blob: 13839ffb9a23678ee7be710a65012e4dc02da94a [file] [log] [blame]
Chris Lattner8acb1ba2005-01-07 07:49:41 +00001//===-- X86ISelPattern.cpp - A pattern matching inst selector for X86 -----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a pattern matching instruction selector for X86.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86.h"
15#include "X86InstrBuilder.h"
16#include "X86RegisterInfo.h"
Chris Lattner590d8002005-01-09 18:52:44 +000017#include "llvm/Constants.h" // FIXME: REMOVE
Chris Lattner8acb1ba2005-01-07 07:49:41 +000018#include "llvm/Function.h"
Chris Lattner590d8002005-01-09 18:52:44 +000019#include "llvm/CodeGen/MachineConstantPool.h" // FIXME: REMOVE
Chris Lattner8acb1ba2005-01-07 07:49:41 +000020#include "llvm/CodeGen/MachineFunction.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/CodeGen/SelectionDAGISel.h"
24#include "llvm/CodeGen/SSARegMap.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Target/TargetLowering.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/ADT/Statistic.h"
29#include <set>
30using namespace llvm;
31
32//===----------------------------------------------------------------------===//
33// X86TargetLowering - X86 Implementation of the TargetLowering interface
34namespace {
35 class X86TargetLowering : public TargetLowering {
36 int VarArgsFrameIndex; // FrameIndex for start of varargs area.
Chris Lattner14824582005-01-09 00:01:27 +000037 int ReturnAddrIndex; // FrameIndex for return slot.
Chris Lattner8acb1ba2005-01-07 07:49:41 +000038 public:
39 X86TargetLowering(TargetMachine &TM) : TargetLowering(TM) {
40 // Set up the TargetLowering object.
41 addRegisterClass(MVT::i8, X86::R8RegisterClass);
42 addRegisterClass(MVT::i16, X86::R16RegisterClass);
43 addRegisterClass(MVT::i32, X86::R32RegisterClass);
44 addRegisterClass(MVT::f64, X86::RFPRegisterClass);
45
46 // FIXME: Eliminate these two classes when legalize can handle promotions
47 // well.
48 addRegisterClass(MVT::i1, X86::R8RegisterClass);
49 addRegisterClass(MVT::f32, X86::RFPRegisterClass);
50
51 computeRegisterProperties();
52
53 setOperationUnsupported(ISD::MUL, MVT::i8);
54 setOperationUnsupported(ISD::SELECT, MVT::i1);
55 setOperationUnsupported(ISD::SELECT, MVT::i8);
56
57 addLegalFPImmediate(+0.0); // FLD0
58 addLegalFPImmediate(+1.0); // FLD1
59 addLegalFPImmediate(-0.0); // FLD0/FCHS
60 addLegalFPImmediate(-1.0); // FLD1/FCHS
61 }
62
63 /// LowerArguments - This hook must be implemented to indicate how we should
64 /// lower the arguments for the specified function, into the specified DAG.
65 virtual std::vector<SDOperand>
66 LowerArguments(Function &F, SelectionDAG &DAG);
67
68 /// LowerCallTo - This hook lowers an abstract call to a function into an
69 /// actual call.
Chris Lattner5188ad72005-01-08 19:28:19 +000070 virtual std::pair<SDOperand, SDOperand>
71 LowerCallTo(SDOperand Chain, const Type *RetTy, SDOperand Callee,
72 ArgListTy &Args, SelectionDAG &DAG);
Chris Lattner14824582005-01-09 00:01:27 +000073
74 virtual std::pair<SDOperand, SDOperand>
75 LowerVAStart(SDOperand Chain, SelectionDAG &DAG);
76
77 virtual std::pair<SDOperand,SDOperand>
78 LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList,
79 const Type *ArgTy, SelectionDAG &DAG);
80
81 virtual std::pair<SDOperand, SDOperand>
82 LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth,
83 SelectionDAG &DAG);
Chris Lattner8acb1ba2005-01-07 07:49:41 +000084 };
85}
86
87
88std::vector<SDOperand>
89X86TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
90 std::vector<SDOperand> ArgValues;
91
92 // Add DAG nodes to load the arguments... On entry to a function on the X86,
93 // the stack frame looks like this:
94 //
95 // [ESP] -- return address
96 // [ESP + 4] -- first argument (leftmost lexically)
97 // [ESP + 8] -- second argument, if first argument is four bytes in size
98 // ...
99 //
100 MachineFunction &MF = DAG.getMachineFunction();
101 MachineFrameInfo *MFI = MF.getFrameInfo();
102
103 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
104 for (Function::aiterator I = F.abegin(), E = F.aend(); I != E; ++I) {
105 MVT::ValueType ObjectVT = getValueType(I->getType());
106 unsigned ArgIncrement = 4;
107 unsigned ObjSize;
108 switch (ObjectVT) {
109 default: assert(0 && "Unhandled argument type!");
110 case MVT::i1:
111 case MVT::i8: ObjSize = 1; break;
112 case MVT::i16: ObjSize = 2; break;
113 case MVT::i32: ObjSize = 4; break;
114 case MVT::i64: ObjSize = ArgIncrement = 8; break;
115 case MVT::f32: ObjSize = 4; break;
116 case MVT::f64: ObjSize = ArgIncrement = 8; break;
117 }
118 // Create the frame index object for this incoming parameter...
119 int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
120
121 // Create the SelectionDAG nodes corresponding to a load from this parameter
122 SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
123
124 // Don't codegen dead arguments. FIXME: remove this check when we can nuke
125 // dead loads.
126 SDOperand ArgValue;
127 if (!I->use_empty())
128 ArgValue = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN);
129 else {
130 if (MVT::isInteger(ObjectVT))
131 ArgValue = DAG.getConstant(0, ObjectVT);
132 else
133 ArgValue = DAG.getConstantFP(0, ObjectVT);
134 }
135 ArgValues.push_back(ArgValue);
136
137 ArgOffset += ArgIncrement; // Move on to the next argument...
138 }
139
140 // If the function takes variable number of arguments, make a frame index for
141 // the start of the first vararg value... for expansion of llvm.va_start.
142 if (F.isVarArg())
143 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner14824582005-01-09 00:01:27 +0000144 ReturnAddrIndex = 0; // No return address slot generated yet.
Chris Lattner8acb1ba2005-01-07 07:49:41 +0000145 return ArgValues;
146}
147
Chris Lattner5188ad72005-01-08 19:28:19 +0000148std::pair<SDOperand, SDOperand>
149X86TargetLowering::LowerCallTo(SDOperand Chain,
150 const Type *RetTy, SDOperand Callee,
151 ArgListTy &Args, SelectionDAG &DAG) {
Chris Lattner8acb1ba2005-01-07 07:49:41 +0000152 // Count how many bytes are to be pushed on the stack.
153 unsigned NumBytes = 0;
154
155 if (Args.empty()) {
156 // Save zero bytes.
Chris Lattner5188ad72005-01-08 19:28:19 +0000157 Chain = DAG.getNode(ISD::ADJCALLSTACKDOWN, MVT::Other, Chain,
158 DAG.getConstant(0, getPointerTy()));
Chris Lattner8acb1ba2005-01-07 07:49:41 +0000159 } else {
160 for (unsigned i = 0, e = Args.size(); i != e; ++i)
161 switch (getValueType(Args[i].second)) {
162 default: assert(0 && "Unknown value type!");
163 case MVT::i1:
164 case MVT::i8:
165 case MVT::i16:
166 case MVT::i32:
167 case MVT::f32:
168 NumBytes += 4;
169 break;
170 case MVT::i64:
171 case MVT::f64:
172 NumBytes += 8;
173 break;
174 }
175
Chris Lattner5188ad72005-01-08 19:28:19 +0000176 Chain = DAG.getNode(ISD::ADJCALLSTACKDOWN, MVT::Other, Chain,
177 DAG.getConstant(NumBytes, getPointerTy()));
Chris Lattner8acb1ba2005-01-07 07:49:41 +0000178
179 // Arguments go on the stack in reverse order, as specified by the ABI.
180 unsigned ArgOffset = 0;
181 SDOperand StackPtr = DAG.getCopyFromReg(X86::ESP, MVT::i32);
182 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
183 unsigned ArgReg;
184 SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
185 PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
186
187 switch (getValueType(Args[i].second)) {
188 default: assert(0 && "Unexpected ValueType for argument!");
189 case MVT::i1:
190 case MVT::i8:
191 case MVT::i16:
192 // Promote the integer to 32 bits. If the input type is signed use a
193 // sign extend, otherwise use a zero extend.
194 if (Args[i].second->isSigned())
195 Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first);
196 else
197 Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first);
198
199 // FALL THROUGH
200 case MVT::i32:
201 case MVT::f32:
202 // FIXME: Note that all of these stores are independent of each other.
Chris Lattner5188ad72005-01-08 19:28:19 +0000203 Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain,
204 Args[i].first, PtrOff);
Chris Lattner8acb1ba2005-01-07 07:49:41 +0000205 ArgOffset += 4;
206 break;
207 case MVT::i64:
208 case MVT::f64:
209 // FIXME: Note that all of these stores are independent of each other.
Chris Lattner5188ad72005-01-08 19:28:19 +0000210 Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain,
211 Args[i].first, PtrOff);
Chris Lattner8acb1ba2005-01-07 07:49:41 +0000212 ArgOffset += 8;
213 break;
214 }
215 }
216 }
217
218 std::vector<MVT::ValueType> RetVals;
219 MVT::ValueType RetTyVT = getValueType(RetTy);
220 if (RetTyVT != MVT::isVoid)
221 RetVals.push_back(RetTyVT);
222 RetVals.push_back(MVT::Other);
223
Chris Lattner5188ad72005-01-08 19:28:19 +0000224 SDOperand TheCall = SDOperand(DAG.getCall(RetVals, Chain, Callee), 0);
Chris Lattnerb0802652005-01-08 20:51:36 +0000225 Chain = TheCall.getValue(RetTyVT != MVT::isVoid);
Chris Lattner5188ad72005-01-08 19:28:19 +0000226 Chain = DAG.getNode(ISD::ADJCALLSTACKUP, MVT::Other, Chain,
227 DAG.getConstant(NumBytes, getPointerTy()));
228 return std::make_pair(TheCall, Chain);
Chris Lattner8acb1ba2005-01-07 07:49:41 +0000229}
230
Chris Lattner14824582005-01-09 00:01:27 +0000231std::pair<SDOperand, SDOperand>
232X86TargetLowering::LowerVAStart(SDOperand Chain, SelectionDAG &DAG) {
233 // vastart just returns the address of the VarArgsFrameIndex slot.
