage,
746 STClassRUsage,
747 SingleClassRUsage
748};
749
750
751//---------------------------------------------------------------------------
752// const InstrIssueDelta SparcInstrIssueDeltas[]
753//
754// Purpose:
755// Changes to issue restrictions information in InstrClassRUsage for
756// instructions that differ from other instructions in their class.
757//---------------------------------------------------------------------------
758
759const InstrIssueDelta SparcInstrIssueDeltas[] = {
760
761 // opCode, isSingleIssue, breaksGroup, numBubbles
762
763 // Special cases for single-issue only
764 // Other single issue cases are below.
765//{ LDDA, true, true, 0 },
766//{ STDA, true, true, 0 },
767//{ LDDF, true, true, 0 },
768//{ LDDFA, true, true, 0 },
769 { ADDC, true, true, 0 },
770 { ADDCcc, true, true, 0 },
771 { SUBC, true, true, 0 },
772 { SUBCcc, true, true, 0 },
773//{ SAVE, true, true, 0 },
774//{ RESTORE, true, true, 0 },
775//{ LDSTUB, true, true, 0 },
776//{ SWAP, true, true, 0 },
777//{ SWAPA, true, true, 0 },
778//{ CAS, true, true, 0 },
779//{ CASA, true, true, 0 },
780//{ CASX, true, true, 0 },
781//{ CASXA, true, true, 0 },
782//{ LDFSR, true, true, 0 },
783//{ LDFSRA, true, true, 0 },
784//{ LDXFSR, true, true, 0 },
785//{ LDXFSRA, true, true, 0 },
786//{ STFSR, true, true, 0 },
787//{ STFSRA, true, true, 0 },
788//{ STXFSR, true, true, 0 },
789//{ STXFSRA, true, true, 0 },
790//{ SAVED, true, true, 0 },
791//{ RESTORED, true, true, 0 },
792//{ FLUSH, true, true, 9 },
793//{ FLUSHW, true, true, 9 },
794//{ ALIGNADDR, true, true, 0 },
795 { RETURN, true, true, 0 },
796//{ DONE, true, true, 0 },
797//{ RETRY, true, true, 0 },
798//{ WR, true, true, 0 },
799//{ WRPR, true, true, 4 },
800//{ RD, true, true, 0 },
801//{ RDPR, true, true, 0 },
802//{ TCC, true, true, 0 },
803//{ SHUTDOWN, true, true, 0 },
804
805 // Special cases for breaking group *before*
806 // CURRENTLY NOT SUPPORTED!
807 { CALL, false, false, 0 },
808 { JMPL, false, false, 0 },
809
810 // Special cases for breaking the group *after*
811 { MULX, true, true, (4+34)/2 },
812 { FDIVS, false, true, 0 },
813 { FDIVD, false, true, 0 },
814 { FDIVQ, false, true, 0 },
815 { FSQRTS, false, true, 0 },
816 { FSQRTD, false, true, 0 },
817 { FSQRTQ, false, true, 0 },
818//{ FCMP{LE,GT,NE,EQ}, false, true, 0 },
819
820 // Instructions that introduce bubbles
821//{ MULScc, true, true, 2 },
822//{ SMULcc, true, true, (4+18)/2 },
823//{ UMULcc, true, true, (4+19)/2 },
824 { SDIVX, true, true, 68 },
825 { UDIVX, true, true, 68 },
826//{ SDIVcc, true, true, 36 },
827//{ UDIVcc, true, true, 37 },
828//{ WR, false, false, 4 },
829//{ WRPR, false, false, 4 },
830};
831
832
833//---------------------------------------------------------------------------
834// const InstrRUsageDelta SparcInstrUsageDeltas[]
835//
836// Purpose:
837// Changes to resource usage information in InstrClassRUsage for
838// instructions that differ from other instructions in their class.
839//---------------------------------------------------------------------------
840
841const InstrRUsageDelta SparcInstrUsageDeltas[] = {
842
843 // MachineOpCode, Resource, Start cycle, Num cycles
844
845 //
846 // JMPL counts as a load/store instruction for issue!
847 //
848 { JMPL, LSIssueSlots.rid, 0, 1 },
849
850 //
851 // Many instructions cannot issue for the next 2 cycles after an FCMP
852 // We model that with a fake resource FCMPDelayCycle.
