blob: 7d4309353a40d046837eb9d2eeb738511a209d1f [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the default implementation of the Alias Analysis interface
11// that simply implements a few identities (two different globals cannot alias,
12// etc), but otherwise does no analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/Passes.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
Christopher Lamb6f9fad52007-08-02 01:18:14 +000021#include "llvm/ParameterAttributes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000022#include "llvm/GlobalVariable.h"
23#include "llvm/Instructions.h"
Owen Anderson37f3ffb2008-02-17 21:29:08 +000024#include "llvm/IntrinsicInst.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000025#include "llvm/Pass.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/ADT/SmallVector.h"
Owen Anderson1636de92007-09-07 04:06:50 +000028#include "llvm/ADT/STLExtras.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000029#include "llvm/Support/Compiler.h"
30#include "llvm/Support/GetElementPtrTypeIterator.h"
31#include "llvm/Support/ManagedStatic.h"
32#include <algorithm>
33using namespace llvm;
34
Chris Lattner21c4fd12008-06-16 06:30:22 +000035//===----------------------------------------------------------------------===//
36// Useful predicates
37//===----------------------------------------------------------------------===//
Dan Gohmanf17a25c2007-07-18 16:29:46 +000038
Chris Lattner21c4fd12008-06-16 06:30:22 +000039// Determine if an AllocationInst instruction escapes from the function it is
40// contained in. If it does not escape, there is no way for another function to
41// mod/ref it. We do this by looking at its uses and determining if the uses
42// can escape (recursively).
43static bool AddressMightEscape(const Value *V) {
44 for (Value::use_const_iterator UI = V->use_begin(), E = V->use_end();
45 UI != E; ++UI) {
46 const Instruction *I = cast<Instruction>(*UI);
47 switch (I->getOpcode()) {
48 case Instruction::Load:
49 break; //next use.
50 case Instruction::Store:
51 if (I->getOperand(0) == V)
52 return true; // Escapes if the pointer is stored.
53 break; // next use.
54 case Instruction::GetElementPtr:
55 if (AddressMightEscape(I))
56 return true;
57 break; // next use.
58 case Instruction::BitCast:
59 if (AddressMightEscape(I))
60 return true;
61 break; // next use
62 case Instruction::Ret:
63 // If returned, the address will escape to calling functions, but no
64 // callees could modify it.
65 break; // next use
66 case Instruction::Call:
67 // If the call is to a few known safe intrinsics, we know that it does
Chris Lattnerb46b9752008-06-16 06:38:26 +000068 // not escape.
69 // TODO: Eventually just check the 'nocapture' attribute.
Chris Lattner21c4fd12008-06-16 06:30:22 +000070 if (!isa<MemIntrinsic>(I))
71 return true;
72 break; // next use
73 default:
74 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000075 }
Chris Lattner21c4fd12008-06-16 06:30:22 +000076 }
77 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000078}
79
Chris Lattner9603f432008-01-24 18:00:32 +000080/// getUnderlyingObject - This traverses the use chain to figure out what object
81/// the specified value points to. If the value points to, or is derived from,
82/// a unique object or an argument, return it. This returns:
83/// Arguments, GlobalVariables, Functions, Allocas, Mallocs.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000084static const Value *getUnderlyingObject(const Value *V) {
Chris Lattnerfc2026e2008-06-16 06:10:11 +000085 if (!isa<PointerType>(V->getType())) return V;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000086
87 // If we are at some type of object, return it. GlobalValues and Allocations
88 // have unique addresses.
89 if (isa<GlobalValue>(V) || isa<AllocationInst>(V) || isa<Argument>(V))
90 return V;
91
92 // Traverse through different addressing mechanisms...