234 return std::make_pair(DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32), Chain);
235}
236
237std::pair<SDOperand,SDOperand> X86TargetLowering::
238LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList,
239 const Type *ArgTy, SelectionDAG &DAG) {
240 MVT::ValueType ArgVT = getValueType(ArgTy);
241 SDOperand Result;
242 if (!isVANext) {
243 Result = DAG.getLoad(ArgVT, DAG.getEntryNode(), VAList);
244 } else {
245 unsigned Amt;
246 if (ArgVT == MVT::i32)
247 Amt = 4;
248 else {
249 assert((ArgVT == MVT::i64 || ArgVT == MVT::f64) &&
250 "Other types should have been promoted for varargs!");
251 Amt = 8;
252 }
253 Result = DAG.getNode(ISD::ADD, VAList.getValueType(), VAList,
254 DAG.getConstant(Amt, VAList.getValueType()));
255 }
256 return std::make_pair(Result, Chain);
257}
258
259
260std::pair<SDOperand, SDOperand> X86TargetLowering::
261LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth,
262 SelectionDAG &DAG) {
263 SDOperand Result;
264 if (Depth) // Depths > 0 not supported yet!
265 Result = DAG.getConstant(0, getPointerTy());
266 else {
267 if (ReturnAddrIndex == 0) {
268 // Set up a frame object for the return address.
269 MachineFunction &MF = DAG.getMachineFunction();
270 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
271 }
272
273 SDOperand RetAddrFI = DAG.getFrameIndex(ReturnAddrIndex, MVT::i32);
274
275 if (!isFrameAddress)
276 // Just load the return address
277 Result = DAG.getLoad(MVT::i32, DAG.getEntryNode(), RetAddrFI);
278 else
279 Result = DAG.getNode(ISD::SUB, MVT::i32, RetAddrFI,
280 DAG.getConstant(4, MVT::i32));
281 }
282 return std::make_pair(Result, Chain);
283}
Chris Lattner8acb1ba2005-01-07 07:49:41 +0000284
285
286
287
288
289namespace {
290 Statistic<>
291 NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added");
292
293 //===--------------------------------------------------------------------===//
294 /// ISel - X86 specific code to select X86 machine instructions for
295 /// SelectionDAG operations.
296 ///
297 class ISel : public SelectionDAGISel {
298 /// ContainsFPCode - Every instruction we select that uses or defines a FP
299 /// register should set this to true.
300 bool ContainsFPCode;
301
302 /// X86Lowering - This object fully describes how to lower LLVM code to an
303 /// X86-specific SelectionDAG.
304 X86TargetLowering X86Lowering;
305
306
307 /// ExprMap - As shared expressions are codegen'd, we keep track of which
308 /// vreg the value is produced in, so we only emit one copy of each compiled
309 /// tree.
310 std::map<SDOperand, unsigned> ExprMap;
311 std::set<SDOperand> LoweredTokens;
312
313 public:
314 ISel(TargetMachine &TM) : SelectionDAGISel(X86Lowering), X86Lowering(TM) {
315 }
316
317 /// InstructionSelectBasicBlock - This callback is invoked by
318 /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
319 virtual void InstructionSelectBasicBlock(SelectionDAG &DAG) {
320 // While we're doing this, keep track of whether we see any FP code for
321 // FP_REG_KILL insertion.
322 ContainsFPCode = false;
323
324 // Codegen the basic block.
325 Select(DAG.getRoot());
326
327 // Insert FP_REG_KILL instructions into basic blocks that need them. This
328 // only occurs due to the floating point stackifier not being aggressive
329 // enough to handle arbitrary global stackification.
330 //
331 // Currently we insert an FP_REG_KILL instruction into each block that
332 // uses or defines a floating point virtual register.
333 //
334 // When the global register allocators (like linear scan) finally update
335 // live variable analysis, we can keep floating point values in registers
336 // across basic blocks. This will be a huge win, but we are waiting on
337 // the global allocators before we can do this.
338 //
339 if (ContainsFPCode && BB->succ_size()) {
340 BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0);
341 ++NumFPKill;
342 }
343
344 // Clear state used for selection.
345 ExprMap.clear();
346 LoweredTokens.clear();
347 }
348
349 void EmitCMP(SDOperand LHS, SDOperand RHS);
350 bool EmitBranchCC(MachineBasicBlock *Dest, SDOperand Cond);
351 unsigned SelectExpr(SDOperand N);
352 bool SelectAddress(SDOperand N, X86AddressMode &AM);
353 void Select(SDOperand N);
354 };
355}
356
357/// SelectAddress - Add the specified node to the specified addressing mode,
358/// returning true if it cannot be done.
359bool ISel::SelectAddress(SDOperand N, X86AddressMode &AM) {
360 switch (N.getOpcode()) {
361 default: break;
362 case ISD::FrameIndex:
363 if (AM.BaseType == X86AddressMode::RegBase && AM.Base.Reg == 0) {
364 AM.BaseType = X86AddressMode::FrameIndexBase;
365 AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
366 return false;
367 }
368 break;
369 case ISD::GlobalAddress:
370 if (AM.GV == 0) {
371 AM.GV = cast<GlobalAddressSDNode>(N)->getGlobal();
372 return false;
373 }
374 break;
375 case ISD::Constant:
376 AM.Disp += cast<ConstantSDNode>(N)->getValue();
377 return false;
378 case ISD::SHL:
379 if (AM.IndexReg == 0 || AM.Scale == 1)
380 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(1))) {
381 unsigned Val = CN->getValue();
382 if (Val == 1 || Val == 2 || Val == 3) {
383 AM.Scale = 1 << Val;
384 AM.IndexReg = SelectExpr(N.Val->getOperand(0));
385 return false;
386 }
387 }
388 break;
389
390 case ISD::ADD: {
391 X86AddressMode Backup = AM;
392 if (!SelectAddress(N.Val->getOperand(0), AM) &&
393 !SelectAddress(N.Val->getOperand(1), AM))
394 return false;
395 AM = Backup;
396 break;
397 }
398 }
399
400 if (AM.BaseType != X86AddressMode::RegBase ||
401 AM.Base.Reg)
402 return true;
403
404 // Default, generate it as a register.
405 AM.BaseType = X86AddressMode::RegBase;
406 AM.Base.Reg = SelectExpr(N);
407 return false;
408}
409
410/// Emit2SetCCsAndLogical - Emit the following sequence of instructions,
411/// assuming that the temporary registers are in the 8-bit register class.
412///
413/// Tmp1 = setcc1
414/// Tmp2 = setcc2
415/// DestReg = logicalop Tmp1, Tmp2
416///
417static void Emit2SetCCsAndLogical(MachineBasicBlock *BB, unsigned SetCC1,
418 unsigned SetCC2, unsigned LogicalOp,
419 unsigned DestReg) {
420 SSARegMap *RegMap = BB->getParent()->getSSARegMap();
421 unsigned Tmp1 = RegMap->createVirtualRegister(X86::R8RegisterClass);
422 unsigned Tmp2 = RegMap->createVirtualRegister(X86::R8RegisterClass);
423 BuildMI(BB, SetCC1, 0, Tmp1);
424 BuildMI(BB, SetCC2, 0, Tmp2);
425 BuildMI(BB, LogicalOp, 2, DestReg).addReg(Tmp1).addReg(Tmp2);
426}
427
428/// EmitSetCC - Emit the code to set the specified 8-bit register to 1 if the
429/// condition codes match the specified SetCCOpcode. Note that some conditions
430/// require multiple instructions to generate the correct value.
