Stephen Hines | 36b5688 | 2014-04-23 16:57:46 -0700 | [diff] [blame] | 1 | |
| 2 | //===-- ARM64PromoteConstant.cpp --- Promote constant to global for ARM64 -===// |
| 3 | // |
| 4 | // The LLVM Compiler Infrastructure |
| 5 | // |
| 6 | // This file is distributed under the University of Illinois Open Source |
| 7 | // License. See LICENSE.TXT for details. |
| 8 | // |
| 9 | //===----------------------------------------------------------------------===// |
| 10 | // |
| 11 | // This file implements the ARM64PromoteConstant pass which promotes constant |
| 12 | // to global variables when this is likely to be more efficient. |
| 13 | // Currently only types related to constant vector (i.e., constant vector, array |
| 14 | // of constant vectors, constant structure with a constant vector field, etc.) |
| 15 | // are promoted to global variables. |
| 16 | // Indeed, constant vector are likely to be lowered in target constant pool |
| 17 | // during instruction selection. |
| 18 | // Therefore, the access will remain the same (memory load), but the structures |
| 19 | // types are not split into different constant pool accesses for each field. |
| 20 | // The bonus side effect is that created globals may be merged by the global |
| 21 | // merge pass. |
| 22 | // |
| 23 | // FIXME: This pass may be useful for other targets too. |
| 24 | //===----------------------------------------------------------------------===// |
| 25 | |
| 26 | #define DEBUG_TYPE "arm64-promote-const" |
| 27 | #include "ARM64.h" |
| 28 | #include "llvm/ADT/Statistic.h" |
| 29 | #include "llvm/ADT/DenseMap.h" |
| 30 | #include "llvm/ADT/SmallSet.h" |
| 31 | #include "llvm/ADT/SmallVector.h" |
| 32 | #include "llvm/IR/Constants.h" |
| 33 | #include "llvm/IR/Dominators.h" |
| 34 | #include "llvm/IR/Function.h" |
| 35 | #include "llvm/IR/GlobalVariable.h" |
| 36 | #include "llvm/IR/InlineAsm.h" |
| 37 | #include "llvm/IR/Instructions.h" |
| 38 | #include "llvm/IR/IntrinsicInst.h" |
| 39 | #include "llvm/IR/IRBuilder.h" |
| 40 | #include "llvm/IR/Module.h" |
| 41 | #include "llvm/Pass.h" |
| 42 | #include "llvm/Support/CommandLine.h" |
| 43 | #include "llvm/Support/Debug.h" |
| 44 | |
| 45 | using namespace llvm; |
| 46 | |
| 47 | // Stress testing mode - disable heuristics. |
| 48 | static cl::opt<bool> Stress("arm64-stress-promote-const", cl::Hidden, |
| 49 | cl::desc("Promote all vector constants")); |
| 50 | |
| 51 | STATISTIC(NumPromoted, "Number of promoted constants"); |
| 52 | STATISTIC(NumPromotedUses, "Number of promoted constants uses"); |
| 53 | |
| 54 | //===----------------------------------------------------------------------===// |
| 55 | // ARM64PromoteConstant |
| 56 | //===----------------------------------------------------------------------===// |
| 57 | |
| 58 | namespace { |
| 59 | /// Promotes interesting constant into global variables. |
| 60 | /// The motivating example is: |
| 61 | /// static const uint16_t TableA[32] = { |
| 62 | /// 41944, 40330, 38837, 37450, 36158, 34953, 33826, 32768, |
| 63 | /// 31776, 30841, 29960, 29128, 28340, 27595, 26887, 26215, |
| 64 | /// 25576, 24967, 24386, 23832, 23302, 22796, 22311, 21846, |
| 65 | /// 21400, 20972, 20561, 20165, 19785, 19419, 19066, 18725, |
| 66 | /// }; |
| 67 | /// |
| 68 | /// uint8x16x4_t LoadStatic(void) { |
