blob: 6364b29bcd77d53f850fd7361ed77945c0ae99b4 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- llvmAsmParser.y - Parser for llvm assembly files --------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the bison parser for LLVM assembly languages files.
11//
12//===----------------------------------------------------------------------===//
13
14%{
15#include "ParserInternals.h"
16#include "llvm/CallingConv.h"
17#include "llvm/InlineAsm.h"
18#include "llvm/Instructions.h"
19#include "llvm/Module.h"
20#include "llvm/ValueSymbolTable.h"
Chandler Carruth563d4a42007-08-04 01:56:21 +000021#include "llvm/AutoUpgrade.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000022#include "llvm/Support/GetElementPtrTypeIterator.h"
23#include "llvm/Support/CommandLine.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/Support/MathExtras.h"
27#include "llvm/Support/Streams.h"
28#include <algorithm>
29#include <list>
30#include <map>
31#include <utility>
32#ifndef NDEBUG
33#define YYDEBUG 1
34#endif
35
36// The following is a gross hack. In order to rid the libAsmParser library of
37// exceptions, we have to have a way of getting the yyparse function to go into
38// an error situation. So, whenever we want an error to occur, the GenerateError
39// function (see bottom of file) sets TriggerError. Then, at the end of each
40// production in the grammer we use CHECK_FOR_ERROR which will invoke YYERROR
41// (a goto) to put YACC in error state. Furthermore, several calls to
42// GenerateError are made from inside productions and they must simulate the
43// previous exception behavior by exiting the production immediately. We have
44// replaced these with the GEN_ERROR macro which calls GeneratError and then
45// immediately invokes YYERROR. This would be so much cleaner if it was a
46// recursive descent parser.
47static bool TriggerError = false;
48#define CHECK_FOR_ERROR { if (TriggerError) { TriggerError = false; YYABORT; } }
49#define GEN_ERROR(msg) { GenerateError(msg); YYERROR; }
50
51int yyerror(const char *ErrorMsg); // Forward declarations to prevent "implicit
52int yylex(); // declaration" of xxx warnings.
53int yyparse();
54
55namespace llvm {
56 std::string CurFilename;
57#if YYDEBUG
58static cl::opt<bool>
59Debug("debug-yacc", cl::desc("Print yacc debug state changes"),
60 cl::Hidden, cl::init(false));
61#endif
62}
63using namespace llvm;
64
65static Module *ParserResult;
66
67// DEBUG_UPREFS - Define this symbol if you want to enable debugging output
68// relating to upreferences in the input stream.
69//
70//#define DEBUG_UPREFS 1
71#ifdef DEBUG_UPREFS
72#define UR_OUT(X) cerr << X
73#else
74#define UR_OUT(X)
75#endif
76
77#define YYERROR_VERBOSE 1
78
79static GlobalVariable *CurGV;
80
81
82// This contains info used when building the body of a function. It is
83// destroyed when the function is completed.
84//
85typedef std::vector<Value *> ValueList; // Numbered defs
86
87static void
88ResolveDefinitions(ValueList &LateResolvers, ValueList *FutureLateResolvers=0);
89
90static struct PerModuleInfo {
91 Module *CurrentModule;
92 ValueList Values; // Module level numbered definitions
93 ValueList LateResolveValues;
94 std::vector<PATypeHolder> Types;
95 std::map<ValID, PATypeHolder> LateResolveTypes;
96
97 /// PlaceHolderInfo - When temporary placeholder objects are created, remember
98 /// how they were referenced and on which line of the input they came from so
99 /// that we can resolve them later and print error messages as appropriate.
100 std::map<Value*, std::pair<ValID, int> > PlaceHolderInfo;
101
102 // GlobalRefs - This maintains a mapping between <Type, ValID>'s and forward
103 // references to global values. Global values may be referenced before they
104 // are defined, and if so, the temporary object that they represent is held
105 // here. This is used for forward references of GlobalValues.
106 //
107 typedef std::map<std::pair<const PointerType *,
108 ValID>, GlobalValue*> GlobalRefsType;
109 GlobalRefsType GlobalRefs;
110
111 void ModuleDone() {
112 // If we could not resolve some functions at function compilation time
113 // (calls to functions before they are defined), resolve them now... Types
114 // are resolved when the constant pool has been completely parsed.
115 //
116 ResolveDefinitions(LateResolveValues);
117 if (TriggerError)
118 return;
119
120 // Check to make sure that all global value forward references have been
121 // resolved!
122 //
123 if (!GlobalRefs.empty()) {
124 std::string UndefinedReferences = "Unresolved global references exist:\n";
125
126 for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end();
127 I != E; ++I) {
128 UndefinedReferences += " " + I->first.first->getDescription() + " " +
129 I->first.second.getName() + "\n";
130 }
131 GenerateError(UndefinedReferences);
132 return;
133 }
134
Chandler Carruth563d4a42007-08-04 01:56:21 +0000135 // Look for intrinsic functions and CallInst that need to be upgraded
136 for (Module::iterator FI = CurrentModule->begin(),
137 FE = CurrentModule->end(); FI != FE; )
138 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
139
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000140 Values.clear(); // Clear out function local definitions
141 Types.clear();
142 CurrentModule = 0;
143 }
144
145 // GetForwardRefForGlobal - Check to see if there is a forward reference
146 // for this global. If so, remove it from the GlobalRefs map and return it.
147 // If not, just return null.
148 GlobalValue *GetForwardRefForGlobal(const PointerType *PTy, ValID ID) {
149 // Check to see if there is a forward reference to this global variable...
150 // if there is, eliminate it and patch the reference to use the new def'n.
151 GlobalRefsType::iterator I = GlobalRefs.find(std::make_pair(PTy, ID));
152 GlobalValue *Ret = 0;
153 if (I != GlobalRefs.end()) {
154 Ret = I->second;
155 GlobalRefs.erase(I);
156 }
157 return Ret;
158 }
159
160 bool TypeIsUnresolved(PATypeHolder* PATy) {
161 // If it isn't abstract, its resolved
162 const Type* Ty = PATy->get();
163 if (!Ty->isAbstract())
164 return false;
165 // Traverse the type looking for abstract types. If it isn't abstract then
166 // we don't need to traverse that leg of the type.
167 std::vector<const Type*> WorkList, SeenList;
168 WorkList.push_back(Ty);
169 while (!WorkList.empty()) {
170 const Type* Ty = WorkList.back();
171 SeenList.push_back(Ty);
172 WorkList.pop_back();
173 if (const OpaqueType* OpTy = dyn_cast<OpaqueType>(Ty)) {
174 // Check to see if this is an unresolved type
175 std::map<ValID, PATypeHolder>::iterator I = LateResolveTypes.begin();
176 std::map<ValID, PATypeHolder>::iterator E = LateResolveTypes.end();
177 for ( ; I != E; ++I) {
178 if (I->second.get() == OpTy)
179 return true;
180 }
181 } else if (const SequentialType* SeqTy = dyn_cast<SequentialType>(Ty)) {
182 const Type* TheTy = SeqTy->getElementType();
183 if (TheTy->isAbstract() && TheTy != Ty) {
184 std::vector<const Type*>::iterator I = SeenList.begin(),
185 E = SeenList.end();
186 for ( ; I != E; ++I)
187 if (*I == TheTy)
188 break;
189 if (I == E)
190 WorkList.push_back(TheTy);
191 }
192 } else if (const StructType* StrTy = dyn_cast<StructType>(Ty)) {
193 for (unsigned i = 0; i < StrTy->getNumElements(); ++i) {
194 const Type* TheTy = StrTy->getElementType(i);
195 if (TheTy->isAbstract() && TheTy != Ty) {
196 std::vector<const Type*>::iterator I = SeenList.begin(),
197 E = SeenList.end();
198 for ( ; I != E; ++I)
199 if (*I == TheTy)
200 break;
201 if (I == E)
202 WorkList.push_back(TheTy);
203 }
204 }
205 }
206 }
207 return false;
208 }
209} CurModule;
210
211static struct PerFunctionInfo {
212 Function *CurrentFunction; // Pointer to current function being created
213
214 ValueList Values; // Keep track of #'d definitions
215 unsigned NextValNum;
216 ValueList LateResolveValues;
217 bool isDeclare; // Is this function a forward declararation?
218 GlobalValue::LinkageTypes Linkage; // Linkage for forward declaration.
219 GlobalValue::VisibilityTypes Visibility;
220
221 /// BBForwardRefs - When we see forward references to basic blocks, keep
222 /// track of them here.
223 std::map<ValID, BasicBlock*> BBForwardRefs;
224
225 inline PerFunctionInfo() {
226 CurrentFunction = 0;
227 isDeclare = false;
228 Linkage = GlobalValue::ExternalLinkage;
229 Visibility = GlobalValue::DefaultVisibility;
230 }
231
232 inline void FunctionStart(Function *M) {
233 CurrentFunction = M;
234 NextValNum = 0;
235 }
236
237 void FunctionDone() {
238 // Any forward referenced blocks left?
239 if (!BBForwardRefs.empty()) {
240 GenerateError("Undefined reference to label " +
241 BBForwardRefs.begin()->second->getName());
242 return;
243 }
244
245 // Resolve all forward references now.
246 ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues);
247
248 Values.clear(); // Clear out function local definitions
249 BBForwardRefs.clear();
250 CurrentFunction = 0;
251 isDeclare = false;
252 Linkage = GlobalValue::ExternalLinkage;
253 Visibility = GlobalValue::DefaultVisibility;
254 }
255} CurFun; // Info for the current function...
256
257static bool inFunctionScope() { return CurFun.CurrentFunction != 0; }
258
259
260//===----------------------------------------------------------------------===//
261// Code to handle definitions of all the types
262//===----------------------------------------------------------------------===//
263
264static void InsertValue(Value *V, ValueList &ValueTab = CurFun.Values) {
265 // Things that have names or are void typed don't get slot numbers
266 if (V->hasName() || (V->getType() == Type::VoidTy))
267 return;
268
269 // In the case of function values, we have to allow for the forward reference
270 // of basic blocks, which are included in the numbering. Consequently, we keep
271 // track of the next insertion location with NextValNum. When a BB gets
272 // inserted, it could change the size of the CurFun.Values vector.
273 if (&ValueTab == &CurFun.Values) {
274 if (ValueTab.size() <= CurFun.NextValNum)
275 ValueTab.resize(CurFun.NextValNum+1);
276 ValueTab[CurFun.NextValNum++] = V;
277 return;
278 }
279 // For all other lists, its okay to just tack it on the back of the vector.
280 ValueTab.push_back(V);
281}
282
283static const Type *getTypeVal(const ValID &D, bool DoNotImprovise = false) {
284 switch (D.Type) {
285 case ValID::LocalID: // Is it a numbered definition?
286 // Module constants occupy the lowest numbered slots...
287 if (D.Num < CurModule.Types.size())
288 return CurModule.Types[D.Num];
289 break;
290 case ValID::LocalName: // Is it a named definition?
291 if (const Type *N = CurModule.CurrentModule->getTypeByName(D.getName())) {
292 D.destroy(); // Free old strdup'd memory...
293 return N;
294 }
295 break;
296 default:
297 GenerateError("Internal parser error: Invalid symbol type reference");
298 return 0;
299 }
300
301 // If we reached here, we referenced either a symbol that we don't know about
302 // or an id number that hasn't been read yet. We may be referencing something
303 // forward, so just create an entry to be resolved later and get to it...
304 //
305 if (DoNotImprovise) return 0; // Do we just want a null to be returned?
306
307
308 if (inFunctionScope()) {
309 if (D.Type == ValID::LocalName) {
310 GenerateError("Reference to an undefined type: '" + D.getName() + "'");
311 return 0;
312 } else {
313 GenerateError("Reference to an undefined type: #" + utostr(D.Num));
314 return 0;
315 }
316 }
317
318 std::map<ValID, PATypeHolder>::iterator I =CurModule.LateResolveTypes.find(D);
319 if (I != CurModule.LateResolveTypes.end())
320 return I->second;
321
322 Type *Typ = OpaqueType::get();
323 CurModule.LateResolveTypes.insert(std::make_pair(D, Typ));
324 return Typ;
325 }
326
327// getExistingVal - Look up the value specified by the provided type and
328// the provided ValID. If the value exists and has already been defined, return
329// it. Otherwise return null.
330//
331static Value *getExistingVal(const Type *Ty, const ValID &D) {
332 if (isa<FunctionType>(Ty)) {
333 GenerateError("Functions are not values and "
334 "must be referenced as pointers");
335 return 0;
336 }
337
338 switch (D.Type) {
339 case ValID::LocalID: { // Is it a numbered definition?
340 // Check that the number is within bounds.
341 if (D.Num >= CurFun.Values.size())
342 return 0;
343 Value *Result = CurFun.Values[D.Num];
344 if (Ty != Result->getType()) {
345 GenerateError("Numbered value (%" + utostr(D.Num) + ") of type '" +
346 Result->getType()->getDescription() + "' does not match "
347 "expected type, '" + Ty->getDescription() + "'");
348 return 0;
349 }
350 return Result;
351 }
352 case ValID::GlobalID: { // Is it a numbered definition?
353 if (D.Num >= CurModule.Values.size())
354 return 0;
355 Value *Result = CurModule.Values[D.Num];
356 if (Ty != Result->getType()) {
357 GenerateError("Numbered value (@" + utostr(D.Num) + ") of type '" +
358 Result->getType()->getDescription() + "' does not match "
359 "expected type, '" + Ty->getDescription() + "'");
360 return 0;
361 }
362 return Result;
363 }
364
365 case ValID::LocalName: { // Is it a named definition?
366 if (!inFunctionScope())
367 return 0;
368 ValueSymbolTable &SymTab = CurFun.CurrentFunction->getValueSymbolTable();
369 Value *N = SymTab.lookup(D.getName());
370 if (N == 0)
371 return 0;
372 if (N->getType() != Ty)
373 return 0;
374
375 D.destroy(); // Free old strdup'd memory...
376 return N;
377 }
378 case ValID::GlobalName: { // Is it a named definition?
379 ValueSymbolTable &SymTab = CurModule.CurrentModule->getValueSymbolTable();
380 Value *N = SymTab.lookup(D.getName());
381 if (N == 0)
382 return 0;
383 if (N->getType() != Ty)
384 return 0;
385
386 D.destroy(); // Free old strdup'd memory...
387 return N;
388 }
389
390 // Check to make sure that "Ty" is an integral type, and that our
391 // value will fit into the specified type...
392 case ValID::ConstSIntVal: // Is it a constant pool reference??
393 if (!ConstantInt::isValueValidForType(Ty, D.ConstPool64)) {
394 GenerateError("Signed integral constant '" +
395 itostr(D.ConstPool64) + "' is invalid for type '" +
396 Ty->getDescription() + "'");
397 return 0;
398 }
399 return ConstantInt::get(Ty, D.ConstPool64, true);
400
401 case ValID::ConstUIntVal: // Is it an unsigned const pool reference?
402 if (!ConstantInt::isValueValidForType(Ty, D.UConstPool64)) {
403 if (!ConstantInt::isValueValidForType(Ty, D.ConstPool64)) {
404 GenerateError("Integral constant '" + utostr(D.UConstPool64) +
405 "' is invalid or out of range");
406 return 0;
407 } else { // This is really a signed reference. Transmogrify.
408 return ConstantInt::get(Ty, D.ConstPool64, true);
409 }
410 } else {
411 return ConstantInt::get(Ty, D.UConstPool64);
412 }
413
414 case ValID::ConstFPVal: // Is it a floating point const pool reference?
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000415 if (!ConstantFP::isValueValidForType(Ty, *D.ConstPoolFP)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000416 GenerateError("FP constant invalid for type");
417 return 0;
418 }
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000419 // Lexer has no type info, so builds all FP constants as double.
420 // Fix this here.
421 if (Ty==Type::FloatTy)
422 D.ConstPoolFP->convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven);
423 return ConstantFP::get(Ty, *D.ConstPoolFP);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000424
425 case ValID::ConstNullVal: // Is it a null value?
426 if (!isa<PointerType>(Ty)) {
427 GenerateError("Cannot create a a non pointer null");
428 return 0;
429 }
430 return ConstantPointerNull::get(cast<PointerType>(Ty));
431
432 case ValID::ConstUndefVal: // Is it an undef value?
433 return UndefValue::get(Ty);
434
435 case ValID::ConstZeroVal: // Is it a zero value?
436 return Constant::getNullValue(Ty);
437
438 case ValID::ConstantVal: // Fully resolved constant?