431static void EmitSetCC(MachineBasicBlock *BB, unsigned DestReg,
432 ISD::CondCode SetCCOpcode, bool isFP) {
433 unsigned Opc;
434 if (!isFP) {
435 switch (SetCCOpcode) {
436 default: assert(0 && "Illegal integer SetCC!");
437 case ISD::SETEQ: Opc = X86::SETEr; break;
438 case ISD::SETGT: Opc = X86::SETGr; break;
439 case ISD::SETGE: Opc = X86::SETGEr; break;
440 case ISD::SETLT: Opc = X86::SETLr; break;
441 case ISD::SETLE: Opc = X86::SETLEr; break;
442 case ISD::SETNE: Opc = X86::SETNEr; break;
443 case ISD::SETULT: Opc = X86::SETBr; break;
444 case ISD::SETUGT: Opc = X86::SETAr; break;
445 case ISD::SETULE: Opc = X86::SETBEr; break;
446 case ISD::SETUGE: Opc = X86::SETAEr; break;
447 }
448 } else {
449 // On a floating point condition, the flags are set as follows:
450 // ZF PF CF op
451 // 0 | 0 | 0 | X > Y
452 // 0 | 0 | 1 | X < Y
453 // 1 | 0 | 0 | X == Y
454 // 1 | 1 | 1 | unordered
455 //
456 switch (SetCCOpcode) {
457 default: assert(0 && "Invalid FP setcc!");
458 case ISD::SETUEQ:
459 case ISD::SETEQ:
460 Opc = X86::SETEr; // True if ZF = 1
461 break;
462 case ISD::SETOGT:
463 case ISD::SETGT:
464 Opc = X86::SETAr; // True if CF = 0 and ZF = 0
465 break;
466 case ISD::SETOGE:
467 case ISD::SETGE:
468 Opc = X86::SETAEr; // True if CF = 0
469 break;
470 case ISD::SETULT:
471 case ISD::SETLT:
472 Opc = X86::SETBr; // True if CF = 1
473 break;
474 case ISD::SETULE:
475 case ISD::SETLE:
476 Opc = X86::SETBEr; // True if CF = 1 or ZF = 1
477 break;
478 case ISD::SETONE:
479 case ISD::SETNE:
480 Opc = X86::SETNEr; // True if ZF = 0
481 break;
482 case ISD::SETUO:
483 Opc = X86::SETPr; // True if PF = 1
484 break;
485 case ISD::SETO:
486 Opc = X86::SETNPr; // True if PF = 0
487 break;
488 case ISD::SETOEQ: // !PF & ZF
489 Emit2SetCCsAndLogical(BB, X86::SETNPr, X86::SETEr, X86::AND8rr, DestReg);
490 return;
491 case ISD::SETOLT: // !PF & CF
492 Emit2SetCCsAndLogical(BB, X86::SETNPr, X86::SETBr, X86::AND8rr, DestReg);
493 return;
494 case ISD::SETOLE: // !PF & (CF || ZF)
495 Emit2SetCCsAndLogical(BB, X86::SETNPr, X86::SETBEr, X86::AND8rr, DestReg);
496 return;
497 case ISD::SETUGT: // PF | (!ZF & !CF)
498 Emit2SetCCsAndLogical(BB, X86::SETPr, X86::SETAr, X86::OR8rr, DestReg);
499 return;
500 case ISD::SETUGE: // PF | !CF
501 Emit2SetCCsAndLogical(BB, X86::SETPr, X86::SETAEr, X86::OR8rr, DestReg);
502 return;
503 case ISD::SETUNE: // PF | !ZF
504 Emit2SetCCsAndLogical(BB, X86::SETPr, X86::SETNEr, X86::OR8rr, DestReg);
505 return;
506 }
507 }
508 BuildMI(BB, Opc, 0, DestReg);
509}
510
511
512/// EmitBranchCC - Emit code into BB that arranges for control to transfer to
513/// the Dest block if the Cond condition is true. If we cannot fold this
514/// condition into the branch, return true.
515///
516bool ISel::EmitBranchCC(MachineBasicBlock *Dest, SDOperand Cond) {
517 // FIXME: Evaluate whether it would be good to emit code like (X < Y) | (A >
518 // B) using two conditional branches instead of one condbr, two setcc's, and
519 // an or.
520 if ((Cond.getOpcode() == ISD::OR ||
521 Cond.getOpcode() == ISD::AND) && Cond.Val->hasOneUse()) {
522 // And and or set the flags for us, so there is no need to emit a TST of the
523 // result. It is only safe to do this if there is only a single use of the
524 // AND/OR though, otherwise we don't know it will be emitted here.
525 SelectExpr(Cond);
526 BuildMI(BB, X86::JNE, 1).addMBB(Dest);
527 return false;
528 }
529
530 // Codegen br not C -> JE.
531 if (Cond.getOpcode() == ISD::XOR)
532 if (ConstantSDNode *NC = dyn_cast<ConstantSDNode>(Cond.Val->getOperand(1)))
533 if (NC->isAllOnesValue()) {
534 unsigned CondR = SelectExpr(Cond.Val->getOperand(0));
535 BuildMI(BB, X86::TEST8rr, 2).addReg(CondR).addReg(CondR);
536 BuildMI(BB, X86::JE, 1).addMBB(Dest);
537 return false;
538 }
539
540 SetCCSDNode *SetCC = dyn_cast<SetCCSDNode>(Cond);
541 if (SetCC == 0)
542 return true; // Can only handle simple setcc's so far.
543
544 unsigned Opc;
545
546 // Handle integer conditions first.
547 if (MVT::isInteger(SetCC->getOperand(0).getValueType())) {
548 switch (SetCC->getCondition()) {
549 default: assert(0 && "Illegal integer SetCC!");
550 case ISD::SETEQ: Opc = X86::JE; break;
551 case ISD::SETGT: Opc = X86::JG; break;
552 case ISD::SETGE: Opc = X86::JGE; break;
553 case ISD::SETLT: Opc = X86::JL; break;
554 case ISD::SETLE: Opc = X86::JLE; break;
555 case ISD::SETNE: Opc = X86::JNE; break;
556 case ISD::SETULT: Opc = X86::JB; break;
557 case ISD::SETUGT: Opc = X86::JA; break;
558 case ISD::SETULE: Opc = X86::JBE; break;
559 case ISD::SETUGE: Opc = X86::JAE; break;
560 }
561 EmitCMP(SetCC->getOperand(0), SetCC->getOperand(1));
562 BuildMI(BB, Opc, 1).addMBB(Dest);
563 return false;
564 }
565
566 ContainsFPCode = true;
567 unsigned Opc2 = 0; // Second branch if needed.
568
569 // On a floating point condition, the flags are set as follows:
570 // ZF PF CF op
571 // 0 | 0 | 0 | X > Y
572 // 0 | 0 | 1 | X < Y
573 // 1 | 0 | 0 | X == Y
574 // 1 | 1 | 1 | unordered
575 //
576 switch (SetCC->getCondition()) {
577 default: assert(0 && "Invalid FP setcc!");
578 case ISD::SETUEQ:
579 case ISD::SETEQ: Opc = X86::JE; break; // True if ZF = 1
580 case ISD::SETOGT:
581 case ISD::SETGT: Opc = X86::JA; break; // True if CF = 0 and ZF = 0
582 case ISD::SETOGE:
583 case ISD::SETGE: Opc = X86::JAE; break; // True if CF = 0
584 case ISD::SETULT:
585 case ISD::SETLT: Opc = X86::JB; break; // True if CF = 1
586 case ISD::SETULE:
587 case ISD::SETLE: Opc = X86::JBE; break; // True if CF = 1 or ZF = 1
588 case ISD::SETONE:
589 case ISD::SETNE: Opc = X86::JNE; break; // True if ZF = 0
590 case ISD::SETUO: Opc = X86::JP; break; // True if PF = 1
591 case ISD::SETO: Opc = X86::JNP; break; // True if PF = 0
592 case ISD::SETUGT: // PF = 1 | (ZF = 0 & CF = 0)
593 Opc = X86::JA; // ZF = 0 & CF = 0
594 Opc2 = X86::JP; // PF = 1
595 break;
596 case ISD::SETUGE: // PF = 1 | CF = 0
597 Opc = X86::JAE; // CF = 0
598 Opc2 = X86::JP; // PF = 1
599 break;
600 case ISD::SETUNE: // PF = 1 | ZF = 0
601 Opc = X86::JNE; // ZF = 0
602 Opc2 = X86::JP; // PF = 1
603 break;
604 case ISD::SETOEQ: // PF = 0 & ZF = 1
605 //X86::JNP, X86::JE
606 //X86::AND8rr
607 return true; // FIXME: Emit more efficient code for this branch.
608 case ISD::SETOLT: // PF = 0 & CF = 1
609 //X86::JNP, X86::JB
610 //X86::AND8rr
611 return true; // FIXME: Emit more efficient code for this branch.
612 case ISD::SETOLE: // PF = 0 & (CF = 1 || ZF = 1)
613 //X86::JNP, X86::JBE
614 //X86::AND8rr
615 return true; // FIXME: Emit more efficient code for this branch.
616 }
617
618 EmitCMP(SetCC->getOperand(0), SetCC->getOperand(1));
619 BuildMI(BB, Opc, 1).addMBB(Dest);
620 if (Opc2)
621 BuildMI(BB, Opc2, 1).addMBB(Dest);
622 return false;
623}
624
625void ISel::EmitCMP(SDOperand LHS, SDOperand RHS) {
626 unsigned Tmp1 = SelectExpr(LHS), Opc;
627 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) {
628 Opc = 0;
629 switch (RHS.getValueType()) {
630 default: break;
631 case MVT::i1:
632 case MVT::i8: Opc = X86::CMP8ri; break;
633 case MVT::i16: Opc = X86::CMP16ri; break;
634 case MVT::i32: Opc = X86::CMP32ri; break;
635 }
636 if (Opc) {
637 BuildMI(BB, Opc, 2).addReg(Tmp1).addImm(CN->getValue());
638 return;
639 }
640 }
641
642 switch (LHS.getValueType()) {
643 default: assert(0 && "Cannot compare this value!");
644 case MVT::i1:
645 case MVT::i8: Opc = X86::CMP8rr; break;
646 case MVT::i16: Opc = X86::CMP16rr; break;
647 case MVT::i32: Opc = X86::CMP32rr; break;
648 case MVT::f32:
649 case MVT::f64: Opc = X86::FUCOMIr; ContainsFPCode = true; break;
650 }
651 unsigned Tmp2 = SelectExpr(RHS);
652 BuildMI(BB, Opc, 2).addReg(Tmp1).addReg(Tmp2);
653}
654
655unsigned ISel::SelectExpr(SDOperand N) {
656 unsigned Result;
657 unsigned Tmp1, Tmp2, Tmp3;
658 unsigned Opc = 0;
659
Chris Lattner5188ad72005-01-08 19:28:19 +0000660 SDNode *Node = N.Val;
661
Chris Lattner590d8002005-01-09 18:52:44 +0000662 if (Node->getOpcode() == ISD::CopyFromReg)
Chris Lattner8acb1ba2005-01-07 07:49:41 +0000663 // Just use the specified register as our input.
Chris Lattner590d8002005-01-09 18:52:44 +0000664 return dyn_cast<CopyRegSDNode>(Node)->getReg();
Chris Lattner8acb1ba2005-01-07 07:49:41 +0000665
666 // If there are multiple uses of this expression, memorize the
667 // register it is code generated in, instead of emitting it multiple
668 // times.
669 // FIXME: Disabled for our current selection model.