| 69 | /// uint8x16x4_t ret; |
| 70 | /// ret.val[0] = vld1q_u16(TableA + 0); |
| 71 | /// ret.val[1] = vld1q_u16(TableA + 8); |
| 72 | /// ret.val[2] = vld1q_u16(TableA + 16); |
| 73 | /// ret.val[3] = vld1q_u16(TableA + 24); |
| 74 | /// return ret; |
| 75 | /// } |
| 76 | /// |
| 77 | /// The constants in that example are folded into the uses. Thus, 4 different |
| 78 | /// constants are created. |
| 79 | /// As their type is vector the cheapest way to create them is to load them |
| 80 | /// for the memory. |
| 81 | /// Therefore the final assembly final has 4 different load. |
| 82 | /// With this pass enabled, only one load is issued for the constants. |
| 83 | class ARM64PromoteConstant : public ModulePass { |
| 84 | |
| 85 | public: |
| 86 | static char ID; |
| 87 | ARM64PromoteConstant() : ModulePass(ID) {} |
| 88 | |
| 89 | virtual const char *getPassName() const { return "ARM64 Promote Constant"; } |
| 90 | |
| 91 | /// Iterate over the functions and promote the interesting constants into |
| 92 | /// global variables with module scope. |
| 93 | bool runOnModule(Module &M) { |
| 94 | DEBUG(dbgs() << getPassName() << '\n'); |
| 95 | bool Changed = false; |
| 96 | for (auto &MF: M) { |
| 97 | Changed |= runOnFunction(MF); |
| 98 | } |
| 99 | return Changed; |
| 100 | } |
| 101 | |
| 102 | private: |
| 103 | /// Look for interesting constants used within the given function. |
| 104 | /// Promote them into global variables, load these global variables within |
| 105 | /// the related function, so that the number of inserted load is minimal. |
| 106 | bool runOnFunction(Function &F); |
| 107 | |
| 108 | // This transformation requires dominator info |
| 109 | virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| 110 | AU.setPreservesCFG(); |
| 111 | AU.addRequired<DominatorTreeWrapperPass>(); |
| 112 | AU.addPreserved<DominatorTreeWrapperPass>(); |
| 113 | } |
| 114 | |
| 115 | /// Type to store a list of User |
| 116 | typedef SmallVector<Value::user_iterator, 4> Users; |
| 117 | /// Map an insertion point to all the uses it dominates. |
| 118 | typedef DenseMap<Instruction *, Users> InsertionPoints; |
| 119 | /// Map a function to the required insertion point of load for a |
| 120 | /// global variable |
| 121 | typedef DenseMap<Function *, InsertionPoints> InsertionPointsPerFunc; |
| 122 | |
| 123 | /// Find the closest point that dominates the given Use. |
| 124 | Instruction *findInsertionPoint(Value::user_iterator &Use); |
| 125 | |
| 126 | /// Check if the given insertion point is dominated by an existing |
| 127 | /// insertion point. |
| 128 | /// If true, the given use is added to the list of dominated uses for |
| 129 | /// the related existing point. |
| 130 | /// \param NewPt the insertion point to be checked |
| 131 | /// \param UseIt the use to be added into the list of dominated uses |
| 132 | /// \param InsertPts existing insertion points |
| 133 | /// \pre NewPt and all instruction in InsertPts belong to the same function |
| 134 | /// \return true if one of the insertion point in InsertPts dominates NewPt, |
| 135 | /// false otherwise |
| 136 | bool isDominated(Instruction *NewPt, Value::user_iterator &UseIt, |
| 137 | InsertionPoints &InsertPts); |
| 138 | |
| 139 | /// Check if the given insertion point can be merged with an existing |