93 if (const Instruction *I = dyn_cast<Instruction>(V)) {
94 if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I))
95 return getUnderlyingObject(I->getOperand(0));
96 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
97 if (CE->getOpcode() == Instruction::BitCast ||
98 CE->getOpcode() == Instruction::GetElementPtr)
99 return getUnderlyingObject(CE->getOperand(0));
100 }
Chris Lattnerfc2026e2008-06-16 06:10:11 +0000101 return V;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000102}
103
104static const User *isGEP(const Value *V) {
105 if (isa<GetElementPtrInst>(V) ||
106 (isa<ConstantExpr>(V) &&
107 cast<ConstantExpr>(V)->getOpcode() == Instruction::GetElementPtr))
108 return cast<User>(V);
109 return 0;
110}
111
112static const Value *GetGEPOperands(const Value *V,
113 SmallVector<Value*, 16> &GEPOps){
114 assert(GEPOps.empty() && "Expect empty list to populate!");
115 GEPOps.insert(GEPOps.end(), cast<User>(V)->op_begin()+1,
116 cast<User>(V)->op_end());
117
118 // Accumulate all of the chained indexes into the operand array
119 V = cast<User>(V)->getOperand(0);
120
121 while (const User *G = isGEP(V)) {
122 if (!isa<Constant>(GEPOps[0]) || isa<GlobalValue>(GEPOps[0]) ||
123 !cast<Constant>(GEPOps[0])->isNullValue())
124 break; // Don't handle folding arbitrary pointer offsets yet...
125 GEPOps.erase(GEPOps.begin()); // Drop the zero index
126 GEPOps.insert(GEPOps.begin(), G->op_begin()+1, G->op_end());
127 V = G->getOperand(0);
128 }
129 return V;
130}
131
Chris Lattnerfc2026e2008-06-16 06:10:11 +0000132/// isIdentifiedObject - Return true if this pointer refers to a distinct and
133/// identifiable object. This returns true for:
134/// Global Variables and Functions
135/// Allocas and Mallocs
136/// ByVal and NoAlias Arguments
137///
138static bool isIdentifiedObject(const Value *V) {
139 if (isa<GlobalValue>(V) || isa<AllocationInst>(V))
140 return true;
141 if (const Argument *A = dyn_cast<Argument>(V))
142 return A->hasNoAliasAttr() || A->hasByValAttr();
143 return false;
144}
145
146/// isKnownNonNull - Return true if we know that the specified value is never
147/// null.
148static bool isKnownNonNull(const Value *V) {
149 // Alloca never returns null, malloc might.
150 if (isa<AllocaInst>(V)) return true;
151
152 // A byval argument is never null.
153 if (const Argument *A = dyn_cast<Argument>(V))
154 return A->hasByValAttr();
155
156 // Global values are not null unless extern weak.
157 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
158 return !GV->hasExternalWeakLinkage();
159 return false;
160}
161
Chris Lattnerd26e5d82008-06-16 06:19:11 +0000162/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
163/// object that never escapes from the function.
164static bool isNonEscapingLocalObject(const Value *V) {
Chris Lattner7ce67392008-06-16 06:28:01 +0000165 // If this is a local allocation, check to see if it escapes.
166 if (isa<AllocationInst>(V))
Chris Lattnerd26e5d82008-06-16 06:19:11 +0000167 return !AddressMightEscape(V);
Chris Lattner7ce67392008-06-16 06:28:01 +0000168
169 // If this is an argument that corresponds to a byval or noalias argument,
170 // it can't escape either.
171 if (const Argument *A = dyn_cast<Argument>(V))
172 if (A->hasByValAttr() || A->hasNoAliasAttr())
173 return !AddressMightEscape(V);
Chris Lattnerd26e5d82008-06-16 06:19:11 +0000174 return false;
175}
176
177
Chris Lattnerfc2026e2008-06-16 06:10:11 +0000178/// isObjectSmallerThan - Return true if we can prove that the object specified
179/// by V is smaller than Size.
