Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 1 | //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file was developed by the LLVM research group and is distributed under |
| 6 | // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file contains the implementation of the scalar evolution analysis |
| 11 | // engine, which is used primarily to analyze expressions involving induction |
| 12 | // variables in loops. |
| 13 | // |
| 14 | // There are several aspects to this library. First is the representation of |
| 15 | // scalar expressions, which are represented as subclasses of the SCEV class. |
| 16 | // These classes are used to represent certain types of subexpressions that we |
| 17 | // can handle. These classes are reference counted, managed by the SCEVHandle |
| 18 | // class. We only create one SCEV of a particular shape, so pointer-comparisons |
| 19 | // for equality are legal. |
| 20 | // |
| 21 | // One important aspect of the SCEV objects is that they are never cyclic, even |
| 22 | // if there is a cycle in the dataflow for an expression (ie, a PHI node). If |
| 23 | // the PHI node is one of the idioms that we can represent (e.g., a polynomial |
| 24 | // recurrence) then we represent it directly as a recurrence node, otherwise we |
| 25 | // represent it as a SCEVUnknown node. |
| 26 | // |
| 27 | // In addition to being able to represent expressions of various types, we also |
| 28 | // have folders that are used to build the *canonical* representation for a |
| 29 | // particular expression. These folders are capable of using a variety of |
| 30 | // rewrite rules to simplify the expressions. |
| 31 | // |
| 32 | // Once the folders are defined, we can implement the more interesting |
| 33 | // higher-level code, such as the code that recognizes PHI nodes of various |
| 34 | // types, computes the execution count of a loop, etc. |
| 35 | // |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 36 | // TODO: We should use these routines and value representations to implement |
| 37 | // dependence analysis! |
| 38 | // |
| 39 | //===----------------------------------------------------------------------===// |
| 40 | // |
| 41 | // There are several good references for the techniques used in this analysis. |
| 42 | // |
| 43 | // Chains of recurrences -- a method to expedite the evaluation |
| 44 | // of closed-form functions |
| 45 | // Olaf Bachmann, Paul S. Wang, Eugene V. Zima |
| 46 | // |
| 47 | // On computational properties of chains of recurrences |
| 48 | // Eugene V. Zima |
| 49 | // |
| 50 | // Symbolic Evaluation of Chains of Recurrences for Loop Optimization |
| 51 | // Robert A. van Engelen |
| 52 | // |
| 53 | // Efficient Symbolic Analysis for Optimizing Compilers |
| 54 | // Robert A. van Engelen |
| 55 | // |
| 56 | // Using the chains of recurrences algebra for data dependence testing and |
| 57 | // induction variable substitution |
| 58 | // MS Thesis, Johnie Birch |
| 59 | // |
| 60 | //===----------------------------------------------------------------------===// |
| 61 | |
Chris Lattner | 0a7f98c | 2004-04-15 15:07:24 +0000 | [diff] [blame] | 62 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 63 | #include "llvm/Constants.h" |
| 64 | #include "llvm/DerivedTypes.h" |
Chris Lattner | 673e02b | 2004-10-12 01:49:27 +0000 | [diff] [blame] | 65 | #include "llvm/GlobalVariable.h" |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 66 | #include "llvm/Instructions.h" |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 67 | #include "llvm/Analysis/LoopInfo.h" |
| 68 | #include "llvm/Assembly/Writer.h" |
| 69 | #include "llvm/Transforms/Scalar.h" |
Chris Lattner | 7980fb9 | 2004-04-17 18:36:24 +0000 | [diff] [blame] | 70 | #include "llvm/Transforms/Utils/Local.h" |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 71 | #include "llvm/Support/CFG.h" |
| 72 | #include "llvm/Support/ConstantRange.h" |
| 73 | #include "llvm/Support/InstIterator.h" |
Reid Spencer | 551ccae | 2004-09-01 22:55:40 +0000 | [diff] [blame] | 74 | #include "llvm/Support/CommandLine.h" |
| 75 | #include "llvm/ADT/Statistic.h" |
Brian Gaeke | c598517 | 2004-04-16 15:57:32 +0000 | [diff] [blame] | 76 | #include <cmath> |
Alkis Evlogimenos | 20aa474 | 2004-09-03 18:19:51 +0000 | [diff] [blame] | 77 | #include <algorithm> |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 78 | using namespace llvm; |
| 79 | |
| 80 | namespace { |
| 81 | RegisterAnalysis<ScalarEvolution> |
Chris Lattner | 45a1cf8 | 2004-04-19 03:42:32 +0000 | [diff] [blame] | 82 | R("scalar-evolution", "Scalar Evolution Analysis"); |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 83 | |
| 84 | Statistic<> |
| 85 | NumBruteForceEvaluations("scalar-evolution", |
Chris Lattner | 673e02b | 2004-10-12 01:49:27 +0000 | [diff] [blame] | 86 | "Number of brute force evaluations needed to " |
| 87 | "calculate high-order polynomial exit values"); |
| 88 | Statistic<> |
| 89 | NumArrayLenItCounts("scalar-evolution", |
| 90 | "Number of trip counts computed with array length"); |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 91 | Statistic<> |
| 92 | NumTripCountsComputed("scalar-evolution", |
| 93 | "Number of loops with predictable loop counts"); |
| 94 | Statistic<> |
| 95 | NumTripCountsNotComputed("scalar-evolution", |
| 96 | "Number of loops without predictable loop counts"); |
Chris Lattner | 7980fb9 | 2004-04-17 18:36:24 +0000 | [diff] [blame] | 97 | Statistic<> |
| 98 | NumBruteForceTripCountsComputed("scalar-evolution", |
| 99 | "Number of loops with trip counts computed by force"); |
| 100 | |
| 101 | cl::opt<unsigned> |
| 102 | MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, |
| 103 | cl::desc("Maximum number of iterations SCEV will symbolically execute a constant derived loop"), |
| 104 | cl::init(100)); |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 105 | } |
| 106 | |
| 107 | //===----------------------------------------------------------------------===// |
| 108 | // SCEV class definitions |
| 109 | //===----------------------------------------------------------------------===// |
| 110 | |
| 111 | //===----------------------------------------------------------------------===// |
| 112 | // Implementation of the SCEV class. |
| 113 | // |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 114 | SCEV::~SCEV() {} |
| 115 | void SCEV::dump() const { |
| 116 | print(std::cerr); |
| 117 | } |
| 118 | |
| 119 | /// getValueRange - Return the tightest constant bounds that this value is |
| 120 | /// known to have. This method is only valid on integer SCEV objects. |
| 121 | ConstantRange SCEV::getValueRange() const { |
| 122 | const Type *Ty = getType(); |
| 123 | assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!"); |
| 124 | Ty = Ty->getUnsignedVersion(); |
| 125 | // Default to a full range if no better information is available. |
| 126 | return ConstantRange(getType()); |
| 127 | } |
| 128 | |
| 129 | |
| 130 | SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {} |
| 131 | |
| 132 | bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { |
| 133 | assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); |
Misha Brukman | bb2aff1 | 2004-04-05 19:00:46 +0000 | [diff] [blame] | 134 | return false; |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 135 | } |
| 136 | |
| 137 | const Type *SCEVCouldNotCompute::getType() const { |
| 138 | assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); |
Misha Brukman | bb2aff1 | 2004-04-05 19:00:46 +0000 | [diff] [blame] | 139 | return 0; |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 140 | } |
| 141 | |
| 142 | bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { |
| 143 | assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); |
| 144 | return false; |
| 145 | } |
| 146 | |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 147 | void SCEVCouldNotCompute::print(std::ostream &OS) const { |
| 148 | OS << "***COULDNOTCOMPUTE***"; |
| 149 | } |
| 150 | |
| 151 | bool SCEVCouldNotCompute::classof(const SCEV *S) { |
| 152 | return S->getSCEVType() == scCouldNotCompute; |
| 153 | } |
| 154 | |
| 155 | |
Chris Lattner | 0a7f98c | 2004-04-15 15:07:24 +0000 | [diff] [blame] | 156 | // SCEVConstants - Only allow the creation of one SCEVConstant for any |
| 157 | // particular value. Don't use a SCEVHandle here, or else the object will |
| 158 | // never be deleted! |
| 159 | static std::map<ConstantInt*, SCEVConstant*> SCEVConstants; |
| 160 | |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 161 | |
Chris Lattner | 0a7f98c | 2004-04-15 15:07:24 +0000 | [diff] [blame] | 162 | SCEVConstant::~SCEVConstant() { |
| 163 | SCEVConstants.erase(V); |
| 164 | } |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 165 | |
Chris Lattner | 0a7f98c | 2004-04-15 15:07:24 +0000 | [diff] [blame] | 166 | SCEVHandle SCEVConstant::get(ConstantInt *V) { |
| 167 | // Make sure that SCEVConstant instances are all unsigned. |
| 168 | if (V->getType()->isSigned()) { |
| 169 | const Type *NewTy = V->getType()->getUnsignedVersion(); |
| 170 | V = cast<ConstantUInt>(ConstantExpr::getCast(V, NewTy)); |
| 171 | } |
| 172 | |
| 173 | SCEVConstant *&R = SCEVConstants[V]; |
| 174 | if (R == 0) R = new SCEVConstant(V); |
| 175 | return R; |
| 176 | } |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 177 | |
Chris Lattner | 0a7f98c | 2004-04-15 15:07:24 +0000 | [diff] [blame] | 178 | ConstantRange SCEVConstant::getValueRange() const { |
| 179 | return ConstantRange(V); |
| 180 | } |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 181 | |
Chris Lattner | 0a7f98c | 2004-04-15 15:07:24 +0000 | [diff] [blame] | 182 | const Type *SCEVConstant::getType() const { return V->getType(); } |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 183 | |
Chris Lattner | 0a7f98c | 2004-04-15 15:07:24 +0000 | [diff] [blame] | 184 | void SCEVConstant::print(std::ostream &OS) const { |
| 185 | WriteAsOperand(OS, V, false); |
| 186 | } |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 187 | |
Chris Lattner | 0a7f98c | 2004-04-15 15:07:24 +0000 | [diff] [blame] | 188 | // SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any |
| 189 | // particular input. Don't use a SCEVHandle here, or else the object will |
| 190 | // never be deleted! |
| 191 | static std::map<std::pair<SCEV*, const Type*>, SCEVTruncateExpr*> SCEVTruncates; |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 192 | |
Chris Lattner | 0a7f98c | 2004-04-15 15:07:24 +0000 | [diff] [blame] | 193 | SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty) |
| 194 | : SCEV(scTruncate), Op(op), Ty(ty) { |
| 195 | assert(Op->getType()->isInteger() && Ty->isInteger() && |
| 196 | Ty->isUnsigned() && |
| 197 | "Cannot truncate non-integer value!"); |
| 198 | assert(Op->getType()->getPrimitiveSize() > Ty->getPrimitiveSize() && |
| 199 | "This is not a truncating conversion!"); |
| 200 | } |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 201 | |
Chris Lattner | 0a7f98c | 2004-04-15 15:07:24 +0000 | [diff] [blame] | 202 | SCEVTruncateExpr::~SCEVTruncateExpr() { |
| 203 | SCEVTruncates.erase(std::make_pair(Op, Ty)); |
| 204 | } |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 205 | |
Chris Lattner | 0a7f98c | 2004-04-15 15:07:24 +0000 | [diff] [blame] | 206 | ConstantRange SCEVTruncateExpr::getValueRange() const { |
| 207 | return getOperand()->getValueRange().truncate(getType()); |
| 208 | } |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 209 | |
Chris Lattner | 0a7f98c | 2004-04-15 15:07:24 +0000 | [diff] [blame] | 210 | void SCEVTruncateExpr::print(std::ostream &OS) const { |
| 211 | OS << "(truncate " << *Op << " to " << *Ty << ")"; |
| 212 | } |
| 213 | |
| 214 | // SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any |
| 215 | // particular input. Don't use a SCEVHandle here, or else the object will never |
| 216 | // be deleted! |
| 217 | static std::map<std::pair<SCEV*, const Type*>, |
| 218 | SCEVZeroExtendExpr*> SCEVZeroExtends; |
| 219 | |
| 220 | SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty) |
| 221 | : SCEV(scTruncate), Op(Op), Ty(ty) { |
| 222 | assert(Op->getType()->isInteger() && Ty->isInteger() && |
| 223 | Ty->isUnsigned() && |
| 224 | "Cannot zero extend non-integer value!"); |
| 225 | assert(Op->getType()->getPrimitiveSize() < Ty->getPrimitiveSize() && |
| 226 | "This is not an extending conversion!"); |
| 227 | } |
| 228 | |
| 229 | SCEVZeroExtendExpr::~SCEVZeroExtendExpr() { |
| 230 | SCEVZeroExtends.erase(std::make_pair(Op, Ty)); |
| 231 | } |
| 232 | |
| 233 | ConstantRange SCEVZeroExtendExpr::getValueRange() const { |
| 234 | return getOperand()->getValueRange().zeroExtend(getType()); |
| 235 | } |
| 236 | |
| 237 | void SCEVZeroExtendExpr::print(std::ostream &OS) const { |
| 238 | OS << "(zeroextend " << *Op << " to " << *Ty << ")"; |
| 239 | } |
| 240 | |
| 241 | // SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any |
| 242 | // particular input. Don't use a SCEVHandle here, or else the object will never |
| 243 | // be deleted! |
| 244 | static std::map<std::pair<unsigned, std::vector<SCEV*> >, |
| 245 | SCEVCommutativeExpr*> SCEVCommExprs; |
| 246 | |
| 247 | SCEVCommutativeExpr::~SCEVCommutativeExpr() { |
| 248 | SCEVCommExprs.erase(std::make_pair(getSCEVType(), |
| 249 | std::vector<SCEV*>(Operands.begin(), |
| 250 | Operands.end()))); |
| 251 | } |
| 252 | |
| 253 | void SCEVCommutativeExpr::print(std::ostream &OS) const { |
| 254 | assert(Operands.size() > 1 && "This plus expr shouldn't exist!"); |
| 255 | const char *OpStr = getOperationStr(); |
| 256 | OS << "(" << *Operands[0]; |
| 257 | for (unsigned i = 1, e = Operands.size(); i != e; ++i) |
| 258 | OS << OpStr << *Operands[i]; |
| 259 | OS << ")"; |
| 260 | } |
| 261 | |
| 262 | // SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular |
| 263 | // input. Don't use a SCEVHandle here, or else the object will never be |
| 264 | // deleted! |
| 265 | static std::map<std::pair<SCEV*, SCEV*>, SCEVUDivExpr*> SCEVUDivs; |
| 266 | |
| 267 | SCEVUDivExpr::~SCEVUDivExpr() { |
| 268 | SCEVUDivs.erase(std::make_pair(LHS, RHS)); |
| 269 | } |
| 270 | |
| 271 | void SCEVUDivExpr::print(std::ostream &OS) const { |
| 272 | OS << "(" << *LHS << " /u " << *RHS << ")"; |
| 273 | } |
| 274 | |
| 275 | const Type *SCEVUDivExpr::getType() const { |
| 276 | const Type *Ty = LHS->getType(); |
| 277 | if (Ty->isSigned()) Ty = Ty->getUnsignedVersion(); |
| 278 | return Ty; |
| 279 | } |
| 280 | |
| 281 | // SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any |
| 282 | // particular input. Don't use a SCEVHandle here, or else the object will never |
| 283 | // be deleted! |
| 284 | static std::map<std::pair<const Loop *, std::vector<SCEV*> >, |
| 285 | SCEVAddRecExpr*> SCEVAddRecExprs; |
| 286 | |
| 287 | SCEVAddRecExpr::~SCEVAddRecExpr() { |
| 288 | SCEVAddRecExprs.erase(std::make_pair(L, |