| 140 | /// insertion point in a common dominator. |
| 141 | /// If true, the given use is added to the list of the created insertion |
| 142 | /// point. |
| 143 | /// \param NewPt the insertion point to be checked |
| 144 | /// \param UseIt the use to be added into the list of dominated uses |
| 145 | /// \param InsertPts existing insertion points |
| 146 | /// \pre NewPt and all instruction in InsertPts belong to the same function |
| 147 | /// \pre isDominated returns false for the exact same parameters. |
| 148 | /// \return true if it exists an insertion point in InsertPts that could |
| 149 | /// have been merged with NewPt in a common dominator, |
| 150 | /// false otherwise |
| 151 | bool tryAndMerge(Instruction *NewPt, Value::user_iterator &UseIt, |
| 152 | InsertionPoints &InsertPts); |
| 153 | |
| 154 | /// Compute the minimal insertion points to dominates all the interesting |
| 155 | /// uses of value. |
| 156 | /// Insertion points are group per function and each insertion point |
| 157 | /// contains a list of all the uses it dominates within the related function |
| 158 | /// \param Val constant to be examined |
| 159 | /// \param[out] InsPtsPerFunc output storage of the analysis |
| 160 | void computeInsertionPoints(Constant *Val, |
| 161 | InsertionPointsPerFunc &InsPtsPerFunc); |
| 162 | |
| 163 | /// Insert a definition of a new global variable at each point contained in |
| 164 | /// InsPtsPerFunc and update the related uses (also contained in |
| 165 | /// InsPtsPerFunc). |
| 166 | bool insertDefinitions(Constant *Cst, InsertionPointsPerFunc &InsPtsPerFunc); |
| 167 | |
| 168 | /// Compute the minimal insertion points to dominate all the interesting |
| 169 | /// uses of Val and insert a definition of a new global variable |
| 170 | /// at these points. |
| 171 | /// Also update the uses of Val accordingly. |
| 172 | /// Currently a use of Val is considered interesting if: |
| 173 | /// - Val is not UndefValue |
| 174 | /// - Val is not zeroinitialized |
| 175 | /// - Replacing Val per a load of a global variable is valid. |
| 176 | /// \see shouldConvert for more details |
| 177 | bool computeAndInsertDefinitions(Constant *Val); |
| 178 | |
| 179 | /// Promote the given constant into a global variable if it is expected to |
| 180 | /// be profitable. |
| 181 | /// \return true if Cst has been promoted |
| 182 | bool promoteConstant(Constant *Cst); |
| 183 | |
| 184 | /// Transfer the list of dominated uses of IPI to NewPt in InsertPts. |
| 185 | /// Append UseIt to this list and delete the entry of IPI in InsertPts. |
| 186 | static void appendAndTransferDominatedUses(Instruction *NewPt, |
| 187 | Value::user_iterator &UseIt, |
| 188 | InsertionPoints::iterator &IPI, |
| 189 | InsertionPoints &InsertPts) { |
| 190 | // Record the dominated use |
| 191 | IPI->second.push_back(UseIt); |
| 192 | // Transfer the dominated uses of IPI to NewPt |
| 193 | // Inserting into the DenseMap may invalidate existing iterator. |
| 194 | // Keep a copy of the key to find the iterator to erase. |
| 195 | Instruction *OldInstr = IPI->first; |
| 196 | InsertPts.insert(InsertionPoints::value_type(NewPt, IPI->second)); |
| 197 | // Erase IPI |
| 198 | IPI = InsertPts.find(OldInstr); |
| 199 | InsertPts.erase(IPI); |
| 200 | } |