180static bool isObjectSmallerThan(const Value *V, unsigned Size,
181 const TargetData &TD) {
182 const Type *AccessTy = 0;
183 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
184 AccessTy = GV->getType()->getElementType();
185
186 if (const AllocationInst *AI = dyn_cast<AllocationInst>(V))
187 if (!AI->isArrayAllocation())
188 AccessTy = AI->getType()->getElementType();
189
190 if (const Argument *A = dyn_cast<Argument>(V))
191 if (A->hasByValAttr())
192 AccessTy = cast<PointerType>(A->getType())->getElementType();
193
194 if (AccessTy && AccessTy->isSized())
195 return TD.getABITypeSize(AccessTy) < Size;
196 return false;
197}
198
Chris Lattner21c4fd12008-06-16 06:30:22 +0000199//===----------------------------------------------------------------------===//
200// NoAA Pass
201//===----------------------------------------------------------------------===//
202
203namespace {
204 /// NoAA - This class implements the -no-aa pass, which always returns "I
205 /// don't know" for alias queries. NoAA is unlike other alias analysis
206 /// implementations, in that it does not chain to a previous analysis. As
207 /// such it doesn't follow many of the rules that other alias analyses must.
208 ///
209 struct VISIBILITY_HIDDEN NoAA : public ImmutablePass, public AliasAnalysis {
210 static char ID; // Class identification, replacement for typeinfo
Dan Gohman26f8c272008-09-04 17:05:41 +0000211 NoAA() : ImmutablePass(&ID) {}
212 explicit NoAA(void *PID) : ImmutablePass(PID) { }
Chris Lattner21c4fd12008-06-16 06:30:22 +0000213
214 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
215 AU.addRequired<TargetData>();
216 }
217
218 virtual void initializePass() {
219 TD = &getAnalysis<TargetData>();
220 }
221
222 virtual AliasResult alias(const Value *V1, unsigned V1Size,
223 const Value *V2, unsigned V2Size) {
224 return MayAlias;
225 }
226
227 virtual ModRefBehavior getModRefBehavior(Function *F, CallSite CS,
228 std::vector<PointerAccessInfo> *Info) {
229 return UnknownModRefBehavior;
230 }
231
232 virtual void getArgumentAccesses(Function *F, CallSite CS,
233 std::vector<PointerAccessInfo> &Info) {
234 assert(0 && "This method may not be called on this function!");
235 }
236
237 virtual void getMustAliases(Value *P, std::vector<Value*> &RetVals) { }
238 virtual bool pointsToConstantMemory(const Value *P) { return false; }
239 virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) {
240 return ModRef;
241 }
242 virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
243 return ModRef;
244 }
245 virtual bool hasNoModRefInfoForCalls() const { return true; }
246
247 virtual void deleteValue(Value *V) {}
248 virtual void copyValue(Value *From, Value *To) {}
249 };
250} // End of anonymous namespace
251
252// Register this pass...
253char NoAA::ID = 0;
254static RegisterPass<NoAA>
255U("no-aa", "No Alias Analysis (always returns 'may' alias)", true, true);
256
257// Declare that we implement the AliasAnalysis interface
258static RegisterAnalysisGroup<AliasAnalysis> V(U);
259
260ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
261
262//===----------------------------------------------------------------------===//
263// BasicAA Pass
264//===----------------------------------------------------------------------===//
265
266namespace {
267 /// BasicAliasAnalysis - This is the default alias analysis implementation.
268 /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
269 /// derives from the NoAA class.
270 struct VISIBILITY_HIDDEN BasicAliasAnalysis : public NoAA {
271 static char ID; // Class identification, replacement for typeinfo
Dan Gohman26f8c272008-09-04 17:05:41 +0000272 BasicAliasAnalysis() : NoAA(&ID) {}
Chris Lattner21c4fd12008-06-16 06:30:22 +0000273 AliasResult alias(const Value *V1, unsigned V1Size,
274 const Value *V2, unsigned V2Size);
275
276 ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
277 ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
278 return NoAA::getModRefInfo(CS1,CS2);
279 }
280
281 /// hasNoModRefInfoForCalls - We can provide mod/ref information against
282 /// non-escaping allocations.
283 virtual bool hasNoModRefInfoForCalls() const { return false; }
284
285 /// pointsToConstantMemory - Chase pointers until we find a (constant
286 /// global) or not.
287 bool pointsToConstantMemory(const Value *P);
288
289 private:
290 // CheckGEPInstructions - Check two GEP instructions with known
291 // must-aliasing base pointers. This checks to see if the index expressions
292 // preclude the pointers from aliasing...