439 if (D.ConstantValue->getType() != Ty) {
440 GenerateError("Constant expression type different from required type");
441 return 0;
442 }
443 return D.ConstantValue;
444
445 case ValID::InlineAsmVal: { // Inline asm expression
446 const PointerType *PTy = dyn_cast<PointerType>(Ty);
447 const FunctionType *FTy =
448 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
449 if (!FTy || !InlineAsm::Verify(FTy, D.IAD->Constraints)) {
450 GenerateError("Invalid type for asm constraint string");
451 return 0;
452 }
453 InlineAsm *IA = InlineAsm::get(FTy, D.IAD->AsmString, D.IAD->Constraints,
454 D.IAD->HasSideEffects);
455 D.destroy(); // Free InlineAsmDescriptor.
456 return IA;
457 }
458 default:
459 assert(0 && "Unhandled case!");
460 return 0;
461 } // End of switch
462
463 assert(0 && "Unhandled case!");
464 return 0;
465}
466
467// getVal - This function is identical to getExistingVal, except that if a
468// value is not already defined, it "improvises" by creating a placeholder var
469// that looks and acts just like the requested variable. When the value is
470// defined later, all uses of the placeholder variable are replaced with the
471// real thing.
472//
473static Value *getVal(const Type *Ty, const ValID &ID) {
474 if (Ty == Type::LabelTy) {
475 GenerateError("Cannot use a basic block here");
476 return 0;
477 }
478
479 // See if the value has already been defined.
480 Value *V = getExistingVal(Ty, ID);
481 if (V) return V;
482 if (TriggerError) return 0;
483
484 if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty)) {
485 GenerateError("Invalid use of a composite type");
486 return 0;
487 }
488
489 // If we reached here, we referenced either a symbol that we don't know about
490 // or an id number that hasn't been read yet. We may be referencing something
491 // forward, so just create an entry to be resolved later and get to it...
492 //
493 switch (ID.Type) {
494 case ValID::GlobalName:
495 case ValID::GlobalID: {
496 const PointerType *PTy = dyn_cast<PointerType>(Ty);
497 if (!PTy) {
498 GenerateError("Invalid type for reference to global" );
499 return 0;
500 }
501 const Type* ElTy = PTy->getElementType();
502 if (const FunctionType *FTy = dyn_cast<FunctionType>(ElTy))
503 V = new Function(FTy, GlobalValue::ExternalLinkage);
504 else
505 V = new GlobalVariable(ElTy, false, GlobalValue::ExternalLinkage);
506 break;
507 }
508 default:
509 V = new Argument(Ty);
510 }
511
512 // Remember where this forward reference came from. FIXME, shouldn't we try
513 // to recycle these things??
514 CurModule.PlaceHolderInfo.insert(std::make_pair(V, std::make_pair(ID,
515 llvmAsmlineno)));
516
517 if (inFunctionScope())
518 InsertValue(V, CurFun.LateResolveValues);
519 else
520 InsertValue(V, CurModule.LateResolveValues);
521 return V;
522}
523
524/// defineBBVal - This is a definition of a new basic block with the specified
525/// identifier which must be the same as CurFun.NextValNum, if its numeric.
526static BasicBlock *defineBBVal(const ValID &ID) {
527 assert(inFunctionScope() && "Can't get basic block at global scope!");
528
529 BasicBlock *BB = 0;
530
531 // First, see if this was forward referenced
532
533 std::map<ValID, BasicBlock*>::iterator BBI = CurFun.BBForwardRefs.find(ID);
534 if (BBI != CurFun.BBForwardRefs.end()) {
535 BB = BBI->second;
536 // The forward declaration could have been inserted anywhere in the
537 // function: insert it into the correct place now.
538 CurFun.CurrentFunction->getBasicBlockList().remove(BB);
539 CurFun.CurrentFunction->getBasicBlockList().push_back(BB);
540
541 // We're about to erase the entry, save the key so we can clean it up.
542 ValID Tmp = BBI->first;
543
544 // Erase the forward ref from the map as its no longer "forward"
545 CurFun.BBForwardRefs.erase(ID);
546
547 // The key has been removed from the map but so we don't want to leave
548 // strdup'd memory around so destroy it too.
549 Tmp.destroy();
550
551 // If its a numbered definition, bump the number and set the BB value.
552 if (ID.Type == ValID::LocalID) {
553 assert(ID.Num == CurFun.NextValNum && "Invalid new block number");
554 InsertValue(BB);
555 }
556
557 ID.destroy();
558 return BB;
559 }
560
561 // We haven't seen this BB before and its first mention is a definition.
562 // Just create it and return it.
563 std::string Name (ID.Type == ValID::LocalName ? ID.getName() : "");
564 BB = new BasicBlock(Name, CurFun.CurrentFunction);
565 if (ID.Type == ValID::LocalID) {
566 assert(ID.Num == CurFun.NextValNum && "Invalid new block number");
567 InsertValue(BB);
568 }
569
570 ID.destroy(); // Free strdup'd memory
571 return BB;
572}
573
574/// getBBVal - get an existing BB value or create a forward reference for it.
575///
576static BasicBlock *getBBVal(const ValID &ID) {
577 assert(inFunctionScope() && "Can't get basic block at global scope!");
578
579 BasicBlock *BB = 0;
580
581 std::map<ValID, BasicBlock*>::iterator BBI = CurFun.BBForwardRefs.find(ID);
582 if (BBI != CurFun.BBForwardRefs.end()) {
583 BB = BBI->second;
584 } if (ID.Type == ValID::LocalName) {
585 std::string Name = ID.getName();
586 Value *N = CurFun.CurrentFunction->getValueSymbolTable().lookup(Name);
587 if (N)
588 if (N->getType()->getTypeID() == Type::LabelTyID)
589 BB = cast<BasicBlock>(N);
590 else
591 GenerateError("Reference to label '" + Name + "' is actually of type '"+
592 N->getType()->getDescription() + "'");
593 } else if (ID.Type == ValID::LocalID) {
594 if (ID.Num < CurFun.NextValNum && ID.Num < CurFun.Values.size()) {
595 if (CurFun.Values[ID.Num]->getType()->getTypeID() == Type::LabelTyID)
596 BB = cast<BasicBlock>(CurFun.Values[ID.Num]);
597 else
598 GenerateError("Reference to label '%" + utostr(ID.Num) +
599 "' is actually of type '"+
600 CurFun.Values[ID.Num]->getType()->getDescription() + "'");
601 }
602 } else {
603 GenerateError("Illegal label reference " + ID.getName());
604 return 0;
605 }
606
607 // If its already been defined, return it now.
608 if (BB) {
609 ID.destroy(); // Free strdup'd memory.
610 return BB;
611 }
612
613 // Otherwise, this block has not been seen before, create it.
614 std::string Name;
615 if (ID.Type == ValID::LocalName)
616 Name = ID.getName();
617 BB = new BasicBlock(Name, CurFun.CurrentFunction);
618
619 // Insert it in the forward refs map.
620 CurFun.BBForwardRefs[ID] = BB;
621
622 return BB;
623}
624
625
626//===----------------------------------------------------------------------===//
627// Code to handle forward references in instructions
628//===----------------------------------------------------------------------===//
629//
630// This code handles the late binding needed with statements that reference
631// values not defined yet... for example, a forward branch, or the PHI node for
632// a loop body.
633//
634// This keeps a table (CurFun.LateResolveValues) of all such forward references
635// and back patchs after we are done.
636//
637
638// ResolveDefinitions - If we could not resolve some defs at parsing
639// time (forward branches, phi functions for loops, etc...) resolve the
640// defs now...
641//
642static void
643ResolveDefinitions(ValueList &LateResolvers, ValueList *FutureLateResolvers) {
644 // Loop over LateResolveDefs fixing up stuff that couldn't be resolved
645 while (!LateResolvers.empty()) {
646 Value *V = LateResolvers.back();
647 LateResolvers.pop_back();
648
649 std::map<Value*, std::pair<ValID, int> >::iterator PHI =
650 CurModule.PlaceHolderInfo.find(V);
651 assert(PHI != CurModule.PlaceHolderInfo.end() && "Placeholder error!");
652
653 ValID &DID = PHI->second.first;
654
655 Value *TheRealValue = getExistingVal(V->getType(), DID);
656 if (TriggerError)
657 return;
658 if (TheRealValue) {
659 V->replaceAllUsesWith(TheRealValue);
660 delete V;
661 CurModule.PlaceHolderInfo.erase(PHI);
662 } else if (FutureLateResolvers) {
663 // Functions have their unresolved items forwarded to the module late
664 // resolver table
665 InsertValue(V, *FutureLateResolvers);
666 } else {
667 if (DID.Type == ValID::LocalName || DID.Type == ValID::GlobalName) {
668 GenerateError("Reference to an invalid definition: '" +DID.getName()+
669 "' of type '" + V->getType()->getDescription() + "'",
670 PHI->second.second);
671 return;
672 } else {
673 GenerateError("Reference to an invalid definition: #" +
674 itostr(DID.Num) + " of type '" +
675 V->getType()->getDescription() + "'",
676 PHI->second.second);
677 return;
678 }
679 }
680 }
681 LateResolvers.clear();
682}
683
684// ResolveTypeTo - A brand new type was just declared. This means that (if
685// name is not null) things referencing Name can be resolved. Otherwise, things
686// refering to the number can be resolved. Do this now.
687//
688static void ResolveTypeTo(std::string *Name, const Type *ToTy) {
689 ValID D;
690 if (Name)
691 D = ValID::createLocalName(*Name);
692 else
693 D = ValID::createLocalID(CurModule.Types.size());
694
695 std::map<ValID, PATypeHolder>::iterator I =
696 CurModule.LateResolveTypes.find(D);
697 if (I != CurModule.LateResolveTypes.end()) {
698 ((DerivedType*)I->second.get())->refineAbstractTypeTo(ToTy);
699 CurModule.LateResolveTypes.erase(I);
700 }
701}
702
703// setValueName - Set the specified value to the name given. The name may be
704// null potentially, in which case this is a noop. The string passed in is
705// assumed to be a malloc'd string buffer, and is free'd by this function.
706//
707static void setValueName(Value *V, std::string *NameStr) {
708 if (!NameStr) return;
709 std::string Name(*NameStr); // Copy string
710 delete NameStr; // Free old string
711
712 if (V->getType() == Type::VoidTy) {
713 GenerateError("Can't assign name '" + Name+"' to value with void type");
714 return;
715 }
716
717 assert(inFunctionScope() && "Must be in function scope!");
718 ValueSymbolTable &ST = CurFun.CurrentFunction->getValueSymbolTable();
719 if (ST.lookup(Name)) {
720 GenerateError("Redefinition of value '" + Name + "' of type '" +
721 V->getType()->getDescription() + "'");
722 return;
723 }
724
725 // Set the name.
726 V->setName(Name);
727}
728
729/// ParseGlobalVariable - Handle parsing of a global. If Initializer is null,
730/// this is a declaration, otherwise it is a definition.
731static GlobalVariable *
732ParseGlobalVariable(std::string *NameStr,
733 GlobalValue::LinkageTypes Linkage,
734 GlobalValue::VisibilityTypes Visibility,
735 bool isConstantGlobal, const Type *Ty,
736 Constant *Initializer, bool IsThreadLocal) {
737 if (isa<FunctionType>(Ty)) {
738 GenerateError("Cannot declare global vars of function type");
739 return 0;
740 }
741
742 const PointerType *PTy = PointerType::get(Ty);
743
744 std::string Name;
745 if (NameStr) {
746 Name = *NameStr; // Copy string
747 delete NameStr; // Free old string
748 }
749
750 // See if this global value was forward referenced. If so, recycle the
751 // object.
752 ValID ID;
753 if (!Name.empty()) {
754 ID = ValID::createGlobalName(Name);
755 } else {
756 ID = ValID::createGlobalID(CurModule.Values.size());
757 }
758
759 if (GlobalValue *FWGV = CurModule.GetForwardRefForGlobal(PTy, ID)) {
760 // Move the global to the end of the list, from whereever it was
761 // previously inserted.
762 GlobalVariable *GV = cast<GlobalVariable>(FWGV);
763 CurModule.CurrentModule->getGlobalList().remove(GV);
764 CurModule.CurrentModule->getGlobalList().push_back(GV);
765 GV->setInitializer(Initializer);
766 GV->setLinkage(Linkage);
767 GV->setVisibility(Visibility);
768 GV->setConstant(isConstantGlobal);
769 GV->setThreadLocal(IsThreadLocal);
770 InsertValue(GV, CurModule.Values);
771 return GV;
772 }
773
774 // If this global has a name
775 if (!Name.empty()) {
776 // if the global we're parsing has an initializer (is a definition) and
777 // has external linkage.
778 if (Initializer && Linkage != GlobalValue::InternalLinkage)
779 // If there is already a global with external linkage with this name
780 if (CurModule.CurrentModule->getGlobalVariable(Name, false)) {
781 // If we allow this GVar to get created, it will be renamed in the
782 // symbol table because it conflicts with an existing GVar. We can't
783 // allow redefinition of GVars whose linking indicates that their name
784 // must stay the same. Issue the error.
785 GenerateError("Redefinition of global variable named '" + Name +
786 "' of type '" + Ty->getDescription() + "'");
787 return 0;
788 }
789 }
790
791 // Otherwise there is no existing GV to use, create one now.
792 GlobalVariable *GV =
793 new GlobalVariable(Ty, isConstantGlobal, Linkage, Initializer, Name,
794 CurModule.CurrentModule, IsThreadLocal);
795 GV->setVisibility(Visibility);
796 InsertValue(GV, CurModule.Values);
797 return GV;
798}
799
800// setTypeName - Set the specified type to the name given. The name may be
801// null potentially, in which case this is a noop. The string passed in is
802// assumed to be a malloc'd string buffer, and is freed by this function.
803//
804// This function returns true if the type has already been defined, but is
805// allowed to be redefined in the specified context. If the name is a new name
806// for the type plane, it is inserted and false is returned.
807static bool setTypeName(const Type *T, std::string *NameStr) {
808 assert(!inFunctionScope() && "Can't give types function-local names!");
809 if (NameStr == 0) return false;
810
811 std::string Name(*NameStr); // Copy string
812 delete NameStr; // Free old string
813
814 // We don't allow assigning names to void type
815 if (T == Type::VoidTy) {
816 GenerateError("Can't assign name '" + Name + "' to the void type");
817 return false;
818 }
819
820 // Set the type name, checking for conflicts as we do so.
821 bool AlreadyExists = CurModule.CurrentModule->addTypeName(Name, T);
822
823 if (AlreadyExists) { // Inserting a name that is already defined???
824 const Type *Existing = CurModule.CurrentModule->getTypeByName(Name);
825 assert(Existing && "Conflict but no matching type?!");
826
827 // There is only one case where this is allowed: when we are refining an
828 // opaque type. In this case, Existing will be an opaque type.
829 if (const OpaqueType *OpTy = dyn_cast<OpaqueType>(Existing)) {
830 // We ARE replacing an opaque type!
831 const_cast<OpaqueType*>(OpTy)->refineAbstractTypeTo(T);
832 return true;
833 }
834
835 // Otherwise, this is an attempt to redefine a type. That's okay if
836 // the redefinition is identical to the original. This will be so if
837 // Existing and T point to the same Type object. In this one case we
838 // allow the equivalent redefinition.
839 if (Existing == T) return true; // Yes, it's equal.
840
841 // Any other kind of (non-equivalent) redefinition is an error.
842 GenerateError("Redefinition of type named '" + Name + "' of type '" +
843 T->getDescription() + "'");
844 }
845
846 return false;
847}
848
849//===----------------------------------------------------------------------===//
850// Code for handling upreferences in type names...
851//
852
853// TypeContains - Returns true if Ty directly contains E in it.
854//
855static bool TypeContains(const Type *Ty, const Type *E) {
856 return std::find(Ty->subtype_begin(), Ty->subtype_end(),
857 E) != Ty->subtype_end();
858}
859
860namespace {
861 struct UpRefRecord {
862 // NestingLevel - The number of nesting levels that need to be popped before
863 // this type is resolved.
864 unsigned NestingLevel;
865
866 // LastContainedTy - This is the type at the current binding level for the
867 // type. Every time we reduce the nesting level, this gets updated.
868 const Type *LastContainedTy;
869
870 // UpRefTy - This is the actual opaque type that the upreference is
871 // represented with.
872 OpaqueType *UpRefTy;
873
874 UpRefRecord(unsigned NL, OpaqueType *URTy)
875 : NestingLevel(NL), LastContainedTy(URTy), UpRefTy(URTy) {}
876 };
877}
878
879// UpRefs - A list of the outstanding upreferences that need to be resolved.