853 //
854 { FCMPS, FCMPDelayCycle.rid, 1, 3 },
855 { FCMPD, FCMPDelayCycle.rid, 1, 3 },
856 { FCMPQ, FCMPDelayCycle.rid, 1, 3 },
857
858 { MULX, FCMPDelayCycle.rid, 1, 1 },
859 { SDIVX, FCMPDelayCycle.rid, 1, 1 },
860 { UDIVX, FCMPDelayCycle.rid, 1, 1 },
861//{ SMULcc, FCMPDelayCycle.rid, 1, 1 },
862//{ UMULcc, FCMPDelayCycle.rid, 1, 1 },
863//{ SDIVcc, FCMPDelayCycle.rid, 1, 1 },
864//{ UDIVcc, FCMPDelayCycle.rid, 1, 1 },
865 { STD, FCMPDelayCycle.rid, 1, 1 },
866 { FMOVRSZ, FCMPDelayCycle.rid, 1, 1 },
867 { FMOVRSLEZ,FCMPDelayCycle.rid, 1, 1 },
868 { FMOVRSLZ, FCMPDelayCycle.rid, 1, 1 },
869 { FMOVRSNZ, FCMPDelayCycle.rid, 1, 1 },
870 { FMOVRSGZ, FCMPDelayCycle.rid, 1, 1 },
871 { FMOVRSGEZ,FCMPDelayCycle.rid, 1, 1 },
872
873 //
874 // Some instructions are stalled in the GROUP stage if a CTI is in
875 // the E or C stage
876 //
877 { LDD, CTIDelayCycle.rid, 1, 1 },
878//{ LDDA, CTIDelayCycle.rid, 1, 1 },
879//{ LDDSTUB, CTIDelayCycle.rid, 1, 1 },
880//{ LDDSTUBA, CTIDelayCycle.rid, 1, 1 },
881//{ SWAP, CTIDelayCycle.rid, 1, 1 },
882//{ SWAPA, CTIDelayCycle.rid, 1, 1 },
883//{ CAS, CTIDelayCycle.rid, 1, 1 },
884//{ CASA, CTIDelayCycle.rid, 1, 1 },
885//{ CASX, CTIDelayCycle.rid, 1, 1 },
886//{ CASXA, CTIDelayCycle.rid, 1, 1 },
887
888 //
889 // Signed int loads of less than dword size return data in cycle N1 (not C)
890 // and put all loads in consecutive cycles into delayed load return mode.
891 //
892 { LDSB, LdReturn.rid, 2, -1 },
893 { LDSB, LdReturn.rid, 3, 1 },
894
895 { LDSH, LdReturn.rid, 2, -1 },
896 { LDSH, LdReturn.rid, 3, 1 },
897
898 { LDSW, LdReturn.rid, 2, -1 },
899 { LDSW, LdReturn.rid, 3, 1 },
900
901
902#undef EXPLICIT_BUBBLES_NEEDED
903#ifdef EXPLICIT_BUBBLES_NEEDED
904 //
905 // MULScc inserts one bubble.
906 // This means it breaks the current group (captured in UltraSparcSchedInfo)
907 // *and occupies all issue slots for the next cycle
908 //
909//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
910//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
911//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
912//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
913
914 //
915 // SMULcc inserts between 4 and 18 bubbles, depending on #leading 0s in rs1.
916 // We just model this with a simple average.
917 //
918//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
919//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
920//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
921//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
922
923 // SMULcc inserts between 4 and 19 bubbles, depending on #leading 0s in rs1.
924//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
925//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
926//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
927//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
928
929 //
930 // MULX inserts between 4 and 34 bubbles, depending on #leading 0s in rs1.
931 //
932 { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
933 { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
934 { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
935 { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
936
937 //
938 // SDIVcc inserts 36 bubbles.
939 //
940//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
941//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
942//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
943//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
944
945 // UDIVcc inserts 37 bubbles.
946//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
947//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
948//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
949//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
950
951 //
952 // SDIVX inserts 68 bubbles.
953 //
954 { SDIVX, AllIssueSlots.rid, 2, 68-1 },
955 { SDIVX, AllIssueSlots.rid, 2, 68-1 },
956 { SDIVX, AllIssueSlots.rid, 2, 68-1 },
957 { SDIVX, AllIssueSlots.rid, 2, 68-1 },
958
959 //
960 // UDIVX inserts 68 bubbles.
961 //
962 { UDIVX, AllIssueSlots.rid, 2, 68-1 },
963 { UDIVX, AllIssueSlots.rid, 2, 68-1 },
964 { UDIVX, AllIssueSlots.rid, 2, 68-1 },
965 { UDIVX, AllIssueSlots.rid, 2, 68-1 },
966
967 //
968 // WR inserts 4 bubbles.
969 //
970//{ WR, AllIssueSlots.rid, 2, 68-1 },
971//{ WR, AllIssueSlots.rid, 2, 68-1 },
972//{ WR, AllIssueSlots.rid, 2, 68-1 },
973//{ WR, AllIssueSlots.rid, 2, 68-1 },
974
975 //
976 // WRPR inserts 4 bubbles.
977 //
978//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
979//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
980//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
981//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
982
983 //
984 // DONE inserts 9 bubbles.
985 //
986//{ DONE, AllIssueSlots.rid, 2, 9-1 },
987//{ DONE, AllIssueSlots.rid, 2, 9-1 },
988//{ DONE, AllIssueSlots.rid, 2, 9-1 },
989//{ DONE, AllIssueSlots.rid, 2, 9-1 },
990
991 //
992 // RETRY inserts 9 bubbles.