| 289 | std::vector<SCEV*>(Operands.begin(), |
| 290 | Operands.end()))); |
| 291 | } |
| 292 | |
| 293 | bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { |
| 294 | // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't |
| 295 | // contain L. |
| 296 | return !QueryLoop->contains(L->getHeader()); |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 297 | } |
| 298 | |
| 299 | |
Chris Lattner | 0a7f98c | 2004-04-15 15:07:24 +0000 | [diff] [blame] | 300 | void SCEVAddRecExpr::print(std::ostream &OS) const { |
| 301 | OS << "{" << *Operands[0]; |
| 302 | for (unsigned i = 1, e = Operands.size(); i != e; ++i) |
| 303 | OS << ",+," << *Operands[i]; |
| 304 | OS << "}<" << L->getHeader()->getName() + ">"; |
| 305 | } |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 306 | |
Chris Lattner | 0a7f98c | 2004-04-15 15:07:24 +0000 | [diff] [blame] | 307 | // SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular |
| 308 | // value. Don't use a SCEVHandle here, or else the object will never be |
| 309 | // deleted! |
| 310 | static std::map<Value*, SCEVUnknown*> SCEVUnknowns; |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 311 | |
Chris Lattner | 0a7f98c | 2004-04-15 15:07:24 +0000 | [diff] [blame] | 312 | SCEVUnknown::~SCEVUnknown() { SCEVUnknowns.erase(V); } |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 313 | |
Chris Lattner | 0a7f98c | 2004-04-15 15:07:24 +0000 | [diff] [blame] | 314 | bool SCEVUnknown::isLoopInvariant(const Loop *L) const { |
| 315 | // All non-instruction values are loop invariant. All instructions are loop |
| 316 | // invariant if they are not contained in the specified loop. |
| 317 | if (Instruction *I = dyn_cast<Instruction>(V)) |
| 318 | return !L->contains(I->getParent()); |
| 319 | return true; |
| 320 | } |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 321 | |
Chris Lattner | 0a7f98c | 2004-04-15 15:07:24 +0000 | [diff] [blame] | 322 | const Type *SCEVUnknown::getType() const { |
| 323 | return V->getType(); |
| 324 | } |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 325 | |
Chris Lattner | 0a7f98c | 2004-04-15 15:07:24 +0000 | [diff] [blame] | 326 | void SCEVUnknown::print(std::ostream &OS) const { |
| 327 | WriteAsOperand(OS, V, false); |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 328 | } |
| 329 | |
Chris Lattner | 8d741b8 | 2004-06-20 06:23:15 +0000 | [diff] [blame] | 330 | //===----------------------------------------------------------------------===// |
| 331 | // SCEV Utilities |
| 332 | //===----------------------------------------------------------------------===// |
| 333 | |
| 334 | namespace { |
| 335 | /// SCEVComplexityCompare - Return true if the complexity of the LHS is less |
| 336 | /// than the complexity of the RHS. This comparator is used to canonicalize |
| 337 | /// expressions. |
| 338 | struct SCEVComplexityCompare { |
| 339 | bool operator()(SCEV *LHS, SCEV *RHS) { |
| 340 | return LHS->getSCEVType() < RHS->getSCEVType(); |
| 341 | } |
| 342 | }; |
| 343 | } |
| 344 | |
| 345 | /// GroupByComplexity - Given a list of SCEV objects, order them by their |
| 346 | /// complexity, and group objects of the same complexity together by value. |
| 347 | /// When this routine is finished, we know that any duplicates in the vector are |
| 348 | /// consecutive and that complexity is monotonically increasing. |
| 349 | /// |
| 350 | /// Note that we go take special precautions to ensure that we get determinstic |
| 351 | /// results from this routine. In other words, we don't want the results of |
| 352 | /// this to depend on where the addresses of various SCEV objects happened to |
| 353 | /// land in memory. |
| 354 | /// |
| 355 | static void GroupByComplexity(std::vector<SCEVHandle> &Ops) { |
| 356 | if (Ops.size() < 2) return; // Noop |
| 357 | if (Ops.size() == 2) { |
| 358 | // This is the common case, which also happens to be trivially simple. |
| 359 | // Special case it. |
| 360 | if (Ops[0]->getSCEVType() > Ops[1]->getSCEVType()) |
| 361 | std::swap(Ops[0], Ops[1]); |
| 362 | return; |
| 363 | } |
| 364 | |
| 365 | // Do the rough sort by complexity. |
| 366 | std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare()); |
| 367 | |
| 368 | // Now that we are sorted by complexity, group elements of the same |
| 369 | // complexity. Note that this is, at worst, N^2, but the vector is likely to |
| 370 | // be extremely short in practice. Note that we take this approach because we |
| 371 | // do not want to depend on the addresses of the objects we are grouping. |
Chris Lattner | 2d58452 | 2004-06-20 17:01:44 +0000 | [diff] [blame] | 372 | for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { |
Chris Lattner | 8d741b8 | 2004-06-20 06:23:15 +0000 | [diff] [blame] | 373 | SCEV *S = Ops[i]; |
| 374 | unsigned Complexity = S->getSCEVType(); |
| 375 | |
| 376 | // If there are any objects of the same complexity and same value as this |
| 377 | // one, group them. |
| 378 | for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { |
| 379 | if (Ops[j] == S) { // Found a duplicate. |
| 380 | // Move it to immediately after i'th element. |
| 381 | std::swap(Ops[i+1], Ops[j]); |
| 382 | ++i; // no need to rescan it. |
Chris Lattner | 541ad5e | 2004-06-20 20:32:16 +0000 | [diff] [blame] | 383 | if (i == e-2) return; // Done! |
Chris Lattner | 8d741b8 | 2004-06-20 06:23:15 +0000 | [diff] [blame] | 384 | } |
| 385 | } |
| 386 | } |
| 387 | } |
| 388 | |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 389 | |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 390 | |
| 391 | //===----------------------------------------------------------------------===// |
| 392 | // Simple SCEV method implementations |
| 393 | //===----------------------------------------------------------------------===// |
| 394 | |
| 395 | /// getIntegerSCEV - Given an integer or FP type, create a constant for the |
| 396 | /// specified signed integer value and return a SCEV for the constant. |
Chris Lattner | b06432c | 2004-04-23 21:29:03 +0000 | [diff] [blame] | 397 | SCEVHandle SCEVUnknown::getIntegerSCEV(int Val, const Type *Ty) { |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 398 | Constant *C; |
| 399 | if (Val == 0) |
| 400 | C = Constant::getNullValue(Ty); |
| 401 | else if (Ty->isFloatingPoint()) |
| 402 | C = ConstantFP::get(Ty, Val); |
| 403 | else if (Ty->isSigned()) |
| 404 | C = ConstantSInt::get(Ty, Val); |
| 405 | else { |
| 406 | C = ConstantSInt::get(Ty->getSignedVersion(), Val); |
| 407 | C = ConstantExpr::getCast(C, Ty); |
| 408 | } |
| 409 | return SCEVUnknown::get(C); |
| 410 | } |
| 411 | |
| 412 | /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the |
| 413 | /// input value to the specified type. If the type must be extended, it is zero |
| 414 | /// extended. |
| 415 | static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty) { |
| 416 | const Type *SrcTy = V->getType(); |
| 417 | assert(SrcTy->isInteger() && Ty->isInteger() && |
| 418 | "Cannot truncate or zero extend with non-integer arguments!"); |
| 419 | if (SrcTy->getPrimitiveSize() == Ty->getPrimitiveSize()) |
| 420 | return V; // No conversion |
| 421 | if (SrcTy->getPrimitiveSize() > Ty->getPrimitiveSize()) |
| 422 | return SCEVTruncateExpr::get(V, Ty); |
| 423 | return SCEVZeroExtendExpr::get(V, Ty); |
| 424 | } |
| 425 | |
| 426 | /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V |
| 427 | /// |
| 428 | static SCEVHandle getNegativeSCEV(const SCEVHandle &V) { |
| 429 | if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) |
| 430 | return SCEVUnknown::get(ConstantExpr::getNeg(VC->getValue())); |
| 431 | |
Chris Lattner | b06432c | 2004-04-23 21:29:03 +0000 | [diff] [blame] | 432 | return SCEVMulExpr::get(V, SCEVUnknown::getIntegerSCEV(-1, V->getType())); |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 433 | } |
| 434 | |
| 435 | /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. |
| 436 | /// |
| 437 | static SCEVHandle getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS) { |
| 438 | // X - Y --> X + -Y |
| 439 | return SCEVAddExpr::get(LHS, getNegativeSCEV(RHS)); |
| 440 | } |
| 441 | |
| 442 | |
| 443 | /// Binomial - Evaluate N!/((N-M)!*M!) . Note that N is often large and M is |
| 444 | /// often very small, so we try to reduce the number of N! terms we need to |
| 445 | /// evaluate by evaluating this as (N!/(N-M)!)/M! |
| 446 | static ConstantInt *Binomial(ConstantInt *N, unsigned M) { |
| 447 | uint64_t NVal = N->getRawValue(); |
| 448 | uint64_t FirstTerm = 1; |
| 449 | for (unsigned i = 0; i != M; ++i) |
| 450 | FirstTerm *= NVal-i; |
| 451 | |
| 452 | unsigned MFactorial = 1; |
| 453 | for (; M; --M) |
| 454 | MFactorial *= M; |
| 455 | |
| 456 | Constant *Result = ConstantUInt::get(Type::ULongTy, FirstTerm/MFactorial); |
| 457 | Result = ConstantExpr::getCast(Result, N->getType()); |
| 458 | assert(isa<ConstantInt>(Result) && "Cast of integer not folded??"); |
| 459 | return cast<ConstantInt>(Result); |
| 460 | } |
| 461 | |
| 462 | /// PartialFact - Compute V!/(V-NumSteps)! |
| 463 | static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps) { |
| 464 | // Handle this case efficiently, it is common to have constant iteration |
| 465 | // counts while computing loop exit values. |
| 466 | if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) { |
| 467 | uint64_t Val = SC->getValue()->getRawValue(); |
| 468 | uint64_t Result = 1; |
| 469 | for (; NumSteps; --NumSteps) |
| 470 | Result *= Val-(NumSteps-1); |
| 471 | Constant *Res = ConstantUInt::get(Type::ULongTy, Result); |
| 472 | return SCEVUnknown::get(ConstantExpr::getCast(Res, V->getType())); |
| 473 | } |
| 474 | |
| 475 | const Type *Ty = V->getType(); |
| 476 | if (NumSteps == 0) |
Chris Lattner | b06432c | 2004-04-23 21:29:03 +0000 | [diff] [blame] | 477 | return SCEVUnknown::getIntegerSCEV(1, Ty); |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 478 | |
| 479 | SCEVHandle Result = V; |
| 480 | for (unsigned i = 1; i != NumSteps; ++i) |
Chris Lattner | b06432c | 2004-04-23 21:29:03 +0000 | [diff] [blame] | 481 | Result = SCEVMulExpr::get(Result, getMinusSCEV(V, |
| 482 | SCEVUnknown::getIntegerSCEV(i, Ty))); |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 483 | return Result; |
| 484 | } |
| 485 | |
| 486 | |
| 487 | /// evaluateAtIteration - Return the value of this chain of recurrences at |
| 488 | /// the specified iteration number. We can evaluate this recurrence by |
| 489 | /// multiplying each element in the chain by the binomial coefficient |
| 490 | /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: |
| 491 | /// |
| 492 | /// A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3) |
| 493 | /// |
| 494 | /// FIXME/VERIFY: I don't trust that this is correct in the face of overflow. |
| 495 | /// Is the binomial equation safe using modular arithmetic?? |
| 496 | /// |
| 497 | SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It) const { |
| 498 | SCEVHandle Result = getStart(); |
| 499 | int Divisor = 1; |
| 500 | const Type *Ty = It->getType(); |
| 501 | for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { |
| 502 | SCEVHandle BC = PartialFact(It, i); |
| 503 | Divisor *= i; |
| 504 | SCEVHandle Val = SCEVUDivExpr::get(SCEVMulExpr::get(BC, getOperand(i)), |
Chris Lattner | b06432c | 2004-04-23 21:29:03 +0000 | [diff] [blame] | 505 | SCEVUnknown::getIntegerSCEV(Divisor,Ty)); |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 506 | Result = SCEVAddExpr::get(Result, Val); |
| 507 | } |
| 508 | return Result; |
| 509 | } |
| 510 | |
| 511 | |
| 512 | //===----------------------------------------------------------------------===// |
| 513 | // SCEV Expression folder implementations |
| 514 | //===----------------------------------------------------------------------===// |
| 515 | |
| 516 | SCEVHandle SCEVTruncateExpr::get(const SCEVHandle &Op, const Type *Ty) { |
| 517 | if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) |
| 518 | return SCEVUnknown::get(ConstantExpr::getCast(SC->getValue(), Ty)); |
| 519 | |
| 520 | // If the input value is a chrec scev made out of constants, truncate |
| 521 | // all of the constants. |
| 522 | if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { |
| 523 | std::vector<SCEVHandle> Operands; |
| 524 | for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) |
| 525 | // FIXME: This should allow truncation of other expression types! |
| 526 | if (isa<SCEVConstant>(AddRec->getOperand(i))) |
| 527 | Operands.push_back(get(AddRec->getOperand(i), Ty)); |
| 528 | else |
| 529 | break; |
| 530 | if (Operands.size() == AddRec->getNumOperands()) |
| 531 | return SCEVAddRecExpr::get(Operands, AddRec->getLoop()); |
| 532 | } |
| 533 | |
| 534 | SCEVTruncateExpr *&Result = SCEVTruncates[std::make_pair(Op, Ty)]; |
| 535 | if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty); |
| 536 | return Result; |
| 537 | } |
| 538 | |
| 539 | SCEVHandle SCEVZeroExtendExpr::get(const SCEVHandle &Op, const Type *Ty) { |
| 540 | if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) |
| 541 | return SCEVUnknown::get(ConstantExpr::getCast(SC->getValue(), Ty)); |
| 542 | |
| 543 | // FIXME: If the input value is a chrec scev, and we can prove that the value |
| 544 | // did not overflow the old, smaller, value, we can zero extend all of the |
| 545 | // operands (often constants). This would allow analysis of something like |
| 546 | // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } |
| 547 | |
| 548 | SCEVZeroExtendExpr *&Result = SCEVZeroExtends[std::make_pair(Op, Ty)]; |
| 549 | if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty); |
| 550 | return Result; |
| 551 | } |
| 552 | |
| 553 | // get - Get a canonical add expression, or something simpler if possible. |
| 554 | SCEVHandle SCEVAddExpr::get(std::vector<SCEVHandle> &Ops) { |
| 555 | assert(!Ops.empty() && "Cannot get empty add!"); |
Chris Lattner | 627018b | 2004-04-07 16:16:11 +0000 | [diff] [blame] | 556 | if (Ops.size() == 1) return Ops[0]; |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 557 | |
| 558 | // Sort by complexity, this groups all similar expression types together. |
Chris Lattner | 8d741b8 | 2004-06-20 06:23:15 +0000 | [diff] [blame] | 559 | GroupByComplexity(Ops); |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 560 | |
| 561 | // If there are any constants, fold them together. |
| 562 | unsigned Idx = 0; |
| 563 | if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { |
| 564 | ++Idx; |
Chris Lattner | 627018b | 2004-04-07 16:16:11 +0000 | [diff] [blame] | 565 | assert(Idx < Ops.size()); |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 566 | while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { |
| 567 | // We found two constants, fold them together! |
| 568 | Constant *Fold = ConstantExpr::getAdd(LHSC->getValue(), RHSC->getValue()); |