293 AliasResult
294 CheckGEPInstructions(const Type* BasePtr1Ty,
295 Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1Size,
296 const Type *BasePtr2Ty,
297 Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2Size);
298 };
299} // End of anonymous namespace
300
301// Register this pass...
302char BasicAliasAnalysis::ID = 0;
303static RegisterPass<BasicAliasAnalysis>
304X("basicaa", "Basic Alias Analysis (default AA impl)", false, true);
305
306// Declare that we implement the AliasAnalysis interface
307static RegisterAnalysisGroup<AliasAnalysis, true> Y(X);
308
309ImmutablePass *llvm::createBasicAliasAnalysisPass() {
310 return new BasicAliasAnalysis();
311}
312
313
314/// pointsToConstantMemory - Chase pointers until we find a (constant
315/// global) or not.
316bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
317 if (const GlobalVariable *GV =
318 dyn_cast<GlobalVariable>(getUnderlyingObject(P)))
319 return GV->isConstant();
320 return false;
321}
322
323// getModRefInfo - Check to see if the specified callsite can clobber the
324// specified memory object. Since we only look at local properties of this
325// function, we really can't say much about this query. We do, however, use
326// simple "address taken" analysis on local objects.
327//
328AliasAnalysis::ModRefResult
329BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
330 if (!isa<Constant>(P)) {
331 const Value *Object = getUnderlyingObject(P);
332
333 // If this is a tail call and P points to a stack location, we know that
334 // the tail call cannot access or modify the local stack.
335 // We cannot exclude byval arguments here; these belong to the caller of
336 // the current function not to the current function, and a tail callee
337 // may reference them.
338 if (isa<AllocaInst>(Object))
339 if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
340 if (CI->isTailCall())
341 return NoModRef;
342
Chris Lattnerb46b9752008-06-16 06:38:26 +0000343 // If the pointer is to a locally allocated object that does not escape,
344 // then the call can not mod/ref the pointer unless the call takes the
345 // argument without capturing it.
346 if (isNonEscapingLocalObject(Object)) {
347 bool passedAsArg = false;
348 // TODO: Eventually only check 'nocapture' arguments.
349 for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
350 CI != CE; ++CI)
351 if (isa<PointerType>((*CI)->getType()) &&
352 alias(cast<Value>(CI), ~0U, P, ~0U) != NoAlias)
353 passedAsArg = true;
354
355 if (!passedAsArg)
356 return NoModRef;
Chris Lattner21c4fd12008-06-16 06:30:22 +0000357 }
358 }
359
360 // The AliasAnalysis base class has some smarts, lets use them.
361 return AliasAnalysis::getModRefInfo(CS, P, Size);
362}
363
364
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000365// alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such
366// as array references. Note that this function is heavily tail recursive.
367// Hopefully we have a smart C++ compiler. :)
368//
369AliasAnalysis::AliasResult
370BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
371 const Value *V2, unsigned V2Size) {
372 // Strip off any constant expression casts if they exist
373 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V1))
374 if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
375 V1 = CE->getOperand(0);
376 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V2))
377 if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
378 V2 = CE->getOperand(0);
379
380 // Are we checking for alias of the same value?
381 if (V1 == V2) return MustAlias;
382
383 if ((!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType())) &&
384 V1->getType() != Type::Int64Ty && V2->getType() != Type::Int64Ty)
385 return NoAlias; // Scalars cannot alias each other
386
387 // Strip off cast instructions...
388 if (const BitCastInst *I = dyn_cast<BitCastInst>(V1))
389 return alias(I->getOperand(0), V1Size, V2, V2Size);
390 if (const BitCastInst *I = dyn_cast<BitCastInst>(V2))
391 return alias(V1, V1Size, I->getOperand(0), V2Size);
392
393 // Figure out what objects these things are pointing to if we can...
394 const Value *O1 = getUnderlyingObject(V1);
395 const Value *O2 = getUnderlyingObject(V2);
396
Chris Lattnerfc2026e2008-06-16 06:10:11 +0000397 if (O1 != O2) {
398 // If V1/V2 point to two different objects we know that we have no alias.