Chris Lattner5188ad72005-01-08 19:28:19 +0000670 if (1 || !Node->hasOneUse()) {
Chris Lattner8acb1ba2005-01-07 07:49:41 +0000671 unsigned &Reg = ExprMap[N];
672 if (Reg) return Reg;
673
674 if (N.getOpcode() != ISD::CALL)
675 Reg = Result = (N.getValueType() != MVT::Other) ?
676 MakeReg(N.getValueType()) : 1;
677 else {
678 // If this is a call instruction, make sure to prepare ALL of the result
679 // values as well as the chain.
Chris Lattner5188ad72005-01-08 19:28:19 +0000680 if (Node->getNumValues() == 1)
Chris Lattner8acb1ba2005-01-07 07:49:41 +0000681 Reg = Result = 1; // Void call, just a chain.
682 else {
Chris Lattner5188ad72005-01-08 19:28:19 +0000683 Result = MakeReg(Node->getValueType(0));
684 ExprMap[N.getValue(0)] = Result;
Chris Lattner8acb1ba2005-01-07 07:49:41 +0000685 for (unsigned i = 1, e = N.Val->getNumValues()-1; i != e; ++i)
Chris Lattner5188ad72005-01-08 19:28:19 +0000686 ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i));
687 ExprMap[SDOperand(Node, Node->getNumValues()-1)] = 1;
Chris Lattner8acb1ba2005-01-07 07:49:41 +0000688 }
689 }
690 } else {
691 Result = MakeReg(N.getValueType());
692 }
693
694 switch (N.getOpcode()) {
695 default:
Chris Lattner5188ad72005-01-08 19:28:19 +0000696 Node->dump();
Chris Lattner8acb1ba2005-01-07 07:49:41 +0000697 assert(0 && "Node not handled!\n");
698 case ISD::FrameIndex:
699 Tmp1 = cast<FrameIndexSDNode>(N)->getIndex();
700 addFrameReference(BuildMI(BB, X86::LEA32r, 4, Result), (int)Tmp1);
701 return Result;
702 case ISD::ConstantPool:
703 Tmp1 = cast<ConstantPoolSDNode>(N)->getIndex();
704 addConstantPoolReference(BuildMI(BB, X86::LEA32r, 4, Result), Tmp1);
705 return Result;
706 case ISD::ConstantFP:
707 ContainsFPCode = true;
708 Tmp1 = Result; // Intermediate Register
709 if (cast<ConstantFPSDNode>(N)->getValue() < 0.0 ||
710 cast<ConstantFPSDNode>(N)->isExactlyValue(-0.0))
711 Tmp1 = MakeReg(MVT::f64);
712
713 if (cast<ConstantFPSDNode>(N)->isExactlyValue(+0.0) ||
714 cast<ConstantFPSDNode>(N)->isExactlyValue(-0.0))
715 BuildMI(BB, X86::FLD0, 0, Tmp1);
716 else if (cast<ConstantFPSDNode>(N)->isExactlyValue(+1.0) ||
717 cast<ConstantFPSDNode>(N)->isExactlyValue(-1.0))
718 BuildMI(BB, X86::FLD1, 0, Tmp1);
719 else
720 assert(0 && "Unexpected constant!");
721 if (Tmp1 != Result)
722 BuildMI(BB, X86::FCHS, 1, Result).addReg(Tmp1);
723 return Result;
724 case ISD::Constant:
725 switch (N.getValueType()) {
726 default: assert(0 && "Cannot use constants of this type!");
727 case MVT::i1:
728 case MVT::i8: Opc = X86::MOV8ri; break;
729 case MVT::i16: Opc = X86::MOV16ri; break;
730 case MVT::i32: Opc = X86::MOV32ri; break;
731 }
732 BuildMI(BB, Opc, 1,Result).addImm(cast<ConstantSDNode>(N)->getValue());
733 return Result;
734 case ISD::GlobalAddress: {
735 GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal();
736 BuildMI(BB, X86::MOV32ri, 1, Result).addGlobalAddress(GV);
737 return Result;
738 }
739 case ISD::ExternalSymbol: {
740 const char *Sym = cast<ExternalSymbolSDNode>(N)->getSymbol();
741 BuildMI(BB, X86::MOV32ri, 1, Result).addExternalSymbol(Sym);
742 return Result;
743 }
744 case ISD::FP_EXTEND:
745 Tmp1 = SelectExpr(N.getOperand(0));
746 BuildMI(BB, X86::FpMOV, 1, Result).addReg(Tmp1);
747 ContainsFPCode = true;
748 return Result;
749 case ISD::ZERO_EXTEND: {
750 int DestIs16 = N.getValueType() == MVT::i16;
751 int SrcIs16 = N.getOperand(0).getValueType() == MVT::i16;
Chris Lattner590d8002005-01-09 18:52:44 +0000752 Tmp1 = SelectExpr(N.getOperand(0));
753
754 // FIXME: This hack is here for zero extension casts from bool to i8. This
755 // would not be needed if bools were promoted by Legalize.
756 if (N.getValueType() == MVT::i8) {
757 BuildMI(BB, X86::MOV8rr, 1, Result).addReg(Tmp1);
758 return Result;
759 }
Chris Lattner8acb1ba2005-01-07 07:49:41 +0000760
761 static const unsigned Opc[3] = {
762 X86::MOVZX32rr8, X86::MOVZX32rr16, X86::MOVZX16rr8
763 };
Chris Lattner8acb1ba2005-01-07 07:49:41 +0000764 BuildMI(BB, Opc[SrcIs16+DestIs16*2], 1, Result).addReg(Tmp1);
765 return Result;
766 }
767 case ISD::SIGN_EXTEND: {
768 int DestIs16 = N.getValueType() == MVT::i16;
769 int SrcIs16 = N.getOperand(0).getValueType() == MVT::i16;
770
Chris Lattner590d8002005-01-09 18:52:44 +0000771 // FIXME: Legalize should promote bools to i8!
772 assert(N.getOperand(0).getValueType() != MVT::i1 &&
773 "Sign extend from bool not implemented!");
774
Chris Lattner8acb1ba2005-01-07 07:49:41 +0000775 static const unsigned Opc[3] = {
776 X86::MOVSX32rr8, X86::MOVSX32rr16, X86::MOVSX16rr8
777 };
778 Tmp1 = SelectExpr(N.getOperand(0));
779 BuildMI(BB, Opc[SrcIs16+DestIs16*2], 1, Result).addReg(Tmp1);
780 return Result;
781 }
782 case ISD::TRUNCATE:
783 // Handle cast of LARGER int to SMALLER int using a move to EAX followed by
784 // a move out of AX or AL.
785 switch (N.getOperand(0).getValueType()) {
786 default: assert(0 && "Unknown truncate!");
787 case MVT::i8: Tmp2 = X86::AL; Opc = X86::MOV8rr; break;
788 case MVT::i16: Tmp2 = X86::AX; Opc = X86::MOV16rr; break;
789 case MVT::i32: Tmp2 = X86::EAX; Opc = X86::MOV32rr; break;
790 }
791 Tmp1 = SelectExpr(N.getOperand(0));
792 BuildMI(BB, Opc, 1, Tmp2).addReg(Tmp1);
793
794 switch (N.getValueType()) {
795 default: assert(0 && "Unknown truncate!");
796 case MVT::i1:
797 case MVT::i8: Tmp2 = X86::AL; Opc = X86::MOV8rr; break;
798 case MVT::i16: Tmp2 = X86::AX; Opc = X86::MOV16rr; break;
799 }
800 BuildMI(BB, Opc, 1, Result).addReg(Tmp2);
801 return Result;
802
803 case ISD::FP_ROUND:
804 // Truncate from double to float by storing to memory as float,
805 // then reading it back into a register.
806
807 // Create as stack slot to use.
Chris Lattner590d8002005-01-09 18:52:44 +0000808 // FIXME: This should automatically be made by the Legalizer!
Chris Lattner8acb1ba2005-01-07 07:49:41 +0000809 Tmp1 = TLI.getTargetData().getFloatAlignment();
810 Tmp2 = BB->getParent()->getFrameInfo()->CreateStackObject(4, Tmp1);
811
812 // Codegen the input.
813 Tmp1 = SelectExpr(N.getOperand(0));
814
815 // Emit the store, then the reload.
816 addFrameReference(BuildMI(BB, X86::FST32m, 5), Tmp2).addReg(Tmp1);
817 addFrameReference(BuildMI(BB, X86::FLD32m, 5, Result), Tmp2);
818 ContainsFPCode = true;
819 return Result;
Chris Lattner590d8002005-01-09 18:52:44 +0000820
821 case ISD::SINT_TO_FP:
822 case ISD::UINT_TO_FP: {
823 // FIXME: Most of this grunt work should be done by legalize!
824
825 // Promote the integer to a type supported by FLD. We do this because there
826 // are no unsigned FLD instructions, so we must promote an unsigned value to
827 // a larger signed value, then use FLD on the larger value.
828 //
829 MVT::ValueType PromoteType = MVT::Other;
830 MVT::ValueType SrcTy = N.getOperand(0).getValueType();
831 unsigned PromoteOpcode = 0;
832 unsigned RealDestReg = Result;
833 switch (SrcTy) {
834 case MVT::i1:
835 case MVT::i8:
836 // We don't have the facilities for directly loading byte sized data from
837 // memory (even signed). Promote it to 16 bits.
838 PromoteType = MVT::i16;
839 PromoteOpcode = Node->getOpcode() == ISD::SINT_TO_FP ?
840 X86::MOVSX16rr8 : X86::MOVZX16rr8;
841 break;
842 case MVT::i16:
843 if (Node->getOpcode() == ISD::UINT_TO_FP) {
844 PromoteType = MVT::i32;
845 PromoteOpcode = X86::MOVZX32rr16;
846 }
847 break;
848 default:
849 // Don't fild into the real destination.