| 569 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) { |
| 570 | Ops[0] = SCEVConstant::get(CI); |
| 571 | Ops.erase(Ops.begin()+1); // Erase the folded element |
| 572 | if (Ops.size() == 1) return Ops[0]; |
| 573 | } else { |
| 574 | // If we couldn't fold the expression, move to the next constant. Note |
| 575 | // that this is impossible to happen in practice because we always |
| 576 | // constant fold constant ints to constant ints. |
| 577 | ++Idx; |
| 578 | } |
| 579 | } |
| 580 | |
| 581 | // If we are left with a constant zero being added, strip it off. |
| 582 | if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) { |
| 583 | Ops.erase(Ops.begin()); |
| 584 | --Idx; |
| 585 | } |
| 586 | } |
| 587 | |
Chris Lattner | 627018b | 2004-04-07 16:16:11 +0000 | [diff] [blame] | 588 | if (Ops.size() == 1) return Ops[0]; |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 589 | |
| 590 | // Okay, check to see if the same value occurs in the operand list twice. If |
| 591 | // so, merge them together into an multiply expression. Since we sorted the |
| 592 | // list, these values are required to be adjacent. |
| 593 | const Type *Ty = Ops[0]->getType(); |
| 594 | for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) |
| 595 | if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 |
| 596 | // Found a match, merge the two values into a multiply, and add any |
| 597 | // remaining values to the result. |
Chris Lattner | b06432c | 2004-04-23 21:29:03 +0000 | [diff] [blame] | 598 | SCEVHandle Two = SCEVUnknown::getIntegerSCEV(2, Ty); |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 599 | SCEVHandle Mul = SCEVMulExpr::get(Ops[i], Two); |
| 600 | if (Ops.size() == 2) |
| 601 | return Mul; |
| 602 | Ops.erase(Ops.begin()+i, Ops.begin()+i+2); |
| 603 | Ops.push_back(Mul); |
| 604 | return SCEVAddExpr::get(Ops); |
| 605 | } |
| 606 | |
| 607 | // Okay, now we know the first non-constant operand. If there are add |
| 608 | // operands they would be next. |
| 609 | if (Idx < Ops.size()) { |
| 610 | bool DeletedAdd = false; |
| 611 | while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { |
| 612 | // If we have an add, expand the add operands onto the end of the operands |
| 613 | // list. |
| 614 | Ops.insert(Ops.end(), Add->op_begin(), Add->op_end()); |
| 615 | Ops.erase(Ops.begin()+Idx); |
| 616 | DeletedAdd = true; |
| 617 | } |
| 618 | |
| 619 | // If we deleted at least one add, we added operands to the end of the list, |
| 620 | // and they are not necessarily sorted. Recurse to resort and resimplify |
| 621 | // any operands we just aquired. |
| 622 | if (DeletedAdd) |
| 623 | return get(Ops); |
| 624 | } |
| 625 | |
| 626 | // Skip over the add expression until we get to a multiply. |
| 627 | while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) |
| 628 | ++Idx; |
| 629 | |
| 630 | // If we are adding something to a multiply expression, make sure the |
| 631 | // something is not already an operand of the multiply. If so, merge it into |
| 632 | // the multiply. |
| 633 | for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { |
| 634 | SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); |
| 635 | for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { |
| 636 | SCEV *MulOpSCEV = Mul->getOperand(MulOp); |
| 637 | for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) |
| 638 | if (MulOpSCEV == Ops[AddOp] && |
| 639 | (Mul->getNumOperands() != 2 || !isa<SCEVConstant>(MulOpSCEV))) { |
| 640 | // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) |
| 641 | SCEVHandle InnerMul = Mul->getOperand(MulOp == 0); |
| 642 | if (Mul->getNumOperands() != 2) { |
| 643 | // If the multiply has more than two operands, we must get the |
| 644 | // Y*Z term. |
| 645 | std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end()); |
| 646 | MulOps.erase(MulOps.begin()+MulOp); |
| 647 | InnerMul = SCEVMulExpr::get(MulOps); |
| 648 | } |
Chris Lattner | b06432c | 2004-04-23 21:29:03 +0000 | [diff] [blame] | 649 | SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, Ty); |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 650 | SCEVHandle AddOne = SCEVAddExpr::get(InnerMul, One); |
| 651 | SCEVHandle OuterMul = SCEVMulExpr::get(AddOne, Ops[AddOp]); |
| 652 | if (Ops.size() == 2) return OuterMul; |
| 653 | if (AddOp < Idx) { |
| 654 | Ops.erase(Ops.begin()+AddOp); |
| 655 | Ops.erase(Ops.begin()+Idx-1); |
| 656 | } else { |
| 657 | Ops.erase(Ops.begin()+Idx); |
| 658 | Ops.erase(Ops.begin()+AddOp-1); |
| 659 | } |
| 660 | Ops.push_back(OuterMul); |
| 661 | return SCEVAddExpr::get(Ops); |
| 662 | } |
| 663 | |
| 664 | // Check this multiply against other multiplies being added together. |
| 665 | for (unsigned OtherMulIdx = Idx+1; |
| 666 | OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); |
| 667 | ++OtherMulIdx) { |
| 668 | SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); |
| 669 | // If MulOp occurs in OtherMul, we can fold the two multiplies |
| 670 | // together. |
| 671 | for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); |
| 672 | OMulOp != e; ++OMulOp) |
| 673 | if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { |
| 674 | // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) |
| 675 | SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0); |
| 676 | if (Mul->getNumOperands() != 2) { |
| 677 | std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end()); |
| 678 | MulOps.erase(MulOps.begin()+MulOp); |
| 679 | InnerMul1 = SCEVMulExpr::get(MulOps); |
| 680 | } |
| 681 | SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0); |
| 682 | if (OtherMul->getNumOperands() != 2) { |
| 683 | std::vector<SCEVHandle> MulOps(OtherMul->op_begin(), |
| 684 | OtherMul->op_end()); |
| 685 | MulOps.erase(MulOps.begin()+OMulOp); |
| 686 | InnerMul2 = SCEVMulExpr::get(MulOps); |
| 687 | } |
| 688 | SCEVHandle InnerMulSum = SCEVAddExpr::get(InnerMul1,InnerMul2); |
| 689 | SCEVHandle OuterMul = SCEVMulExpr::get(MulOpSCEV, InnerMulSum); |
| 690 | if (Ops.size() == 2) return OuterMul; |
| 691 | Ops.erase(Ops.begin()+Idx); |
| 692 | Ops.erase(Ops.begin()+OtherMulIdx-1); |
| 693 | Ops.push_back(OuterMul); |
| 694 | return SCEVAddExpr::get(Ops); |
| 695 | } |
| 696 | } |
| 697 | } |
| 698 | } |
| 699 | |
| 700 | // If there are any add recurrences in the operands list, see if any other |
| 701 | // added values are loop invariant. If so, we can fold them into the |
| 702 | // recurrence. |
| 703 | while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) |
| 704 | ++Idx; |
| 705 | |
| 706 | // Scan over all recurrences, trying to fold loop invariants into them. |
| 707 | for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { |
| 708 | // Scan all of the other operands to this add and add them to the vector if |
| 709 | // they are loop invariant w.r.t. the recurrence. |
| 710 | std::vector<SCEVHandle> LIOps; |
| 711 | SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); |
| 712 | for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| 713 | if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { |
| 714 | LIOps.push_back(Ops[i]); |
| 715 | Ops.erase(Ops.begin()+i); |
| 716 | --i; --e; |
| 717 | } |
| 718 | |
| 719 | // If we found some loop invariants, fold them into the recurrence. |
| 720 | if (!LIOps.empty()) { |
| 721 | // NLI + LI + { Start,+,Step} --> NLI + { LI+Start,+,Step } |
| 722 | LIOps.push_back(AddRec->getStart()); |
| 723 | |
| 724 | std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end()); |
| 725 | AddRecOps[0] = SCEVAddExpr::get(LIOps); |
| 726 | |
| 727 | SCEVHandle NewRec = SCEVAddRecExpr::get(AddRecOps, AddRec->getLoop()); |
| 728 | // If all of the other operands were loop invariant, we are done. |
| 729 | if (Ops.size() == 1) return NewRec; |
| 730 | |
| 731 | // Otherwise, add the folded AddRec by the non-liv parts. |
| 732 | for (unsigned i = 0;; ++i) |
| 733 | if (Ops[i] == AddRec) { |
| 734 | Ops[i] = NewRec; |
| 735 | break; |
| 736 | } |
| 737 | return SCEVAddExpr::get(Ops); |
| 738 | } |
| 739 | |
| 740 | // Okay, if there weren't any loop invariants to be folded, check to see if |
| 741 | // there are multiple AddRec's with the same loop induction variable being |
| 742 | // added together. If so, we can fold them. |
| 743 | for (unsigned OtherIdx = Idx+1; |
| 744 | OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) |
| 745 | if (OtherIdx != Idx) { |
| 746 | SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); |
| 747 | if (AddRec->getLoop() == OtherAddRec->getLoop()) { |
| 748 | // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} |
| 749 | std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end()); |
| 750 | for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { |
| 751 | if (i >= NewOps.size()) { |
| 752 | NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i, |
| 753 | OtherAddRec->op_end()); |
| 754 | break; |
| 755 | } |
| 756 | NewOps[i] = SCEVAddExpr::get(NewOps[i], OtherAddRec->getOperand(i)); |
| 757 | } |
| 758 | SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop()); |
| 759 | |
| 760 | if (Ops.size() == 2) return NewAddRec; |
| 761 | |
| 762 | Ops.erase(Ops.begin()+Idx); |
| 763 | Ops.erase(Ops.begin()+OtherIdx-1); |
| 764 | Ops.push_back(NewAddRec); |
| 765 | return SCEVAddExpr::get(Ops); |
| 766 | } |
| 767 | } |
| 768 | |
| 769 | // Otherwise couldn't fold anything into this recurrence. Move onto the |
| 770 | // next one. |
| 771 | } |
| 772 | |
| 773 | // Okay, it looks like we really DO need an add expr. Check to see if we |
| 774 | // already have one, otherwise create a new one. |
| 775 | std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); |
| 776 | SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scAddExpr, |
| 777 | SCEVOps)]; |
| 778 | if (Result == 0) Result = new SCEVAddExpr(Ops); |
| 779 | return Result; |
| 780 | } |
| 781 | |
| 782 | |
| 783 | SCEVHandle SCEVMulExpr::get(std::vector<SCEVHandle> &Ops) { |
| 784 | assert(!Ops.empty() && "Cannot get empty mul!"); |
| 785 | |
| 786 | // Sort by complexity, this groups all similar expression types together. |
Chris Lattner | 8d741b8 | 2004-06-20 06:23:15 +0000 | [diff] [blame] | 787 | GroupByComplexity(Ops); |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 788 | |
| 789 | // If there are any constants, fold them together. |
| 790 | unsigned Idx = 0; |
| 791 | if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { |
| 792 | |
| 793 | // C1*(C2+V) -> C1*C2 + C1*V |
| 794 | if (Ops.size() == 2) |
| 795 | if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) |
| 796 | if (Add->getNumOperands() == 2 && |
| 797 | isa<SCEVConstant>(Add->getOperand(0))) |
| 798 | return SCEVAddExpr::get(SCEVMulExpr::get(LHSC, Add->getOperand(0)), |
| 799 | SCEVMulExpr::get(LHSC, Add->getOperand(1))); |
| 800 | |
| 801 | |
| 802 | ++Idx; |
| 803 | while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { |
| 804 | // We found two constants, fold them together! |
| 805 | Constant *Fold = ConstantExpr::getMul(LHSC->getValue(), RHSC->getValue()); |
| 806 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) { |
| 807 | Ops[0] = SCEVConstant::get(CI); |
| 808 | Ops.erase(Ops.begin()+1); // Erase the folded element |
| 809 | if (Ops.size() == 1) return Ops[0]; |
| 810 | } else { |
| 811 | // If we couldn't fold the expression, move to the next constant. Note |
| 812 | // that this is impossible to happen in practice because we always |
| 813 | // constant fold constant ints to constant ints. |
| 814 | ++Idx; |
| 815 | } |
| 816 | } |
| 817 | |
| 818 | // If we are left with a constant one being multiplied, strip it off. |
| 819 | if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { |
| 820 | Ops.erase(Ops.begin()); |
| 821 | --Idx; |
| 822 | } else if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) { |
| 823 | // If we have a multiply of zero, it will always be zero. |
| 824 | return Ops[0]; |
| 825 | } |
| 826 | } |
| 827 | |
| 828 | // Skip over the add expression until we get to a multiply. |
| 829 | while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) |
| 830 | ++Idx; |
| 831 | |
| 832 | if (Ops.size() == 1) |
| 833 | return Ops[0]; |
| 834 | |
| 835 | // If there are mul operands inline them all into this expression. |
| 836 | if (Idx < Ops.size()) { |
| 837 | bool DeletedMul = false; |
| 838 | while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { |
| 839 | // If we have an mul, expand the mul operands onto the end of the operands |
| 840 | // list. |
| 841 | Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end()); |
| 842 | Ops.erase(Ops.begin()+Idx); |
| 843 | DeletedMul = true; |
| 844 | } |
| 845 | |
| 846 | // If we deleted at least one mul, we added operands to the end of the list, |
| 847 | // and they are not necessarily sorted. Recurse to resort and resimplify |
| 848 | // any operands we just aquired. |
| 849 | if (DeletedMul) |
| 850 | return get(Ops); |
| 851 | } |
| 852 | |
| 853 | // If there are any add recurrences in the operands list, see if any other |
| 854 | // added values are loop invariant. If so, we can fold them into the |
| 855 | // recurrence. |
| 856 | while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) |
| 857 | ++Idx; |
| 858 | |
| 859 | // Scan over all recurrences, trying to fold loop invariants into them. |
| 860 | for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { |
| 861 | // Scan all of the other operands to this mul and add them to the vector if |
| 862 | // they are loop invariant w.r.t. the recurrence. |
| 863 | std::vector<SCEVHandle> LIOps; |
| 864 | SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); |
| 865 | for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| 866 | if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { |
| 867 | LIOps.push_back(Ops[i]); |
| 868 | Ops.erase(Ops.begin()+i); |
| 869 | --i; --e; |
| 870 | } |
| 871 | |
| 872 | // If we found some loop invariants, fold them into the recurrence. |
| 873 | if (!LIOps.empty()) { |
| 874 | // NLI * LI * { Start,+,Step} --> NLI * { LI*Start,+,LI*Step } |
| 875 | std::vector<SCEVHandle> NewOps; |
| 876 | NewOps.reserve(AddRec->getNumOperands()); |
| 877 | if (LIOps.size() == 1) { |
| 878 | SCEV *Scale = LIOps[0]; |
| 879 | for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) |
| 880 | NewOps.push_back(SCEVMulExpr::get(Scale, AddRec->getOperand(i))); |
| 881 | } else { |
| 882 | for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { |
| 883 | std::vector<SCEVHandle> MulOps(LIOps); |
| 884 | MulOps.push_back(AddRec->getOperand(i)); |
| 885 | NewOps.push_back(SCEVMulExpr::get(MulOps)); |
| 886 | } |
| 887 | } |
| 888 | |
| 889 | SCEVHandle NewRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop()); |
| 890 | |
| 891 | // If all of the other operands were loop invariant, we are done. |
| 892 | if (Ops.size() == 1) return NewRec; |
| 893 | |