399 if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
400 return NoAlias;
401
402 // Incoming argument cannot alias locally allocated object!
403 if ((isa<Argument>(O1) && isa<AllocationInst>(O2)) ||
404 (isa<Argument>(O2) && isa<AllocationInst>(O1)))
405 return NoAlias;
406
407 // Most objects can't alias null.
408 if ((isa<ConstantPointerNull>(V2) && isKnownNonNull(O1)) ||
409 (isa<ConstantPointerNull>(V1) && isKnownNonNull(O2)))
410 return NoAlias;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000411 }
Chris Lattnerfc2026e2008-06-16 06:10:11 +0000412
413 // If the size of one access is larger than the entire object on the other
414 // side, then we know such behavior is undefined and can assume no alias.
415 const TargetData &TD = getTargetData();
416 if ((V1Size != ~0U && isObjectSmallerThan(O2, V1Size, TD)) ||
417 (V2Size != ~0U && isObjectSmallerThan(O1, V2Size, TD)))
418 return NoAlias;
419
Chris Lattnerd26e5d82008-06-16 06:19:11 +0000420 // If one pointer is the result of a call/invoke and the other is a
421 // non-escaping local object, then we know the object couldn't escape to a
422 // point where the call could return it.
423 if ((isa<CallInst>(O1) || isa<InvokeInst>(O1)) &&
424 isNonEscapingLocalObject(O2))
425 return NoAlias;
426 if ((isa<CallInst>(O2) || isa<InvokeInst>(O2)) &&
427 isNonEscapingLocalObject(O1))
428 return NoAlias;
Chris Lattnerfc2026e2008-06-16 06:10:11 +0000429
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000430 // If we have two gep instructions with must-alias'ing base pointers, figure
431 // out if the indexes to the GEP tell us anything about the derived pointer.
432 // Note that we also handle chains of getelementptr instructions as well as
433 // constant expression getelementptrs here.
434 //
435 if (isGEP(V1) && isGEP(V2)) {
436 // Drill down into the first non-gep value, to test for must-aliasing of
437 // the base pointers.
Wojciech Matyjewicz170707f2007-12-13 16:22:58 +0000438 const User *G = cast<User>(V1);
439 while (isGEP(G->getOperand(0)) &&
440 G->getOperand(1) ==
441 Constant::getNullValue(G->getOperand(1)->getType()))
442 G = cast<User>(G->getOperand(0));
443 const Value *BasePtr1 = G->getOperand(0);
444
445 G = cast<User>(V2);
446 while (isGEP(G->getOperand(0)) &&
447 G->getOperand(1) ==
448 Constant::getNullValue(G->getOperand(1)->getType()))
449 G = cast<User>(G->getOperand(0));
450 const Value *BasePtr2 = G->getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000451
452 // Do the base pointers alias?
453 AliasResult BaseAlias = alias(BasePtr1, ~0U, BasePtr2, ~0U);
454 if (BaseAlias == NoAlias) return NoAlias;
455 if (BaseAlias == MustAlias) {
456 // If the base pointers alias each other exactly, check to see if we can
457 // figure out anything about the resultant pointers, to try to prove
458 // non-aliasing.
459
460 // Collect all of the chained GEP operands together into one simple place
461 SmallVector<Value*, 16> GEP1Ops, GEP2Ops;
462 BasePtr1 = GetGEPOperands(V1, GEP1Ops);
463 BasePtr2 = GetGEPOperands(V2, GEP2Ops);
464
465 // If GetGEPOperands were able to fold to the same must-aliased pointer,
466 // do the comparison.
467 if (BasePtr1 == BasePtr2) {
468 AliasResult GAlias =
469 CheckGEPInstructions(BasePtr1->getType(),
470 &GEP1Ops[0], GEP1Ops.size(), V1Size,
471 BasePtr2->getType(),
472 &GEP2Ops[0], GEP2Ops.size(), V2Size);
473 if (GAlias != MayAlias)
474 return GAlias;
475 }
476 }
477 }
478
479 // Check to see if these two pointers are related by a getelementptr
480 // instruction. If one pointer is a GEP with a non-zero index of the other
481 // pointer, we know they cannot alias.