| 201 | }; |
| 202 | } // end anonymous namespace |
| 203 | |
| 204 | char ARM64PromoteConstant::ID = 0; |
| 205 | |
| 206 | namespace llvm { |
| 207 | void initializeARM64PromoteConstantPass(PassRegistry &); |
| 208 | } |
| 209 | |
| 210 | INITIALIZE_PASS_BEGIN(ARM64PromoteConstant, "arm64-promote-const", |
| 211 | "ARM64 Promote Constant Pass", false, false) |
| 212 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| 213 | INITIALIZE_PASS_END(ARM64PromoteConstant, "arm64-promote-const", |
| 214 | "ARM64 Promote Constant Pass", false, false) |
| 215 | |
| 216 | ModulePass *llvm::createARM64PromoteConstantPass() { |
| 217 | return new ARM64PromoteConstant(); |
| 218 | } |
| 219 | |
| 220 | /// Check if the given type uses a vector type. |
| 221 | static bool isConstantUsingVectorTy(const Type *CstTy) { |
| 222 | if (CstTy->isVectorTy()) |
| 223 | return true; |
| 224 | if (CstTy->isStructTy()) { |
| 225 | for (unsigned EltIdx = 0, EndEltIdx = CstTy->getStructNumElements(); |
| 226 | EltIdx < EndEltIdx; ++EltIdx) |
| 227 | if (isConstantUsingVectorTy(CstTy->getStructElementType(EltIdx))) |
| 228 | return true; |
| 229 | } else if (CstTy->isArrayTy()) |
| 230 | return isConstantUsingVectorTy(CstTy->getArrayElementType()); |
| 231 | return false; |
| 232 | } |
| 233 | |
| 234 | /// Check if the given use (Instruction + OpIdx) of Cst should be converted into |
| 235 | /// a load of a global variable initialized with Cst. |
| 236 | /// A use should be converted if it is legal to do so. |
| 237 | /// For instance, it is not legal to turn the mask operand of a shuffle vector |
| 238 | /// into a load of a global variable. |
| 239 | static bool shouldConvertUse(const Constant *Cst, const Instruction *Instr, |
| 240 | unsigned OpIdx) { |
| 241 | // shufflevector instruction expects a const for the mask argument, i.e., the |
| 242 | // third argument. Do not promote this use in that case. |
| 243 | if (isa<const ShuffleVectorInst>(Instr) && OpIdx == 2) |
| 244 | return false; |
| 245 | |
| 246 | // extractvalue instruction expects a const idx |
| 247 | if (isa<const ExtractValueInst>(Instr) && OpIdx > 0) |
| 248 | return false; |
| 249 | |
| 250 | // extractvalue instruction expects a const idx |
| 251 | if (isa<const InsertValueInst>(Instr) && OpIdx > 1) |
| 252 | return false; |
| 253 | |
| 254 | if (isa<const AllocaInst>(Instr) && OpIdx > 0) |
| 255 | return false; |
| 256 | |
| 257 | // Alignment argument must be constant |
| 258 | if (isa<const LoadInst>(Instr) && OpIdx > 0) |
| 259 | return false; |
| 260 | |
| 261 | // Alignment argument must be constant |
| 262 | if (isa<const StoreInst>(Instr) && OpIdx > 1) |
| 263 | return false; |
| 264 | |
| 265 | // Index must be constant |
| 266 | if (isa<const GetElementPtrInst>(Instr) && OpIdx > 0) |
| 267 | return false; |
| 268 | |
| 269 | // Personality function and filters must be constant. |
| 270 | // Give up on that instruction. |
| 271 | if (isa<const LandingPadInst>(Instr)) |
| 272 | return false; |
| 273 | |
| 274 | // switch instruction expects constants to compare to |
| 275 | if (isa<const SwitchInst>(Instr)) |
| 276 | return false; |
| 277 | |
| 278 | // Expected address must be a constant |
| 279 | if (isa<const IndirectBrInst>(Instr)) |
| 280 | return false; |
| 281 | |
| 282 | // Do not mess with intrinsic |