| 894 | // Otherwise, multiply the folded AddRec by the non-liv parts. |
| 895 | for (unsigned i = 0;; ++i) |
| 896 | if (Ops[i] == AddRec) { |
| 897 | Ops[i] = NewRec; |
| 898 | break; |
| 899 | } |
| 900 | return SCEVMulExpr::get(Ops); |
| 901 | } |
| 902 | |
| 903 | // Okay, if there weren't any loop invariants to be folded, check to see if |
| 904 | // there are multiple AddRec's with the same loop induction variable being |
| 905 | // multiplied together. If so, we can fold them. |
| 906 | for (unsigned OtherIdx = Idx+1; |
| 907 | OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) |
| 908 | if (OtherIdx != Idx) { |
| 909 | SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); |
| 910 | if (AddRec->getLoop() == OtherAddRec->getLoop()) { |
| 911 | // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} |
| 912 | SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; |
| 913 | SCEVHandle NewStart = SCEVMulExpr::get(F->getStart(), |
| 914 | G->getStart()); |
| 915 | SCEVHandle B = F->getStepRecurrence(); |
| 916 | SCEVHandle D = G->getStepRecurrence(); |
| 917 | SCEVHandle NewStep = SCEVAddExpr::get(SCEVMulExpr::get(F, D), |
| 918 | SCEVMulExpr::get(G, B), |
| 919 | SCEVMulExpr::get(B, D)); |
| 920 | SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewStart, NewStep, |
| 921 | F->getLoop()); |
| 922 | if (Ops.size() == 2) return NewAddRec; |
| 923 | |
| 924 | Ops.erase(Ops.begin()+Idx); |
| 925 | Ops.erase(Ops.begin()+OtherIdx-1); |
| 926 | Ops.push_back(NewAddRec); |
| 927 | return SCEVMulExpr::get(Ops); |
| 928 | } |
| 929 | } |
| 930 | |
| 931 | // Otherwise couldn't fold anything into this recurrence. Move onto the |
| 932 | // next one. |
| 933 | } |
| 934 | |
| 935 | // Okay, it looks like we really DO need an mul expr. Check to see if we |
| 936 | // already have one, otherwise create a new one. |
| 937 | std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); |
| 938 | SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scMulExpr, |
| 939 | SCEVOps)]; |
| 940 | if (Result == 0) Result = new SCEVMulExpr(Ops); |
| 941 | return Result; |
| 942 | } |
| 943 | |
| 944 | SCEVHandle SCEVUDivExpr::get(const SCEVHandle &LHS, const SCEVHandle &RHS) { |
| 945 | if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { |
| 946 | if (RHSC->getValue()->equalsInt(1)) |
| 947 | return LHS; // X /u 1 --> x |
| 948 | if (RHSC->getValue()->isAllOnesValue()) |
| 949 | return getNegativeSCEV(LHS); // X /u -1 --> -x |
| 950 | |
| 951 | if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { |
| 952 | Constant *LHSCV = LHSC->getValue(); |
| 953 | Constant *RHSCV = RHSC->getValue(); |
| 954 | if (LHSCV->getType()->isSigned()) |
| 955 | LHSCV = ConstantExpr::getCast(LHSCV, |
| 956 | LHSCV->getType()->getUnsignedVersion()); |
| 957 | if (RHSCV->getType()->isSigned()) |
| 958 | RHSCV = ConstantExpr::getCast(RHSCV, LHSCV->getType()); |
| 959 | return SCEVUnknown::get(ConstantExpr::getDiv(LHSCV, RHSCV)); |
| 960 | } |
| 961 | } |
| 962 | |
| 963 | // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow. |
| 964 | |
| 965 | SCEVUDivExpr *&Result = SCEVUDivs[std::make_pair(LHS, RHS)]; |
| 966 | if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS); |
| 967 | return Result; |
| 968 | } |
| 969 | |
| 970 | |
| 971 | /// SCEVAddRecExpr::get - Get a add recurrence expression for the |
| 972 | /// specified loop. Simplify the expression as much as possible. |
| 973 | SCEVHandle SCEVAddRecExpr::get(const SCEVHandle &Start, |
| 974 | const SCEVHandle &Step, const Loop *L) { |
| 975 | std::vector<SCEVHandle> Operands; |
| 976 | Operands.push_back(Start); |
| 977 | if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) |
| 978 | if (StepChrec->getLoop() == L) { |
| 979 | Operands.insert(Operands.end(), StepChrec->op_begin(), |
| 980 | StepChrec->op_end()); |
| 981 | return get(Operands, L); |
| 982 | } |
| 983 | |
| 984 | Operands.push_back(Step); |
| 985 | return get(Operands, L); |
| 986 | } |
| 987 | |
| 988 | /// SCEVAddRecExpr::get - Get a add recurrence expression for the |
| 989 | /// specified loop. Simplify the expression as much as possible. |
| 990 | SCEVHandle SCEVAddRecExpr::get(std::vector<SCEVHandle> &Operands, |
| 991 | const Loop *L) { |
| 992 | if (Operands.size() == 1) return Operands[0]; |
| 993 | |
| 994 | if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Operands.back())) |
| 995 | if (StepC->getValue()->isNullValue()) { |
| 996 | Operands.pop_back(); |
| 997 | return get(Operands, L); // { X,+,0 } --> X |
| 998 | } |
| 999 | |
| 1000 | SCEVAddRecExpr *&Result = |
| 1001 | SCEVAddRecExprs[std::make_pair(L, std::vector<SCEV*>(Operands.begin(), |
| 1002 | Operands.end()))]; |
| 1003 | if (Result == 0) Result = new SCEVAddRecExpr(Operands, L); |
| 1004 | return Result; |
| 1005 | } |
| 1006 | |
Chris Lattner | 0a7f98c | 2004-04-15 15:07:24 +0000 | [diff] [blame] | 1007 | SCEVHandle SCEVUnknown::get(Value *V) { |
| 1008 | if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) |
| 1009 | return SCEVConstant::get(CI); |
| 1010 | SCEVUnknown *&Result = SCEVUnknowns[V]; |
| 1011 | if (Result == 0) Result = new SCEVUnknown(V); |
| 1012 | return Result; |
| 1013 | } |
| 1014 | |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 1015 | |
| 1016 | //===----------------------------------------------------------------------===// |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 1017 | // ScalarEvolutionsImpl Definition and Implementation |
| 1018 | //===----------------------------------------------------------------------===// |
| 1019 | // |
| 1020 | /// ScalarEvolutionsImpl - This class implements the main driver for the scalar |
| 1021 | /// evolution code. |
| 1022 | /// |
| 1023 | namespace { |
| 1024 | struct ScalarEvolutionsImpl { |
| 1025 | /// F - The function we are analyzing. |
| 1026 | /// |
| 1027 | Function &F; |
| 1028 | |
| 1029 | /// LI - The loop information for the function we are currently analyzing. |
| 1030 | /// |
| 1031 | LoopInfo &LI; |
| 1032 | |
| 1033 | /// UnknownValue - This SCEV is used to represent unknown trip counts and |
| 1034 | /// things. |
| 1035 | SCEVHandle UnknownValue; |
| 1036 | |
| 1037 | /// Scalars - This is a cache of the scalars we have analyzed so far. |
| 1038 | /// |
| 1039 | std::map<Value*, SCEVHandle> Scalars; |
| 1040 | |
| 1041 | /// IterationCounts - Cache the iteration count of the loops for this |
| 1042 | /// function as they are computed. |
| 1043 | std::map<const Loop*, SCEVHandle> IterationCounts; |
| 1044 | |
Chris Lattner | 3221ad0 | 2004-04-17 22:58:41 +0000 | [diff] [blame] | 1045 | /// ConstantEvolutionLoopExitValue - This map contains entries for all of |
| 1046 | /// the PHI instructions that we attempt to compute constant evolutions for. |
| 1047 | /// This allows us to avoid potentially expensive recomputation of these |
| 1048 | /// properties. An instruction maps to null if we are unable to compute its |
| 1049 | /// exit value. |
| 1050 | std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue; |
| 1051 | |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 1052 | public: |
| 1053 | ScalarEvolutionsImpl(Function &f, LoopInfo &li) |
| 1054 | : F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {} |
| 1055 | |
| 1056 | /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the |
| 1057 | /// expression and create a new one. |
| 1058 | SCEVHandle getSCEV(Value *V); |
| 1059 | |
| 1060 | /// getSCEVAtScope - Compute the value of the specified expression within |
| 1061 | /// the indicated loop (which may be null to indicate in no loop). If the |
| 1062 | /// expression cannot be evaluated, return UnknownValue itself. |
| 1063 | SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L); |
| 1064 | |
| 1065 | |
| 1066 | /// hasLoopInvariantIterationCount - Return true if the specified loop has |
| 1067 | /// an analyzable loop-invariant iteration count. |
| 1068 | bool hasLoopInvariantIterationCount(const Loop *L); |
| 1069 | |
| 1070 | /// getIterationCount - If the specified loop has a predictable iteration |
| 1071 | /// count, return it. Note that it is not valid to call this method on a |
| 1072 | /// loop without a loop-invariant iteration count. |
| 1073 | SCEVHandle getIterationCount(const Loop *L); |
| 1074 | |
| 1075 | /// deleteInstructionFromRecords - This method should be called by the |
| 1076 | /// client before it removes an instruction from the program, to make sure |
| 1077 | /// that no dangling references are left around. |
| 1078 | void deleteInstructionFromRecords(Instruction *I); |
| 1079 | |
| 1080 | private: |
| 1081 | /// createSCEV - We know that there is no SCEV for the specified value. |
| 1082 | /// Analyze the expression. |
| 1083 | SCEVHandle createSCEV(Value *V); |
| 1084 | SCEVHandle createNodeForCast(CastInst *CI); |
| 1085 | |
| 1086 | /// createNodeForPHI - Provide the special handling we need to analyze PHI |
| 1087 | /// SCEVs. |
| 1088 | SCEVHandle createNodeForPHI(PHINode *PN); |
| 1089 | void UpdatePHIUserScalarEntries(Instruction *I, PHINode *PN, |
| 1090 | std::set<Instruction*> &UpdatedInsts); |
| 1091 | |
| 1092 | /// ComputeIterationCount - Compute the number of times the specified loop |
| 1093 | /// will iterate. |
| 1094 | SCEVHandle ComputeIterationCount(const Loop *L); |
| 1095 | |
Chris Lattner | 673e02b | 2004-10-12 01:49:27 +0000 | [diff] [blame] | 1096 | /// ComputeLoadConstantCompareIterationCount - Given an exit condition of |
| 1097 | /// 'setcc load X, cst', try to se if we can compute the trip count. |
| 1098 | SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI, |
| 1099 | Constant *RHS, |
| 1100 | const Loop *L, |
| 1101 | unsigned SetCCOpcode); |
| 1102 | |
Chris Lattner | 7980fb9 | 2004-04-17 18:36:24 +0000 | [diff] [blame] | 1103 | /// ComputeIterationCountExhaustively - If the trip is known to execute a |
| 1104 | /// constant number of times (the condition evolves only from constants), |
| 1105 | /// try to evaluate a few iterations of the loop until we get the exit |
| 1106 | /// condition gets a value of ExitWhen (true or false). If we cannot |
| 1107 | /// evaluate the trip count of the loop, return UnknownValue. |
| 1108 | SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond, |
| 1109 | bool ExitWhen); |
| 1110 | |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 1111 | /// HowFarToZero - Return the number of times a backedge comparing the |
| 1112 | /// specified value to zero will execute. If not computable, return |
| 1113 | /// UnknownValue |
| 1114 | SCEVHandle HowFarToZero(SCEV *V, const Loop *L); |
| 1115 | |
| 1116 | /// HowFarToNonZero - Return the number of times a backedge checking the |
| 1117 | /// specified value for nonzero will execute. If not computable, return |
| 1118 | /// UnknownValue |
| 1119 | SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L); |
Chris Lattner | 3221ad0 | 2004-04-17 22:58:41 +0000 | [diff] [blame] | 1120 | |
| 1121 | /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is |
| 1122 | /// in the header of its containing loop, we know the loop executes a |
| 1123 | /// constant number of times, and the PHI node is just a recurrence |
| 1124 | /// involving constants, fold it. |
| 1125 | Constant *getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its, |
| 1126 | const Loop *L); |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 1127 | }; |
| 1128 | } |
| 1129 | |
| 1130 | //===----------------------------------------------------------------------===// |
| 1131 | // Basic SCEV Analysis and PHI Idiom Recognition Code |
| 1132 | // |
| 1133 | |
| 1134 | /// deleteInstructionFromRecords - This method should be called by the |
| 1135 | /// client before it removes an instruction from the program, to make sure |
| 1136 | /// that no dangling references are left around. |
| 1137 | void ScalarEvolutionsImpl::deleteInstructionFromRecords(Instruction *I) { |
| 1138 | Scalars.erase(I); |
Chris Lattner | 3221ad0 | 2004-04-17 22:58:41 +0000 | [diff] [blame] | 1139 | if (PHINode *PN = dyn_cast<PHINode>(I)) |
| 1140 | ConstantEvolutionLoopExitValue.erase(PN); |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 1141 | } |
| 1142 | |
| 1143 | |
| 1144 | /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the |
| 1145 | /// expression and create a new one. |
| 1146 | SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) { |
| 1147 | assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!"); |
| 1148 | |
| 1149 | std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V); |
| 1150 | if (I != Scalars.end()) return I->second; |
| 1151 | SCEVHandle S = createSCEV(V); |
| 1152 | Scalars.insert(std::make_pair(V, S)); |
| 1153 | return S; |
| 1154 | } |
| 1155 | |
| 1156 | |
| 1157 | /// UpdatePHIUserScalarEntries - After PHI node analysis, we have a bunch of |
| 1158 | /// entries in the scalar map that refer to the "symbolic" PHI value instead of |
| 1159 | /// the recurrence value. After we resolve the PHI we must loop over all of the |
| 1160 | /// using instructions that have scalar map entries and update them. |
| 1161 | void ScalarEvolutionsImpl::UpdatePHIUserScalarEntries(Instruction *I, |
| 1162 | PHINode *PN, |
| 1163 | std::set<Instruction*> &UpdatedInsts) { |
| 1164 | std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I); |
| 1165 | if (SI == Scalars.end()) return; // This scalar wasn't previous processed. |
| 1166 | if (UpdatedInsts.insert(I).second) { |
| 1167 | Scalars.erase(SI); // Remove the old entry |
| 1168 | getSCEV(I); // Calculate the new entry |
| 1169 | |
| 1170 | for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); |
| 1171 | UI != E; ++UI) |
| 1172 | UpdatePHIUserScalarEntries(cast<Instruction>(*UI), PN, UpdatedInsts); |
| 1173 | } |
| 1174 | } |
| 1175 | |
| 1176 | |
| 1177 | /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in |
| 1178 | /// a loop header, making it a potential recurrence, or it doesn't. |
| 1179 | /// |
| 1180 | SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) { |
| 1181 | if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized. |
| 1182 | if (const Loop *L = LI.getLoopFor(PN->getParent())) |
| 1183 | if (L->getHeader() == PN->getParent()) { |
| 1184 | // If it lives in the loop header, it has two incoming values, one |
| 1185 | // from outside the loop, and one from inside. |
| 1186 | unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); |
| 1187 | unsigned BackEdge = IncomingEdge^1; |
| 1188 | |
| 1189 | // While we are analyzing this PHI node, handle its value symbolically. |
| 1190 | SCEVHandle SymbolicName = SCEVUnknown::get(PN); |
| 1191 | assert(Scalars.find(PN) == Scalars.end() && |
| 1192 | "PHI node already processed?"); |
| 1193 | Scalars.insert(std::make_pair(PN, SymbolicName)); |
| 1194 | |
| 1195 | // Using this symbolic name for the PHI, analyze the value coming around |
| 1196 | // the back-edge. |