880static std::vector<UpRefRecord> UpRefs;
881
882/// HandleUpRefs - Every time we finish a new layer of types, this function is
883/// called. It loops through the UpRefs vector, which is a list of the
884/// currently active types. For each type, if the up reference is contained in
885/// the newly completed type, we decrement the level count. When the level
886/// count reaches zero, the upreferenced type is the type that is passed in:
887/// thus we can complete the cycle.
888///
889static PATypeHolder HandleUpRefs(const Type *ty) {
890 // If Ty isn't abstract, or if there are no up-references in it, then there is
891 // nothing to resolve here.
892 if (!ty->isAbstract() || UpRefs.empty()) return ty;
893
894 PATypeHolder Ty(ty);
895 UR_OUT("Type '" << Ty->getDescription() <<
896 "' newly formed. Resolving upreferences.\n" <<
897 UpRefs.size() << " upreferences active!\n");
898
899 // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
900 // to zero), we resolve them all together before we resolve them to Ty. At
901 // the end of the loop, if there is anything to resolve to Ty, it will be in
902 // this variable.
903 OpaqueType *TypeToResolve = 0;
904
905 for (unsigned i = 0; i != UpRefs.size(); ++i) {
906 UR_OUT(" UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
907 << UpRefs[i].second->getDescription() << ") = "
908 << (TypeContains(Ty, UpRefs[i].second) ? "true" : "false") << "\n");
909 if (TypeContains(Ty, UpRefs[i].LastContainedTy)) {
910 // Decrement level of upreference
911 unsigned Level = --UpRefs[i].NestingLevel;
912 UpRefs[i].LastContainedTy = Ty;
913 UR_OUT(" Uplevel Ref Level = " << Level << "\n");
914 if (Level == 0) { // Upreference should be resolved!
915 if (!TypeToResolve) {
916 TypeToResolve = UpRefs[i].UpRefTy;
917 } else {
918 UR_OUT(" * Resolving upreference for "
919 << UpRefs[i].second->getDescription() << "\n";
920 std::string OldName = UpRefs[i].UpRefTy->getDescription());
921 UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
922 UR_OUT(" * Type '" << OldName << "' refined upreference to: "
923 << (const void*)Ty << ", " << Ty->getDescription() << "\n");
924 }
925 UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list...
926 --i; // Do not skip the next element...
927 }
928 }
929 }
930
931 if (TypeToResolve) {
932 UR_OUT(" * Resolving upreference for "
933 << UpRefs[i].second->getDescription() << "\n";
934 std::string OldName = TypeToResolve->getDescription());
935 TypeToResolve->refineAbstractTypeTo(Ty);
936 }
937
938 return Ty;
939}
940
941//===----------------------------------------------------------------------===//
942// RunVMAsmParser - Define an interface to this parser
943//===----------------------------------------------------------------------===//
944//
945static Module* RunParser(Module * M);
946
947Module *llvm::RunVMAsmParser(const std::string &Filename, FILE *F) {
948 set_scan_file(F);
949
950 CurFilename = Filename;
951 return RunParser(new Module(CurFilename));
952}
953
954Module *llvm::RunVMAsmParser(const char * AsmString, Module * M) {
955 set_scan_string(AsmString);
956
957 CurFilename = "from_memory";
958 if (M == NULL) {
959 return RunParser(new Module (CurFilename));
960 } else {
961 return RunParser(M);
962 }
963}
964
965%}
966
967%union {
968 llvm::Module *ModuleVal;
969 llvm::Function *FunctionVal;
970 llvm::BasicBlock *BasicBlockVal;
971 llvm::TerminatorInst *TermInstVal;
972 llvm::Instruction *InstVal;
973 llvm::Constant *ConstVal;
974
975 const llvm::Type *PrimType;
976 std::list<llvm::PATypeHolder> *TypeList;
977 llvm::PATypeHolder *TypeVal;
978 llvm::Value *ValueVal;
979 std::vector<llvm::Value*> *ValueList;
980 llvm::ArgListType *ArgList;
981 llvm::TypeWithAttrs TypeWithAttrs;
982 llvm::TypeWithAttrsList *TypeWithAttrsList;
983 llvm::ValueRefList *ValueRefList;
984
985 // Represent the RHS of PHI node
986 std::list<std::pair<llvm::Value*,
987 llvm::BasicBlock*> > *PHIList;
988 std::vector<std::pair<llvm::Constant*, llvm::BasicBlock*> > *JumpTable;
989 std::vector<llvm::Constant*> *ConstVector;
990
991 llvm::GlobalValue::LinkageTypes Linkage;
992 llvm::GlobalValue::VisibilityTypes Visibility;
993 uint16_t ParamAttrs;
994 llvm::APInt *APIntVal;
995 int64_t SInt64Val;
996 uint64_t UInt64Val;
997 int SIntVal;
998 unsigned UIntVal;
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000999 llvm::APFloat *FPVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001000 bool BoolVal;
1001
1002 std::string *StrVal; // This memory must be deleted
1003 llvm::ValID ValIDVal;
1004
1005 llvm::Instruction::BinaryOps BinaryOpVal;
1006 llvm::Instruction::TermOps TermOpVal;
1007 llvm::Instruction::MemoryOps MemOpVal;
1008 llvm::Instruction::CastOps CastOpVal;
1009 llvm::Instruction::OtherOps OtherOpVal;
1010 llvm::ICmpInst::Predicate IPredicate;
1011 llvm::FCmpInst::Predicate FPredicate;
1012}
1013
1014%type <ModuleVal> Module
1015%type <FunctionVal> Function FunctionProto FunctionHeader BasicBlockList
1016%type <BasicBlockVal> BasicBlock InstructionList
1017%type <TermInstVal> BBTerminatorInst
1018%type <InstVal> Inst InstVal MemoryInst
1019%type <ConstVal> ConstVal ConstExpr AliaseeRef
1020%type <ConstVector> ConstVector
1021%type <ArgList> ArgList ArgListH
1022%type <PHIList> PHIList
1023%type <ValueRefList> ValueRefList // For call param lists & GEP indices
1024%type <ValueList> IndexList // For GEP indices
1025%type <TypeList> TypeListI
1026%type <TypeWithAttrsList> ArgTypeList ArgTypeListI
1027%type <TypeWithAttrs> ArgType
1028%type <JumpTable> JumpTable
1029%type <BoolVal> GlobalType // GLOBAL or CONSTANT?
1030%type <BoolVal> ThreadLocal // 'thread_local' or not
1031%type <BoolVal> OptVolatile // 'volatile' or not
1032%type <BoolVal> OptTailCall // TAIL CALL or plain CALL.
1033%type <BoolVal> OptSideEffect // 'sideeffect' or not.
1034%type <Linkage> GVInternalLinkage GVExternalLinkage
1035%type <Linkage> FunctionDefineLinkage FunctionDeclareLinkage
1036%type <Linkage> AliasLinkage
1037%type <Visibility> GVVisibilityStyle
1038
1039// ValueRef - Unresolved reference to a definition or BB
1040%type <ValIDVal> ValueRef ConstValueRef SymbolicValueRef
1041%type <ValueVal> ResolvedVal // <type> <valref> pair
1042// Tokens and types for handling constant integer values
1043//
1044// ESINT64VAL - A negative number within long long range
1045%token <SInt64Val> ESINT64VAL
1046
1047// EUINT64VAL - A positive number within uns. long long range
1048%token <UInt64Val> EUINT64VAL
1049
1050// ESAPINTVAL - A negative number with arbitrary precision
1051%token <APIntVal> ESAPINTVAL
1052
1053// EUAPINTVAL - A positive number with arbitrary precision
1054%token <APIntVal> EUAPINTVAL
1055
1056%token <UIntVal> LOCALVAL_ID GLOBALVAL_ID // %123 @123
1057%token <FPVal> FPVAL // Float or Double constant
1058
1059// Built in types...
1060%type <TypeVal> Types ResultTypes
1061%type <PrimType> IntType FPType PrimType // Classifications
1062%token <PrimType> VOID INTTYPE
Dale Johannesenf325d9f2007-08-03 01:03:46 +00001063%token <PrimType> FLOAT DOUBLE X86_FP80 FP128 PPC_FP128 LABEL
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001064%token TYPE
1065
1066
1067%token<StrVal> LOCALVAR GLOBALVAR LABELSTR
1068%token<StrVal> STRINGCONSTANT ATSTRINGCONSTANT PCTSTRINGCONSTANT
1069%type <StrVal> LocalName OptLocalName OptLocalAssign
1070%type <StrVal> GlobalName OptGlobalAssign GlobalAssign
1071%type <StrVal> OptSection SectionString
1072
1073%type <UIntVal> OptAlign OptCAlign
1074
1075%token ZEROINITIALIZER TRUETOK FALSETOK BEGINTOK ENDTOK
1076%token DECLARE DEFINE GLOBAL CONSTANT SECTION ALIAS VOLATILE THREAD_LOCAL
1077%token TO DOTDOTDOT NULL_TOK UNDEF INTERNAL LINKONCE WEAK APPENDING
1078%token DLLIMPORT DLLEXPORT EXTERN_WEAK
1079%token OPAQUE EXTERNAL TARGET TRIPLE ALIGN
1080%token DEPLIBS CALL TAIL ASM_TOK MODULE SIDEEFFECT
1081%token CC_TOK CCC_TOK FASTCC_TOK COLDCC_TOK X86_STDCALLCC_TOK X86_FASTCALLCC_TOK
1082%token DATALAYOUT
1083%type <UIntVal> OptCallingConv
1084%type <ParamAttrs> OptParamAttrs ParamAttr
1085%type <ParamAttrs> OptFuncAttrs FuncAttr
1086
1087// Basic Block Terminating Operators
1088%token <TermOpVal> RET BR SWITCH INVOKE UNWIND UNREACHABLE
1089
1090// Binary Operators
1091%type <BinaryOpVal> ArithmeticOps LogicalOps // Binops Subcatagories
1092%token <BinaryOpVal> ADD SUB MUL UDIV SDIV FDIV UREM SREM FREM AND OR XOR
1093%token <BinaryOpVal> SHL LSHR ASHR
1094
1095%token <OtherOpVal> ICMP FCMP
1096%type <IPredicate> IPredicates
1097%type <FPredicate> FPredicates
1098%token EQ NE SLT SGT SLE SGE ULT UGT ULE UGE
1099%token OEQ ONE OLT OGT OLE OGE ORD UNO UEQ UNE
1100
1101// Memory Instructions
1102%token <MemOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR
1103
1104// Cast Operators
1105%type <CastOpVal> CastOps
1106%token <CastOpVal> TRUNC ZEXT SEXT FPTRUNC FPEXT BITCAST
1107%token <CastOpVal> UITOFP SITOFP FPTOUI FPTOSI INTTOPTR PTRTOINT
1108
1109// Other Operators
1110%token <OtherOpVal> PHI_TOK SELECT VAARG
1111%token <OtherOpVal> EXTRACTELEMENT INSERTELEMENT SHUFFLEVECTOR
1112
1113// Function Attributes
Reid Spenceraa8ae282007-07-31 03:50:36 +00001114%token SIGNEXT ZEROEXT NORETURN INREG SRET NOUNWIND NOALIAS BYVAL NEST
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001115
1116// Visibility Styles
1117%token DEFAULT HIDDEN PROTECTED
1118
1119%start Module
1120%%
1121
1122
1123// Operations that are notably excluded from this list include:
1124// RET, BR, & SWITCH because they end basic blocks and are treated specially.
1125//
1126ArithmeticOps: ADD | SUB | MUL | UDIV | SDIV | FDIV | UREM | SREM | FREM;
1127LogicalOps : SHL | LSHR | ASHR | AND | OR | XOR;
1128CastOps : TRUNC | ZEXT | SEXT | FPTRUNC | FPEXT | BITCAST |
1129 UITOFP | SITOFP | FPTOUI | FPTOSI | INTTOPTR | PTRTOINT;
1130
1131IPredicates
1132 : EQ { $$ = ICmpInst::ICMP_EQ; } | NE { $$ = ICmpInst::ICMP_NE; }
1133 | SLT { $$ = ICmpInst::ICMP_SLT; } | SGT { $$ = ICmpInst::ICMP_SGT; }
1134 | SLE { $$ = ICmpInst::ICMP_SLE; } | SGE { $$ = ICmpInst::ICMP_SGE; }
1135 | ULT { $$ = ICmpInst::ICMP_ULT; } | UGT { $$ = ICmpInst::ICMP_UGT; }
1136 | ULE { $$ = ICmpInst::ICMP_ULE; } | UGE { $$ = ICmpInst::ICMP_UGE; }
1137 ;
1138
1139FPredicates
1140 : OEQ { $$ = FCmpInst::FCMP_OEQ; } | ONE { $$ = FCmpInst::FCMP_ONE; }
1141 | OLT { $$ = FCmpInst::FCMP_OLT; } | OGT { $$ = FCmpInst::FCMP_OGT; }
1142 | OLE { $$ = FCmpInst::FCMP_OLE; } | OGE { $$ = FCmpInst::FCMP_OGE; }
1143 | ORD { $$ = FCmpInst::FCMP_ORD; } | UNO { $$ = FCmpInst::FCMP_UNO; }
1144 | UEQ { $$ = FCmpInst::FCMP_UEQ; } | UNE { $$ = FCmpInst::FCMP_UNE; }
1145 | ULT { $$ = FCmpInst::FCMP_ULT; } | UGT { $$ = FCmpInst::FCMP_UGT; }
1146 | ULE { $$ = FCmpInst::FCMP_ULE; } | UGE { $$ = FCmpInst::FCMP_UGE; }
1147 | TRUETOK { $$ = FCmpInst::FCMP_TRUE; }
1148 | FALSETOK { $$ = FCmpInst::FCMP_FALSE; }
1149 ;
1150
1151// These are some types that allow classification if we only want a particular
1152// thing... for example, only a signed, unsigned, or integral type.
1153IntType : INTTYPE;
Dale Johannesenf325d9f2007-08-03 01:03:46 +00001154FPType : FLOAT | DOUBLE | PPC_FP128 | FP128 | X86_FP80;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001155
1156LocalName : LOCALVAR | STRINGCONSTANT | PCTSTRINGCONSTANT ;
1157OptLocalName : LocalName | /*empty*/ { $$ = 0; };
1158
1159/// OptLocalAssign - Value producing statements have an optional assignment
1160/// component.