| 283 | if (isa<const IntrinsicInst>(Instr)) |
| 284 | return false; |
| 285 | |
| 286 | // Do not mess with inline asm |
| 287 | const CallInst *CI = dyn_cast<const CallInst>(Instr); |
| 288 | if (CI && isa<const InlineAsm>(CI->getCalledValue())) |
| 289 | return false; |
| 290 | |
| 291 | return true; |
| 292 | } |
| 293 | |
| 294 | /// Check if the given Cst should be converted into |
| 295 | /// a load of a global variable initialized with Cst. |
| 296 | /// A constant should be converted if it is likely that the materialization of |
| 297 | /// the constant will be tricky. Thus, we give up on zero or undef values. |
| 298 | /// |
| 299 | /// \todo Currently, accept only vector related types. |
| 300 | /// Also we give up on all simple vector type to keep the existing |
| 301 | /// behavior. Otherwise, we should push here all the check of the lowering of |
| 302 | /// BUILD_VECTOR. By giving up, we lose the potential benefit of merging |
| 303 | /// constant via global merge and the fact that the same constant is stored |
| 304 | /// only once with this method (versus, as many function that uses the constant |
| 305 | /// for the regular approach, even for float). |
| 306 | /// Again, the simplest solution would be to promote every |
| 307 | /// constant and rematerialize them when they are actually cheap to create. |
| 308 | static bool shouldConvert(const Constant *Cst) { |
| 309 | if (isa<const UndefValue>(Cst)) |
| 310 | return false; |
| 311 | |
| 312 | // FIXME: In some cases, it may be interesting to promote in memory |
| 313 | // a zero initialized constant. |
| 314 | // E.g., when the type of Cst require more instructions than the |
| 315 | // adrp/add/load sequence or when this sequence can be shared by several |
| 316 | // instances of Cst. |
| 317 | // Ideally, we could promote this into a global and rematerialize the constant |
| 318 | // when it was a bad idea. |
| 319 | if (Cst->isZeroValue()) |
| 320 | return false; |
| 321 | |
| 322 | if (Stress) |
| 323 | return true; |
| 324 | |
| 325 | // FIXME: see function \todo |
| 326 | if (Cst->getType()->isVectorTy()) |
| 327 | return false; |
| 328 | return isConstantUsingVectorTy(Cst->getType()); |
| 329 | } |
| 330 | |
| 331 | Instruction * |
| 332 | ARM64PromoteConstant::findInsertionPoint(Value::user_iterator &Use) { |
| 333 | // If this user is a phi, the insertion point is in the related |
| 334 | // incoming basic block |
| 335 | PHINode *PhiInst = dyn_cast<PHINode>(*Use); |
| 336 | Instruction *InsertionPoint; |
| 337 | if (PhiInst) |
| 338 | InsertionPoint = |
| 339 | PhiInst->getIncomingBlock(Use.getOperandNo())->getTerminator(); |
| 340 | else |
| 341 | InsertionPoint = dyn_cast<Instruction>(*Use); |
| 342 | assert(InsertionPoint && "User is not an instruction!"); |
| 343 | return InsertionPoint; |
| 344 | } |
| 345 | |
| 346 | bool ARM64PromoteConstant::isDominated(Instruction *NewPt, |
| 347 | Value::user_iterator &UseIt, |
| 348 | InsertionPoints &InsertPts) { |
| 349 | |
| 350 | DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>( |
| 351 | *NewPt->getParent()->getParent()).getDomTree(); |
| 352 | |
| 353 | // Traverse all the existing insertion point and check if one is dominating |
| 354 | // NewPt |
| 355 | for (InsertionPoints::iterator IPI = InsertPts.begin(), |