482 //
483 if (isGEP(V2)) {
484 std::swap(V1, V2);
485 std::swap(V1Size, V2Size);
486 }
487
488 if (V1Size != ~0U && V2Size != ~0U)
489 if (isGEP(V1)) {
490 SmallVector<Value*, 16> GEPOperands;
491 const Value *BasePtr = GetGEPOperands(V1, GEPOperands);
492
493 AliasResult R = alias(BasePtr, V1Size, V2, V2Size);
494 if (R == MustAlias) {
495 // If there is at least one non-zero constant index, we know they cannot
496 // alias.
497 bool ConstantFound = false;
498 bool AllZerosFound = true;
499 for (unsigned i = 0, e = GEPOperands.size(); i != e; ++i)
500 if (const Constant *C = dyn_cast<Constant>(GEPOperands[i])) {
501 if (!C->isNullValue()) {
502 ConstantFound = true;
503 AllZerosFound = false;
504 break;
505 }
506 } else {
507 AllZerosFound = false;
508 }
509
510 // If we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 must aliases
511 // the ptr, the end result is a must alias also.
512 if (AllZerosFound)
513 return MustAlias;
514
515 if (ConstantFound) {
516 if (V2Size <= 1 && V1Size <= 1) // Just pointer check?
517 return NoAlias;
518
519 // Otherwise we have to check to see that the distance is more than
520 // the size of the argument... build an index vector that is equal to
521 // the arguments provided, except substitute 0's for any variable
522 // indexes we find...
523 if (cast<PointerType>(
524 BasePtr->getType())->getElementType()->isSized()) {
525 for (unsigned i = 0; i != GEPOperands.size(); ++i)
526 if (!isa<ConstantInt>(GEPOperands[i]))
527 GEPOperands[i] =
528 Constant::getNullValue(GEPOperands[i]->getType());
529 int64_t Offset =
530 getTargetData().getIndexedOffset(BasePtr->getType(),
531 &GEPOperands[0],
532 GEPOperands.size());
533
534 if (Offset >= (int64_t)V2Size || Offset <= -(int64_t)V1Size)
535 return NoAlias;
536 }
537 }
538 }
539 }
540
541 return MayAlias;
542}
543
544// This function is used to determin if the indices of two GEP instructions are
545// equal. V1 and V2 are the indices.
546static bool IndexOperandsEqual(Value *V1, Value *V2) {
547 if (V1->getType() == V2->getType())
548 return V1 == V2;
549 if (Constant *C1 = dyn_cast<Constant>(V1))
550 if (Constant *C2 = dyn_cast<Constant>(V2)) {
551 // Sign extend the constants to long types, if necessary
552 if (C1->getType() != Type::Int64Ty)
553 C1 = ConstantExpr::getSExt(C1, Type::Int64Ty);
554 if (C2->getType() != Type::Int64Ty)
555 C2 = ConstantExpr::getSExt(C2, Type::Int64Ty);
556 return C1 == C2;
557 }
558 return false;
559}
560
561/// CheckGEPInstructions - Check two GEP instructions with known must-aliasing
562/// base pointers. This checks to see if the index expressions preclude the
563/// pointers from aliasing...
564AliasAnalysis::AliasResult
565BasicAliasAnalysis::CheckGEPInstructions(
566 const Type* BasePtr1Ty, Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1S,
567 const Type *BasePtr2Ty, Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2S) {
568 // We currently can't handle the case when the base pointers have different
569 // primitive types. Since this is uncommon anyway, we are happy being
570 // extremely conservative.
571 if (BasePtr1Ty != BasePtr2Ty)
572 return MayAlias;
573
574 const PointerType *GEPPointerTy = cast<PointerType>(BasePtr1Ty);
575
576 // Find the (possibly empty) initial sequence of equal values... which are not
577 // necessarily constants.