1161OptLocalAssign : LocalName '=' {
1162 $$ = $1;
1163 CHECK_FOR_ERROR
1164 }
1165 | /*empty*/ {
1166 $$ = 0;
1167 CHECK_FOR_ERROR
1168 };
1169
1170GlobalName : GLOBALVAR | ATSTRINGCONSTANT ;
1171
1172OptGlobalAssign : GlobalAssign
1173 | /*empty*/ {
1174 $$ = 0;
1175 CHECK_FOR_ERROR
1176 };
1177
1178GlobalAssign : GlobalName '=' {
1179 $$ = $1;
1180 CHECK_FOR_ERROR
1181 };
1182
1183GVInternalLinkage
1184 : INTERNAL { $$ = GlobalValue::InternalLinkage; }
1185 | WEAK { $$ = GlobalValue::WeakLinkage; }
1186 | LINKONCE { $$ = GlobalValue::LinkOnceLinkage; }
1187 | APPENDING { $$ = GlobalValue::AppendingLinkage; }
1188 | DLLEXPORT { $$ = GlobalValue::DLLExportLinkage; }
1189 ;
1190
1191GVExternalLinkage
1192 : DLLIMPORT { $$ = GlobalValue::DLLImportLinkage; }
1193 | EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; }
1194 | EXTERNAL { $$ = GlobalValue::ExternalLinkage; }
1195 ;
1196
1197GVVisibilityStyle
1198 : /*empty*/ { $$ = GlobalValue::DefaultVisibility; }
1199 | DEFAULT { $$ = GlobalValue::DefaultVisibility; }
1200 | HIDDEN { $$ = GlobalValue::HiddenVisibility; }
1201 | PROTECTED { $$ = GlobalValue::ProtectedVisibility; }
1202 ;
1203
1204FunctionDeclareLinkage
1205 : /*empty*/ { $$ = GlobalValue::ExternalLinkage; }
1206 | DLLIMPORT { $$ = GlobalValue::DLLImportLinkage; }
1207 | EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; }
1208 ;
1209
1210FunctionDefineLinkage
1211 : /*empty*/ { $$ = GlobalValue::ExternalLinkage; }
1212 | INTERNAL { $$ = GlobalValue::InternalLinkage; }
1213 | LINKONCE { $$ = GlobalValue::LinkOnceLinkage; }
1214 | WEAK { $$ = GlobalValue::WeakLinkage; }
1215 | DLLEXPORT { $$ = GlobalValue::DLLExportLinkage; }
1216 ;
1217
1218AliasLinkage
1219 : /*empty*/ { $$ = GlobalValue::ExternalLinkage; }
1220 | WEAK { $$ = GlobalValue::WeakLinkage; }
1221 | INTERNAL { $$ = GlobalValue::InternalLinkage; }
1222 ;
1223
1224OptCallingConv : /*empty*/ { $$ = CallingConv::C; } |
1225 CCC_TOK { $$ = CallingConv::C; } |
1226 FASTCC_TOK { $$ = CallingConv::Fast; } |
1227 COLDCC_TOK { $$ = CallingConv::Cold; } |
1228 X86_STDCALLCC_TOK { $$ = CallingConv::X86_StdCall; } |
1229 X86_FASTCALLCC_TOK { $$ = CallingConv::X86_FastCall; } |
1230 CC_TOK EUINT64VAL {
1231 if ((unsigned)$2 != $2)
1232 GEN_ERROR("Calling conv too large");
1233 $$ = $2;
1234 CHECK_FOR_ERROR
1235 };
1236
Reid Spenceraa8ae282007-07-31 03:50:36 +00001237ParamAttr : ZEROEXT { $$ = ParamAttr::ZExt; }
1238 | ZEXT { $$ = ParamAttr::ZExt; }
1239 | SIGNEXT { $$ = ParamAttr::SExt; }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001240 | SEXT { $$ = ParamAttr::SExt; }
1241 | INREG { $$ = ParamAttr::InReg; }
1242 | SRET { $$ = ParamAttr::StructRet; }
1243 | NOALIAS { $$ = ParamAttr::NoAlias; }
Reid Spenceraa8ae282007-07-31 03:50:36 +00001244 | BYVAL { $$ = ParamAttr::ByVal; }
1245 | NEST { $$ = ParamAttr::Nest; }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001246 ;
1247
1248OptParamAttrs : /* empty */ { $$ = ParamAttr::None; }
1249 | OptParamAttrs ParamAttr {
1250 $$ = $1 | $2;
1251 }
1252 ;
1253
1254FuncAttr : NORETURN { $$ = ParamAttr::NoReturn; }
1255 | NOUNWIND { $$ = ParamAttr::NoUnwind; }
Reid Spenceraa8ae282007-07-31 03:50:36 +00001256 | ZEROEXT { $$ = ParamAttr::ZExt; }
1257 | SIGNEXT { $$ = ParamAttr::SExt; }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001258 ;
1259
1260OptFuncAttrs : /* empty */ { $$ = ParamAttr::None; }
1261 | OptFuncAttrs FuncAttr {
1262 $$ = $1 | $2;
1263 }
1264 ;
1265
1266// OptAlign/OptCAlign - An optional alignment, and an optional alignment with
1267// a comma before it.
1268OptAlign : /*empty*/ { $$ = 0; } |
1269 ALIGN EUINT64VAL {
1270 $$ = $2;
1271 if ($$ != 0 && !isPowerOf2_32($$))
1272 GEN_ERROR("Alignment must be a power of two");
1273 CHECK_FOR_ERROR
1274};
1275OptCAlign : /*empty*/ { $$ = 0; } |
1276 ',' ALIGN EUINT64VAL {
1277 $$ = $3;
1278 if ($$ != 0 && !isPowerOf2_32($$))
1279 GEN_ERROR("Alignment must be a power of two");
1280 CHECK_FOR_ERROR
1281};
1282
1283
1284SectionString : SECTION STRINGCONSTANT {
1285 for (unsigned i = 0, e = $2->length(); i != e; ++i)
1286 if ((*$2)[i] == '"' || (*$2)[i] == '\\')
1287 GEN_ERROR("Invalid character in section name");
1288 $$ = $2;
1289 CHECK_FOR_ERROR
1290};
1291
1292OptSection : /*empty*/ { $$ = 0; } |
1293 SectionString { $$ = $1; };
1294
1295// GlobalVarAttributes - Used to pass the attributes string on a global. CurGV
1296// is set to be the global we are processing.
1297//
1298GlobalVarAttributes : /* empty */ {} |
1299 ',' GlobalVarAttribute GlobalVarAttributes {};
1300GlobalVarAttribute : SectionString {
1301 CurGV->setSection(*$1);
1302 delete $1;
1303 CHECK_FOR_ERROR
1304 }
1305 | ALIGN EUINT64VAL {
1306 if ($2 != 0 && !isPowerOf2_32($2))
1307 GEN_ERROR("Alignment must be a power of two");
1308 CurGV->setAlignment($2);
1309 CHECK_FOR_ERROR
1310 };
1311
1312//===----------------------------------------------------------------------===//
1313// Types includes all predefined types... except void, because it can only be
1314// used in specific contexts (function returning void for example).
1315
1316// Derived types are added later...
1317//
Dale Johannesenf325d9f2007-08-03 01:03:46 +00001318PrimType : INTTYPE | FLOAT | DOUBLE | PPC_FP128 | FP128 | X86_FP80 | LABEL ;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001319
1320Types
1321 : OPAQUE {
1322 $$ = new PATypeHolder(OpaqueType::get());
1323 CHECK_FOR_ERROR
1324 }
1325 | PrimType {
1326 $$ = new PATypeHolder($1);
1327 CHECK_FOR_ERROR
1328 }
1329 | Types '*' { // Pointer type?
1330 if (*$1 == Type::LabelTy)
1331 GEN_ERROR("Cannot form a pointer to a basic block");
1332 $$ = new PATypeHolder(HandleUpRefs(PointerType::get(*$1)));
1333 delete $1;
1334 CHECK_FOR_ERROR
1335 }
1336 | SymbolicValueRef { // Named types are also simple types...
1337 const Type* tmp = getTypeVal($1);
1338 CHECK_FOR_ERROR
1339 $$ = new PATypeHolder(tmp);
1340 }
1341 | '\\' EUINT64VAL { // Type UpReference
1342 if ($2 > (uint64_t)~0U) GEN_ERROR("Value out of range");
1343 OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder
1344 UpRefs.push_back(UpRefRecord((unsigned)$2, OT)); // Add to vector...
1345 $$ = new PATypeHolder(OT);
1346 UR_OUT("New Upreference!\n");
1347 CHECK_FOR_ERROR
1348 }
1349 | Types '(' ArgTypeListI ')' OptFuncAttrs {
1350 std::vector<const Type*> Params;
1351 ParamAttrsVector Attrs;
1352 if ($5 != ParamAttr::None) {
1353 ParamAttrsWithIndex X; X.index = 0; X.attrs = $5;
1354 Attrs.push_back(X);
1355 }
1356 unsigned index = 1;
1357 TypeWithAttrsList::iterator I = $3->begin(), E = $3->end();
1358 for (; I != E; ++I, ++index) {
1359 const Type *Ty = I->Ty->get();
1360 Params.push_back(Ty);
1361 if (Ty != Type::VoidTy)
1362 if (I->Attrs != ParamAttr::None) {
1363 ParamAttrsWithIndex X; X.index = index; X.attrs = I->Attrs;
1364 Attrs.push_back(X);
1365 }
1366 }
1367 bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
1368 if (isVarArg) Params.pop_back();
1369
1370 ParamAttrsList *ActualAttrs = 0;
1371 if (!Attrs.empty())
1372 ActualAttrs = ParamAttrsList::get(Attrs);
1373 FunctionType *FT = FunctionType::get(*$1, Params, isVarArg, ActualAttrs);
1374 delete $3; // Delete the argument list
1375 delete $1; // Delete the return type handle
1376 $$ = new PATypeHolder(HandleUpRefs(FT));
1377 CHECK_FOR_ERROR
1378 }
1379 | VOID '(' ArgTypeListI ')' OptFuncAttrs {
1380 std::vector<const Type*> Params;
1381 ParamAttrsVector Attrs;
1382 if ($5 != ParamAttr::None) {
1383 ParamAttrsWithIndex X; X.index = 0; X.attrs = $5;
1384 Attrs.push_back(X);
1385 }
1386 TypeWithAttrsList::iterator I = $3->begin(), E = $3->end();
1387 unsigned index = 1;
1388 for ( ; I != E; ++I, ++index) {
1389 const Type* Ty = I->Ty->get();
1390 Params.push_back(Ty);
1391 if (Ty != Type::VoidTy)
1392 if (I->Attrs != ParamAttr::None) {
1393 ParamAttrsWithIndex X; X.index = index; X.attrs = I->Attrs;
1394 Attrs.push_back(X);
1395 }
1396 }
1397 bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
1398 if (isVarArg) Params.pop_back();
1399
1400 ParamAttrsList *ActualAttrs = 0;
1401 if (!Attrs.empty())
1402 ActualAttrs = ParamAttrsList::get(Attrs);
1403
1404 FunctionType *FT = FunctionType::get($1, Params, isVarArg, ActualAttrs);
1405 delete $3; // Delete the argument list
1406 $$ = new PATypeHolder(HandleUpRefs(FT));
1407 CHECK_FOR_ERROR
1408 }
1409
1410 | '[' EUINT64VAL 'x' Types ']' { // Sized array type?
1411 $$ = new PATypeHolder(HandleUpRefs(ArrayType::get(*$4, (unsigned)$2)));
1412 delete $4;
1413 CHECK_FOR_ERROR
1414 }
1415 | '<' EUINT64VAL 'x' Types '>' { // Vector type?
1416 const llvm::Type* ElemTy = $4->get();
1417 if ((unsigned)$2 != $2)
1418 GEN_ERROR("Unsigned result not equal to signed result");
1419 if (!ElemTy->isFloatingPoint() && !ElemTy->isInteger())
1420 GEN_ERROR("Element type of a VectorType must be primitive");
1421 if (!isPowerOf2_32($2))
1422 GEN_ERROR("Vector length should be a power of 2");
1423 $$ = new PATypeHolder(HandleUpRefs(VectorType::get(*$4, (unsigned)$2)));
1424 delete $4;
1425 CHECK_FOR_ERROR
1426 }
1427 | '{' TypeListI '}' { // Structure type?
1428 std::vector<const Type*> Elements;
1429 for (std::list<llvm::PATypeHolder>::iterator I = $2->begin(),
1430 E = $2->end(); I != E; ++I)
1431 Elements.push_back(*I);
1432
1433 $$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements)));
1434 delete $2;
1435 CHECK_FOR_ERROR
1436 }
1437 | '{' '}' { // Empty structure type?
1438 $$ = new PATypeHolder(StructType::get(std::vector<const Type*>()));
1439 CHECK_FOR_ERROR
1440 }
1441 | '<' '{' TypeListI '}' '>' {
1442 std::vector<const Type*> Elements;
1443 for (std::list<llvm::PATypeHolder>::iterator I = $3->begin(),
1444 E = $3->end(); I != E; ++I)
1445 Elements.push_back(*I);
1446
1447 $$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements, true)));
1448 delete $3;
1449 CHECK_FOR_ERROR
1450 }
1451 | '<' '{' '}' '>' { // Empty structure type?
1452 $$ = new PATypeHolder(StructType::get(std::vector<const Type*>(), true));
1453 CHECK_FOR_ERROR
1454 }
1455 ;
1456
1457ArgType
1458 : Types OptParamAttrs {
1459 $$.Ty = $1;
1460 $$.Attrs = $2;
1461 }
1462 ;
1463
1464ResultTypes
1465 : Types {
1466 if (!UpRefs.empty())
1467 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1468 if (!(*$1)->isFirstClassType())
1469 GEN_ERROR("LLVM functions cannot return aggregate types");
1470 $$ = $1;
1471 }
1472 | VOID {
1473 $$ = new PATypeHolder(Type::VoidTy);
1474 }
1475 ;
1476
1477ArgTypeList : ArgType {
1478 $$ = new TypeWithAttrsList();
1479 $$->push_back($1);
1480 CHECK_FOR_ERROR
1481 }
1482 | ArgTypeList ',' ArgType {
1483 ($$=$1)->push_back($3);
1484 CHECK_FOR_ERROR
1485 }
1486 ;
1487
1488ArgTypeListI
1489 : ArgTypeList
1490 | ArgTypeList ',' DOTDOTDOT {
1491 $$=$1;
1492 TypeWithAttrs TWA; TWA.Attrs = ParamAttr::None;
1493 TWA.Ty = new PATypeHolder(Type::VoidTy);
1494 $$->push_back(TWA);
1495 CHECK_FOR_ERROR
1496 }
1497 | DOTDOTDOT {
1498 $$ = new TypeWithAttrsList;
1499 TypeWithAttrs TWA; TWA.Attrs = ParamAttr::None;
1500 TWA.Ty = new PATypeHolder(Type::VoidTy);
1501 $$->push_back(TWA);
1502 CHECK_FOR_ERROR
1503 }
1504 | /*empty*/ {
1505 $$ = new TypeWithAttrsList();
1506 CHECK_FOR_ERROR
1507 };
1508
1509// TypeList - Used for struct declarations and as a basis for function type
1510// declaration type lists
1511//
1512TypeListI : Types {
1513 $$ = new std::list<PATypeHolder>();
1514 $$->push_back(*$1);
1515 delete $1;
1516 CHECK_FOR_ERROR
1517 }
1518 | TypeListI ',' Types {
1519 ($$=$1)->push_back(*$3);
1520 delete $3;
1521 CHECK_FOR_ERROR
1522 };
1523
1524// ConstVal - The various declarations that go into the constant pool. This
1525// production is used ONLY to represent constants that show up AFTER a 'const',
1526// 'constant' or 'global' token at global scope. Constants that can be inlined
1527// into other expressions (such as integers and constexprs) are handled by the
1528// ResolvedVal, ValueRef and ConstValueRef productions.
1529//
1530ConstVal: Types '[' ConstVector ']' { // Nonempty unsized arr
1531 if (!UpRefs.empty())
1532 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1533 const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
1534 if (ATy == 0)
1535 GEN_ERROR("Cannot make array constant with type: '" +
1536 (*$1)->getDescription() + "'");
1537 const Type *ETy = ATy->getElementType();
1538 int NumElements = ATy->getNumElements();
1539
1540 // Verify that we have the correct size...
1541 if (NumElements != -1 && NumElements != (int)$3->size())
1542 GEN_ERROR("Type mismatch: constant sized array initialized with " +
1543 utostr($3->size()) + " arguments, but has size of " +
1544 itostr(NumElements) + "");
1545
1546 // Verify all elements are correct type!
1547 for (unsigned i = 0; i < $3->size(); i++) {
1548 if (ETy != (*$3)[i]->getType())
1549 GEN_ERROR("Element #" + utostr(i) + " is not of type '" +
1550 ETy->getDescription() +"' as required!\nIt is of type '"+
1551 (*$3)[i]->getType()->getDescription() + "'.");
1552 }
1553
1554 $$ = ConstantArray::get(ATy, *$3);
1555 delete $1; delete $3;
1556 CHECK_FOR_ERROR
1557 }
1558 | Types '[' ']' {
1559 if (!UpRefs.empty())
1560 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1561 const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
1562 if (ATy == 0)
1563 GEN_ERROR("Cannot make array constant with type: '" +
1564 (*$1)->getDescription() + "'");
1565
1566 int NumElements = ATy->getNumElements();
1567 if (NumElements != -1 && NumElements != 0)
1568 GEN_ERROR("Type mismatch: constant sized array initialized with 0"
1569 " arguments, but has size of " + itostr(NumElements) +"");
1570 $$ = ConstantArray::get(ATy, std::vector<Constant*>());
1571 delete $1;
1572 CHECK_FOR_ERROR
1573 }
1574 | Types 'c' STRINGCONSTANT {
1575 if (!UpRefs.empty())
1576 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1577 const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
1578 if (ATy == 0)
1579 GEN_ERROR("Cannot make array constant with type: '" +
1580 (*$1)->getDescription() + "'");
1581
1582 int NumElements = ATy->getNumElements();
1583 const Type *ETy = ATy->getElementType();
1584 if (NumElements != -1 && NumElements != int($3->length()))
1585 GEN_ERROR("Can't build string constant of size " +
1586 itostr((int)($3->length())) +
1587 " when array has size " + itostr(NumElements) + "");
1588 std::vector<Constant*> Vals;
1589 if (ETy == Type::Int8Ty) {
1590 for (unsigned i = 0; i < $3->length(); ++i)
1591 Vals.push_back(ConstantInt::get(ETy, (*$3)[i]));
1592 } else {
1593 delete $3;
1594 GEN_ERROR("Cannot build string arrays of non byte sized elements");
1595 }
1596 delete $3;
1597 $$ = ConstantArray::get(ATy, Vals);
1598 delete $1;
1599 CHECK_FOR_ERROR
1600 }
1601 | Types '<' ConstVector '>' { // Nonempty unsized arr
1602 if (!UpRefs.empty())
1603 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1604 const VectorType *PTy = dyn_cast<VectorType>($1->get());
1605 if (PTy == 0)
1606 GEN_ERROR("Cannot make packed constant with type: '" +
1607 (*$1)->getDescription() + "'");
1608 const Type *ETy = PTy->getElementType();
1609 int NumElements = PTy->getNumElements();
1610
1611 // Verify that we have the correct size...