| 1197 | SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge)); |
| 1198 | |
| 1199 | // NOTE: If BEValue is loop invariant, we know that the PHI node just |
| 1200 | // has a special value for the first iteration of the loop. |
| 1201 | |
| 1202 | // If the value coming around the backedge is an add with the symbolic |
| 1203 | // value we just inserted, then we found a simple induction variable! |
| 1204 | if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { |
| 1205 | // If there is a single occurrence of the symbolic value, replace it |
| 1206 | // with a recurrence. |
| 1207 | unsigned FoundIndex = Add->getNumOperands(); |
| 1208 | for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) |
| 1209 | if (Add->getOperand(i) == SymbolicName) |
| 1210 | if (FoundIndex == e) { |
| 1211 | FoundIndex = i; |
| 1212 | break; |
| 1213 | } |
| 1214 | |
| 1215 | if (FoundIndex != Add->getNumOperands()) { |
| 1216 | // Create an add with everything but the specified operand. |
| 1217 | std::vector<SCEVHandle> Ops; |
| 1218 | for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) |
| 1219 | if (i != FoundIndex) |
| 1220 | Ops.push_back(Add->getOperand(i)); |
| 1221 | SCEVHandle Accum = SCEVAddExpr::get(Ops); |
| 1222 | |
| 1223 | // This is not a valid addrec if the step amount is varying each |
| 1224 | // loop iteration, but is not itself an addrec in this loop. |
| 1225 | if (Accum->isLoopInvariant(L) || |
| 1226 | (isa<SCEVAddRecExpr>(Accum) && |
| 1227 | cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { |
| 1228 | SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); |
| 1229 | SCEVHandle PHISCEV = SCEVAddRecExpr::get(StartVal, Accum, L); |
| 1230 | |
| 1231 | // Okay, for the entire analysis of this edge we assumed the PHI |
| 1232 | // to be symbolic. We now need to go back and update all of the |
| 1233 | // entries for the scalars that use the PHI (except for the PHI |
| 1234 | // itself) to use the new analyzed value instead of the "symbolic" |
| 1235 | // value. |
| 1236 | Scalars.find(PN)->second = PHISCEV; // Update the PHI value |
| 1237 | std::set<Instruction*> UpdatedInsts; |
| 1238 | UpdatedInsts.insert(PN); |
| 1239 | for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); |
| 1240 | UI != E; ++UI) |
| 1241 | UpdatePHIUserScalarEntries(cast<Instruction>(*UI), PN, |
| 1242 | UpdatedInsts); |
| 1243 | return PHISCEV; |
| 1244 | } |
| 1245 | } |
| 1246 | } |
| 1247 | |
| 1248 | return SymbolicName; |
| 1249 | } |
| 1250 | |
| 1251 | // If it's not a loop phi, we can't handle it yet. |
| 1252 | return SCEVUnknown::get(PN); |
| 1253 | } |
| 1254 | |
| 1255 | /// createNodeForCast - Handle the various forms of casts that we support. |
| 1256 | /// |
| 1257 | SCEVHandle ScalarEvolutionsImpl::createNodeForCast(CastInst *CI) { |
| 1258 | const Type *SrcTy = CI->getOperand(0)->getType(); |
| 1259 | const Type *DestTy = CI->getType(); |
| 1260 | |
| 1261 | // If this is a noop cast (ie, conversion from int to uint), ignore it. |
| 1262 | if (SrcTy->isLosslesslyConvertibleTo(DestTy)) |
| 1263 | return getSCEV(CI->getOperand(0)); |
| 1264 | |
| 1265 | if (SrcTy->isInteger() && DestTy->isInteger()) { |
| 1266 | // Otherwise, if this is a truncating integer cast, we can represent this |
| 1267 | // cast. |
| 1268 | if (SrcTy->getPrimitiveSize() > DestTy->getPrimitiveSize()) |
| 1269 | return SCEVTruncateExpr::get(getSCEV(CI->getOperand(0)), |
| 1270 | CI->getType()->getUnsignedVersion()); |
| 1271 | if (SrcTy->isUnsigned() && |
| 1272 | SrcTy->getPrimitiveSize() > DestTy->getPrimitiveSize()) |
| 1273 | return SCEVZeroExtendExpr::get(getSCEV(CI->getOperand(0)), |
| 1274 | CI->getType()->getUnsignedVersion()); |
| 1275 | } |
| 1276 | |
| 1277 | // If this is an sign or zero extending cast and we can prove that the value |
| 1278 | // will never overflow, we could do similar transformations. |
| 1279 | |
| 1280 | // Otherwise, we can't handle this cast! |
| 1281 | return SCEVUnknown::get(CI); |
| 1282 | } |
| 1283 | |
| 1284 | |
| 1285 | /// createSCEV - We know that there is no SCEV for the specified value. |
| 1286 | /// Analyze the expression. |
| 1287 | /// |
| 1288 | SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) { |
| 1289 | if (Instruction *I = dyn_cast<Instruction>(V)) { |
| 1290 | switch (I->getOpcode()) { |
| 1291 | case Instruction::Add: |
| 1292 | return SCEVAddExpr::get(getSCEV(I->getOperand(0)), |
| 1293 | getSCEV(I->getOperand(1))); |
| 1294 | case Instruction::Mul: |
| 1295 | return SCEVMulExpr::get(getSCEV(I->getOperand(0)), |
| 1296 | getSCEV(I->getOperand(1))); |
| 1297 | case Instruction::Div: |
| 1298 | if (V->getType()->isInteger() && V->getType()->isUnsigned()) |
| 1299 | return SCEVUDivExpr::get(getSCEV(I->getOperand(0)), |
| 1300 | getSCEV(I->getOperand(1))); |
| 1301 | break; |
| 1302 | |
| 1303 | case Instruction::Sub: |
| 1304 | return getMinusSCEV(getSCEV(I->getOperand(0)), getSCEV(I->getOperand(1))); |
| 1305 | |
| 1306 | case Instruction::Shl: |
| 1307 | // Turn shift left of a constant amount into a multiply. |
| 1308 | if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { |
| 1309 | Constant *X = ConstantInt::get(V->getType(), 1); |
| 1310 | X = ConstantExpr::getShl(X, SA); |
| 1311 | return SCEVMulExpr::get(getSCEV(I->getOperand(0)), getSCEV(X)); |
| 1312 | } |
| 1313 | break; |
| 1314 | |
| 1315 | case Instruction::Shr: |
| 1316 | if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1))) |
| 1317 | if (V->getType()->isUnsigned()) { |
| 1318 | Constant *X = ConstantInt::get(V->getType(), 1); |
| 1319 | X = ConstantExpr::getShl(X, SA); |
| 1320 | return SCEVUDivExpr::get(getSCEV(I->getOperand(0)), getSCEV(X)); |
| 1321 | } |
| 1322 | break; |
| 1323 | |
| 1324 | case Instruction::Cast: |
| 1325 | return createNodeForCast(cast<CastInst>(I)); |
| 1326 | |
| 1327 | case Instruction::PHI: |
| 1328 | return createNodeForPHI(cast<PHINode>(I)); |
| 1329 | |
| 1330 | default: // We cannot analyze this expression. |
| 1331 | break; |
| 1332 | } |
| 1333 | } |
| 1334 | |
| 1335 | return SCEVUnknown::get(V); |
| 1336 | } |
| 1337 | |
| 1338 | |
| 1339 | |
| 1340 | //===----------------------------------------------------------------------===// |
| 1341 | // Iteration Count Computation Code |
| 1342 | // |
| 1343 | |
| 1344 | /// getIterationCount - If the specified loop has a predictable iteration |
| 1345 | /// count, return it. Note that it is not valid to call this method on a |
| 1346 | /// loop without a loop-invariant iteration count. |
| 1347 | SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) { |
| 1348 | std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L); |
| 1349 | if (I == IterationCounts.end()) { |
| 1350 | SCEVHandle ItCount = ComputeIterationCount(L); |
| 1351 | I = IterationCounts.insert(std::make_pair(L, ItCount)).first; |
| 1352 | if (ItCount != UnknownValue) { |
| 1353 | assert(ItCount->isLoopInvariant(L) && |
| 1354 | "Computed trip count isn't loop invariant for loop!"); |
| 1355 | ++NumTripCountsComputed; |
| 1356 | } else if (isa<PHINode>(L->getHeader()->begin())) { |
| 1357 | // Only count loops that have phi nodes as not being computable. |
| 1358 | ++NumTripCountsNotComputed; |
| 1359 | } |
| 1360 | } |
| 1361 | return I->second; |
| 1362 | } |
| 1363 | |
| 1364 | /// ComputeIterationCount - Compute the number of times the specified loop |
| 1365 | /// will iterate. |
| 1366 | SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) { |
| 1367 | // If the loop has a non-one exit block count, we can't analyze it. |
Chris Lattner | f1ab4b4 | 2004-04-18 22:14:10 +0000 | [diff] [blame] | 1368 | std::vector<BasicBlock*> ExitBlocks; |
| 1369 | L->getExitBlocks(ExitBlocks); |
| 1370 | if (ExitBlocks.size() != 1) return UnknownValue; |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 1371 | |
| 1372 | // Okay, there is one exit block. Try to find the condition that causes the |
| 1373 | // loop to be exited. |
Chris Lattner | f1ab4b4 | 2004-04-18 22:14:10 +0000 | [diff] [blame] | 1374 | BasicBlock *ExitBlock = ExitBlocks[0]; |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 1375 | |
| 1376 | BasicBlock *ExitingBlock = 0; |
| 1377 | for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock); |
| 1378 | PI != E; ++PI) |
| 1379 | if (L->contains(*PI)) { |
| 1380 | if (ExitingBlock == 0) |
| 1381 | ExitingBlock = *PI; |
| 1382 | else |
| 1383 | return UnknownValue; // More than one block exiting! |
| 1384 | } |
| 1385 | assert(ExitingBlock && "No exits from loop, something is broken!"); |
| 1386 | |
| 1387 | // Okay, we've computed the exiting block. See what condition causes us to |
| 1388 | // exit. |
| 1389 | // |
| 1390 | // FIXME: we should be able to handle switch instructions (with a single exit) |
| 1391 | // FIXME: We should handle cast of int to bool as well |
| 1392 | BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); |
| 1393 | if (ExitBr == 0) return UnknownValue; |
| 1394 | assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); |
| 1395 | SetCondInst *ExitCond = dyn_cast<SetCondInst>(ExitBr->getCondition()); |
Chris Lattner | 7980fb9 | 2004-04-17 18:36:24 +0000 | [diff] [blame] | 1396 | if (ExitCond == 0) // Not a setcc |
| 1397 | return ComputeIterationCountExhaustively(L, ExitBr->getCondition(), |
| 1398 | ExitBr->getSuccessor(0) == ExitBlock); |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 1399 | |
Chris Lattner | 673e02b | 2004-10-12 01:49:27 +0000 | [diff] [blame] | 1400 | // If the condition was exit on true, convert the condition to exit on false. |
| 1401 | Instruction::BinaryOps Cond; |
| 1402 | if (ExitBr->getSuccessor(1) == ExitBlock) |
| 1403 | Cond = ExitCond->getOpcode(); |
| 1404 | else |
| 1405 | Cond = ExitCond->getInverseCondition(); |
| 1406 | |
| 1407 | // Handle common loops like: for (X = "string"; *X; ++X) |
| 1408 | if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) |
| 1409 | if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { |
| 1410 | SCEVHandle ItCnt = |
| 1411 | ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond); |
| 1412 | if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt; |
| 1413 | } |
| 1414 | |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 1415 | SCEVHandle LHS = getSCEV(ExitCond->getOperand(0)); |
| 1416 | SCEVHandle RHS = getSCEV(ExitCond->getOperand(1)); |
| 1417 | |
| 1418 | // Try to evaluate any dependencies out of the loop. |
| 1419 | SCEVHandle Tmp = getSCEVAtScope(LHS, L); |
| 1420 | if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp; |
| 1421 | Tmp = getSCEVAtScope(RHS, L); |
| 1422 | if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp; |
| 1423 | |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 1424 | // At this point, we would like to compute how many iterations of the loop the |
| 1425 | // predicate will return true for these inputs. |
| 1426 | if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) { |
| 1427 | // If there is a constant, force it into the RHS. |
| 1428 | std::swap(LHS, RHS); |
| 1429 | Cond = SetCondInst::getSwappedCondition(Cond); |
| 1430 | } |
| 1431 | |
| 1432 | // FIXME: think about handling pointer comparisons! i.e.: |
| 1433 | // while (P != P+100) ++P; |
| 1434 | |
| 1435 | // If we have a comparison of a chrec against a constant, try to use value |
| 1436 | // ranges to answer this query. |
| 1437 | if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) |
| 1438 | if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) |
| 1439 | if (AddRec->getLoop() == L) { |
| 1440 | // Form the comparison range using the constant of the correct type so |
| 1441 | // that the ConstantRange class knows to do a signed or unsigned |
| 1442 | // comparison. |
| 1443 | ConstantInt *CompVal = RHSC->getValue(); |
| 1444 | const Type *RealTy = ExitCond->getOperand(0)->getType(); |
| 1445 | CompVal = dyn_cast<ConstantInt>(ConstantExpr::getCast(CompVal, RealTy)); |
| 1446 | if (CompVal) { |
| 1447 | // Form the constant range. |
| 1448 | ConstantRange CompRange(Cond, CompVal); |
| 1449 | |
| 1450 | // Now that we have it, if it's signed, convert it to an unsigned |
| 1451 | // range. |
| 1452 | if (CompRange.getLower()->getType()->isSigned()) { |
| 1453 | const Type *NewTy = RHSC->getValue()->getType(); |
| 1454 | Constant *NewL = ConstantExpr::getCast(CompRange.getLower(), NewTy); |
| 1455 | Constant *NewU = ConstantExpr::getCast(CompRange.getUpper(), NewTy); |
| 1456 | CompRange = ConstantRange(NewL, NewU); |
| 1457 | } |
| 1458 | |
| 1459 | SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange); |
| 1460 | if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; |
| 1461 | } |
| 1462 | } |
| 1463 | |
| 1464 | switch (Cond) { |
| 1465 | case Instruction::SetNE: // while (X != Y) |
| 1466 | // Convert to: while (X-Y != 0) |
Chris Lattner | 7980fb9 | 2004-04-17 18:36:24 +0000 | [diff] [blame] | 1467 | if (LHS->getType()->isInteger()) { |
| 1468 | SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L); |
| 1469 | if (!isa<SCEVCouldNotCompute>(TC)) return TC; |
| 1470 | } |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 1471 | break; |
| 1472 | case Instruction::SetEQ: |
| 1473 | // Convert to: while (X-Y == 0) // while (X == Y) |
Chris Lattner | 7980fb9 | 2004-04-17 18:36:24 +0000 | [diff] [blame] | 1474 | if (LHS->getType()->isInteger()) { |
| 1475 | SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); |
| 1476 | if (!isa<SCEVCouldNotCompute>(TC)) return TC; |
| 1477 | } |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 1478 | break; |
| 1479 | default: |
Chris Lattner | d18d9dc | 2004-04-02 20:26:46 +0000 | [diff] [blame] | 1480 | #if 0 |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 1481 | std::cerr << "ComputeIterationCount "; |
| 1482 | if (ExitCond->getOperand(0)->getType()->isUnsigned()) |
| 1483 | std::cerr << "[unsigned] "; |
| 1484 | std::cerr << *LHS << " " |
| 1485 | << Instruction::getOpcodeName(Cond) << " " << *RHS << "\n"; |
Chris Lattner | d18d9dc | 2004-04-02 20:26:46 +0000 | [diff] [blame] | 1486 | #endif |
Chris Lattner | e34c0b4 | 2004-04-03 00:43:03 +0000 | [diff] [blame] | 1487 | break; |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 1488 | } |
Chris Lattner | 7980fb9 | 2004-04-17 18:36:24 +0000 | [diff] [blame] | 1489 | |
| 1490 | return ComputeIterationCountExhaustively(L, ExitCond, |
| 1491 | ExitBr->getSuccessor(0) == ExitBlock); |
| 1492 | } |
| 1493 | |
Chris Lattner | 673e02b | 2004-10-12 01:49:27 +0000 | [diff] [blame] | 1494 | static ConstantInt * |
| 1495 | EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, Constant *C) { |
| 1496 | SCEVHandle InVal = SCEVConstant::get(cast<ConstantInt>(C)); |
| 1497 | SCEVHandle Val = AddRec->evaluateAtIteration(InVal); |
| 1498 | assert(isa<SCEVConstant>(Val) && |
| 1499 | "Evaluation of SCEV at constant didn't fold correctly?"); |
| 1500 | return cast<SCEVConstant>(Val)->getValue(); |