578 unsigned NumGEP1Operands = NumGEP1Ops, NumGEP2Operands = NumGEP2Ops;
579 unsigned MinOperands = std::min(NumGEP1Operands, NumGEP2Operands);
580 unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands);
581 unsigned UnequalOper = 0;
582 while (UnequalOper != MinOperands &&
583 IndexOperandsEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper])) {
584 // Advance through the type as we go...
585 ++UnequalOper;
586 if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
587 BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[UnequalOper-1]);
588 else {
589 // If all operands equal each other, then the derived pointers must
590 // alias each other...
591 BasePtr1Ty = 0;
592 assert(UnequalOper == NumGEP1Operands && UnequalOper == NumGEP2Operands &&
593 "Ran out of type nesting, but not out of operands?");
594 return MustAlias;
595 }
596 }
597
598 // If we have seen all constant operands, and run out of indexes on one of the
599 // getelementptrs, check to see if the tail of the leftover one is all zeros.
600 // If so, return mustalias.
601 if (UnequalOper == MinOperands) {
602 if (NumGEP1Ops < NumGEP2Ops) {
603 std::swap(GEP1Ops, GEP2Ops);
604 std::swap(NumGEP1Ops, NumGEP2Ops);
605 }
606
607 bool AllAreZeros = true;
608 for (unsigned i = UnequalOper; i != MaxOperands; ++i)
609 if (!isa<Constant>(GEP1Ops[i]) ||
610 !cast<Constant>(GEP1Ops[i])->isNullValue()) {
611 AllAreZeros = false;
612 break;
613 }
614 if (AllAreZeros) return MustAlias;
615 }
616
617
618 // So now we know that the indexes derived from the base pointers,
619 // which are known to alias, are different. We can still determine a
620 // no-alias result if there are differing constant pairs in the index
621 // chain. For example:
622 // A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
623 //
624 // We have to be careful here about array accesses. In particular, consider:
625 // A[1][0] vs A[0][i]
626 // In this case, we don't *know* that the array will be accessed in bounds:
627 // the index could even be negative. Because of this, we have to
628 // conservatively *give up* and return may alias. We disregard differing
629 // array subscripts that are followed by a variable index without going
630 // through a struct.
631 //
632 unsigned SizeMax = std::max(G1S, G2S);
633 if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work.
634
635 // Scan for the first operand that is constant and unequal in the
636 // two getelementptrs...
637 unsigned FirstConstantOper = UnequalOper;
638 for (; FirstConstantOper != MinOperands; ++FirstConstantOper) {
639 const Value *G1Oper = GEP1Ops[FirstConstantOper];
640 const Value *G2Oper = GEP2Ops[FirstConstantOper];
641
642 if (G1Oper != G2Oper) // Found non-equal constant indexes...
643 if (Constant *G1OC = dyn_cast<ConstantInt>(const_cast<Value*>(G1Oper)))
644 if (Constant *G2OC = dyn_cast<ConstantInt>(const_cast<Value*>(G2Oper))){
645 if (G1OC->getType() != G2OC->getType()) {
646 // Sign extend both operands to long.
647 if (G1OC->getType() != Type::Int64Ty)
648 G1OC = ConstantExpr::getSExt(G1OC, Type::Int64Ty);
649 if (G2OC->getType() != Type::Int64Ty)
650 G2OC = ConstantExpr::getSExt(G2OC, Type::Int64Ty);
651 GEP1Ops[FirstConstantOper] = G1OC;
652 GEP2Ops[FirstConstantOper] = G2OC;
653 }
654
655 if (G1OC != G2OC) {
656 // Handle the "be careful" case above: if this is an array/vector
657 // subscript, scan for a subsequent variable array index.
658 if (isa<SequentialType>(BasePtr1Ty)) {
659 const Type *NextTy =
660 cast<SequentialType>(BasePtr1Ty)->getElementType();
661 bool isBadCase = false;
662
663 for (unsigned Idx = FirstConstantOper+1;
664 Idx != MinOperands && isa<SequentialType>(NextTy); ++Idx) {
665 const Value *V1 = GEP1Ops[Idx], *V2 = GEP2Ops[Idx];
666 if (!isa<Constant>(V1) || !isa<Constant>(V2)) {
667 isBadCase = true;
668 break;
669 }
670 NextTy = cast<SequentialType>(NextTy)->getElementType();
671 }
672
673 if (isBadCase) G1OC = 0;
674 }
675
676 // Make sure they are comparable (ie, not constant expressions), and
677 // make sure the GEP with the smaller leading constant is GEP1.