850 if (Node->getOpcode() == ISD::UINT_TO_FP)
851 Result = MakeReg(Node->getValueType(0));
852 break;
853 }
854
855 Tmp1 = SelectExpr(N.getOperand(0)); // Get the operand register
856
857 if (PromoteType != MVT::Other) {
858 Tmp2 = MakeReg(PromoteType);
859 BuildMI(BB, PromoteOpcode, 1, Tmp2).addReg(Tmp1);
860 SrcTy = PromoteType;
861 Tmp1 = Tmp2;
862 }
863
864 // Spill the integer to memory and reload it from there.
865 unsigned Size = MVT::getSizeInBits(SrcTy)/8;
866 MachineFunction *F = BB->getParent();
867 int FrameIdx = F->getFrameInfo()->CreateStackObject(Size, Size);
868
869 switch (SrcTy) {
870 case MVT::i64:
871 // FIXME: this won't work for cast [u]long to FP
872 addFrameReference(BuildMI(BB, X86::MOV32mr, 5),
873 FrameIdx).addReg(Tmp1);
874 addFrameReference(BuildMI(BB, X86::MOV32mr, 5),
875 FrameIdx, 4).addReg(Tmp1+1);
876 addFrameReference(BuildMI(BB, X86::FILD64m, 5, Result), FrameIdx);
877 break;
878 case MVT::i32:
879 addFrameReference(BuildMI(BB, X86::MOV32mr, 5),
880 FrameIdx).addReg(Tmp1);
881 addFrameReference(BuildMI(BB, X86::FILD32m, 5, Result), FrameIdx);
882 break;
883 case MVT::i16:
884 addFrameReference(BuildMI(BB, X86::MOV16mr, 5),
885 FrameIdx).addReg(Tmp1);
886 addFrameReference(BuildMI(BB, X86::FILD16m, 5, Result), FrameIdx);
887 break;
888 default: break; // No promotion required.
889 }
890
891 if (Node->getOpcode() == ISD::UINT_TO_FP && SrcTy == MVT::i32) {
892 // If this is a cast from uint -> double, we need to be careful when if
893 // the "sign" bit is set. If so, we don't want to make a negative number,
894 // we want to make a positive number. Emit code to add an offset if the
895 // sign bit is set.
896
897 // Compute whether the sign bit is set by shifting the reg right 31 bits.
898 unsigned IsNeg = MakeReg(MVT::i32);
899 BuildMI(BB, X86::SHR32ri, 2, IsNeg).addReg(Tmp1).addImm(31);
900
901 // Create a CP value that has the offset in one word and 0 in the other.
902 static ConstantInt *TheOffset = ConstantUInt::get(Type::ULongTy,
903 0x4f80000000000000ULL);
904 unsigned CPI = F->getConstantPool()->getConstantPoolIndex(TheOffset);
905 BuildMI(BB, X86::FADD32m, 5, RealDestReg).addReg(Result)
906 .addConstantPoolIndex(CPI).addZImm(4).addReg(IsNeg).addSImm(0);
907
908 } else if (Node->getOpcode() == ISD::UINT_TO_FP && SrcTy == MVT::i64) {
909 // We need special handling for unsigned 64-bit integer sources. If the
910 // input number has the "sign bit" set, then we loaded it incorrectly as a
911 // negative 64-bit number. In this case, add an offset value.
912
913 // Emit a test instruction to see if the dynamic input value was signed.
914 BuildMI(BB, X86::TEST32rr, 2).addReg(Tmp1+1).addReg(Tmp1+1);
915
916 // If the sign bit is set, get a pointer to an offset, otherwise get a
917 // pointer to a zero.
918 MachineConstantPool *CP = F->getConstantPool();
919 unsigned Zero = MakeReg(MVT::i32);
920 Constant *Null = Constant::getNullValue(Type::UIntTy);
921 addConstantPoolReference(BuildMI(BB, X86::LEA32r, 5, Zero),
922 CP->getConstantPoolIndex(Null));
923 unsigned Offset = MakeReg(MVT::i32);
924 Constant *OffsetCst = ConstantUInt::get(Type::UIntTy, 0x5f800000);
925
926 addConstantPoolReference(BuildMI(BB, X86::LEA32r, 5, Offset),
927 CP->getConstantPoolIndex(OffsetCst));
928 unsigned Addr = MakeReg(MVT::i32);
929 BuildMI(BB, X86::CMOVS32rr, 2, Addr).addReg(Zero).addReg(Offset);
930
931 // Load the constant for an add. FIXME: this could make an 'fadd' that
932 // reads directly from memory, but we don't support these yet.
933 unsigned ConstReg = MakeReg(MVT::f64);
934 addDirectMem(BuildMI(BB, X86::FLD32m, 4, ConstReg), Addr);
935
936 BuildMI(BB, X86::FpADD, 2, RealDestReg).addReg(ConstReg).addReg(Result);
937 }
938 return RealDestReg;
939 }
940 case ISD::FP_TO_SINT:
941 case ISD::FP_TO_UINT: {
942 // FIXME: Most of this grunt work should be done by legalize!
943 Tmp1 = SelectExpr(N.getOperand(0)); // Get the operand register
944
945 // Change the floating point control register to use "round towards zero"
946 // mode when truncating to an integer value.
947 //
948 MachineFunction *F = BB->getParent();
949 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
950 addFrameReference(BuildMI(BB, X86::FNSTCW16m, 4), CWFrameIdx);
951
952 // Load the old value of the high byte of the control word...
953 unsigned HighPartOfCW = MakeReg(MVT::i8);
954 addFrameReference(BuildMI(BB, X86::MOV8rm, 4, HighPartOfCW),
955 CWFrameIdx, 1);
956
957 // Set the high part to be round to zero...
958 addFrameReference(BuildMI(BB, X86::MOV8mi, 5),
959 CWFrameIdx, 1).addImm(12);
960
961 // Reload the modified control word now...
962 addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx);
963
964 // Restore the memory image of control word to original value
965 addFrameReference(BuildMI(BB, X86::MOV8mr, 5),
966 CWFrameIdx, 1).addReg(HighPartOfCW);
967
968 // We don't have the facilities for directly storing byte sized data to
969 // memory. Promote it to 16 bits. We also must promote unsigned values to
970 // larger classes because we only have signed FP stores.
971 MVT::ValueType StoreClass = Node->getValueType(0);
972 if (StoreClass == MVT::i8 || Node->getOpcode() == ISD::FP_TO_UINT)
973 switch (StoreClass) {
974 case MVT::i8: StoreClass = MVT::i16; break;
975 case MVT::i16: StoreClass = MVT::i32; break;
976 case MVT::i32: StoreClass = MVT::i64; break;
977 // The following treatment of cLong may not be perfectly right,
978 // but it survives chains of casts of the form
979 // double->ulong->double.
980 case MVT::i64: StoreClass = MVT::i64; break;
981 default: assert(0 && "Unknown store class!");
982 }
983
984 // Spill the integer to memory and reload it from there.
985 unsigned Size = MVT::getSizeInBits(StoreClass)/8;
986 int FrameIdx = F->getFrameInfo()->CreateStackObject(Size, Size);
987
988 switch (StoreClass) {
989 default: assert(0 && "Unknown store class!");
990 case MVT::i16:
991 addFrameReference(BuildMI(BB, X86::FIST16m, 5), FrameIdx).addReg(Tmp1);
992 break;
993 case MVT::i32:
Chris Lattner25020852005-01-09 19:49:59 +0000994 addFrameReference(BuildMI(BB, X86::FIST32m, 5), FrameIdx).addReg(Tmp1);
Chris Lattner590d8002005-01-09 18:52:44 +0000995 break;
996 case MVT::i64:
Chris Lattner25020852005-01-09 19:49:59 +0000997 addFrameReference(BuildMI(BB, X86::FISTP64m, 5), FrameIdx).addReg(Tmp1);
Chris Lattner590d8002005-01-09 18:52:44 +0000998 break;
999 }
1000
1001 switch (Node->getValueType(0)) {
1002 default:
1003 assert(0 && "Unknown integer type!");
1004 case MVT::i64:
1005 // FIXME: this isn't gunna work.
1006 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Result), FrameIdx);
1007 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Result+1), FrameIdx, 4);
1008 case MVT::i32:
1009 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Result), FrameIdx);
1010 break;
1011 case MVT::i16:
1012 addFrameReference(BuildMI(BB, X86::MOV16rm, 4, Result), FrameIdx);
1013 break;
1014 case MVT::i8:
1015 addFrameReference(BuildMI(BB, X86::MOV8rm, 4, Result), FrameIdx);
1016 break;
1017 }
1018
1019 // Reload the original control word now.
1020 addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx);
1021 return Result;
1022 }
Chris Lattner8acb1ba2005-01-07 07:49:41 +00001023 case ISD::ADD:
1024 // See if we can codegen this as an LEA to fold operations together.
1025 if (N.getValueType() == MVT::i32) {
1026 X86AddressMode AM;
1027 if (!SelectAddress(N.getOperand(0), AM) &&
1028 !SelectAddress(N.getOperand(1), AM)) {
1029 // If this is not just an add, emit the LEA. For a simple add (like
1030 // reg+reg or reg+imm), we just emit an add. If might be a good idea to
1031 // leave this as LEA, then peephole it to 'ADD' after two address elim
1032 // happens.