| 1501 | } |
| 1502 | |
| 1503 | /// GetAddressedElementFromGlobal - Given a global variable with an initializer |
| 1504 | /// and a GEP expression (missing the pointer index) indexing into it, return |
| 1505 | /// the addressed element of the initializer or null if the index expression is |
| 1506 | /// invalid. |
| 1507 | static Constant * |
| 1508 | GetAddressedElementFromGlobal(GlobalVariable *GV, |
| 1509 | const std::vector<ConstantInt*> &Indices) { |
| 1510 | Constant *Init = GV->getInitializer(); |
| 1511 | for (unsigned i = 0, e = Indices.size(); i != e; ++i) { |
| 1512 | uint64_t Idx = Indices[i]->getRawValue(); |
| 1513 | if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { |
| 1514 | assert(Idx < CS->getNumOperands() && "Bad struct index!"); |
| 1515 | Init = cast<Constant>(CS->getOperand(Idx)); |
| 1516 | } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { |
| 1517 | if (Idx >= CA->getNumOperands()) return 0; // Bogus program |
| 1518 | Init = cast<Constant>(CA->getOperand(Idx)); |
| 1519 | } else if (isa<ConstantAggregateZero>(Init)) { |
| 1520 | if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { |
| 1521 | assert(Idx < STy->getNumElements() && "Bad struct index!"); |
| 1522 | Init = Constant::getNullValue(STy->getElementType(Idx)); |
| 1523 | } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { |
| 1524 | if (Idx >= ATy->getNumElements()) return 0; // Bogus program |
| 1525 | Init = Constant::getNullValue(ATy->getElementType()); |
| 1526 | } else { |
| 1527 | assert(0 && "Unknown constant aggregate type!"); |
| 1528 | } |
| 1529 | return 0; |
| 1530 | } else { |
| 1531 | return 0; // Unknown initializer type |
| 1532 | } |
| 1533 | } |
| 1534 | return Init; |
| 1535 | } |
| 1536 | |
| 1537 | /// ComputeLoadConstantCompareIterationCount - Given an exit condition of |
| 1538 | /// 'setcc load X, cst', try to se if we can compute the trip count. |
| 1539 | SCEVHandle ScalarEvolutionsImpl:: |
| 1540 | ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS, |
| 1541 | const Loop *L, unsigned SetCCOpcode) { |
| 1542 | if (LI->isVolatile()) return UnknownValue; |
| 1543 | |
| 1544 | // Check to see if the loaded pointer is a getelementptr of a global. |
| 1545 | GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); |
| 1546 | if (!GEP) return UnknownValue; |
| 1547 | |
| 1548 | // Make sure that it is really a constant global we are gepping, with an |
| 1549 | // initializer, and make sure the first IDX is really 0. |
| 1550 | GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); |
| 1551 | if (!GV || !GV->isConstant() || !GV->hasInitializer() || |
| 1552 | GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || |
| 1553 | !cast<Constant>(GEP->getOperand(1))->isNullValue()) |
| 1554 | return UnknownValue; |
| 1555 | |
| 1556 | // Okay, we allow one non-constant index into the GEP instruction. |
| 1557 | Value *VarIdx = 0; |
| 1558 | std::vector<ConstantInt*> Indexes; |
| 1559 | unsigned VarIdxNum = 0; |
| 1560 | for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) |
| 1561 | if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { |
| 1562 | Indexes.push_back(CI); |
| 1563 | } else if (!isa<ConstantInt>(GEP->getOperand(i))) { |
| 1564 | if (VarIdx) return UnknownValue; // Multiple non-constant idx's. |
| 1565 | VarIdx = GEP->getOperand(i); |
| 1566 | VarIdxNum = i-2; |
| 1567 | Indexes.push_back(0); |
| 1568 | } |
| 1569 | |
| 1570 | // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. |
| 1571 | // Check to see if X is a loop variant variable value now. |
| 1572 | SCEVHandle Idx = getSCEV(VarIdx); |
| 1573 | SCEVHandle Tmp = getSCEVAtScope(Idx, L); |
| 1574 | if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp; |
| 1575 | |
| 1576 | // We can only recognize very limited forms of loop index expressions, in |
| 1577 | // particular, only affine AddRec's like {C1,+,C2}. |
| 1578 | SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); |
| 1579 | if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || |
| 1580 | !isa<SCEVConstant>(IdxExpr->getOperand(0)) || |
| 1581 | !isa<SCEVConstant>(IdxExpr->getOperand(1))) |
| 1582 | return UnknownValue; |
| 1583 | |
| 1584 | unsigned MaxSteps = MaxBruteForceIterations; |
| 1585 | for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { |
| 1586 | ConstantUInt *ItCst = |
| 1587 | ConstantUInt::get(IdxExpr->getType()->getUnsignedVersion(), IterationNum); |
| 1588 | ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst); |
| 1589 | |
| 1590 | // Form the GEP offset. |
| 1591 | Indexes[VarIdxNum] = Val; |
| 1592 | |
| 1593 | Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); |
| 1594 | if (Result == 0) break; // Cannot compute! |
| 1595 | |
| 1596 | // Evaluate the condition for this iteration. |
| 1597 | Result = ConstantExpr::get(SetCCOpcode, Result, RHS); |
| 1598 | if (!isa<ConstantBool>(Result)) break; // Couldn't decide for sure |
| 1599 | if (Result == ConstantBool::False) { |
| 1600 | #if 0 |
| 1601 | std::cerr << "\n***\n*** Computed loop count " << *ItCst |
| 1602 | << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() |
| 1603 | << "***\n"; |
| 1604 | #endif |
| 1605 | ++NumArrayLenItCounts; |
| 1606 | return SCEVConstant::get(ItCst); // Found terminating iteration! |
| 1607 | } |
| 1608 | } |
| 1609 | return UnknownValue; |
| 1610 | } |
| 1611 | |
| 1612 | |
Chris Lattner | 3221ad0 | 2004-04-17 22:58:41 +0000 | [diff] [blame] | 1613 | /// CanConstantFold - Return true if we can constant fold an instruction of the |
| 1614 | /// specified type, assuming that all operands were constants. |
| 1615 | static bool CanConstantFold(const Instruction *I) { |
| 1616 | if (isa<BinaryOperator>(I) || isa<ShiftInst>(I) || |
| 1617 | isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) |
| 1618 | return true; |
Chris Lattner | 7980fb9 | 2004-04-17 18:36:24 +0000 | [diff] [blame] | 1619 | |
Chris Lattner | 3221ad0 | 2004-04-17 22:58:41 +0000 | [diff] [blame] | 1620 | if (const CallInst *CI = dyn_cast<CallInst>(I)) |
| 1621 | if (const Function *F = CI->getCalledFunction()) |
| 1622 | return canConstantFoldCallTo((Function*)F); // FIXME: elim cast |
| 1623 | return false; |
Chris Lattner | 7980fb9 | 2004-04-17 18:36:24 +0000 | [diff] [blame] | 1624 | } |
| 1625 | |
Chris Lattner | 3221ad0 | 2004-04-17 22:58:41 +0000 | [diff] [blame] | 1626 | /// ConstantFold - Constant fold an instruction of the specified type with the |
| 1627 | /// specified constant operands. This function may modify the operands vector. |
| 1628 | static Constant *ConstantFold(const Instruction *I, |
| 1629 | std::vector<Constant*> &Operands) { |
Chris Lattner | 7980fb9 | 2004-04-17 18:36:24 +0000 | [diff] [blame] | 1630 | if (isa<BinaryOperator>(I) || isa<ShiftInst>(I)) |
| 1631 | return ConstantExpr::get(I->getOpcode(), Operands[0], Operands[1]); |
| 1632 | |
| 1633 | switch (I->getOpcode()) { |
| 1634 | case Instruction::Cast: |
| 1635 | return ConstantExpr::getCast(Operands[0], I->getType()); |
| 1636 | case Instruction::Select: |
| 1637 | return ConstantExpr::getSelect(Operands[0], Operands[1], Operands[2]); |
| 1638 | case Instruction::Call: |
Reid Spencer | e840434 | 2004-07-18 00:18:30 +0000 | [diff] [blame] | 1639 | if (Function *GV = dyn_cast<Function>(Operands[0])) { |
Chris Lattner | 7980fb9 | 2004-04-17 18:36:24 +0000 | [diff] [blame] | 1640 | Operands.erase(Operands.begin()); |
Reid Spencer | e840434 | 2004-07-18 00:18:30 +0000 | [diff] [blame] | 1641 | return ConstantFoldCall(cast<Function>(GV), Operands); |
Chris Lattner | 7980fb9 | 2004-04-17 18:36:24 +0000 | [diff] [blame] | 1642 | } |
| 1643 | |
| 1644 | return 0; |
| 1645 | case Instruction::GetElementPtr: |
| 1646 | Constant *Base = Operands[0]; |
| 1647 | Operands.erase(Operands.begin()); |
| 1648 | return ConstantExpr::getGetElementPtr(Base, Operands); |
| 1649 | } |
| 1650 | return 0; |
| 1651 | } |
| 1652 | |
| 1653 | |
Chris Lattner | 3221ad0 | 2004-04-17 22:58:41 +0000 | [diff] [blame] | 1654 | /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node |
| 1655 | /// in the loop that V is derived from. We allow arbitrary operations along the |
| 1656 | /// way, but the operands of an operation must either be constants or a value |
| 1657 | /// derived from a constant PHI. If this expression does not fit with these |
| 1658 | /// constraints, return null. |
| 1659 | static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { |
| 1660 | // If this is not an instruction, or if this is an instruction outside of the |
| 1661 | // loop, it can't be derived from a loop PHI. |
| 1662 | Instruction *I = dyn_cast<Instruction>(V); |
| 1663 | if (I == 0 || !L->contains(I->getParent())) return 0; |
| 1664 | |
| 1665 | if (PHINode *PN = dyn_cast<PHINode>(I)) |
| 1666 | if (L->getHeader() == I->getParent()) |
| 1667 | return PN; |
| 1668 | else |
| 1669 | // We don't currently keep track of the control flow needed to evaluate |
| 1670 | // PHIs, so we cannot handle PHIs inside of loops. |
| 1671 | return 0; |
| 1672 | |
| 1673 | // If we won't be able to constant fold this expression even if the operands |
| 1674 | // are constants, return early. |
| 1675 | if (!CanConstantFold(I)) return 0; |
| 1676 | |
| 1677 | // Otherwise, we can evaluate this instruction if all of its operands are |
| 1678 | // constant or derived from a PHI node themselves. |
| 1679 | PHINode *PHI = 0; |
| 1680 | for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) |
| 1681 | if (!(isa<Constant>(I->getOperand(Op)) || |
| 1682 | isa<GlobalValue>(I->getOperand(Op)))) { |
| 1683 | PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); |
| 1684 | if (P == 0) return 0; // Not evolving from PHI |
| 1685 | if (PHI == 0) |
| 1686 | PHI = P; |
| 1687 | else if (PHI != P) |
| 1688 | return 0; // Evolving from multiple different PHIs. |
| 1689 | } |
| 1690 | |
| 1691 | // This is a expression evolving from a constant PHI! |
| 1692 | return PHI; |
| 1693 | } |
| 1694 | |
| 1695 | /// EvaluateExpression - Given an expression that passes the |
| 1696 | /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node |
| 1697 | /// in the loop has the value PHIVal. If we can't fold this expression for some |
| 1698 | /// reason, return null. |
| 1699 | static Constant *EvaluateExpression(Value *V, Constant *PHIVal) { |
| 1700 | if (isa<PHINode>(V)) return PHIVal; |
Chris Lattner | 3221ad0 | 2004-04-17 22:58:41 +0000 | [diff] [blame] | 1701 | if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) |
Reid Spencer | e840434 | 2004-07-18 00:18:30 +0000 | [diff] [blame] | 1702 | return GV; |
| 1703 | if (Constant *C = dyn_cast<Constant>(V)) return C; |
Chris Lattner | 3221ad0 | 2004-04-17 22:58:41 +0000 | [diff] [blame] | 1704 | Instruction *I = cast<Instruction>(V); |
| 1705 | |
| 1706 | std::vector<Constant*> Operands; |
| 1707 | Operands.resize(I->getNumOperands()); |
| 1708 | |
| 1709 | for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { |
| 1710 | Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal); |
| 1711 | if (Operands[i] == 0) return 0; |
| 1712 | } |
| 1713 | |
| 1714 | return ConstantFold(I, Operands); |
| 1715 | } |
| 1716 | |
| 1717 | /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is |
| 1718 | /// in the header of its containing loop, we know the loop executes a |
| 1719 | /// constant number of times, and the PHI node is just a recurrence |
| 1720 | /// involving constants, fold it. |
| 1721 | Constant *ScalarEvolutionsImpl:: |
| 1722 | getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its, const Loop *L) { |
| 1723 | std::map<PHINode*, Constant*>::iterator I = |
| 1724 | ConstantEvolutionLoopExitValue.find(PN); |
| 1725 | if (I != ConstantEvolutionLoopExitValue.end()) |
| 1726 | return I->second; |
| 1727 | |
| 1728 | if (Its > MaxBruteForceIterations) |
| 1729 | return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. |
| 1730 | |
| 1731 | Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; |
| 1732 | |
| 1733 | // Since the loop is canonicalized, the PHI node must have two entries. One |
| 1734 | // entry must be a constant (coming in from outside of the loop), and the |
| 1735 | // second must be derived from the same PHI. |
| 1736 | bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); |
| 1737 | Constant *StartCST = |
| 1738 | dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); |
| 1739 | if (StartCST == 0) |
| 1740 | return RetVal = 0; // Must be a constant. |
| 1741 | |
| 1742 | Value *BEValue = PN->getIncomingValue(SecondIsBackedge); |
| 1743 | PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); |
| 1744 | if (PN2 != PN) |
| 1745 | return RetVal = 0; // Not derived from same PHI. |
| 1746 | |
| 1747 | // Execute the loop symbolically to determine the exit value. |
| 1748 | unsigned IterationNum = 0; |
| 1749 | unsigned NumIterations = Its; |
| 1750 | if (NumIterations != Its) |
| 1751 | return RetVal = 0; // More than 2^32 iterations?? |
| 1752 | |
| 1753 | for (Constant *PHIVal = StartCST; ; ++IterationNum) { |
| 1754 | if (IterationNum == NumIterations) |
| 1755 | return RetVal = PHIVal; // Got exit value! |
| 1756 | |
| 1757 | // Compute the value of the PHI node for the next iteration. |
| 1758 | Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); |
| 1759 | if (NextPHI == PHIVal) |
| 1760 | return RetVal = NextPHI; // Stopped evolving! |
| 1761 | if (NextPHI == 0) |
| 1762 | return 0; // Couldn't evaluate! |
| 1763 | PHIVal = NextPHI; |
| 1764 | } |
| 1765 | } |
| 1766 | |
Chris Lattner | 7980fb9 | 2004-04-17 18:36:24 +0000 | [diff] [blame] | 1767 | /// ComputeIterationCountExhaustively - If the trip is known to execute a |
| 1768 | /// constant number of times (the condition evolves only from constants), |
| 1769 | /// try to evaluate a few iterations of the loop until we get the exit |
| 1770 | /// condition gets a value of ExitWhen (true or false). If we cannot |
| 1771 | /// evaluate the trip count of the loop, return UnknownValue. |
| 1772 | SCEVHandle ScalarEvolutionsImpl:: |
| 1773 | ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) { |
| 1774 | PHINode *PN = getConstantEvolvingPHI(Cond, L); |
| 1775 | if (PN == 0) return UnknownValue; |
| 1776 | |
| 1777 | // Since the loop is canonicalized, the PHI node must have two entries. One |
| 1778 | // entry must be a constant (coming in from outside of the loop), and the |
| 1779 | // second must be derived from the same PHI. |
| 1780 | bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); |
| 1781 | Constant *StartCST = |
| 1782 | dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); |
| 1783 | if (StartCST == 0) return UnknownValue; // Must be a constant. |
| 1784 | |
| 1785 | Value *BEValue = PN->getIncomingValue(SecondIsBackedge); |
| 1786 | PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); |
| 1787 | if (PN2 != PN) return UnknownValue; // Not derived from same PHI. |
| 1788 | |