993 //
994//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
995//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
996//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
997//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
998
Chris Lattnere369fcb2001-10-13 06:54:54 +0000999#endif /*EXPLICIT_BUBBLES_NEEDED */
Chris Lattnerc6495ee2001-09-14 03:56:45 +00001000};
1001
1002
1003
1004// Additional delays to be captured in code:
1005// 1. RDPR from several state registers (page 349)
1006// 2. RD from *any* register (page 349)
1007// 3. Writes to TICK, PSTATE, TL registers and FLUSH{W} instr (page 349)
1008// 4. Integer store can be in same group as instr producing value to store.
1009// 5. BICC and BPICC can be in the same group as instr producing CC (pg 350)
1010// 6. FMOVr cannot be in the same or next group as an IEU instr (pg 351).
1011// 7. The second instr. of a CTI group inserts 9 bubbles (pg 351)
1012// 8. WR{PR}, SVAE, SAVED, RESTORE, RESTORED, RETURN, RETRY, and DONE that
1013// follow an annulling branch cannot be issued in the same group or in
1014// the 3 groups following the branch.
1015// 9. A predicted annulled load does not stall dependent instructions.
1016// Other annulled delay slot instructions *do* stall dependents, so
1017// nothing special needs to be done for them during scheduling.
1018//10. Do not put a load use that may be annulled in the same group as the
1019// branch. The group will stall until the load returns.
1020//11. Single-prec. FP loads lock 2 registers, for dependency checking.
1021//
1022//
1023// Additional delays we cannot or will not capture:
1024// 1. If DCTI is last word of cache line, it is delayed until next line can be
1025// fetched. Also, other DCTI alignment-related delays (pg 352)
1026// 2. Load-after-store is delayed by 7 extra cycles if load hits in D-Cache.
1027// Also, several other store-load and load-store conflicts (pg 358)
1028// 3. MEMBAR, LD{X}FSR, LDD{A} and a bunch of other load stalls (pg 358)
1029// 4. There can be at most 8 outstanding buffered store instructions
1030// (including some others like MEMBAR, LDSTUB, CAS{AX}, and FLUSH)
1031
1032
1033
1034//---------------------------------------------------------------------------
1035// class UltraSparcSchedInfo
1036//
1037// Purpose:
1038// Interface to instruction scheduling information for UltraSPARC.
1039// The parameter values above are based on UltraSPARC IIi.
1040//---------------------------------------------------------------------------
1041
1042
1043class UltraSparcSchedInfo: public MachineSchedInfo {
1044public:
1045 /*ctor*/ UltraSparcSchedInfo (const MachineInstrInfo* mii);
1046 /*dtor*/ virtual ~UltraSparcSchedInfo () {}
1047protected:
1048 virtual void initializeResources ();
1049};
1050
Chris Lattnerf6e0e282001-09-14 04:32:55 +00001051
1052//---------------------------------------------------------------------------
1053// class UltraSparcMachine
1054//
1055// Purpose:
1056// Primary interface to machine description for the UltraSPARC.
1057// Primarily just initializes machine-dependent parameters in
1058// class TargetMachine, and creates machine-dependent subclasses
Vikram S. Adve339084b2001-09-18 13:04:24 +00001059// for classes such as InstrInfo, SchedInfo and RegInfo.
Chris Lattnerf6e0e282001-09-14 04:32:55 +00001060//---------------------------------------------------------------------------
1061
1062class UltraSparc : public TargetMachine {
Vikram S. Adve339084b2001-09-18 13:04:24 +00001063private:
1064 UltraSparcInstrInfo instrInfo;
1065 UltraSparcSchedInfo schedInfo;
1066 UltraSparcRegInfo regInfo;
Chris Lattnerf6e0e282001-09-14 04:32:55 +00001067public:
1068 UltraSparc();
1069 virtual ~UltraSparc() {}
Vikram S. Adve339084b2001-09-18 13:04:24 +00001070
Chris Lattner32f600a2001-09-19 13:47:12 +00001071 virtual const MachineInstrInfo &getInstrInfo() const { return instrInfo; }
1072 virtual const MachineSchedInfo &getSchedInfo() const { return schedInfo; }
1073 virtual const MachineRegInfo &getRegInfo() const { return regInfo; }
Vikram S. Adve339084b2001-09-18 13:04:24 +00001074
Chris Lattnerf6e0e282001-09-14 04:32:55 +00001075 // compileMethod - For the sparc, we do instruction selection, followed by
1076 // delay slot scheduling, then register allocation.
1077 //
1078 virtual bool compileMethod(Method *M);
Chris Lattner32f600a2001-09-19 13:47:12 +00001079
1080 //
1081 // emitAssembly - Output assembly language code (a .s file) for the specified
1082 // module. The specified module must have been compiled before this may be
1083 // used.
1084 //
1085 virtual void emitAssembly(const Module *M, ostream &OutStr);
Chris Lattnerf6e0e282001-09-14 04:32:55 +00001086};
1087
1088
Chris Lattnerc6495ee2001-09-14 03:56:45 +00001089#endif