| 356 | EndIPI = InsertPts.end(); |
| 357 | IPI != EndIPI; ++IPI) { |
| 358 | if (NewPt == IPI->first || DT.dominates(IPI->first, NewPt) || |
| 359 | // When IPI->first is a terminator instruction, DT may think that |
| 360 | // the result is defined on the edge. |
| 361 | // Here we are testing the insertion point, not the definition. |
| 362 | (IPI->first->getParent() != NewPt->getParent() && |
| 363 | DT.dominates(IPI->first->getParent(), NewPt->getParent()))) { |
| 364 | // No need to insert this point |
| 365 | // Record the dominated use |
| 366 | DEBUG(dbgs() << "Insertion point dominated by:\n"); |
| 367 | DEBUG(IPI->first->print(dbgs())); |
| 368 | DEBUG(dbgs() << '\n'); |
| 369 | IPI->second.push_back(UseIt); |
| 370 | return true; |
| 371 | } |
| 372 | } |
| 373 | return false; |
| 374 | } |
| 375 | |
| 376 | bool ARM64PromoteConstant::tryAndMerge(Instruction *NewPt, |
| 377 | Value::user_iterator &UseIt, |
| 378 | InsertionPoints &InsertPts) { |
| 379 | DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>( |
| 380 | *NewPt->getParent()->getParent()).getDomTree(); |
| 381 | BasicBlock *NewBB = NewPt->getParent(); |
| 382 | |
| 383 | // Traverse all the existing insertion point and check if one is dominated by |
| 384 | // NewPt and thus useless or can be combined with NewPt into a common |
| 385 | // dominator |
| 386 | for (InsertionPoints::iterator IPI = InsertPts.begin(), |
| 387 | EndIPI = InsertPts.end(); |
| 388 | IPI != EndIPI; ++IPI) { |
| 389 | BasicBlock *CurBB = IPI->first->getParent(); |
| 390 | if (NewBB == CurBB) { |
| 391 | // Instructions are in the same block. |
| 392 | // By construction, NewPt is dominating the other. |
| 393 | // Indeed, isDominated returned false with the exact same arguments. |
| 394 | DEBUG(dbgs() << "Merge insertion point with:\n"); |
| 395 | DEBUG(IPI->first->print(dbgs())); |
| 396 | DEBUG(dbgs() << "\nat considered insertion point.\n"); |
| 397 | appendAndTransferDominatedUses(NewPt, UseIt, IPI, InsertPts); |
| 398 | return true; |
| 399 | } |
| 400 | |
| 401 | // Look for a common dominator |
| 402 | BasicBlock *CommonDominator = DT.findNearestCommonDominator(NewBB, CurBB); |
| 403 | // If none exists, we cannot merge these two points |
| 404 | if (!CommonDominator) |
| 405 | continue; |
| 406 | |
| 407 | if (CommonDominator != NewBB) { |
| 408 | // By construction, the CommonDominator cannot be CurBB |
| 409 | assert(CommonDominator != CurBB && |
| 410 | "Instruction has not been rejected during isDominated check!"); |
| 411 | // Take the last instruction of the CommonDominator as insertion point |
| 412 | NewPt = CommonDominator->getTerminator(); |
| 413 | } |
| 414 | // else, CommonDominator is the block of NewBB, hence NewBB is the last |
| 415 | // possible insertion point in that block |
| 416 | DEBUG(dbgs() << "Merge insertion point with:\n"); |
| 417 | DEBUG(IPI->first->print(dbgs())); |
| 418 | DEBUG(dbgs() << '\n'); |
| 419 | DEBUG(NewPt->print(dbgs())); |
| 420 | DEBUG(dbgs() << '\n'); |
| 421 | appendAndTransferDominatedUses(NewPt, UseIt, IPI, InsertPts); |
| 422 | return true; |
| 423 | } |
| 424 | return false; |
| 425 | } |
| 426 | |
| 427 | void ARM64PromoteConstant::computeInsertionPoints( |
| 428 | Constant *Val, InsertionPointsPerFunc &InsPtsPerFunc) { |