1033 if (AM.Scale != 1 || AM.BaseType == X86AddressMode::FrameIndexBase ||
1034 AM.Base.Reg && AM.IndexReg && (AM.Disp || AM.GV)) {
1035 addFullAddress(BuildMI(BB, X86::LEA32r, 4, Result), AM);
1036 return Result;
1037 }
1038 }
1039 }
1040 Tmp1 = SelectExpr(N.getOperand(0));
1041 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1042 Opc = 0;
1043 if (CN->getValue() == 1) { // add X, 1 -> inc X
1044 switch (N.getValueType()) {
1045 default: assert(0 && "Cannot integer add this type!");
1046 case MVT::i8: Opc = X86::INC8r; break;
1047 case MVT::i16: Opc = X86::INC16r; break;
1048 case MVT::i32: Opc = X86::INC32r; break;
1049 }
1050 } else if (CN->isAllOnesValue()) { // add X, -1 -> dec X
1051 switch (N.getValueType()) {
1052 default: assert(0 && "Cannot integer add this type!");
1053 case MVT::i8: Opc = X86::DEC8r; break;
1054 case MVT::i16: Opc = X86::DEC16r; break;
1055 case MVT::i32: Opc = X86::DEC32r; break;
1056 }
1057 }
1058
1059 if (Opc) {
1060 BuildMI(BB, Opc, 1, Result).addReg(Tmp1);
1061 return Result;
1062 }
1063
1064 switch (N.getValueType()) {
1065 default: assert(0 && "Cannot add this type!");
1066 case MVT::i8: Opc = X86::ADD8ri; break;
1067 case MVT::i16: Opc = X86::ADD16ri; break;
1068 case MVT::i32: Opc = X86::ADD32ri; break;
1069 }
1070 if (Opc) {
1071 BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue());
1072 return Result;
1073 }
1074 }
1075
1076 Tmp2 = SelectExpr(N.getOperand(1));
1077 switch (N.getValueType()) {
1078 default: assert(0 && "Cannot add this type!");
1079 case MVT::i8: Opc = X86::ADD8rr; break;
1080 case MVT::i16: Opc = X86::ADD16rr; break;
1081 case MVT::i32: Opc = X86::ADD32rr; break;
1082 case MVT::f32:
1083 case MVT::f64: Opc = X86::FpADD; ContainsFPCode = true; break;
1084 }
1085 BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
1086 return Result;
1087 case ISD::SUB:
1088 if (MVT::isInteger(N.getValueType()))
1089 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(0)))
1090 if (CN->isNullValue()) { // 0 - N -> neg N
1091 switch (N.getValueType()) {
1092 default: assert(0 && "Cannot sub this type!");
1093 case MVT::i1:
1094 case MVT::i8: Opc = X86::NEG8r; break;
1095 case MVT::i16: Opc = X86::NEG16r; break;
1096 case MVT::i32: Opc = X86::NEG32r; break;
1097 }
1098 Tmp1 = SelectExpr(N.getOperand(1));
1099 BuildMI(BB, Opc, 1, Result).addReg(Tmp1);
1100 return Result;
1101 }
1102
1103 Tmp1 = SelectExpr(N.getOperand(0));
1104 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1105 switch (N.getValueType()) {
1106 default: assert(0 && "Cannot sub this type!");
1107 case MVT::i1:
1108 case MVT::i8: Opc = X86::SUB8ri; break;
1109 case MVT::i16: Opc = X86::SUB16ri; break;
1110 case MVT::i32: Opc = X86::SUB32ri; break;
1111 }
1112 BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue());
1113 return Result;
1114 }
1115 Tmp2 = SelectExpr(N.getOperand(1));
1116 switch (N.getValueType()) {
1117 default: assert(0 && "Cannot add this type!");
1118 case MVT::i1:
1119 case MVT::i8: Opc = X86::SUB8rr; break;
1120 case MVT::i16: Opc = X86::SUB16rr; break;
1121 case MVT::i32: Opc = X86::SUB32rr; break;
1122 case MVT::f32:
1123 case MVT::f64: Opc = X86::FpSUB; ContainsFPCode = true; break;
1124 }
1125 BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
1126 return Result;
1127
1128 case ISD::AND:
1129 Tmp1 = SelectExpr(N.getOperand(0));
1130 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1131 switch (N.getValueType()) {
1132 default: assert(0 && "Cannot add this type!");
1133 case MVT::i1:
1134 case MVT::i8: Opc = X86::AND8ri; break;
1135 case MVT::i16: Opc = X86::AND16ri; break;
1136 case MVT::i32: Opc = X86::AND32ri; break;
1137 }
1138 BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue());
1139 return Result;
1140 }
1141 Tmp2 = SelectExpr(N.getOperand(1));
1142 switch (N.getValueType()) {
1143 default: assert(0 && "Cannot add this type!");
1144 case MVT::i1:
1145 case MVT::i8: Opc = X86::AND8rr; break;
1146 case MVT::i16: Opc = X86::AND16rr; break;
1147 case MVT::i32: Opc = X86::AND32rr; break;
1148 }
1149 BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
1150 return Result;
1151 case ISD::OR:
1152 Tmp1 = SelectExpr(N.getOperand(0));
1153 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1154 switch (N.getValueType()) {
1155 default: assert(0 && "Cannot add this type!");
1156 case MVT::i1:
1157 case MVT::i8: Opc = X86::OR8ri; break;
1158 case MVT::i16: Opc = X86::OR16ri; break;
1159 case MVT::i32: Opc = X86::OR32ri; break;
1160 }
1161 BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue());
1162 return Result;
1163 }
1164 Tmp2 = SelectExpr(N.getOperand(1));
1165 switch (N.getValueType()) {
1166 default: assert(0 && "Cannot add this type!");
1167 case MVT::i1:
1168 case MVT::i8: Opc = X86::OR8rr; break;
1169 case MVT::i16: Opc = X86::OR16rr; break;
1170 case MVT::i32: Opc = X86::OR32rr; break;
1171 }
1172 BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
1173 return Result;
1174 case ISD::XOR:
1175 Tmp1 = SelectExpr(N.getOperand(0));
1176 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1177 switch (N.getValueType()) {
1178 default: assert(0 && "Cannot add this type!");
1179 case MVT::i1:
1180 case MVT::i8: Opc = X86::XOR8ri; break;
1181 case MVT::i16: Opc = X86::XOR16ri; break;
1182 case MVT::i32: Opc = X86::XOR32ri; break;
1183 }
1184 BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue());
1185 return Result;
1186 }
1187 Tmp2 = SelectExpr(N.getOperand(1));
1188 switch (N.getValueType()) {
1189 default: assert(0 && "Cannot add this type!");
1190 case MVT::i1:
1191 case MVT::i8: Opc = X86::XOR8rr; break;
1192 case MVT::i16: Opc = X86::XOR16rr; break;
1193 case MVT::i32: Opc = X86::XOR32rr; break;
1194 }
1195 BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
1196 return Result;
1197
1198 case ISD::MUL:
1199 Tmp1 = SelectExpr(N.getOperand(0));
1200 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1201 Opc = 0;
1202 switch (N.getValueType()) {
1203 default: assert(0 && "Cannot multiply this type!");
1204 case MVT::i8: break;
1205 case MVT::i16: Opc = X86::IMUL16rri; break;
1206 case MVT::i32: Opc = X86::IMUL32rri; break;
1207 }
1208 if (Opc) {
1209 BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue());
1210 return Result;
1211 }
1212 }
1213 Tmp2 = SelectExpr(N.getOperand(1));
1214 switch (N.getValueType()) {
1215 default: assert(0 && "Cannot add this type!");
1216 case MVT::i8: assert(0 && "FIXME: MUL i8 not implemented yet!");
1217 case MVT::i16: Opc = X86::IMUL16rr; break;
1218 case MVT::i32: Opc = X86::IMUL32rr; break;
1219 case MVT::f32:
1220 case MVT::f64: Opc = X86::FpMUL; ContainsFPCode = true; break;
1221 }
1222 BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
1223 return Result;
1224
1225 case ISD::SELECT:
1226 // FIXME: implement folding of setcc into select.
1227 if (N.getValueType() != MVT::i1 && N.getValueType() != MVT::i8) {
1228 Tmp2 = SelectExpr(N.getOperand(1));
1229 Tmp3 = SelectExpr(N.getOperand(2));
1230 Tmp1 = SelectExpr(N.getOperand(0));
1231
1232 switch (N.getValueType()) {
1233 default: assert(0 && "Cannot select this type!");
1234 case MVT::i16: Opc = X86::CMOVE16rr; break;
1235 case MVT::i32: Opc = X86::CMOVE32rr; break;
1236 case MVT::f32:
1237 case MVT::f64: Opc = X86::FCMOVE; ContainsFPCode = true; break;
1238 }
1239
1240 // Get the condition into the zero flag.
1241 BuildMI(BB, X86::TEST8rr, 2).addReg(Tmp1).addReg(Tmp1);
1242 BuildMI(BB, Opc, 2, Result).addReg(Tmp2).addReg(Tmp3);
1243 return Result;
1244 } else {
1245 // FIXME: This should not be implemented here, it should be in the generic
1246 // code!
1247 Tmp2 = SelectExpr(CurDAG->getNode(ISD::ZERO_EXTEND, MVT::i16,
1248 N.getOperand(1)));
1249 Tmp3 = SelectExpr(CurDAG->getNode(ISD::ZERO_EXTEND, MVT::i16,
1250 N.getOperand(2)));
1251 Tmp1 = SelectExpr(N.getOperand(0));
1252 BuildMI(BB, X86::TEST8rr, 2).addReg(Tmp1).addReg(Tmp1);
1253 // FIXME: need subregs to do better than this!
1254 unsigned TmpReg = MakeReg(MVT::i16);
1255 BuildMI(BB, X86::CMOVE16rr, 2, TmpReg).addReg(Tmp2).addReg(Tmp3);
1256 BuildMI(BB, X86::MOV16rr, 1, X86::AX).addReg(TmpReg);
1257 BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL);
1258 return Result;
1259 }
1260
1261 case ISD::SDIV:
1262 case ISD::UDIV:
1263 case ISD::SREM:
1264 case ISD::UREM: {
1265 Tmp1 = SelectExpr(N.getOperand(0));
1266
1267 if (N.getOpcode() == ISD::SDIV)
1268 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1269 // FIXME: These special cases should be handled by the lowering impl!
1270 unsigned RHS = CN->getValue();
1271 bool isNeg = false;
1272 if ((int)RHS < 0) {
1273 isNeg = true;
1274 RHS = -RHS;
1275 }
1276 if (RHS && (RHS & (RHS-1)) == 0) { // Signed division by power of 2?