| 1789 | // Okay, we find a PHI node that defines the trip count of this loop. Execute |
| 1790 | // the loop symbolically to determine when the condition gets a value of |
| 1791 | // "ExitWhen". |
| 1792 | unsigned IterationNum = 0; |
| 1793 | unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. |
| 1794 | for (Constant *PHIVal = StartCST; |
| 1795 | IterationNum != MaxIterations; ++IterationNum) { |
| 1796 | ConstantBool *CondVal = |
| 1797 | dyn_cast_or_null<ConstantBool>(EvaluateExpression(Cond, PHIVal)); |
| 1798 | if (!CondVal) return UnknownValue; // Couldn't symbolically evaluate. |
Chris Lattner | 3221ad0 | 2004-04-17 22:58:41 +0000 | [diff] [blame] | 1799 | |
Chris Lattner | 7980fb9 | 2004-04-17 18:36:24 +0000 | [diff] [blame] | 1800 | if (CondVal->getValue() == ExitWhen) { |
Chris Lattner | 3221ad0 | 2004-04-17 22:58:41 +0000 | [diff] [blame] | 1801 | ConstantEvolutionLoopExitValue[PN] = PHIVal; |
Chris Lattner | 7980fb9 | 2004-04-17 18:36:24 +0000 | [diff] [blame] | 1802 | ++NumBruteForceTripCountsComputed; |
| 1803 | return SCEVConstant::get(ConstantUInt::get(Type::UIntTy, IterationNum)); |
| 1804 | } |
| 1805 | |
Chris Lattner | 3221ad0 | 2004-04-17 22:58:41 +0000 | [diff] [blame] | 1806 | // Compute the value of the PHI node for the next iteration. |
| 1807 | Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); |
| 1808 | if (NextPHI == 0 || NextPHI == PHIVal) |
Chris Lattner | 7980fb9 | 2004-04-17 18:36:24 +0000 | [diff] [blame] | 1809 | return UnknownValue; // Couldn't evaluate or not making progress... |
Chris Lattner | 3221ad0 | 2004-04-17 22:58:41 +0000 | [diff] [blame] | 1810 | PHIVal = NextPHI; |
Chris Lattner | 7980fb9 | 2004-04-17 18:36:24 +0000 | [diff] [blame] | 1811 | } |
| 1812 | |
| 1813 | // Too many iterations were needed to evaluate. |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 1814 | return UnknownValue; |
| 1815 | } |
| 1816 | |
| 1817 | /// getSCEVAtScope - Compute the value of the specified expression within the |
| 1818 | /// indicated loop (which may be null to indicate in no loop). If the |
| 1819 | /// expression cannot be evaluated, return UnknownValue. |
| 1820 | SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) { |
| 1821 | // FIXME: this should be turned into a virtual method on SCEV! |
| 1822 | |
Chris Lattner | 3221ad0 | 2004-04-17 22:58:41 +0000 | [diff] [blame] | 1823 | if (isa<SCEVConstant>(V)) return V; |
| 1824 | |
| 1825 | // If this instruction is evolves from a constant-evolving PHI, compute the |
| 1826 | // exit value from the loop without using SCEVs. |
| 1827 | if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { |
| 1828 | if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { |
| 1829 | const Loop *LI = this->LI[I->getParent()]; |
| 1830 | if (LI && LI->getParentLoop() == L) // Looking for loop exit value. |
| 1831 | if (PHINode *PN = dyn_cast<PHINode>(I)) |
| 1832 | if (PN->getParent() == LI->getHeader()) { |
| 1833 | // Okay, there is no closed form solution for the PHI node. Check |
| 1834 | // to see if the loop that contains it has a known iteration count. |
| 1835 | // If so, we may be able to force computation of the exit value. |
| 1836 | SCEVHandle IterationCount = getIterationCount(LI); |
| 1837 | if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) { |
| 1838 | // Okay, we know how many times the containing loop executes. If |
| 1839 | // this is a constant evolving PHI node, get the final value at |
| 1840 | // the specified iteration number. |
| 1841 | Constant *RV = getConstantEvolutionLoopExitValue(PN, |
| 1842 | ICC->getValue()->getRawValue(), |
| 1843 | LI); |
| 1844 | if (RV) return SCEVUnknown::get(RV); |
| 1845 | } |
| 1846 | } |
| 1847 | |
| 1848 | // Okay, this is a some expression that we cannot symbolically evaluate |
| 1849 | // into a SCEV. Check to see if it's possible to symbolically evaluate |
| 1850 | // the arguments into constants, and if see, try to constant propagate the |
| 1851 | // result. This is particularly useful for computing loop exit values. |
| 1852 | if (CanConstantFold(I)) { |
| 1853 | std::vector<Constant*> Operands; |
| 1854 | Operands.reserve(I->getNumOperands()); |
| 1855 | for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { |
| 1856 | Value *Op = I->getOperand(i); |
| 1857 | if (Constant *C = dyn_cast<Constant>(Op)) { |
| 1858 | Operands.push_back(C); |
Chris Lattner | 3221ad0 | 2004-04-17 22:58:41 +0000 | [diff] [blame] | 1859 | } else { |
| 1860 | SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L); |
| 1861 | if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) |
| 1862 | Operands.push_back(ConstantExpr::getCast(SC->getValue(), |
| 1863 | Op->getType())); |
| 1864 | else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) { |
| 1865 | if (Constant *C = dyn_cast<Constant>(SU->getValue())) |
| 1866 | Operands.push_back(ConstantExpr::getCast(C, Op->getType())); |
| 1867 | else |
| 1868 | return V; |
| 1869 | } else { |
| 1870 | return V; |
| 1871 | } |
| 1872 | } |
| 1873 | } |
| 1874 | return SCEVUnknown::get(ConstantFold(I, Operands)); |
| 1875 | } |
| 1876 | } |
| 1877 | |
| 1878 | // This is some other type of SCEVUnknown, just return it. |
| 1879 | return V; |
| 1880 | } |
| 1881 | |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 1882 | if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { |
| 1883 | // Avoid performing the look-up in the common case where the specified |
| 1884 | // expression has no loop-variant portions. |
| 1885 | for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { |
| 1886 | SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); |
| 1887 | if (OpAtScope != Comm->getOperand(i)) { |
| 1888 | if (OpAtScope == UnknownValue) return UnknownValue; |
| 1889 | // Okay, at least one of these operands is loop variant but might be |
| 1890 | // foldable. Build a new instance of the folded commutative expression. |
Chris Lattner | 3221ad0 | 2004-04-17 22:58:41 +0000 | [diff] [blame] | 1891 | std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i); |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 1892 | NewOps.push_back(OpAtScope); |
| 1893 | |
| 1894 | for (++i; i != e; ++i) { |
| 1895 | OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); |
| 1896 | if (OpAtScope == UnknownValue) return UnknownValue; |
| 1897 | NewOps.push_back(OpAtScope); |
| 1898 | } |
| 1899 | if (isa<SCEVAddExpr>(Comm)) |
| 1900 | return SCEVAddExpr::get(NewOps); |
| 1901 | assert(isa<SCEVMulExpr>(Comm) && "Only know about add and mul!"); |
| 1902 | return SCEVMulExpr::get(NewOps); |
| 1903 | } |
| 1904 | } |
| 1905 | // If we got here, all operands are loop invariant. |
| 1906 | return Comm; |
| 1907 | } |
| 1908 | |
| 1909 | if (SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(V)) { |
| 1910 | SCEVHandle LHS = getSCEVAtScope(UDiv->getLHS(), L); |
| 1911 | if (LHS == UnknownValue) return LHS; |
| 1912 | SCEVHandle RHS = getSCEVAtScope(UDiv->getRHS(), L); |
| 1913 | if (RHS == UnknownValue) return RHS; |
| 1914 | if (LHS == UDiv->getLHS() && RHS == UDiv->getRHS()) |
| 1915 | return UDiv; // must be loop invariant |
| 1916 | return SCEVUDivExpr::get(LHS, RHS); |
| 1917 | } |
| 1918 | |
| 1919 | // If this is a loop recurrence for a loop that does not contain L, then we |
| 1920 | // are dealing with the final value computed by the loop. |
| 1921 | if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { |
| 1922 | if (!L || !AddRec->getLoop()->contains(L->getHeader())) { |
| 1923 | // To evaluate this recurrence, we need to know how many times the AddRec |
| 1924 | // loop iterates. Compute this now. |
| 1925 | SCEVHandle IterationCount = getIterationCount(AddRec->getLoop()); |
| 1926 | if (IterationCount == UnknownValue) return UnknownValue; |
| 1927 | IterationCount = getTruncateOrZeroExtend(IterationCount, |
| 1928 | AddRec->getType()); |
| 1929 | |
| 1930 | // If the value is affine, simplify the expression evaluation to just |
| 1931 | // Start + Step*IterationCount. |
| 1932 | if (AddRec->isAffine()) |
| 1933 | return SCEVAddExpr::get(AddRec->getStart(), |
| 1934 | SCEVMulExpr::get(IterationCount, |
| 1935 | AddRec->getOperand(1))); |
| 1936 | |
| 1937 | // Otherwise, evaluate it the hard way. |
| 1938 | return AddRec->evaluateAtIteration(IterationCount); |
| 1939 | } |
| 1940 | return UnknownValue; |
| 1941 | } |
| 1942 | |
| 1943 | //assert(0 && "Unknown SCEV type!"); |
| 1944 | return UnknownValue; |
| 1945 | } |
| 1946 | |
| 1947 | |
| 1948 | /// SolveQuadraticEquation - Find the roots of the quadratic equation for the |
| 1949 | /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which |
| 1950 | /// might be the same) or two SCEVCouldNotCompute objects. |
| 1951 | /// |
| 1952 | static std::pair<SCEVHandle,SCEVHandle> |
| 1953 | SolveQuadraticEquation(const SCEVAddRecExpr *AddRec) { |
| 1954 | assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); |
| 1955 | SCEVConstant *L = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); |
| 1956 | SCEVConstant *M = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); |
| 1957 | SCEVConstant *N = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); |
| 1958 | |
| 1959 | // We currently can only solve this if the coefficients are constants. |
| 1960 | if (!L || !M || !N) { |
| 1961 | SCEV *CNC = new SCEVCouldNotCompute(); |
| 1962 | return std::make_pair(CNC, CNC); |
| 1963 | } |
| 1964 | |
| 1965 | Constant *Two = ConstantInt::get(L->getValue()->getType(), 2); |
| 1966 | |
| 1967 | // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C |
| 1968 | Constant *C = L->getValue(); |
| 1969 | // The B coefficient is M-N/2 |
| 1970 | Constant *B = ConstantExpr::getSub(M->getValue(), |
| 1971 | ConstantExpr::getDiv(N->getValue(), |
| 1972 | Two)); |
| 1973 | // The A coefficient is N/2 |
| 1974 | Constant *A = ConstantExpr::getDiv(N->getValue(), Two); |
| 1975 | |
| 1976 | // Compute the B^2-4ac term. |
| 1977 | Constant *SqrtTerm = |
| 1978 | ConstantExpr::getMul(ConstantInt::get(C->getType(), 4), |
| 1979 | ConstantExpr::getMul(A, C)); |
| 1980 | SqrtTerm = ConstantExpr::getSub(ConstantExpr::getMul(B, B), SqrtTerm); |
| 1981 | |
| 1982 | // Compute floor(sqrt(B^2-4ac)) |
| 1983 | ConstantUInt *SqrtVal = |
| 1984 | cast<ConstantUInt>(ConstantExpr::getCast(SqrtTerm, |
| 1985 | SqrtTerm->getType()->getUnsignedVersion())); |
| 1986 | uint64_t SqrtValV = SqrtVal->getValue(); |
Chris Lattner | 219c141 | 2004-10-25 18:40:08 +0000 | [diff] [blame^] | 1987 | uint64_t SqrtValV2 = (uint64_t)sqrt((double)SqrtValV); |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 1988 | // The square root might not be precise for arbitrary 64-bit integer |
| 1989 | // values. Do some sanity checks to ensure it's correct. |
| 1990 | if (SqrtValV2*SqrtValV2 > SqrtValV || |
| 1991 | (SqrtValV2+1)*(SqrtValV2+1) <= SqrtValV) { |
| 1992 | SCEV *CNC = new SCEVCouldNotCompute(); |
| 1993 | return std::make_pair(CNC, CNC); |
| 1994 | } |
| 1995 | |
| 1996 | SqrtVal = ConstantUInt::get(Type::ULongTy, SqrtValV2); |
| 1997 | SqrtTerm = ConstantExpr::getCast(SqrtVal, SqrtTerm->getType()); |
| 1998 | |
| 1999 | Constant *NegB = ConstantExpr::getNeg(B); |
| 2000 | Constant *TwoA = ConstantExpr::getMul(A, Two); |
| 2001 | |
| 2002 | // The divisions must be performed as signed divisions. |
| 2003 | const Type *SignedTy = NegB->getType()->getSignedVersion(); |
| 2004 | NegB = ConstantExpr::getCast(NegB, SignedTy); |
| 2005 | TwoA = ConstantExpr::getCast(TwoA, SignedTy); |
| 2006 | SqrtTerm = ConstantExpr::getCast(SqrtTerm, SignedTy); |
| 2007 | |
| 2008 | Constant *Solution1 = |
| 2009 | ConstantExpr::getDiv(ConstantExpr::getAdd(NegB, SqrtTerm), TwoA); |
| 2010 | Constant *Solution2 = |
| 2011 | ConstantExpr::getDiv(ConstantExpr::getSub(NegB, SqrtTerm), TwoA); |
| 2012 | return std::make_pair(SCEVUnknown::get(Solution1), |
| 2013 | SCEVUnknown::get(Solution2)); |
| 2014 | } |
| 2015 | |
| 2016 | /// HowFarToZero - Return the number of times a backedge comparing the specified |
| 2017 | /// value to zero will execute. If not computable, return UnknownValue |
| 2018 | SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) { |
| 2019 | // If the value is a constant |
| 2020 | if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { |
| 2021 | // If the value is already zero, the branch will execute zero times. |
| 2022 | if (C->getValue()->isNullValue()) return C; |
| 2023 | return UnknownValue; // Otherwise it will loop infinitely. |
| 2024 | } |
| 2025 | |
| 2026 | SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); |
| 2027 | if (!AddRec || AddRec->getLoop() != L) |
| 2028 | return UnknownValue; |
| 2029 | |
| 2030 | if (AddRec->isAffine()) { |
| 2031 | // If this is an affine expression the execution count of this branch is |
| 2032 | // equal to: |
| 2033 | // |
| 2034 | // (0 - Start/Step) iff Start % Step == 0 |
| 2035 | // |
| 2036 | // Get the initial value for the loop. |
| 2037 | SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); |
Chris Lattner | 4a2b23e | 2004-10-11 04:07:27 +0000 | [diff] [blame] | 2038 | if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue; |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 2039 | SCEVHandle Step = AddRec->getOperand(1); |
| 2040 | |
| 2041 | Step = getSCEVAtScope(Step, L->getParentLoop()); |
| 2042 | |
| 2043 | // Figure out if Start % Step == 0. |
| 2044 | // FIXME: We should add DivExpr and RemExpr operations to our AST. |
| 2045 | if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { |
| 2046 | if (StepC->getValue()->equalsInt(1)) // N % 1 == 0 |
| 2047 | return getNegativeSCEV(Start); // 0 - Start/1 == -Start |
| 2048 | if (StepC->getValue()->isAllOnesValue()) // N % -1 == 0 |
| 2049 | return Start; // 0 - Start/-1 == Start |
| 2050 | |
| 2051 | // Check to see if Start is divisible by SC with no remainder. |
| 2052 | if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) { |
| 2053 | ConstantInt *StartCC = StartC->getValue(); |
| 2054 | Constant *StartNegC = ConstantExpr::getNeg(StartCC); |
| 2055 | Constant *Rem = ConstantExpr::getRem(StartNegC, StepC->getValue()); |
| 2056 | if (Rem->isNullValue()) { |
| 2057 | Constant *Result =ConstantExpr::getDiv(StartNegC,StepC->getValue()); |
| 2058 | return SCEVUnknown::get(Result); |
| 2059 | } |
| 2060 | } |
| 2061 | } |
| 2062 | } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) { |
| 2063 | // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of |
| 2064 | // the quadratic equation to solve it. |
| 2065 | std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec); |
| 2066 | SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); |
| 2067 | SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); |
| 2068 | if (R1) { |
Chris Lattner | d18d9dc | 2004-04-02 20:26:46 +0000 | [diff] [blame] | 2069 | #if 0 |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 2070 | std::cerr << "HFTZ: " << *V << " - sol#1: " << *R1 |