1612 if (NumElements != -1 && NumElements != (int)$3->size())
1613 GEN_ERROR("Type mismatch: constant sized packed initialized with " +
1614 utostr($3->size()) + " arguments, but has size of " +
1615 itostr(NumElements) + "");
1616
1617 // Verify all elements are correct type!
1618 for (unsigned i = 0; i < $3->size(); i++) {
1619 if (ETy != (*$3)[i]->getType())
1620 GEN_ERROR("Element #" + utostr(i) + " is not of type '" +
1621 ETy->getDescription() +"' as required!\nIt is of type '"+
1622 (*$3)[i]->getType()->getDescription() + "'.");
1623 }
1624
1625 $$ = ConstantVector::get(PTy, *$3);
1626 delete $1; delete $3;
1627 CHECK_FOR_ERROR
1628 }
1629 | Types '{' ConstVector '}' {
1630 const StructType *STy = dyn_cast<StructType>($1->get());
1631 if (STy == 0)
1632 GEN_ERROR("Cannot make struct constant with type: '" +
1633 (*$1)->getDescription() + "'");
1634
1635 if ($3->size() != STy->getNumContainedTypes())
1636 GEN_ERROR("Illegal number of initializers for structure type");
1637
1638 // Check to ensure that constants are compatible with the type initializer!
1639 for (unsigned i = 0, e = $3->size(); i != e; ++i)
1640 if ((*$3)[i]->getType() != STy->getElementType(i))
1641 GEN_ERROR("Expected type '" +
1642 STy->getElementType(i)->getDescription() +
1643 "' for element #" + utostr(i) +
1644 " of structure initializer");
1645
1646 // Check to ensure that Type is not packed
1647 if (STy->isPacked())
1648 GEN_ERROR("Unpacked Initializer to vector type '" +
1649 STy->getDescription() + "'");
1650
1651 $$ = ConstantStruct::get(STy, *$3);
1652 delete $1; delete $3;
1653 CHECK_FOR_ERROR
1654 }
1655 | Types '{' '}' {
1656 if (!UpRefs.empty())
1657 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1658 const StructType *STy = dyn_cast<StructType>($1->get());
1659 if (STy == 0)
1660 GEN_ERROR("Cannot make struct constant with type: '" +
1661 (*$1)->getDescription() + "'");
1662
1663 if (STy->getNumContainedTypes() != 0)
1664 GEN_ERROR("Illegal number of initializers for structure type");
1665
1666 // Check to ensure that Type is not packed
1667 if (STy->isPacked())
1668 GEN_ERROR("Unpacked Initializer to vector type '" +
1669 STy->getDescription() + "'");
1670
1671 $$ = ConstantStruct::get(STy, std::vector<Constant*>());
1672 delete $1;
1673 CHECK_FOR_ERROR
1674 }
1675 | Types '<' '{' ConstVector '}' '>' {
1676 const StructType *STy = dyn_cast<StructType>($1->get());
1677 if (STy == 0)
1678 GEN_ERROR("Cannot make struct constant with type: '" +
1679 (*$1)->getDescription() + "'");
1680
1681 if ($4->size() != STy->getNumContainedTypes())
1682 GEN_ERROR("Illegal number of initializers for structure type");
1683
1684 // Check to ensure that constants are compatible with the type initializer!
1685 for (unsigned i = 0, e = $4->size(); i != e; ++i)
1686 if ((*$4)[i]->getType() != STy->getElementType(i))
1687 GEN_ERROR("Expected type '" +
1688 STy->getElementType(i)->getDescription() +
1689 "' for element #" + utostr(i) +
1690 " of structure initializer");
1691
1692 // Check to ensure that Type is packed
1693 if (!STy->isPacked())
1694 GEN_ERROR("Vector initializer to non-vector type '" +
1695 STy->getDescription() + "'");
1696
1697 $$ = ConstantStruct::get(STy, *$4);
1698 delete $1; delete $4;
1699 CHECK_FOR_ERROR
1700 }
1701 | Types '<' '{' '}' '>' {
1702 if (!UpRefs.empty())
1703 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1704 const StructType *STy = dyn_cast<StructType>($1->get());
1705 if (STy == 0)
1706 GEN_ERROR("Cannot make struct constant with type: '" +
1707 (*$1)->getDescription() + "'");
1708
1709 if (STy->getNumContainedTypes() != 0)
1710 GEN_ERROR("Illegal number of initializers for structure type");
1711
1712 // Check to ensure that Type is packed
1713 if (!STy->isPacked())
1714 GEN_ERROR("Vector initializer to non-vector type '" +
1715 STy->getDescription() + "'");
1716
1717 $$ = ConstantStruct::get(STy, std::vector<Constant*>());
1718 delete $1;
1719 CHECK_FOR_ERROR
1720 }
1721 | Types NULL_TOK {
1722 if (!UpRefs.empty())
1723 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1724 const PointerType *PTy = dyn_cast<PointerType>($1->get());
1725 if (PTy == 0)
1726 GEN_ERROR("Cannot make null pointer constant with type: '" +
1727 (*$1)->getDescription() + "'");
1728
1729 $$ = ConstantPointerNull::get(PTy);
1730 delete $1;
1731 CHECK_FOR_ERROR
1732 }
1733 | Types UNDEF {
1734 if (!UpRefs.empty())
1735 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1736 $$ = UndefValue::get($1->get());
1737 delete $1;
1738 CHECK_FOR_ERROR
1739 }
1740 | Types SymbolicValueRef {
1741 if (!UpRefs.empty())
1742 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1743 const PointerType *Ty = dyn_cast<PointerType>($1->get());
1744 if (Ty == 0)
1745 GEN_ERROR("Global const reference must be a pointer type");
1746
1747 // ConstExprs can exist in the body of a function, thus creating
1748 // GlobalValues whenever they refer to a variable. Because we are in
1749 // the context of a function, getExistingVal will search the functions
1750 // symbol table instead of the module symbol table for the global symbol,
1751 // which throws things all off. To get around this, we just tell
1752 // getExistingVal that we are at global scope here.
1753 //
1754 Function *SavedCurFn = CurFun.CurrentFunction;
1755 CurFun.CurrentFunction = 0;
1756
1757 Value *V = getExistingVal(Ty, $2);
1758 CHECK_FOR_ERROR
1759
1760 CurFun.CurrentFunction = SavedCurFn;
1761
1762 // If this is an initializer for a constant pointer, which is referencing a
1763 // (currently) undefined variable, create a stub now that shall be replaced
1764 // in the future with the right type of variable.
1765 //
1766 if (V == 0) {
1767 assert(isa<PointerType>(Ty) && "Globals may only be used as pointers!");
1768 const PointerType *PT = cast<PointerType>(Ty);
1769
1770 // First check to see if the forward references value is already created!
1771 PerModuleInfo::GlobalRefsType::iterator I =
1772 CurModule.GlobalRefs.find(std::make_pair(PT, $2));
1773
1774 if (I != CurModule.GlobalRefs.end()) {
1775 V = I->second; // Placeholder already exists, use it...
1776 $2.destroy();
1777 } else {
1778 std::string Name;
1779 if ($2.Type == ValID::GlobalName)
1780 Name = $2.getName();
1781 else if ($2.Type != ValID::GlobalID)
1782 GEN_ERROR("Invalid reference to global");
1783
1784 // Create the forward referenced global.
1785 GlobalValue *GV;
1786 if (const FunctionType *FTy =
1787 dyn_cast<FunctionType>(PT->getElementType())) {
1788 GV = new Function(FTy, GlobalValue::ExternalWeakLinkage, Name,
1789 CurModule.CurrentModule);
1790 } else {
1791 GV = new GlobalVariable(PT->getElementType(), false,
1792 GlobalValue::ExternalWeakLinkage, 0,
1793 Name, CurModule.CurrentModule);
1794 }
1795
1796 // Keep track of the fact that we have a forward ref to recycle it
1797 CurModule.GlobalRefs.insert(std::make_pair(std::make_pair(PT, $2), GV));
1798 V = GV;
1799 }
1800 }
1801
1802 $$ = cast<GlobalValue>(V);
1803 delete $1; // Free the type handle
1804 CHECK_FOR_ERROR
1805 }
1806 | Types ConstExpr {
1807 if (!UpRefs.empty())
1808 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1809 if ($1->get() != $2->getType())
1810 GEN_ERROR("Mismatched types for constant expression: " +
1811 (*$1)->getDescription() + " and " + $2->getType()->getDescription());
1812 $$ = $2;
1813 delete $1;
1814 CHECK_FOR_ERROR
1815 }
1816 | Types ZEROINITIALIZER {
1817 if (!UpRefs.empty())
1818 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1819 const Type *Ty = $1->get();
1820 if (isa<FunctionType>(Ty) || Ty == Type::LabelTy || isa<OpaqueType>(Ty))
1821 GEN_ERROR("Cannot create a null initialized value of this type");
1822 $$ = Constant::getNullValue(Ty);
1823 delete $1;
1824 CHECK_FOR_ERROR
1825 }
1826 | IntType ESINT64VAL { // integral constants
1827 if (!ConstantInt::isValueValidForType($1, $2))
1828 GEN_ERROR("Constant value doesn't fit in type");
1829 $$ = ConstantInt::get($1, $2, true);
1830 CHECK_FOR_ERROR
1831 }
1832 | IntType ESAPINTVAL { // arbitrary precision integer constants
1833 uint32_t BitWidth = cast<IntegerType>($1)->getBitWidth();
1834 if ($2->getBitWidth() > BitWidth) {
1835 GEN_ERROR("Constant value does not fit in type");
1836 }
1837 $2->sextOrTrunc(BitWidth);
1838 $$ = ConstantInt::get(*$2);
1839 delete $2;
1840 CHECK_FOR_ERROR
1841 }
1842 | IntType EUINT64VAL { // integral constants
1843 if (!ConstantInt::isValueValidForType($1, $2))
1844 GEN_ERROR("Constant value doesn't fit in type");
1845 $$ = ConstantInt::get($1, $2, false);
1846 CHECK_FOR_ERROR
1847 }
1848 | IntType EUAPINTVAL { // arbitrary precision integer constants
1849 uint32_t BitWidth = cast<IntegerType>($1)->getBitWidth();
1850 if ($2->getBitWidth() > BitWidth) {
1851 GEN_ERROR("Constant value does not fit in type");
1852 }
1853 $2->zextOrTrunc(BitWidth);
1854 $$ = ConstantInt::get(*$2);
1855 delete $2;
1856 CHECK_FOR_ERROR
1857 }
1858 | INTTYPE TRUETOK { // Boolean constants
1859 assert(cast<IntegerType>($1)->getBitWidth() == 1 && "Not Bool?");
1860 $$ = ConstantInt::getTrue();
1861 CHECK_FOR_ERROR
1862 }
1863 | INTTYPE FALSETOK { // Boolean constants
1864 assert(cast<IntegerType>($1)->getBitWidth() == 1 && "Not Bool?");
1865 $$ = ConstantInt::getFalse();
1866 CHECK_FOR_ERROR
1867 }
1868 | FPType FPVAL { // Float & Double constants
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001869 if (!ConstantFP::isValueValidForType($1, *$2))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001870 GEN_ERROR("Floating point constant invalid for type");
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001871 // Lexer has no type info, so builds all FP constants as double.
1872 // Fix this here.
1873 if ($1==Type::FloatTy)
1874 $2->convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven);
1875 $$ = ConstantFP::get($1, *$2);
Dale Johannesen3afee192007-09-07 21:07:57 +00001876 delete $2;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001877 CHECK_FOR_ERROR
1878 };
1879
1880
1881ConstExpr: CastOps '(' ConstVal TO Types ')' {
1882 if (!UpRefs.empty())
1883 GEN_ERROR("Invalid upreference in type: " + (*$5)->getDescription());
1884 Constant *Val = $3;
1885 const Type *DestTy = $5->get();
1886 if (!CastInst::castIsValid($1, $3, DestTy))
1887 GEN_ERROR("invalid cast opcode for cast from '" +
1888 Val->getType()->getDescription() + "' to '" +
1889 DestTy->getDescription() + "'");
1890 $$ = ConstantExpr::getCast($1, $3, DestTy);
1891 delete $5;
1892 }
1893 | GETELEMENTPTR '(' ConstVal IndexList ')' {
1894 if (!isa<PointerType>($3->getType()))
1895 GEN_ERROR("GetElementPtr requires a pointer operand");
1896
1897 const Type *IdxTy =
David Greene48556392007-09-04 18:46:50 +00001898 GetElementPtrInst::getIndexedType($3->getType(), $4->begin(), $4->end(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001899 true);
1900 if (!IdxTy)
1901 GEN_ERROR("Index list invalid for constant getelementptr");
1902
1903 SmallVector<Constant*, 8> IdxVec;
1904 for (unsigned i = 0, e = $4->size(); i != e; ++i)
1905 if (Constant *C = dyn_cast<Constant>((*$4)[i]))
1906 IdxVec.push_back(C);
1907 else
1908 GEN_ERROR("Indices to constant getelementptr must be constants");
1909
1910 delete $4;
1911
1912 $$ = ConstantExpr::getGetElementPtr($3, &IdxVec[0], IdxVec.size());
1913 CHECK_FOR_ERROR
1914 }
1915 | SELECT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
1916 if ($3->getType() != Type::Int1Ty)
1917 GEN_ERROR("Select condition must be of boolean type");
1918 if ($5->getType() != $7->getType())
1919 GEN_ERROR("Select operand types must match");
1920 $$ = ConstantExpr::getSelect($3, $5, $7);
1921 CHECK_FOR_ERROR
1922 }
1923 | ArithmeticOps '(' ConstVal ',' ConstVal ')' {
1924 if ($3->getType() != $5->getType())
1925 GEN_ERROR("Binary operator types must match");
1926 CHECK_FOR_ERROR;
1927 $$ = ConstantExpr::get($1, $3, $5);
1928 }
1929 | LogicalOps '(' ConstVal ',' ConstVal ')' {
1930 if ($3->getType() != $5->getType())
1931 GEN_ERROR("Logical operator types must match");
1932 if (!$3->getType()->isInteger()) {
1933 if (Instruction::isShift($1) || !isa<VectorType>($3->getType()) ||
1934 !cast<VectorType>($3->getType())->getElementType()->isInteger())
1935 GEN_ERROR("Logical operator requires integral operands");
1936 }
1937 $$ = ConstantExpr::get($1, $3, $5);
1938 CHECK_FOR_ERROR
1939 }
1940 | ICMP IPredicates '(' ConstVal ',' ConstVal ')' {
1941 if ($4->getType() != $6->getType())
1942 GEN_ERROR("icmp operand types must match");
1943 $$ = ConstantExpr::getICmp($2, $4, $6);
1944 }
1945 | FCMP FPredicates '(' ConstVal ',' ConstVal ')' {
1946 if ($4->getType() != $6->getType())
1947 GEN_ERROR("fcmp operand types must match");
1948 $$ = ConstantExpr::getFCmp($2, $4, $6);
1949 }
1950 | EXTRACTELEMENT '(' ConstVal ',' ConstVal ')' {
1951 if (!ExtractElementInst::isValidOperands($3, $5))
1952 GEN_ERROR("Invalid extractelement operands");
1953 $$ = ConstantExpr::getExtractElement($3, $5);
1954 CHECK_FOR_ERROR
1955 }
1956 | INSERTELEMENT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
1957 if (!InsertElementInst::isValidOperands($3, $5, $7))
1958 GEN_ERROR("Invalid insertelement operands");
1959 $$ = ConstantExpr::getInsertElement($3, $5, $7);
1960 CHECK_FOR_ERROR
1961 }
1962 | SHUFFLEVECTOR '(' ConstVal ',' ConstVal ',' ConstVal ')' {
1963 if (!ShuffleVectorInst::isValidOperands($3, $5, $7))
1964 GEN_ERROR("Invalid shufflevector operands");
1965 $$ = ConstantExpr::getShuffleVector($3, $5, $7);
1966 CHECK_FOR_ERROR
1967 };
1968
1969
1970// ConstVector - A list of comma separated constants.
1971ConstVector : ConstVector ',' ConstVal {
1972 ($$ = $1)->push_back($3);
1973 CHECK_FOR_ERROR
1974 }
1975 | ConstVal {
1976 $$ = new std::vector<Constant*>();
1977 $$->push_back($1);
1978 CHECK_FOR_ERROR
1979 };
1980
1981
1982// GlobalType - Match either GLOBAL or CONSTANT for global declarations...