1277 unsigned Log = log2(RHS);
1278 unsigned TmpReg = MakeReg(N.getValueType());
1279 unsigned SAROpc, SHROpc, ADDOpc, NEGOpc;
1280 switch (N.getValueType()) {
1281 default: assert("Unknown type to signed divide!");
1282 case MVT::i8:
1283 SAROpc = X86::SAR8ri;
1284 SHROpc = X86::SHR8ri;
1285 ADDOpc = X86::ADD8rr;
1286 NEGOpc = X86::NEG8r;
1287 break;
1288 case MVT::i16:
1289 SAROpc = X86::SAR16ri;
1290 SHROpc = X86::SHR16ri;
1291 ADDOpc = X86::ADD16rr;
1292 NEGOpc = X86::NEG16r;
1293 break;
1294 case MVT::i32:
1295 SAROpc = X86::SAR32ri;
1296 SHROpc = X86::SHR32ri;
1297 ADDOpc = X86::ADD32rr;
1298 NEGOpc = X86::NEG32r;
1299 break;
1300 }
1301 BuildMI(BB, SAROpc, 2, TmpReg).addReg(Tmp1).addImm(Log-1);
1302 unsigned TmpReg2 = MakeReg(N.getValueType());
1303 BuildMI(BB, SHROpc, 2, TmpReg2).addReg(TmpReg).addImm(32-Log);
1304 unsigned TmpReg3 = MakeReg(N.getValueType());
1305 BuildMI(BB, ADDOpc, 2, TmpReg3).addReg(Tmp1).addReg(TmpReg2);
1306
1307 unsigned TmpReg4 = isNeg ? MakeReg(N.getValueType()) : Result;
1308 BuildMI(BB, SAROpc, 2, TmpReg4).addReg(TmpReg3).addImm(Log);
1309 if (isNeg)
1310 BuildMI(BB, NEGOpc, 1, Result).addReg(TmpReg4);
1311 return Result;
1312 }
1313 }
1314
1315 Tmp2 = SelectExpr(N.getOperand(1));
1316
1317 bool isSigned = N.getOpcode() == ISD::SDIV || N.getOpcode() == ISD::SREM;
1318 bool isDiv = N.getOpcode() == ISD::SDIV || N.getOpcode() == ISD::UDIV;
1319 unsigned LoReg, HiReg, DivOpcode, MovOpcode, ClrOpcode, SExtOpcode;
1320 switch (N.getValueType()) {
1321 default: assert(0 && "Cannot sdiv this type!");
1322 case MVT::i8:
1323 DivOpcode = isSigned ? X86::IDIV8r : X86::DIV8r;
1324 LoReg = X86::AL;
1325 HiReg = X86::AH;
1326 MovOpcode = X86::MOV8rr;
1327 ClrOpcode = X86::MOV8ri;
1328 SExtOpcode = X86::CBW;
1329 break;
1330 case MVT::i16:
1331 DivOpcode = isSigned ? X86::IDIV16r : X86::DIV16r;
1332 LoReg = X86::AX;
1333 HiReg = X86::DX;
1334 MovOpcode = X86::MOV16rr;
1335 ClrOpcode = X86::MOV16ri;
1336 SExtOpcode = X86::CWD;
1337 break;
1338 case MVT::i32:
1339 DivOpcode = isSigned ? X86::IDIV32r : X86::DIV32r;
1340 LoReg =X86::EAX;
1341 HiReg = X86::EDX;
1342 MovOpcode = X86::MOV32rr;
1343 ClrOpcode = X86::MOV32ri;
1344 SExtOpcode = X86::CDQ;
1345 break;
1346 case MVT::i64: assert(0 && "FIXME: implement i64 DIV/REM libcalls!");
1347 case MVT::f32:
1348 case MVT::f64:
1349 ContainsFPCode = true;
1350 if (N.getOpcode() == ISD::SDIV)
1351 BuildMI(BB, X86::FpDIV, 2, Result).addReg(Tmp1).addReg(Tmp2);
1352 else
1353 assert(0 && "FIXME: Emit frem libcall to fmod!");
1354 return Result;
1355 }
1356
1357 // Set up the low part.
1358 BuildMI(BB, MovOpcode, 1, LoReg).addReg(Tmp1);
1359
1360 if (isSigned) {
1361 // Sign extend the low part into the high part.
1362 BuildMI(BB, SExtOpcode, 0);
1363 } else {
1364 // Zero out the high part, effectively zero extending the input.
1365 BuildMI(BB, ClrOpcode, 1, HiReg).addImm(0);
1366 }
1367
1368 // Emit the DIV/IDIV instruction.
1369 BuildMI(BB, DivOpcode, 1).addReg(Tmp2);
1370
1371 // Get the result of the divide or rem.
1372 BuildMI(BB, MovOpcode, 1, Result).addReg(isDiv ? LoReg : HiReg);
1373 return Result;
1374 }
1375
1376 case ISD::SHL:
1377 Tmp1 = SelectExpr(N.getOperand(0));
1378 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1379 switch (N.getValueType()) {
1380 default: assert(0 && "Cannot shift this type!");
1381 case MVT::i8: Opc = X86::SHL8ri; break;
1382 case MVT::i16: Opc = X86::SHL16ri; break;
1383 case MVT::i32: Opc = X86::SHL32ri; break;
1384 }
1385 BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue());
1386 return Result;
1387 }
1388 Tmp2 = SelectExpr(N.getOperand(1));
1389 switch (N.getValueType()) {
1390 default: assert(0 && "Cannot shift this type!");
1391 case MVT::i8 : Opc = X86::SHL8rCL; break;
1392 case MVT::i16: Opc = X86::SHL16rCL; break;
1393 case MVT::i32: Opc = X86::SHL32rCL; break;
1394 }
1395 BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(Tmp2);
1396 BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
1397 return Result;
1398 case ISD::SRL:
1399 Tmp1 = SelectExpr(N.getOperand(0));
1400 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1401 switch (N.getValueType()) {
1402 default: assert(0 && "Cannot shift this type!");
1403 case MVT::i8: Opc = X86::SHR8ri; break;
1404 case MVT::i16: Opc = X86::SHR16ri; break;
1405 case MVT::i32: Opc = X86::SHR32ri; break;
1406 }
1407 BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue());
1408 return Result;
1409 }
1410 Tmp2 = SelectExpr(N.getOperand(1));
1411 switch (N.getValueType()) {
1412 default: assert(0 && "Cannot shift this type!");
1413 case MVT::i8 : Opc = X86::SHR8rCL; break;
1414 case MVT::i16: Opc = X86::SHR16rCL; break;
1415 case MVT::i32: Opc = X86::SHR32rCL; break;
1416 }
1417 BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(Tmp2);
1418 BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
1419 return Result;
1420 case ISD::SRA:
1421 Tmp1 = SelectExpr(N.getOperand(0));
1422 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1423 switch (N.getValueType()) {
1424 default: assert(0 && "Cannot shift this type!");
1425 case MVT::i8: Opc = X86::SAR8ri; break;
1426 case MVT::i16: Opc = X86::SAR16ri; break;
1427 case MVT::i32: Opc = X86::SAR32ri; break;
1428 }
1429 BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue());
1430 return Result;
1431 }
1432 Tmp2 = SelectExpr(N.getOperand(1));
1433 switch (N.getValueType()) {
1434 default: assert(0 && "Cannot shift this type!");
1435 case MVT::i8 : Opc = X86::SAR8rCL; break;
1436 case MVT::i16: Opc = X86::SAR16rCL; break;
1437 case MVT::i32: Opc = X86::SAR32rCL; break;
1438 }
1439 BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(Tmp2);
1440 BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
1441 return Result;
1442
1443 case ISD::SETCC:
1444 if (MVT::isFloatingPoint(N.getOperand(0).getValueType()))
1445 ContainsFPCode = true;
1446 EmitCMP(N.getOperand(0), N.getOperand(1));
1447 EmitSetCC(BB, Result, cast<SetCCSDNode>(N)->getCondition(),
1448 MVT::isFloatingPoint(N.getOperand(1).getValueType()));
1449 return Result;
1450 case ISD::LOAD: {
Chris Lattner5188ad72005-01-08 19:28:19 +00001451 // The chain for this load is now lowered.
1452 LoweredTokens.insert(SDOperand(Node, 1));
Chris Lattner8acb1ba2005-01-07 07:49:41 +00001453 Select(N.getOperand(0));
1454
1455 // Make sure we generate both values.
1456 if (Result != 1)
1457 ExprMap[N.getValue(1)] = 1; // Generate the token
1458 else
1459 Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
1460
Chris Lattner5188ad72005-01-08 19:28:19 +00001461 switch (Node->getValueType(0)) {
Chris Lattner8acb1ba2005-01-07 07:49:41 +00001462 default: assert(0 && "Cannot load this type!");
1463 case MVT::i1:
1464 case MVT::i8: Opc = X86::MOV8rm; break;
1465 case MVT::i16: Opc = X86::MOV16rm; break;
1466 case MVT::i32: Opc = X86::MOV32rm; break;
1467 case MVT::f32: Opc = X86::FLD32m; ContainsFPCode = true; break;
1468 case MVT::f64: Opc = X86::FLD64m; ContainsFPCode = true; break;
1469 }
1470 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N.getOperand(1))){
1471 addConstantPoolReference(BuildMI(BB, Opc, 4, Result), CP->getIndex());
1472 } else {
1473 X86AddressMode AM;
1474 SelectAddress(N.getOperand(1), AM);
1475 addFullAddress(BuildMI(BB, Opc, 4, Result), AM);
1476 }
1477 return Result;
1478 }
1479 case ISD::DYNAMIC_STACKALLOC:
1480 Select(N.getOperand(0));
1481
1482 // Generate both result values.