| 429 | DEBUG(dbgs() << "** Compute insertion points **\n"); |
| 430 | for (Value::user_iterator UseIt = Val->user_begin(), |
| 431 | EndUseIt = Val->user_end(); |
| 432 | UseIt != EndUseIt; ++UseIt) { |
| 433 | // If the user is not an Instruction, we cannot modify it |
| 434 | if (!isa<Instruction>(*UseIt)) |
| 435 | continue; |
| 436 | |
| 437 | // Filter out uses that should not be converted |
| 438 | if (!shouldConvertUse(Val, cast<Instruction>(*UseIt), UseIt.getOperandNo())) |
| 439 | continue; |
| 440 | |
| 441 | DEBUG(dbgs() << "Considered use, opidx " << UseIt.getOperandNo() << ":\n"); |
| 442 | DEBUG((*UseIt)->print(dbgs())); |
| 443 | DEBUG(dbgs() << '\n'); |
| 444 | |
| 445 | Instruction *InsertionPoint = findInsertionPoint(UseIt); |
| 446 | |
| 447 | DEBUG(dbgs() << "Considered insertion point:\n"); |
| 448 | DEBUG(InsertionPoint->print(dbgs())); |
| 449 | DEBUG(dbgs() << '\n'); |
| 450 | |
| 451 | // Check if the current insertion point is useless, i.e., it is dominated |
| 452 | // by another one. |
| 453 | InsertionPoints &InsertPts = |
| 454 | InsPtsPerFunc[InsertionPoint->getParent()->getParent()]; |
| 455 | if (isDominated(InsertionPoint, UseIt, InsertPts)) |
| 456 | continue; |
| 457 | // This insertion point is useful, check if we can merge some insertion |
| 458 | // point in a common dominator or if NewPt dominates an existing one. |
| 459 | if (tryAndMerge(InsertionPoint, UseIt, InsertPts)) |
| 460 | continue; |
| 461 | |
| 462 | DEBUG(dbgs() << "Keep considered insertion point\n"); |
| 463 | |
| 464 | // It is definitely useful by its own |
| 465 | InsertPts[InsertionPoint].push_back(UseIt); |
| 466 | } |
| 467 | } |
| 468 | |
| 469 | bool |
| 470 | ARM64PromoteConstant::insertDefinitions(Constant *Cst, |
| 471 | InsertionPointsPerFunc &InsPtsPerFunc) { |
| 472 | // We will create one global variable per Module |
| 473 | DenseMap<Module *, GlobalVariable *> ModuleToMergedGV; |
| 474 | bool HasChanged = false; |
| 475 | |
| 476 | // Traverse all insertion points in all the function |
| 477 | for (InsertionPointsPerFunc::iterator FctToInstPtsIt = InsPtsPerFunc.begin(), |
| 478 | EndIt = InsPtsPerFunc.end(); |
| 479 | FctToInstPtsIt != EndIt; ++FctToInstPtsIt) { |
| 480 | InsertionPoints &InsertPts = FctToInstPtsIt->second; |
| 481 | // Do more check for debug purposes |
| 482 | #ifndef NDEBUG |
| 483 | DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>( |
| 484 | *FctToInstPtsIt->first).getDomTree(); |
| 485 | #endif |
| 486 | GlobalVariable *PromotedGV; |
| 487 | assert(!InsertPts.empty() && "Empty uses does not need a definition"); |
| 488 | |
| 489 | Module *M = FctToInstPtsIt->first->getParent(); |
| 490 | DenseMap<Module *, GlobalVariable *>::iterator MapIt = |
| 491 | ModuleToMergedGV.find(M); |
| 492 | if (MapIt == ModuleToMergedGV.end()) { |
| 493 | PromotedGV = new GlobalVariable( |
| 494 | *M, Cst->getType(), true, GlobalValue::InternalLinkage, 0, |
| 495 | "_PromotedConst", 0, GlobalVariable::NotThreadLocal); |
| 496 | PromotedGV->setInitializer(Cst); |
| 497 | ModuleToMergedGV[M] = PromotedGV; |
| 498 | DEBUG(dbgs() << "Global replacement: "); |
| 499 | DEBUG(PromotedGV->print(dbgs())); |
| 500 | DEBUG(dbgs() << '\n'); |
| 501 | ++NumPromoted; |
| 502 | HasChanged = true; |
| 503 | } else { |
| 504 | PromotedGV = MapIt->second; |