1983GlobalType : GLOBAL { $$ = false; } | CONSTANT { $$ = true; };
1984
1985// ThreadLocal
1986ThreadLocal : THREAD_LOCAL { $$ = true; } | { $$ = false; };
1987
1988// AliaseeRef - Match either GlobalValue or bitcast to GlobalValue.
1989AliaseeRef : ResultTypes SymbolicValueRef {
1990 const Type* VTy = $1->get();
1991 Value *V = getVal(VTy, $2);
Chris Lattnerbb856a32007-08-06 21:00:46 +00001992 CHECK_FOR_ERROR
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001993 GlobalValue* Aliasee = dyn_cast<GlobalValue>(V);
1994 if (!Aliasee)
1995 GEN_ERROR("Aliases can be created only to global values");
1996
1997 $$ = Aliasee;
1998 CHECK_FOR_ERROR
1999 delete $1;
2000 }
2001 | BITCAST '(' AliaseeRef TO Types ')' {
2002 Constant *Val = $3;
2003 const Type *DestTy = $5->get();
2004 if (!CastInst::castIsValid($1, $3, DestTy))
2005 GEN_ERROR("invalid cast opcode for cast from '" +
2006 Val->getType()->getDescription() + "' to '" +
2007 DestTy->getDescription() + "'");
2008
2009 $$ = ConstantExpr::getCast($1, $3, DestTy);
2010 CHECK_FOR_ERROR
2011 delete $5;
2012 };
2013
2014//===----------------------------------------------------------------------===//
2015// Rules to match Modules
2016//===----------------------------------------------------------------------===//
2017
2018// Module rule: Capture the result of parsing the whole file into a result
2019// variable...
2020//
2021Module
2022 : DefinitionList {
2023 $$ = ParserResult = CurModule.CurrentModule;
2024 CurModule.ModuleDone();
2025 CHECK_FOR_ERROR;
2026 }
2027 | /*empty*/ {
2028 $$ = ParserResult = CurModule.CurrentModule;
2029 CurModule.ModuleDone();
2030 CHECK_FOR_ERROR;
2031 }
2032 ;
2033
2034DefinitionList
2035 : Definition
2036 | DefinitionList Definition
2037 ;
2038
2039Definition
2040 : DEFINE { CurFun.isDeclare = false; } Function {
2041 CurFun.FunctionDone();
2042 CHECK_FOR_ERROR
2043 }
2044 | DECLARE { CurFun.isDeclare = true; } FunctionProto {
2045 CHECK_FOR_ERROR
2046 }
2047 | MODULE ASM_TOK AsmBlock {
2048 CHECK_FOR_ERROR
2049 }
2050 | OptLocalAssign TYPE Types {
2051 if (!UpRefs.empty())
2052 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
2053 // Eagerly resolve types. This is not an optimization, this is a
2054 // requirement that is due to the fact that we could have this:
2055 //
2056 // %list = type { %list * }
2057 // %list = type { %list * } ; repeated type decl
2058 //
2059 // If types are not resolved eagerly, then the two types will not be
2060 // determined to be the same type!
2061 //
2062 ResolveTypeTo($1, *$3);
2063
2064 if (!setTypeName(*$3, $1) && !$1) {
2065 CHECK_FOR_ERROR
2066 // If this is a named type that is not a redefinition, add it to the slot
2067 // table.
2068 CurModule.Types.push_back(*$3);
2069 }
2070
2071 delete $3;
2072 CHECK_FOR_ERROR
2073 }
2074 | OptLocalAssign TYPE VOID {
2075 ResolveTypeTo($1, $3);
2076
2077 if (!setTypeName($3, $1) && !$1) {
2078 CHECK_FOR_ERROR
2079 // If this is a named type that is not a redefinition, add it to the slot
2080 // table.
2081 CurModule.Types.push_back($3);
2082 }
2083 CHECK_FOR_ERROR
2084 }
2085 | OptGlobalAssign GVVisibilityStyle ThreadLocal GlobalType ConstVal {
2086 /* "Externally Visible" Linkage */
2087 if ($5 == 0)
2088 GEN_ERROR("Global value initializer is not a constant");
2089 CurGV = ParseGlobalVariable($1, GlobalValue::ExternalLinkage,
2090 $2, $4, $5->getType(), $5, $3);
2091 CHECK_FOR_ERROR
2092 } GlobalVarAttributes {
2093 CurGV = 0;
2094 }
2095 | OptGlobalAssign GVInternalLinkage GVVisibilityStyle ThreadLocal GlobalType
2096 ConstVal {
2097 if ($6 == 0)
2098 GEN_ERROR("Global value initializer is not a constant");
2099 CurGV = ParseGlobalVariable($1, $2, $3, $5, $6->getType(), $6, $4);
2100 CHECK_FOR_ERROR
2101 } GlobalVarAttributes {
2102 CurGV = 0;
2103 }
2104 | OptGlobalAssign GVExternalLinkage GVVisibilityStyle ThreadLocal GlobalType
2105 Types {
2106 if (!UpRefs.empty())
2107 GEN_ERROR("Invalid upreference in type: " + (*$6)->getDescription());
2108 CurGV = ParseGlobalVariable($1, $2, $3, $5, *$6, 0, $4);
2109 CHECK_FOR_ERROR
2110 delete $6;
2111 } GlobalVarAttributes {
2112 CurGV = 0;
2113 CHECK_FOR_ERROR
2114 }
2115 | OptGlobalAssign GVVisibilityStyle ALIAS AliasLinkage AliaseeRef {
2116 std::string Name;
2117 if ($1) {
2118 Name = *$1;
2119 delete $1;
2120 }
2121 if (Name.empty())
2122 GEN_ERROR("Alias name cannot be empty");
2123
2124 Constant* Aliasee = $5;
2125 if (Aliasee == 0)
2126 GEN_ERROR(std::string("Invalid aliasee for alias: ") + Name);
2127
2128 GlobalAlias* GA = new GlobalAlias(Aliasee->getType(), $4, Name, Aliasee,
2129 CurModule.CurrentModule);
2130 GA->setVisibility($2);
2131 InsertValue(GA, CurModule.Values);
Chris Lattner5eefce32007-09-10 23:24:14 +00002132
2133
2134 // If there was a forward reference of this alias, resolve it now.
2135
2136 ValID ID;
2137 if (!Name.empty())
2138 ID = ValID::createGlobalName(Name);
2139 else
2140 ID = ValID::createGlobalID(CurModule.Values.size()-1);
2141
2142 if (GlobalValue *FWGV =
2143 CurModule.GetForwardRefForGlobal(GA->getType(), ID)) {
2144 // Replace uses of the fwdref with the actual alias.
2145 FWGV->replaceAllUsesWith(GA);
2146 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(FWGV))
2147 GV->eraseFromParent();
2148 else
2149 cast<Function>(FWGV)->eraseFromParent();
2150 }
2151 ID.destroy();
2152
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002153 CHECK_FOR_ERROR
2154 }
2155 | TARGET TargetDefinition {
2156 CHECK_FOR_ERROR
2157 }
2158 | DEPLIBS '=' LibrariesDefinition {
2159 CHECK_FOR_ERROR
2160 }
2161 ;
2162
2163
2164AsmBlock : STRINGCONSTANT {
2165 const std::string &AsmSoFar = CurModule.CurrentModule->getModuleInlineAsm();
2166 if (AsmSoFar.empty())
2167 CurModule.CurrentModule->setModuleInlineAsm(*$1);
2168 else
2169 CurModule.CurrentModule->setModuleInlineAsm(AsmSoFar+"\n"+*$1);
2170 delete $1;
2171 CHECK_FOR_ERROR
2172};
2173
2174TargetDefinition : TRIPLE '=' STRINGCONSTANT {
2175 CurModule.CurrentModule->setTargetTriple(*$3);
2176 delete $3;
2177 }
2178 | DATALAYOUT '=' STRINGCONSTANT {
2179 CurModule.CurrentModule->setDataLayout(*$3);
2180 delete $3;
2181 };
2182
2183LibrariesDefinition : '[' LibList ']';
2184
2185LibList : LibList ',' STRINGCONSTANT {
2186 CurModule.CurrentModule->addLibrary(*$3);
2187 delete $3;
2188 CHECK_FOR_ERROR
2189 }
2190 | STRINGCONSTANT {
2191 CurModule.CurrentModule->addLibrary(*$1);
2192 delete $1;
2193 CHECK_FOR_ERROR
2194 }
2195 | /* empty: end of list */ {
2196 CHECK_FOR_ERROR
2197 }
2198 ;
2199
2200//===----------------------------------------------------------------------===//
2201// Rules to match Function Headers
2202//===----------------------------------------------------------------------===//
2203
2204ArgListH : ArgListH ',' Types OptParamAttrs OptLocalName {
2205 if (!UpRefs.empty())
2206 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
2207 if (*$3 == Type::VoidTy)
2208 GEN_ERROR("void typed arguments are invalid");
2209 ArgListEntry E; E.Attrs = $4; E.Ty = $3; E.Name = $5;
2210 $$ = $1;
2211 $1->push_back(E);
2212 CHECK_FOR_ERROR
2213 }
2214 | Types OptParamAttrs OptLocalName {
2215 if (!UpRefs.empty())
2216 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
2217 if (*$1 == Type::VoidTy)
2218 GEN_ERROR("void typed arguments are invalid");
2219 ArgListEntry E; E.Attrs = $2; E.Ty = $1; E.Name = $3;
2220 $$ = new ArgListType;
2221 $$->push_back(E);
2222 CHECK_FOR_ERROR
2223 };
2224
2225ArgList : ArgListH {
2226 $$ = $1;
2227 CHECK_FOR_ERROR
2228 }
2229 | ArgListH ',' DOTDOTDOT {
2230 $$ = $1;
2231 struct ArgListEntry E;
2232 E.Ty = new PATypeHolder(Type::VoidTy);
2233 E.Name = 0;
2234 E.Attrs = ParamAttr::None;
2235 $$->push_back(E);
2236 CHECK_FOR_ERROR
2237 }
2238 | DOTDOTDOT {
2239 $$ = new ArgListType;
2240 struct ArgListEntry E;
2241 E.Ty = new PATypeHolder(Type::VoidTy);
2242 E.Name = 0;
2243 E.Attrs = ParamAttr::None;
2244 $$->push_back(E);
2245 CHECK_FOR_ERROR
2246 }
2247 | /* empty */ {
2248 $$ = 0;
2249 CHECK_FOR_ERROR
2250 };
2251
2252FunctionHeaderH : OptCallingConv ResultTypes GlobalName '(' ArgList ')'
2253 OptFuncAttrs OptSection OptAlign {
2254 std::string FunctionName(*$3);
2255 delete $3; // Free strdup'd memory!
2256
2257 // Check the function result for abstractness if this is a define. We should
2258 // have no abstract types at this point
2259 if (!CurFun.isDeclare && CurModule.TypeIsUnresolved($2))
2260 GEN_ERROR("Reference to abstract result: "+ $2->get()->getDescription());
2261
2262 std::vector<const Type*> ParamTypeList;
2263 ParamAttrsVector Attrs;
2264 if ($7 != ParamAttr::None) {
2265 ParamAttrsWithIndex PAWI; PAWI.index = 0; PAWI.attrs = $7;
2266 Attrs.push_back(PAWI);
2267 }
2268 if ($5) { // If there are arguments...
2269 unsigned index = 1;
2270 for (ArgListType::iterator I = $5->begin(); I != $5->end(); ++I, ++index) {
2271 const Type* Ty = I->Ty->get();
2272 if (!CurFun.isDeclare && CurModule.TypeIsUnresolved(I->Ty))
2273 GEN_ERROR("Reference to abstract argument: " + Ty->getDescription());
2274 ParamTypeList.push_back(Ty);
2275 if (Ty != Type::VoidTy)
2276 if (I->Attrs != ParamAttr::None) {
2277 ParamAttrsWithIndex PAWI; PAWI.index = index; PAWI.attrs = I->Attrs;
2278 Attrs.push_back(PAWI);
2279 }
2280 }
2281 }
2282
2283 bool isVarArg = ParamTypeList.size() && ParamTypeList.back() == Type::VoidTy;
2284 if (isVarArg) ParamTypeList.pop_back();
2285
2286 ParamAttrsList *PAL = 0;
2287 if (!Attrs.empty())
2288 PAL = ParamAttrsList::get(Attrs);
2289
2290 FunctionType *FT = FunctionType::get(*$2, ParamTypeList, isVarArg, PAL);
2291 const PointerType *PFT = PointerType::get(FT);
2292 delete $2;
2293
2294 ValID ID;
2295 if (!FunctionName.empty()) {
2296 ID = ValID::createGlobalName((char*)FunctionName.c_str());
2297 } else {
2298 ID = ValID::createGlobalID(CurModule.Values.size());
2299 }
2300
2301 Function *Fn = 0;
2302 // See if this function was forward referenced. If so, recycle the object.
2303 if (GlobalValue *FWRef = CurModule.GetForwardRefForGlobal(PFT, ID)) {
2304 // Move the function to the end of the list, from whereever it was
2305 // previously inserted.
2306 Fn = cast<Function>(FWRef);
2307 CurModule.CurrentModule->getFunctionList().remove(Fn);
2308 CurModule.CurrentModule->getFunctionList().push_back(Fn);
2309 } else if (!FunctionName.empty() && // Merge with an earlier prototype?
2310 (Fn = CurModule.CurrentModule->getFunction(FunctionName))) {
2311 if (Fn->getFunctionType() != FT) {
2312 // The existing function doesn't have the same type. This is an overload
2313 // error.
2314 GEN_ERROR("Overload of function '" + FunctionName + "' not permitted.");
2315 } else if (!CurFun.isDeclare && !Fn->isDeclaration()) {
2316 // Neither the existing or the current function is a declaration and they
2317 // have the same name and same type. Clearly this is a redefinition.
2318 GEN_ERROR("Redefinition of function '" + FunctionName + "'");
2319 } if (Fn->isDeclaration()) {
2320 // Make sure to strip off any argument names so we can't get conflicts.
2321 for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2322 AI != AE; ++AI)
2323 AI->setName("");
2324 }
2325 } else { // Not already defined?
2326 Fn = new Function(FT, GlobalValue::ExternalWeakLinkage, FunctionName,
2327 CurModule.CurrentModule);
2328
2329 InsertValue(Fn, CurModule.Values);
2330 }
2331
2332 CurFun.FunctionStart(Fn);
2333
2334 if (CurFun.isDeclare) {
2335 // If we have declaration, always overwrite linkage. This will allow us to
2336 // correctly handle cases, when pointer to function is passed as argument to
2337 // another function.
2338 Fn->setLinkage(CurFun.Linkage);
2339 Fn->setVisibility(CurFun.Visibility);
2340 }
2341 Fn->setCallingConv($1);
2342 Fn->setAlignment($9);
2343 if ($8) {
2344 Fn->setSection(*$8);
2345 delete $8;
2346 }
2347
2348 // Add all of the arguments we parsed to the function...
2349 if ($5) { // Is null if empty...
2350 if (isVarArg) { // Nuke the last entry
2351 assert($5->back().Ty->get() == Type::VoidTy && $5->back().Name == 0 &&
2352 "Not a varargs marker!");
2353 delete $5->back().Ty;
2354 $5->pop_back(); // Delete the last entry
2355 }
2356 Function::arg_iterator ArgIt = Fn->arg_begin();
2357 Function::arg_iterator ArgEnd = Fn->arg_end();
2358 unsigned Idx = 1;
2359 for (ArgListType::iterator I = $5->begin();
2360 I != $5->end() && ArgIt != ArgEnd; ++I, ++ArgIt) {
2361 delete I->Ty; // Delete the typeholder...
2362 setValueName(ArgIt, I->Name); // Insert arg into symtab...
2363 CHECK_FOR_ERROR
2364 InsertValue(ArgIt);
2365 Idx++;
2366 }
2367
2368 delete $5; // We're now done with the argument list
2369 }
2370 CHECK_FOR_ERROR
2371};
2372
2373BEGIN : BEGINTOK | '{'; // Allow BEGIN or '{' to start a function
2374
2375FunctionHeader : FunctionDefineLinkage GVVisibilityStyle FunctionHeaderH BEGIN {
2376 $$ = CurFun.CurrentFunction;
2377
2378 // Make sure that we keep track of the linkage type even if there was a
2379 // previous "declare".