1483 if (Result != 1)
1484 ExprMap[N.getValue(1)] = 1; // Generate the token
1485 else
1486 Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
1487
1488 // FIXME: We are currently ignoring the requested alignment for handling
1489 // greater than the stack alignment. This will need to be revisited at some
1490 // point. Align = N.getOperand(2);
1491
1492 if (!isa<ConstantSDNode>(N.getOperand(2)) ||
1493 cast<ConstantSDNode>(N.getOperand(2))->getValue() != 0) {
1494 std::cerr << "Cannot allocate stack object with greater alignment than"
1495 << " the stack alignment yet!";
1496 abort();
1497 }
1498
1499 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1500 BuildMI(BB, X86::SUB32ri, 2, X86::ESP).addReg(X86::ESP)
1501 .addImm(CN->getValue());
1502 } else {
1503 Tmp1 = SelectExpr(N.getOperand(1));
1504
1505 // Subtract size from stack pointer, thereby allocating some space.
1506 BuildMI(BB, X86::SUB32rr, 2, X86::ESP).addReg(X86::ESP).addReg(Tmp1);
1507 }
1508
1509 // Put a pointer to the space into the result register, by copying the stack
1510 // pointer.
1511 BuildMI(BB, X86::MOV32rr, 1, Result).addReg(X86::ESP);
1512 return Result;
1513
1514 case ISD::CALL:
Chris Lattner5188ad72005-01-08 19:28:19 +00001515 // The chain for this call is now lowered.
1516 LoweredTokens.insert(N.getValue(Node->getNumValues()-1));
1517
Chris Lattner8acb1ba2005-01-07 07:49:41 +00001518 Select(N.getOperand(0));
1519 if (GlobalAddressSDNode *GASD =
1520 dyn_cast<GlobalAddressSDNode>(N.getOperand(1))) {
1521 BuildMI(BB, X86::CALLpcrel32, 1).addGlobalAddress(GASD->getGlobal(),true);
1522 } else if (ExternalSymbolSDNode *ESSDN =
1523 dyn_cast<ExternalSymbolSDNode>(N.getOperand(1))) {
1524 BuildMI(BB, X86::CALLpcrel32,
1525 1).addExternalSymbol(ESSDN->getSymbol(), true);
1526 } else {
1527 Tmp1 = SelectExpr(N.getOperand(1));
1528 BuildMI(BB, X86::CALL32r, 1).addReg(Tmp1);
1529 }
Chris Lattner5188ad72005-01-08 19:28:19 +00001530 switch (Node->getValueType(0)) {
Chris Lattner8acb1ba2005-01-07 07:49:41 +00001531 default: assert(0 && "Unknown value type for call result!");
1532 case MVT::Other: return 1;
1533 case MVT::i1:
1534 case MVT::i8:
1535 BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL);
1536 break;
1537 case MVT::i16:
1538 BuildMI(BB, X86::MOV16rr, 1, Result).addReg(X86::AX);
1539 break;
1540 case MVT::i32:
1541 BuildMI(BB, X86::MOV32rr, 1, Result).addReg(X86::EAX);
Chris Lattner5188ad72005-01-08 19:28:19 +00001542 if (Node->getValueType(1) == MVT::i32)
Chris Lattner8acb1ba2005-01-07 07:49:41 +00001543 BuildMI(BB, X86::MOV32rr, 1, Result+1).addReg(X86::EDX);
1544 break;
1545 case MVT::f32:
1546 case MVT::f64: // Floating-point return values live in %ST(0)
1547 ContainsFPCode = true;
1548 BuildMI(BB, X86::FpGETRESULT, 1, Result);
1549 break;
1550 }
1551 return Result+N.ResNo;
1552 }
1553
1554 return 0;
1555}
1556
1557void ISel::Select(SDOperand N) {
1558 unsigned Tmp1, Tmp2, Opc;
1559
1560 // FIXME: Disable for our current expansion model!
1561 if (/*!N->hasOneUse() &&*/ !LoweredTokens.insert(N).second)
1562 return; // Already selected.
1563
1564 switch (N.getOpcode()) {
1565 default:
1566 N.Val->dump(); std::cerr << "\n";
1567 assert(0 && "Node not handled yet!");
1568 case ISD::EntryToken: return; // Noop
1569 case ISD::CopyToReg:
1570 Select(N.getOperand(0));
1571 Tmp1 = SelectExpr(N.getOperand(1));
1572 Tmp2 = cast<CopyRegSDNode>(N)->getReg();
1573
1574 if (Tmp1 != Tmp2) {
1575 switch (N.getOperand(1).getValueType()) {
1576 default: assert(0 && "Invalid type for operation!");
1577 case MVT::i1:
1578 case MVT::i8: Opc = X86::MOV8rr; break;
1579 case MVT::i16: Opc = X86::MOV16rr; break;
1580 case MVT::i32: Opc = X86::MOV32rr; break;
1581 case MVT::f32:
1582 case MVT::f64: Opc = X86::FpMOV; break;
1583 }
1584 BuildMI(BB, Opc, 1, Tmp2).addReg(Tmp1);
1585 }
1586 return;
1587 case ISD::RET:
1588 Select(N.getOperand(0));
1589 switch (N.getNumOperands()) {
1590 default:
1591 assert(0 && "Unknown return instruction!");
1592 case 3:
Chris Lattner8acb1ba2005-01-07 07:49:41 +00001593 assert(N.getOperand(1).getValueType() == MVT::i32 &&
1594 N.getOperand(2).getValueType() == MVT::i32 &&
1595 "Unknown two-register value!");
Chris Lattner5188ad72005-01-08 19:28:19 +00001596 Tmp1 = SelectExpr(N.getOperand(1));
1597 Tmp2 = SelectExpr(N.getOperand(2));
Chris Lattner8acb1ba2005-01-07 07:49:41 +00001598 BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Tmp1);
1599 BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(Tmp2);
1600 // Declare that EAX & EDX are live on exit.
1601 BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX)
1602 .addReg(X86::ESP);
1603 break;
1604 case 2:
1605 Tmp1 = SelectExpr(N.getOperand(1));
1606 switch (N.getOperand(1).getValueType()) {
1607 default: assert(0 && "All other types should have been promoted!!");
1608 case MVT::f64:
1609 BuildMI(BB, X86::FpSETRESULT, 1).addReg(Tmp1);
1610 // Declare that top-of-stack is live on exit
1611 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
1612 break;
1613 case MVT::i32:
1614 BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Tmp1);
1615 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
1616 break;
1617 }
1618 break;
1619 case 1:
1620 break;
1621 }
1622 BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
1623 return;
1624 case ISD::BR: {
1625 Select(N.getOperand(0));
1626 MachineBasicBlock *Dest =
1627 cast<BasicBlockSDNode>(N.getOperand(1))->getBasicBlock();
1628 BuildMI(BB, X86::JMP, 1).addMBB(Dest);
1629 return;
1630 }
1631
1632 case ISD::BRCOND: {
1633 Select(N.getOperand(0));
1634 MachineBasicBlock *Dest =
1635 cast<BasicBlockSDNode>(N.getOperand(2))->getBasicBlock();
1636 // Try to fold a setcc into the branch. If this fails, emit a test/jne
1637 // pair.
1638 if (EmitBranchCC(Dest, N.getOperand(1))) {
1639 Tmp1 = SelectExpr(N.getOperand(1));
1640 BuildMI(BB, X86::TEST8rr, 2).addReg(Tmp1).addReg(Tmp1);
1641 BuildMI(BB, X86::JNE, 1).addMBB(Dest);
1642 }
1643 return;
1644 }
1645 case ISD::LOAD:
1646 case ISD::CALL:
1647 case ISD::DYNAMIC_STACKALLOC:
1648 SelectExpr(N);
1649 return;
1650 case ISD::STORE: {
1651 Select(N.getOperand(0));
1652 // Select the address.
1653 X86AddressMode AM;
1654 SelectAddress(N.getOperand(2), AM);
1655
1656 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1657 Opc = 0;
1658 switch (CN->getValueType(0)) {
1659 default: assert(0 && "Invalid type for operation!");
1660 case MVT::i1:
1661 case MVT::i8: Opc = X86::MOV8mi; break;
1662 case MVT::i16: Opc = X86::MOV16mi; break;
1663 case MVT::i32: Opc = X86::MOV32mi; break;
1664 case MVT::f32:
1665 case MVT::f64: break;
1666 }
1667 if (Opc) {
1668 addFullAddress(BuildMI(BB, Opc, 4+1), AM).addImm(CN->getValue());
1669 return;
1670 }
1671 }
1672 Tmp1 = SelectExpr(N.getOperand(1));
1673
1674 switch (N.getOperand(1).getValueType()) {
1675 default: assert(0 && "Cannot store this type!");
1676 case MVT::i1:
1677 case MVT::i8: Opc = X86::MOV8mr; break;
1678 case MVT::i16: Opc = X86::MOV16mr; break;
1679 case MVT::i32: Opc = X86::MOV32mr; break;
1680 case MVT::f32: Opc = X86::FST32m; ContainsFPCode = true; break;
1681 case MVT::f64: Opc = X86::FST64m; ContainsFPCode = true; break;
1682 }
1683 addFullAddress(BuildMI(BB, Opc, 4+1), AM).addReg(Tmp1);
1684 return;
1685 }
1686 case ISD::ADJCALLSTACKDOWN:
1687 case ISD::ADJCALLSTACKUP:
1688 Select(N.getOperand(0));
1689 Tmp1 = cast<ConstantSDNode>(N.getOperand(1))->getValue();
1690
1691 Opc = N.getOpcode() == ISD::ADJCALLSTACKDOWN ? X86::ADJCALLSTACKDOWN :
1692 X86::ADJCALLSTACKUP;
1693 BuildMI(BB, Opc, 1).addImm(Tmp1);
1694 return;
1695 }
1696 assert(0 && "Should not be reached!");
1697}
1698
1699
1700/// createX86PatternInstructionSelector - This pass converts an LLVM function
1701/// into a machine code representation using pattern matching and a machine
1702/// description file.
1703///
1704FunctionPass *llvm::createX86PatternInstructionSelector(TargetMachine &TM) {
1705 return new ISel(TM);
1706}