| 505 | } |
| 506 | |
| 507 | for (InsertionPoints::iterator IPI = InsertPts.begin(), |
| 508 | EndIPI = InsertPts.end(); |
| 509 | IPI != EndIPI; ++IPI) { |
| 510 | // Create the load of the global variable |
| 511 | IRBuilder<> Builder(IPI->first->getParent(), IPI->first); |
| 512 | LoadInst *LoadedCst = Builder.CreateLoad(PromotedGV); |
| 513 | DEBUG(dbgs() << "**********\n"); |
| 514 | DEBUG(dbgs() << "New def: "); |
| 515 | DEBUG(LoadedCst->print(dbgs())); |
| 516 | DEBUG(dbgs() << '\n'); |
| 517 | |
| 518 | // Update the dominated uses |
| 519 | Users &DominatedUsers = IPI->second; |
| 520 | for (Users::iterator UseIt = DominatedUsers.begin(), |
| 521 | EndIt = DominatedUsers.end(); |
| 522 | UseIt != EndIt; ++UseIt) { |
| 523 | #ifndef NDEBUG |
| 524 | assert((DT.dominates(LoadedCst, cast<Instruction>(**UseIt)) || |
| 525 | (isa<PHINode>(**UseIt) && |
| 526 | DT.dominates(LoadedCst, findInsertionPoint(*UseIt)))) && |
| 527 | "Inserted definition does not dominate all its uses!"); |
| 528 | #endif |
| 529 | DEBUG(dbgs() << "Use to update " << UseIt->getOperandNo() << ":"); |
| 530 | DEBUG((*UseIt)->print(dbgs())); |
| 531 | DEBUG(dbgs() << '\n'); |
| 532 | (*UseIt)->setOperand(UseIt->getOperandNo(), LoadedCst); |
| 533 | ++NumPromotedUses; |
| 534 | } |
| 535 | } |
| 536 | } |
| 537 | return HasChanged; |
| 538 | } |
| 539 | |
| 540 | bool ARM64PromoteConstant::computeAndInsertDefinitions(Constant *Val) { |
| 541 | InsertionPointsPerFunc InsertPtsPerFunc; |
| 542 | computeInsertionPoints(Val, InsertPtsPerFunc); |
| 543 | return insertDefinitions(Val, InsertPtsPerFunc); |
| 544 | } |
| 545 | |
| 546 | bool ARM64PromoteConstant::promoteConstant(Constant *Cst) { |
| 547 | assert(Cst && "Given variable is not a valid constant."); |
| 548 | |
| 549 | if (!shouldConvert(Cst)) |
| 550 | return false; |
| 551 | |
| 552 | DEBUG(dbgs() << "******************************\n"); |
| 553 | DEBUG(dbgs() << "Candidate constant: "); |
| 554 | DEBUG(Cst->print(dbgs())); |
| 555 | DEBUG(dbgs() << '\n'); |
| 556 | |
| 557 | return computeAndInsertDefinitions(Cst); |
| 558 | } |
| 559 | |
| 560 | bool ARM64PromoteConstant::runOnFunction(Function &F) { |
| 561 | // Look for instructions using constant vector |
| 562 | // Promote that constant to a global variable. |
| 563 | // Create as few load of this variable as possible and update the uses |
| 564 | // accordingly |
| 565 | bool LocalChange = false; |
| 566 | SmallSet<Constant *, 8> AlreadyChecked; |
| 567 | |
| 568 | for (auto &MBB : F) { |
| 569 | for (auto &MI: MBB) { |
| 570 | // Traverse the operand, looking for constant vectors |
| 571 | // Replace them by a load of a global variable of type constant vector |
| 572 | for (unsigned OpIdx = 0, EndOpIdx = MI.getNumOperands(); |
| 573 | OpIdx != EndOpIdx; ++OpIdx) { |
| 574 | Constant *Cst = dyn_cast<Constant>(MI.getOperand(OpIdx)); |
| 575 | // There is no point is promoting global value, they are already global. |
| 576 | // Do not promote constant expression, as they may require some code |
| 577 | // expansion. |
| 578 | if (Cst && !isa<GlobalValue>(Cst) && !isa<ConstantExpr>(Cst) && |
| 579 | AlreadyChecked.insert(Cst)) |
| 580 | LocalChange |= promoteConstant(Cst); |
| 581 | } |
| 582 | } |
| 583 | } |
| 584 | return LocalChange; |
| 585 | } |