2380 $$->setLinkage($1);
2381 $$->setVisibility($2);
2382};
2383
2384END : ENDTOK | '}'; // Allow end of '}' to end a function
2385
2386Function : BasicBlockList END {
2387 $$ = $1;
2388 CHECK_FOR_ERROR
2389};
2390
2391FunctionProto : FunctionDeclareLinkage GVVisibilityStyle FunctionHeaderH {
2392 CurFun.CurrentFunction->setLinkage($1);
2393 CurFun.CurrentFunction->setVisibility($2);
2394 $$ = CurFun.CurrentFunction;
2395 CurFun.FunctionDone();
2396 CHECK_FOR_ERROR
2397 };
2398
2399//===----------------------------------------------------------------------===//
2400// Rules to match Basic Blocks
2401//===----------------------------------------------------------------------===//
2402
2403OptSideEffect : /* empty */ {
2404 $$ = false;
2405 CHECK_FOR_ERROR
2406 }
2407 | SIDEEFFECT {
2408 $$ = true;
2409 CHECK_FOR_ERROR
2410 };
2411
2412ConstValueRef : ESINT64VAL { // A reference to a direct constant
2413 $$ = ValID::create($1);
2414 CHECK_FOR_ERROR
2415 }
2416 | EUINT64VAL {
2417 $$ = ValID::create($1);
2418 CHECK_FOR_ERROR
2419 }
2420 | FPVAL { // Perhaps it's an FP constant?
2421 $$ = ValID::create($1);
2422 CHECK_FOR_ERROR
2423 }
2424 | TRUETOK {
2425 $$ = ValID::create(ConstantInt::getTrue());
2426 CHECK_FOR_ERROR
2427 }
2428 | FALSETOK {
2429 $$ = ValID::create(ConstantInt::getFalse());
2430 CHECK_FOR_ERROR
2431 }
2432 | NULL_TOK {
2433 $$ = ValID::createNull();
2434 CHECK_FOR_ERROR
2435 }
2436 | UNDEF {
2437 $$ = ValID::createUndef();
2438 CHECK_FOR_ERROR
2439 }
2440 | ZEROINITIALIZER { // A vector zero constant.
2441 $$ = ValID::createZeroInit();
2442 CHECK_FOR_ERROR
2443 }
2444 | '<' ConstVector '>' { // Nonempty unsized packed vector
2445 const Type *ETy = (*$2)[0]->getType();
2446 int NumElements = $2->size();
2447
2448 VectorType* pt = VectorType::get(ETy, NumElements);
2449 PATypeHolder* PTy = new PATypeHolder(
2450 HandleUpRefs(
2451 VectorType::get(
2452 ETy,
2453 NumElements)
2454 )
2455 );
2456
2457 // Verify all elements are correct type!
2458 for (unsigned i = 0; i < $2->size(); i++) {
2459 if (ETy != (*$2)[i]->getType())
2460 GEN_ERROR("Element #" + utostr(i) + " is not of type '" +
2461 ETy->getDescription() +"' as required!\nIt is of type '" +
2462 (*$2)[i]->getType()->getDescription() + "'.");
2463 }
2464
2465 $$ = ValID::create(ConstantVector::get(pt, *$2));
2466 delete PTy; delete $2;
2467 CHECK_FOR_ERROR
2468 }
2469 | ConstExpr {
2470 $$ = ValID::create($1);
2471 CHECK_FOR_ERROR
2472 }
2473 | ASM_TOK OptSideEffect STRINGCONSTANT ',' STRINGCONSTANT {
2474 $$ = ValID::createInlineAsm(*$3, *$5, $2);
2475 delete $3;
2476 delete $5;
2477 CHECK_FOR_ERROR
2478 };
2479
2480// SymbolicValueRef - Reference to one of two ways of symbolically refering to
2481// another value.
2482//
2483SymbolicValueRef : LOCALVAL_ID { // Is it an integer reference...?
2484 $$ = ValID::createLocalID($1);
2485 CHECK_FOR_ERROR
2486 }
2487 | GLOBALVAL_ID {
2488 $$ = ValID::createGlobalID($1);
2489 CHECK_FOR_ERROR
2490 }
2491 | LocalName { // Is it a named reference...?
2492 $$ = ValID::createLocalName(*$1);
2493 delete $1;
2494 CHECK_FOR_ERROR
2495 }
2496 | GlobalName { // Is it a named reference...?
2497 $$ = ValID::createGlobalName(*$1);
2498 delete $1;
2499 CHECK_FOR_ERROR
2500 };
2501
2502// ValueRef - A reference to a definition... either constant or symbolic
2503ValueRef : SymbolicValueRef | ConstValueRef;
2504
2505
2506// ResolvedVal - a <type> <value> pair. This is used only in cases where the
2507// type immediately preceeds the value reference, and allows complex constant
2508// pool references (for things like: 'ret [2 x int] [ int 12, int 42]')
2509ResolvedVal : Types ValueRef {
2510 if (!UpRefs.empty())
2511 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
2512 $$ = getVal(*$1, $2);
2513 delete $1;
2514 CHECK_FOR_ERROR
2515 }
2516 ;
2517
2518BasicBlockList : BasicBlockList BasicBlock {
2519 $$ = $1;
2520 CHECK_FOR_ERROR
2521 }
2522 | FunctionHeader BasicBlock { // Do not allow functions with 0 basic blocks
2523 $$ = $1;
2524 CHECK_FOR_ERROR
2525 };
2526
2527
2528// Basic blocks are terminated by branching instructions:
2529// br, br/cc, switch, ret
2530//
2531BasicBlock : InstructionList OptLocalAssign BBTerminatorInst {
2532 setValueName($3, $2);
2533 CHECK_FOR_ERROR
2534 InsertValue($3);
2535 $1->getInstList().push_back($3);
2536 $$ = $1;
2537 CHECK_FOR_ERROR
2538 };
2539
2540InstructionList : InstructionList Inst {
2541 if (CastInst *CI1 = dyn_cast<CastInst>($2))
2542 if (CastInst *CI2 = dyn_cast<CastInst>(CI1->getOperand(0)))
2543 if (CI2->getParent() == 0)
2544 $1->getInstList().push_back(CI2);
2545 $1->getInstList().push_back($2);
2546 $$ = $1;
2547 CHECK_FOR_ERROR
2548 }
2549 | /* empty */ { // Empty space between instruction lists
2550 $$ = defineBBVal(ValID::createLocalID(CurFun.NextValNum));
2551 CHECK_FOR_ERROR
2552 }
2553 | LABELSTR { // Labelled (named) basic block
2554 $$ = defineBBVal(ValID::createLocalName(*$1));
2555 delete $1;
2556 CHECK_FOR_ERROR
2557
2558 };
2559
2560BBTerminatorInst : RET ResolvedVal { // Return with a result...
2561 $$ = new ReturnInst($2);
2562 CHECK_FOR_ERROR
2563 }
2564 | RET VOID { // Return with no result...
2565 $$ = new ReturnInst();
2566 CHECK_FOR_ERROR
2567 }
2568 | BR LABEL ValueRef { // Unconditional Branch...
2569 BasicBlock* tmpBB = getBBVal($3);
2570 CHECK_FOR_ERROR
2571 $$ = new BranchInst(tmpBB);
2572 } // Conditional Branch...
2573 | BR INTTYPE ValueRef ',' LABEL ValueRef ',' LABEL ValueRef {
2574 assert(cast<IntegerType>($2)->getBitWidth() == 1 && "Not Bool?");
2575 BasicBlock* tmpBBA = getBBVal($6);
2576 CHECK_FOR_ERROR
2577 BasicBlock* tmpBBB = getBBVal($9);
2578 CHECK_FOR_ERROR
2579 Value* tmpVal = getVal(Type::Int1Ty, $3);
2580 CHECK_FOR_ERROR
2581 $$ = new BranchInst(tmpBBA, tmpBBB, tmpVal);
2582 }
2583 | SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' {
2584 Value* tmpVal = getVal($2, $3);
2585 CHECK_FOR_ERROR
2586 BasicBlock* tmpBB = getBBVal($6);
2587 CHECK_FOR_ERROR
2588 SwitchInst *S = new SwitchInst(tmpVal, tmpBB, $8->size());
2589 $$ = S;
2590
2591 std::vector<std::pair<Constant*,BasicBlock*> >::iterator I = $8->begin(),
2592 E = $8->end();
2593 for (; I != E; ++I) {
2594 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->first))
2595 S->addCase(CI, I->second);
2596 else
2597 GEN_ERROR("Switch case is constant, but not a simple integer");
2598 }
2599 delete $8;
2600 CHECK_FOR_ERROR
2601 }
2602 | SWITCH IntType ValueRef ',' LABEL ValueRef '[' ']' {
2603 Value* tmpVal = getVal($2, $3);
2604 CHECK_FOR_ERROR
2605 BasicBlock* tmpBB = getBBVal($6);
2606 CHECK_FOR_ERROR
2607 SwitchInst *S = new SwitchInst(tmpVal, tmpBB, 0);
2608 $$ = S;
2609 CHECK_FOR_ERROR
2610 }
2611 | INVOKE OptCallingConv ResultTypes ValueRef '(' ValueRefList ')' OptFuncAttrs
2612 TO LABEL ValueRef UNWIND LABEL ValueRef {
2613
2614 // Handle the short syntax
2615 const PointerType *PFTy = 0;
2616 const FunctionType *Ty = 0;
2617 if (!(PFTy = dyn_cast<PointerType>($3->get())) ||
2618 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2619 // Pull out the types of all of the arguments...
2620 std::vector<const Type*> ParamTypes;
2621 ParamAttrsVector Attrs;
2622 if ($8 != ParamAttr::None) {
2623 ParamAttrsWithIndex PAWI; PAWI.index = 0; PAWI.attrs = $8;
2624 Attrs.push_back(PAWI);
2625 }
2626 ValueRefList::iterator I = $6->begin(), E = $6->end();
2627 unsigned index = 1;
2628 for (; I != E; ++I, ++index) {
2629 const Type *Ty = I->Val->getType();
2630 if (Ty == Type::VoidTy)
2631 GEN_ERROR("Short call syntax cannot be used with varargs");
2632 ParamTypes.push_back(Ty);
2633 if (I->Attrs != ParamAttr::None) {
2634 ParamAttrsWithIndex PAWI; PAWI.index = index; PAWI.attrs = I->Attrs;
2635 Attrs.push_back(PAWI);
2636 }
2637 }
2638
2639 ParamAttrsList *PAL = 0;
2640 if (!Attrs.empty())
2641 PAL = ParamAttrsList::get(Attrs);
2642 Ty = FunctionType::get($3->get(), ParamTypes, false, PAL);
2643 PFTy = PointerType::get(Ty);
2644 }
2645
2646 delete $3;
2647
2648 Value *V = getVal(PFTy, $4); // Get the function we're calling...
2649 CHECK_FOR_ERROR
2650 BasicBlock *Normal = getBBVal($11);
2651 CHECK_FOR_ERROR
2652 BasicBlock *Except = getBBVal($14);
2653 CHECK_FOR_ERROR
2654
2655 // Check the arguments
2656 ValueList Args;
2657 if ($6->empty()) { // Has no arguments?
2658 // Make sure no arguments is a good thing!
2659 if (Ty->getNumParams() != 0)
2660 GEN_ERROR("No arguments passed to a function that "
2661 "expects arguments");
2662 } else { // Has arguments?
2663 // Loop through FunctionType's arguments and ensure they are specified
2664 // correctly!
2665 FunctionType::param_iterator I = Ty->param_begin();
2666 FunctionType::param_iterator E = Ty->param_end();
2667 ValueRefList::iterator ArgI = $6->begin(), ArgE = $6->end();
2668
2669 for (; ArgI != ArgE && I != E; ++ArgI, ++I) {
2670 if (ArgI->Val->getType() != *I)
2671 GEN_ERROR("Parameter " + ArgI->Val->getName()+ " is not of type '" +
2672 (*I)->getDescription() + "'");
2673 Args.push_back(ArgI->Val);
2674 }
2675
2676 if (Ty->isVarArg()) {
2677 if (I == E)
2678 for (; ArgI != ArgE; ++ArgI)
2679 Args.push_back(ArgI->Val); // push the remaining varargs
2680 } else if (I != E || ArgI != ArgE)
2681 GEN_ERROR("Invalid number of parameters detected");
2682 }
2683
2684 // Create the InvokeInst
Chris Lattnerd140ada2007-08-29 16:15:23 +00002685 InvokeInst *II = new InvokeInst(V, Normal, Except, Args.begin(), Args.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002686 II->setCallingConv($2);
2687 $$ = II;
2688 delete $6;
2689 CHECK_FOR_ERROR
2690 }
2691 | UNWIND {
2692 $$ = new UnwindInst();
2693 CHECK_FOR_ERROR
2694 }
2695 | UNREACHABLE {
2696 $$ = new UnreachableInst();
2697 CHECK_FOR_ERROR
2698 };
2699
2700
2701
2702JumpTable : JumpTable IntType ConstValueRef ',' LABEL ValueRef {
2703 $$ = $1;
2704 Constant *V = cast<Constant>(getExistingVal($2, $3));
2705 CHECK_FOR_ERROR
2706 if (V == 0)
2707 GEN_ERROR("May only switch on a constant pool value");
2708
2709 BasicBlock* tmpBB = getBBVal($6);
2710 CHECK_FOR_ERROR
2711 $$->push_back(std::make_pair(V, tmpBB));
2712 }
2713 | IntType ConstValueRef ',' LABEL ValueRef {
2714 $$ = new std::vector<std::pair<Constant*, BasicBlock*> >();
2715 Constant *V = cast<Constant>(getExistingVal($1, $2));
2716 CHECK_FOR_ERROR
2717
2718 if (V == 0)
2719 GEN_ERROR("May only switch on a constant pool value");
2720
2721 BasicBlock* tmpBB = getBBVal($5);
2722 CHECK_FOR_ERROR
2723 $$->push_back(std::make_pair(V, tmpBB));
2724 };
2725
2726Inst : OptLocalAssign InstVal {
2727 // Is this definition named?? if so, assign the name...