| 2071 | << " sol#2: " << *R2 << "\n"; |
Chris Lattner | d18d9dc | 2004-04-02 20:26:46 +0000 | [diff] [blame] | 2072 | #endif |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 2073 | // Pick the smallest positive root value. |
| 2074 | assert(R1->getType()->isUnsigned()&&"Didn't canonicalize to unsigned?"); |
| 2075 | if (ConstantBool *CB = |
| 2076 | dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(), |
| 2077 | R2->getValue()))) { |
| 2078 | if (CB != ConstantBool::True) |
| 2079 | std::swap(R1, R2); // R1 is the minimum root now. |
| 2080 | |
| 2081 | // We can only use this value if the chrec ends up with an exact zero |
| 2082 | // value at this index. When solving for "X*X != 5", for example, we |
| 2083 | // should not accept a root of 2. |
| 2084 | SCEVHandle Val = AddRec->evaluateAtIteration(R1); |
| 2085 | if (SCEVConstant *EvalVal = dyn_cast<SCEVConstant>(Val)) |
| 2086 | if (EvalVal->getValue()->isNullValue()) |
| 2087 | return R1; // We found a quadratic root! |
| 2088 | } |
| 2089 | } |
| 2090 | } |
| 2091 | |
| 2092 | return UnknownValue; |
| 2093 | } |
| 2094 | |
| 2095 | /// HowFarToNonZero - Return the number of times a backedge checking the |
| 2096 | /// specified value for nonzero will execute. If not computable, return |
| 2097 | /// UnknownValue |
| 2098 | SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) { |
| 2099 | // Loops that look like: while (X == 0) are very strange indeed. We don't |
| 2100 | // handle them yet except for the trivial case. This could be expanded in the |
| 2101 | // future as needed. |
| 2102 | |
| 2103 | // If the value is a constant, check to see if it is known to be non-zero |
| 2104 | // already. If so, the backedge will execute zero times. |
| 2105 | if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { |
| 2106 | Constant *Zero = Constant::getNullValue(C->getValue()->getType()); |
| 2107 | Constant *NonZero = ConstantExpr::getSetNE(C->getValue(), Zero); |
| 2108 | if (NonZero == ConstantBool::True) |
| 2109 | return getSCEV(Zero); |
| 2110 | return UnknownValue; // Otherwise it will loop infinitely. |
| 2111 | } |
| 2112 | |
| 2113 | // We could implement others, but I really doubt anyone writes loops like |
| 2114 | // this, and if they did, they would already be constant folded. |
| 2115 | return UnknownValue; |
| 2116 | } |
| 2117 | |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 2118 | /// getNumIterationsInRange - Return the number of iterations of this loop that |
| 2119 | /// produce values in the specified constant range. Another way of looking at |
| 2120 | /// this is that it returns the first iteration number where the value is not in |
| 2121 | /// the condition, thus computing the exit count. If the iteration count can't |
| 2122 | /// be computed, an instance of SCEVCouldNotCompute is returned. |
| 2123 | SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range) const { |
| 2124 | if (Range.isFullSet()) // Infinite loop. |
| 2125 | return new SCEVCouldNotCompute(); |
| 2126 | |
| 2127 | // If the start is a non-zero constant, shift the range to simplify things. |
| 2128 | if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) |
| 2129 | if (!SC->getValue()->isNullValue()) { |
| 2130 | std::vector<SCEVHandle> Operands(op_begin(), op_end()); |
Chris Lattner | b06432c | 2004-04-23 21:29:03 +0000 | [diff] [blame] | 2131 | Operands[0] = SCEVUnknown::getIntegerSCEV(0, SC->getType()); |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 2132 | SCEVHandle Shifted = SCEVAddRecExpr::get(Operands, getLoop()); |
| 2133 | if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) |
| 2134 | return ShiftedAddRec->getNumIterationsInRange( |
| 2135 | Range.subtract(SC->getValue())); |
| 2136 | // This is strange and shouldn't happen. |
| 2137 | return new SCEVCouldNotCompute(); |
| 2138 | } |
| 2139 | |
| 2140 | // The only time we can solve this is when we have all constant indices. |
| 2141 | // Otherwise, we cannot determine the overflow conditions. |
| 2142 | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) |
| 2143 | if (!isa<SCEVConstant>(getOperand(i))) |
| 2144 | return new SCEVCouldNotCompute(); |
| 2145 | |
| 2146 | |
| 2147 | // Okay at this point we know that all elements of the chrec are constants and |
| 2148 | // that the start element is zero. |
| 2149 | |
| 2150 | // First check to see if the range contains zero. If not, the first |
| 2151 | // iteration exits. |
| 2152 | ConstantInt *Zero = ConstantInt::get(getType(), 0); |
| 2153 | if (!Range.contains(Zero)) return SCEVConstant::get(Zero); |
| 2154 | |
| 2155 | if (isAffine()) { |
| 2156 | // If this is an affine expression then we have this situation: |
| 2157 | // Solve {0,+,A} in Range === Ax in Range |
| 2158 | |
| 2159 | // Since we know that zero is in the range, we know that the upper value of |
| 2160 | // the range must be the first possible exit value. Also note that we |
| 2161 | // already checked for a full range. |
| 2162 | ConstantInt *Upper = cast<ConstantInt>(Range.getUpper()); |
| 2163 | ConstantInt *A = cast<SCEVConstant>(getOperand(1))->getValue(); |
| 2164 | ConstantInt *One = ConstantInt::get(getType(), 1); |
| 2165 | |
| 2166 | // The exit value should be (Upper+A-1)/A. |
| 2167 | Constant *ExitValue = Upper; |
| 2168 | if (A != One) { |
| 2169 | ExitValue = ConstantExpr::getSub(ConstantExpr::getAdd(Upper, A), One); |
| 2170 | ExitValue = ConstantExpr::getDiv(ExitValue, A); |
| 2171 | } |
| 2172 | assert(isa<ConstantInt>(ExitValue) && |
| 2173 | "Constant folding of integers not implemented?"); |
| 2174 | |
| 2175 | // Evaluate at the exit value. If we really did fall out of the valid |
| 2176 | // range, then we computed our trip count, otherwise wrap around or other |
| 2177 | // things must have happened. |
| 2178 | ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue); |
| 2179 | if (Range.contains(Val)) |
| 2180 | return new SCEVCouldNotCompute(); // Something strange happened |
| 2181 | |
| 2182 | // Ensure that the previous value is in the range. This is a sanity check. |
| 2183 | assert(Range.contains(EvaluateConstantChrecAtConstant(this, |
| 2184 | ConstantExpr::getSub(ExitValue, One))) && |
| 2185 | "Linear scev computation is off in a bad way!"); |
| 2186 | return SCEVConstant::get(cast<ConstantInt>(ExitValue)); |
| 2187 | } else if (isQuadratic()) { |
| 2188 | // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the |
| 2189 | // quadratic equation to solve it. To do this, we must frame our problem in |
| 2190 | // terms of figuring out when zero is crossed, instead of when |
| 2191 | // Range.getUpper() is crossed. |
| 2192 | std::vector<SCEVHandle> NewOps(op_begin(), op_end()); |
| 2193 | NewOps[0] = getNegativeSCEV(SCEVUnknown::get(Range.getUpper())); |
| 2194 | SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, getLoop()); |
| 2195 | |
| 2196 | // Next, solve the constructed addrec |
| 2197 | std::pair<SCEVHandle,SCEVHandle> Roots = |
| 2198 | SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec)); |
| 2199 | SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); |
| 2200 | SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); |
| 2201 | if (R1) { |
| 2202 | // Pick the smallest positive root value. |
| 2203 | assert(R1->getType()->isUnsigned() && "Didn't canonicalize to unsigned?"); |
| 2204 | if (ConstantBool *CB = |
| 2205 | dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(), |
| 2206 | R2->getValue()))) { |
| 2207 | if (CB != ConstantBool::True) |
| 2208 | std::swap(R1, R2); // R1 is the minimum root now. |
| 2209 | |
| 2210 | // Make sure the root is not off by one. The returned iteration should |
| 2211 | // not be in the range, but the previous one should be. When solving |
| 2212 | // for "X*X < 5", for example, we should not return a root of 2. |
| 2213 | ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, |
| 2214 | R1->getValue()); |
| 2215 | if (Range.contains(R1Val)) { |
| 2216 | // The next iteration must be out of the range... |
| 2217 | Constant *NextVal = |
| 2218 | ConstantExpr::getAdd(R1->getValue(), |
| 2219 | ConstantInt::get(R1->getType(), 1)); |
| 2220 | |
| 2221 | R1Val = EvaluateConstantChrecAtConstant(this, NextVal); |
| 2222 | if (!Range.contains(R1Val)) |
| 2223 | return SCEVUnknown::get(NextVal); |
| 2224 | return new SCEVCouldNotCompute(); // Something strange happened |
| 2225 | } |
| 2226 | |
| 2227 | // If R1 was not in the range, then it is a good return value. Make |
| 2228 | // sure that R1-1 WAS in the range though, just in case. |
| 2229 | Constant *NextVal = |
| 2230 | ConstantExpr::getSub(R1->getValue(), |
| 2231 | ConstantInt::get(R1->getType(), 1)); |
| 2232 | R1Val = EvaluateConstantChrecAtConstant(this, NextVal); |
| 2233 | if (Range.contains(R1Val)) |
| 2234 | return R1; |
| 2235 | return new SCEVCouldNotCompute(); // Something strange happened |
| 2236 | } |
| 2237 | } |
| 2238 | } |
| 2239 | |
| 2240 | // Fallback, if this is a general polynomial, figure out the progression |
| 2241 | // through brute force: evaluate until we find an iteration that fails the |
| 2242 | // test. This is likely to be slow, but getting an accurate trip count is |
| 2243 | // incredibly important, we will be able to simplify the exit test a lot, and |
| 2244 | // we are almost guaranteed to get a trip count in this case. |
| 2245 | ConstantInt *TestVal = ConstantInt::get(getType(), 0); |
| 2246 | ConstantInt *One = ConstantInt::get(getType(), 1); |
| 2247 | ConstantInt *EndVal = TestVal; // Stop when we wrap around. |
| 2248 | do { |
| 2249 | ++NumBruteForceEvaluations; |
| 2250 | SCEVHandle Val = evaluateAtIteration(SCEVConstant::get(TestVal)); |
| 2251 | if (!isa<SCEVConstant>(Val)) // This shouldn't happen. |
| 2252 | return new SCEVCouldNotCompute(); |
| 2253 | |
| 2254 | // Check to see if we found the value! |
| 2255 | if (!Range.contains(cast<SCEVConstant>(Val)->getValue())) |
| 2256 | return SCEVConstant::get(TestVal); |
| 2257 | |
| 2258 | // Increment to test the next index. |
| 2259 | TestVal = cast<ConstantInt>(ConstantExpr::getAdd(TestVal, One)); |
| 2260 | } while (TestVal != EndVal); |
| 2261 | |
| 2262 | return new SCEVCouldNotCompute(); |
| 2263 | } |
| 2264 | |
| 2265 | |
| 2266 | |
| 2267 | //===----------------------------------------------------------------------===// |
| 2268 | // ScalarEvolution Class Implementation |
| 2269 | //===----------------------------------------------------------------------===// |
| 2270 | |
| 2271 | bool ScalarEvolution::runOnFunction(Function &F) { |
| 2272 | Impl = new ScalarEvolutionsImpl(F, getAnalysis<LoopInfo>()); |
| 2273 | return false; |
| 2274 | } |
| 2275 | |
| 2276 | void ScalarEvolution::releaseMemory() { |
| 2277 | delete (ScalarEvolutionsImpl*)Impl; |
| 2278 | Impl = 0; |
| 2279 | } |
| 2280 | |
| 2281 | void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { |
| 2282 | AU.setPreservesAll(); |
| 2283 | AU.addRequiredID(LoopSimplifyID); |
| 2284 | AU.addRequiredTransitive<LoopInfo>(); |
| 2285 | } |
| 2286 | |
| 2287 | SCEVHandle ScalarEvolution::getSCEV(Value *V) const { |
| 2288 | return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V); |
| 2289 | } |
| 2290 | |
| 2291 | SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const { |
| 2292 | return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L); |
| 2293 | } |
| 2294 | |
| 2295 | bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const { |
| 2296 | return !isa<SCEVCouldNotCompute>(getIterationCount(L)); |
| 2297 | } |
| 2298 | |
| 2299 | SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const { |
| 2300 | return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L); |
| 2301 | } |
| 2302 | |
| 2303 | void ScalarEvolution::deleteInstructionFromRecords(Instruction *I) const { |
| 2304 | return ((ScalarEvolutionsImpl*)Impl)->deleteInstructionFromRecords(I); |
| 2305 | } |
| 2306 | |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 2307 | static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE, |
| 2308 | const Loop *L) { |
| 2309 | // Print all inner loops first |
| 2310 | for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) |
| 2311 | PrintLoopInfo(OS, SE, *I); |
| 2312 | |
| 2313 | std::cerr << "Loop " << L->getHeader()->getName() << ": "; |
Chris Lattner | f1ab4b4 | 2004-04-18 22:14:10 +0000 | [diff] [blame] | 2314 | |
| 2315 | std::vector<BasicBlock*> ExitBlocks; |
| 2316 | L->getExitBlocks(ExitBlocks); |
| 2317 | if (ExitBlocks.size() != 1) |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 2318 | std::cerr << "<multiple exits> "; |
| 2319 | |
| 2320 | if (SE->hasLoopInvariantIterationCount(L)) { |
| 2321 | std::cerr << *SE->getIterationCount(L) << " iterations! "; |
| 2322 | } else { |
| 2323 | std::cerr << "Unpredictable iteration count. "; |
| 2324 | } |
| 2325 | |
| 2326 | std::cerr << "\n"; |
| 2327 | } |
| 2328 | |
| 2329 | void ScalarEvolution::print(std::ostream &OS) const { |
| 2330 | Function &F = ((ScalarEvolutionsImpl*)Impl)->F; |
| 2331 | LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI; |
| 2332 | |
| 2333 | OS << "Classifying expressions for: " << F.getName() << "\n"; |
| 2334 | for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) |
Chris Lattner | 6ffe551 | 2004-04-27 15:13:33 +0000 | [diff] [blame] | 2335 | if (I->getType()->isInteger()) { |
| 2336 | OS << *I; |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 2337 | OS << " --> "; |
Chris Lattner | 6ffe551 | 2004-04-27 15:13:33 +0000 | [diff] [blame] | 2338 | SCEVHandle SV = getSCEV(&*I); |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 2339 | SV->print(OS); |
| 2340 | OS << "\t\t"; |
| 2341 | |
Chris Lattner | 6ffe551 | 2004-04-27 15:13:33 +0000 | [diff] [blame] | 2342 | if ((*I).getType()->isIntegral()) { |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 2343 | ConstantRange Bounds = SV->getValueRange(); |
| 2344 | if (!Bounds.isFullSet()) |
| 2345 | OS << "Bounds: " << Bounds << " "; |
| 2346 | } |
| 2347 | |
Chris Lattner | 6ffe551 | 2004-04-27 15:13:33 +0000 | [diff] [blame] | 2348 | if (const Loop *L = LI.getLoopFor((*I).getParent())) { |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 2349 | OS << "Exits: "; |
Chris Lattner | 6ffe551 | 2004-04-27 15:13:33 +0000 | [diff] [blame] | 2350 | SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop()); |
Chris Lattner | 53e677a | 2004-04-02 20:23:17 +0000 | [diff] [blame] | 2351 | if (isa<SCEVCouldNotCompute>(ExitValue)) { |
| 2352 | OS << "<<Unknown>>"; |
| 2353 | } else { |
| 2354 | OS << *ExitValue; |
| 2355 | } |
| 2356 | } |
| 2357 | |
| 2358 | |
| 2359 | OS << "\n"; |
| 2360 | } |
| 2361 | |
| 2362 | OS << "Determining loop execution counts for: " << F.getName() << "\n"; |
| 2363 | for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I) |
| 2364 | PrintLoopInfo(OS, this, *I); |
| 2365 | } |
| 2366 | |