2728 setValueName($2, $1);
2729 CHECK_FOR_ERROR
2730 InsertValue($2);
2731 $$ = $2;
2732 CHECK_FOR_ERROR
2733 };
2734
2735
2736PHIList : Types '[' ValueRef ',' ValueRef ']' { // Used for PHI nodes
2737 if (!UpRefs.empty())
2738 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
2739 $$ = new std::list<std::pair<Value*, BasicBlock*> >();
2740 Value* tmpVal = getVal(*$1, $3);
2741 CHECK_FOR_ERROR
2742 BasicBlock* tmpBB = getBBVal($5);
2743 CHECK_FOR_ERROR
2744 $$->push_back(std::make_pair(tmpVal, tmpBB));
2745 delete $1;
2746 }
2747 | PHIList ',' '[' ValueRef ',' ValueRef ']' {
2748 $$ = $1;
2749 Value* tmpVal = getVal($1->front().first->getType(), $4);
2750 CHECK_FOR_ERROR
2751 BasicBlock* tmpBB = getBBVal($6);
2752 CHECK_FOR_ERROR
2753 $1->push_back(std::make_pair(tmpVal, tmpBB));
2754 };
2755
2756
2757ValueRefList : Types ValueRef OptParamAttrs {
2758 if (!UpRefs.empty())
2759 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
2760 // Used for call and invoke instructions
2761 $$ = new ValueRefList();
2762 ValueRefListEntry E; E.Attrs = $3; E.Val = getVal($1->get(), $2);
2763 $$->push_back(E);
2764 delete $1;
2765 }
2766 | ValueRefList ',' Types ValueRef OptParamAttrs {
2767 if (!UpRefs.empty())
2768 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
2769 $$ = $1;
2770 ValueRefListEntry E; E.Attrs = $5; E.Val = getVal($3->get(), $4);
2771 $$->push_back(E);
2772 delete $3;
2773 CHECK_FOR_ERROR
2774 }
2775 | /*empty*/ { $$ = new ValueRefList(); };
2776
2777IndexList // Used for gep instructions and constant expressions
2778 : /*empty*/ { $$ = new std::vector<Value*>(); }
2779 | IndexList ',' ResolvedVal {
2780 $$ = $1;
2781 $$->push_back($3);
2782 CHECK_FOR_ERROR
2783 }
2784 ;
2785
2786OptTailCall : TAIL CALL {
2787 $$ = true;
2788 CHECK_FOR_ERROR
2789 }
2790 | CALL {
2791 $$ = false;
2792 CHECK_FOR_ERROR
2793 };
2794
2795InstVal : ArithmeticOps Types ValueRef ',' ValueRef {
2796 if (!UpRefs.empty())
2797 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
2798 if (!(*$2)->isInteger() && !(*$2)->isFloatingPoint() &&
2799 !isa<VectorType>((*$2).get()))
2800 GEN_ERROR(
2801 "Arithmetic operator requires integer, FP, or packed operands");
2802 if (isa<VectorType>((*$2).get()) &&
2803 ($1 == Instruction::URem ||
2804 $1 == Instruction::SRem ||
2805 $1 == Instruction::FRem))
2806 GEN_ERROR("Remainder not supported on vector types");
2807 Value* val1 = getVal(*$2, $3);
2808 CHECK_FOR_ERROR
2809 Value* val2 = getVal(*$2, $5);
2810 CHECK_FOR_ERROR
2811 $$ = BinaryOperator::create($1, val1, val2);
2812 if ($$ == 0)
2813 GEN_ERROR("binary operator returned null");
2814 delete $2;
2815 }
2816 | LogicalOps Types ValueRef ',' ValueRef {
2817 if (!UpRefs.empty())
2818 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
2819 if (!(*$2)->isInteger()) {
2820 if (Instruction::isShift($1) || !isa<VectorType>($2->get()) ||
2821 !cast<VectorType>($2->get())->getElementType()->isInteger())
2822 GEN_ERROR("Logical operator requires integral operands");
2823 }
2824 Value* tmpVal1 = getVal(*$2, $3);
2825 CHECK_FOR_ERROR
2826 Value* tmpVal2 = getVal(*$2, $5);
2827 CHECK_FOR_ERROR
2828 $$ = BinaryOperator::create($1, tmpVal1, tmpVal2);
2829 if ($$ == 0)
2830 GEN_ERROR("binary operator returned null");
2831 delete $2;
2832 }
2833 | ICMP IPredicates Types ValueRef ',' ValueRef {
2834 if (!UpRefs.empty())
2835 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
2836 if (isa<VectorType>((*$3).get()))
2837 GEN_ERROR("Vector types not supported by icmp instruction");
2838 Value* tmpVal1 = getVal(*$3, $4);
2839 CHECK_FOR_ERROR
2840 Value* tmpVal2 = getVal(*$3, $6);
2841 CHECK_FOR_ERROR
2842 $$ = CmpInst::create($1, $2, tmpVal1, tmpVal2);
2843 if ($$ == 0)
2844 GEN_ERROR("icmp operator returned null");
2845 delete $3;
2846 }
2847 | FCMP FPredicates Types ValueRef ',' ValueRef {
2848 if (!UpRefs.empty())
2849 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
2850 if (isa<VectorType>((*$3).get()))
2851 GEN_ERROR("Vector types not supported by fcmp instruction");
2852 Value* tmpVal1 = getVal(*$3, $4);
2853 CHECK_FOR_ERROR
2854 Value* tmpVal2 = getVal(*$3, $6);
2855 CHECK_FOR_ERROR
2856 $$ = CmpInst::create($1, $2, tmpVal1, tmpVal2);
2857 if ($$ == 0)
2858 GEN_ERROR("fcmp operator returned null");
2859 delete $3;
2860 }
2861 | CastOps ResolvedVal TO Types {
2862 if (!UpRefs.empty())
2863 GEN_ERROR("Invalid upreference in type: " + (*$4)->getDescription());
2864 Value* Val = $2;
2865 const Type* DestTy = $4->get();
2866 if (!CastInst::castIsValid($1, Val, DestTy))
2867 GEN_ERROR("invalid cast opcode for cast from '" +
2868 Val->getType()->getDescription() + "' to '" +
2869 DestTy->getDescription() + "'");
2870 $$ = CastInst::create($1, Val, DestTy);
2871 delete $4;
2872 }
2873 | SELECT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
2874 if ($2->getType() != Type::Int1Ty)
2875 GEN_ERROR("select condition must be boolean");
2876 if ($4->getType() != $6->getType())
2877 GEN_ERROR("select value types should match");
2878 $$ = new SelectInst($2, $4, $6);
2879 CHECK_FOR_ERROR
2880 }
2881 | VAARG ResolvedVal ',' Types {
2882 if (!UpRefs.empty())
2883 GEN_ERROR("Invalid upreference in type: " + (*$4)->getDescription());
2884 $$ = new VAArgInst($2, *$4);
2885 delete $4;
2886 CHECK_FOR_ERROR
2887 }
2888 | EXTRACTELEMENT ResolvedVal ',' ResolvedVal {
2889 if (!ExtractElementInst::isValidOperands($2, $4))
2890 GEN_ERROR("Invalid extractelement operands");
2891 $$ = new ExtractElementInst($2, $4);
2892 CHECK_FOR_ERROR
2893 }
2894 | INSERTELEMENT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
2895 if (!InsertElementInst::isValidOperands($2, $4, $6))
2896 GEN_ERROR("Invalid insertelement operands");
2897 $$ = new InsertElementInst($2, $4, $6);
2898 CHECK_FOR_ERROR
2899 }
2900 | SHUFFLEVECTOR ResolvedVal ',' ResolvedVal ',' ResolvedVal {
2901 if (!ShuffleVectorInst::isValidOperands($2, $4, $6))
2902 GEN_ERROR("Invalid shufflevector operands");
2903 $$ = new ShuffleVectorInst($2, $4, $6);
2904 CHECK_FOR_ERROR
2905 }
2906 | PHI_TOK PHIList {
2907 const Type *Ty = $2->front().first->getType();
2908 if (!Ty->isFirstClassType())
2909 GEN_ERROR("PHI node operands must be of first class type");
2910 $$ = new PHINode(Ty);
2911 ((PHINode*)$$)->reserveOperandSpace($2->size());
2912 while ($2->begin() != $2->end()) {
2913 if ($2->front().first->getType() != Ty)
2914 GEN_ERROR("All elements of a PHI node must be of the same type");
2915 cast<PHINode>($$)->addIncoming($2->front().first, $2->front().second);
2916 $2->pop_front();
2917 }
2918 delete $2; // Free the list...
2919 CHECK_FOR_ERROR
2920 }
2921 | OptTailCall OptCallingConv ResultTypes ValueRef '(' ValueRefList ')'
2922 OptFuncAttrs {
2923
2924 // Handle the short syntax
2925 const PointerType *PFTy = 0;
2926 const FunctionType *Ty = 0;
2927 if (!(PFTy = dyn_cast<PointerType>($3->get())) ||
2928 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2929 // Pull out the types of all of the arguments...
2930 std::vector<const Type*> ParamTypes;
2931 ParamAttrsVector Attrs;
2932 if ($8 != ParamAttr::None) {
2933 ParamAttrsWithIndex PAWI; PAWI.index = 0; PAWI.attrs = $8;
2934 Attrs.push_back(PAWI);
2935 }
2936 unsigned index = 1;
2937 ValueRefList::iterator I = $6->begin(), E = $6->end();
2938 for (; I != E; ++I, ++index) {
2939 const Type *Ty = I->Val->getType();
2940 if (Ty == Type::VoidTy)
2941 GEN_ERROR("Short call syntax cannot be used with varargs");
2942 ParamTypes.push_back(Ty);
2943 if (I->Attrs != ParamAttr::None) {
2944 ParamAttrsWithIndex PAWI; PAWI.index = index; PAWI.attrs = I->Attrs;
2945 Attrs.push_back(PAWI);
2946 }
2947 }
2948
2949 ParamAttrsList *PAL = 0;
2950 if (!Attrs.empty())
2951 PAL = ParamAttrsList::get(Attrs);
2952
2953 Ty = FunctionType::get($3->get(), ParamTypes, false, PAL);
2954 PFTy = PointerType::get(Ty);
2955 }
2956
2957 Value *V = getVal(PFTy, $4); // Get the function we're calling...
2958 CHECK_FOR_ERROR
2959
2960 // Check for call to invalid intrinsic to avoid crashing later.
2961 if (Function *theF = dyn_cast<Function>(V)) {
2962 if (theF->hasName() && (theF->getValueName()->getKeyLength() >= 5) &&
2963 (0 == strncmp(theF->getValueName()->getKeyData(), "llvm.", 5)) &&
2964 !theF->getIntrinsicID(true))
2965 GEN_ERROR("Call to invalid LLVM intrinsic function '" +
2966 theF->getName() + "'");
2967 }
2968
2969 // Check the arguments
2970 ValueList Args;
2971 if ($6->empty()) { // Has no arguments?
2972 // Make sure no arguments is a good thing!
2973 if (Ty->getNumParams() != 0)
2974 GEN_ERROR("No arguments passed to a function that "
2975 "expects arguments");
2976 } else { // Has arguments?
2977 // Loop through FunctionType's arguments and ensure they are specified
2978 // correctly!
2979 //
2980 FunctionType::param_iterator I = Ty->param_begin();
2981 FunctionType::param_iterator E = Ty->param_end();
2982 ValueRefList::iterator ArgI = $6->begin(), ArgE = $6->end();
2983
2984 for (; ArgI != ArgE && I != E; ++ArgI, ++I) {
2985 if (ArgI->Val->getType() != *I)
2986 GEN_ERROR("Parameter " + ArgI->Val->getName()+ " is not of type '" +
2987 (*I)->getDescription() + "'");
2988 Args.push_back(ArgI->Val);
2989 }
2990 if (Ty->isVarArg()) {
2991 if (I == E)
2992 for (; ArgI != ArgE; ++ArgI)
2993 Args.push_back(ArgI->Val); // push the remaining varargs
2994 } else if (I != E || ArgI != ArgE)
2995 GEN_ERROR("Invalid number of parameters detected");
2996 }
2997 // Create the call node
David Greene9145dd22007-08-01 03:59:32 +00002998 CallInst *CI = new CallInst(V, Args.begin(), Args.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002999 CI->setTailCall($1);
3000 CI->setCallingConv($2);
3001 $$ = CI;
3002 delete $6;
3003 delete $3;
3004 CHECK_FOR_ERROR
3005 }
3006 | MemoryInst {
3007 $$ = $1;
3008 CHECK_FOR_ERROR
3009 };
3010
3011OptVolatile : VOLATILE {
3012 $$ = true;
3013 CHECK_FOR_ERROR
3014 }
3015 | /* empty */ {
3016 $$ = false;
3017 CHECK_FOR_ERROR
3018 };
3019
3020
3021
3022MemoryInst : MALLOC Types OptCAlign {
3023 if (!UpRefs.empty())
3024 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
3025 $$ = new MallocInst(*$2, 0, $3);
3026 delete $2;
3027 CHECK_FOR_ERROR
3028 }
3029 | MALLOC Types ',' INTTYPE ValueRef OptCAlign {
3030 if (!UpRefs.empty())
3031 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
3032 Value* tmpVal = getVal($4, $5);
3033 CHECK_FOR_ERROR
3034 $$ = new MallocInst(*$2, tmpVal, $6);
3035 delete $2;
3036 }
3037 | ALLOCA Types OptCAlign {
3038 if (!UpRefs.empty())
3039 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
3040 $$ = new AllocaInst(*$2, 0, $3);
3041 delete $2;
3042 CHECK_FOR_ERROR
3043 }
3044 | ALLOCA Types ',' INTTYPE ValueRef OptCAlign {
3045 if (!UpRefs.empty())
3046 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
3047 Value* tmpVal = getVal($4, $5);
3048 CHECK_FOR_ERROR
3049 $$ = new AllocaInst(*$2, tmpVal, $6);
3050 delete $2;
3051 }
3052 | FREE ResolvedVal {
3053 if (!isa<PointerType>($2->getType()))
3054 GEN_ERROR("Trying to free nonpointer type " +
3055 $2->getType()->getDescription() + "");
3056 $$ = new FreeInst($2);
3057 CHECK_FOR_ERROR
3058 }
3059
3060 | OptVolatile LOAD Types ValueRef OptCAlign {
3061 if (!UpRefs.empty())
3062 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
3063 if (!isa<PointerType>($3->get()))
3064 GEN_ERROR("Can't load from nonpointer type: " +
3065 (*$3)->getDescription());
3066 if (!cast<PointerType>($3->get())->getElementType()->isFirstClassType())
3067 GEN_ERROR("Can't load from pointer of non-first-class type: " +
3068 (*$3)->getDescription());
3069 Value* tmpVal = getVal(*$3, $4);
3070 CHECK_FOR_ERROR
3071 $$ = new LoadInst(tmpVal, "", $1, $5);
3072 delete $3;
3073 }
3074 | OptVolatile STORE ResolvedVal ',' Types ValueRef OptCAlign {
3075 if (!UpRefs.empty())
3076 GEN_ERROR("Invalid upreference in type: " + (*$5)->getDescription());
3077 const PointerType *PT = dyn_cast<PointerType>($5->get());
3078 if (!PT)
3079 GEN_ERROR("Can't store to a nonpointer type: " +
3080 (*$5)->getDescription());
3081 const Type *ElTy = PT->getElementType();
3082 if (ElTy != $3->getType())
3083 GEN_ERROR("Can't store '" + $3->getType()->getDescription() +
3084 "' into space of type '" + ElTy->getDescription() + "'");
3085
3086 Value* tmpVal = getVal(*$5, $6);
3087 CHECK_FOR_ERROR
3088 $$ = new StoreInst($3, tmpVal, $1, $7);
3089 delete $5;
3090 }
3091 | GETELEMENTPTR Types ValueRef IndexList {
3092 if (!UpRefs.empty())
3093 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
3094 if (!isa<PointerType>($2->get()))
3095 GEN_ERROR("getelementptr insn requires pointer operand");
3096
David Greene48556392007-09-04 18:46:50 +00003097 if (!GetElementPtrInst::getIndexedType(*$2, $4->begin(), $4->end(), true))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003098 GEN_ERROR("Invalid getelementptr indices for type '" +
3099 (*$2)->getDescription()+ "'");
3100 Value* tmpVal = getVal(*$2, $3);
3101 CHECK_FOR_ERROR
David Greene48556392007-09-04 18:46:50 +00003102 $$ = new GetElementPtrInst(tmpVal, $4->begin(), $4->end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003103 delete $2;
3104 delete $4;
3105 };
3106
3107
3108%%
3109
3110// common code from the two 'RunVMAsmParser' functions
3111static Module* RunParser(Module * M) {
3112
3113 llvmAsmlineno = 1; // Reset the current line number...
3114 CurModule.CurrentModule = M;
3115#if YYDEBUG
3116 yydebug = Debug;
3117#endif
3118
3119 // Check to make sure the parser succeeded
3120 if (yyparse()) {
3121 if (ParserResult)
3122 delete ParserResult;
3123 return 0;
3124 }
3125
3126 // Emit an error if there are any unresolved types left.
3127 if (!CurModule.LateResolveTypes.empty()) {
3128 const ValID &DID = CurModule.LateResolveTypes.begin()->first;
3129 if (DID.Type == ValID::LocalName) {
3130 GenerateError("Undefined type remains at eof: '"+DID.getName() + "'");
3131 } else {
3132 GenerateError("Undefined type remains at eof: #" + itostr(DID.Num));
3133 }
3134 if (ParserResult)
3135 delete ParserResult;
3136 return 0;
3137 }
3138
3139 // Emit an error if there are any unresolved values left.
3140 if (!CurModule.LateResolveValues.empty()) {
3141 Value *V = CurModule.LateResolveValues.back();
3142 std::map<Value*, std::pair<ValID, int> >::iterator I =
3143 CurModule.PlaceHolderInfo.find(V);
3144
3145 if (I != CurModule.PlaceHolderInfo.end()) {
3146 ValID &DID = I->second.first;
3147 if (DID.Type == ValID::LocalName) {
3148 GenerateError("Undefined value remains at eof: "+DID.getName() + "'");
3149 } else {
3150 GenerateError("Undefined value remains at eof: #" + itostr(DID.Num));
3151 }
3152 if (ParserResult)
3153 delete ParserResult;
3154 return 0;
3155 }
3156 }
3157
3158 // Check to make sure that parsing produced a result
3159 if (!ParserResult)
3160 return 0;
3161
3162 // Reset ParserResult variable while saving its value for the result.
3163 Module *Result = ParserResult;
3164 ParserResult = 0;
3165
3166 return Result;
3167}
3168
3169void llvm::GenerateError(const std::string &message, int LineNo) {
3170 if (LineNo == -1) LineNo = llvmAsmlineno;
3171 // TODO: column number in exception
3172 if (TheParseError)
3173 TheParseError->setError(CurFilename, message, LineNo);
3174 TriggerError = 1;
3175}
3176
3177int yyerror(const char *ErrorMsg) {
3178 std::string where
3179 = std::string((CurFilename == "-") ? std::string("<stdin>") : CurFilename)
3180 + ":" + utostr((unsigned) llvmAsmlineno) + ": ";
3181 std::string errMsg = where + "error: " + std::string(ErrorMsg);
3182 if (yychar != YYEMPTY && yychar != 0)
3183 errMsg += " while reading token: '" + std::string(llvmAsmtext, llvmAsmleng)+
3184 "'";
3185 GenerateError(errMsg);
3186 return 0;
3187}