678 if (G1OC) {
679 Constant *Compare = ConstantExpr::getICmp(ICmpInst::ICMP_SGT,
680 G1OC, G2OC);
681 if (ConstantInt *CV = dyn_cast<ConstantInt>(Compare)) {
682 if (CV->getZExtValue()) { // If they are comparable and G2 > G1
683 std::swap(GEP1Ops, GEP2Ops); // Make GEP1 < GEP2
684 std::swap(NumGEP1Ops, NumGEP2Ops);
685 }
686 break;
687 }
688 }
689 }
690 }
691 BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(G1Oper);
692 }
693
694 // No shared constant operands, and we ran out of common operands. At this
695 // point, the GEP instructions have run through all of their operands, and we
696 // haven't found evidence that there are any deltas between the GEP's.
697 // However, one GEP may have more operands than the other. If this is the
698 // case, there may still be hope. Check this now.
699 if (FirstConstantOper == MinOperands) {
700 // Make GEP1Ops be the longer one if there is a longer one.
701 if (NumGEP1Ops < NumGEP2Ops) {
702 std::swap(GEP1Ops, GEP2Ops);
703 std::swap(NumGEP1Ops, NumGEP2Ops);
704 }
705
706 // Is there anything to check?
707 if (NumGEP1Ops > MinOperands) {
708 for (unsigned i = FirstConstantOper; i != MaxOperands; ++i)
709 if (isa<ConstantInt>(GEP1Ops[i]) &&
710 !cast<ConstantInt>(GEP1Ops[i])->isZero()) {
711 // Yup, there's a constant in the tail. Set all variables to
Wojciech Matyjewicze1709452008-06-02 17:26:12 +0000712 // constants in the GEP instruction to make it suitable for
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000713 // TargetData::getIndexedOffset.
714 for (i = 0; i != MaxOperands; ++i)
715 if (!isa<ConstantInt>(GEP1Ops[i]))
716 GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
717 // Okay, now get the offset. This is the relative offset for the full
718 // instruction.
719 const TargetData &TD = getTargetData();
720 int64_t Offset1 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops,
721 NumGEP1Ops);
722
723 // Now check without any constants at the end.
724 int64_t Offset2 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops,
725 MinOperands);
726
Wojciech Matyjewicze1709452008-06-02 17:26:12 +0000727 // Make sure we compare the absolute difference.
728 if (Offset1 > Offset2)
729 std::swap(Offset1, Offset2);
730
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000731 // If the tail provided a bit enough offset, return noalias!
732 if ((uint64_t)(Offset2-Offset1) >= SizeMax)
733 return NoAlias;
Wojciech Matyjewicze1709452008-06-02 17:26:12 +0000734 // Otherwise break - we don't look for another constant in the tail.
735 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000736 }
737 }
738
739 // Couldn't find anything useful.
740 return MayAlias;
741 }
742
743 // If there are non-equal constants arguments, then we can figure
744 // out a minimum known delta between the two index expressions... at
745 // this point we know that the first constant index of GEP1 is less
746 // than the first constant index of GEP2.
747
748 // Advance BasePtr[12]Ty over this first differing constant operand.
749 BasePtr2Ty = cast<CompositeType>(BasePtr1Ty)->
750 getTypeAtIndex(GEP2Ops[FirstConstantOper]);
751 BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->
752 getTypeAtIndex(GEP1Ops[FirstConstantOper]);
753
754 // We are going to be using TargetData::getIndexedOffset to determine the
755 // offset that each of the GEP's is reaching. To do this, we have to convert
756 // all variable references to constant references. To do this, we convert the
757 // initial sequence of array subscripts into constant zeros to start with.
758 const Type *ZeroIdxTy = GEPPointerTy;
759 for (unsigned i = 0; i != FirstConstantOper; ++i) {
760 if (!isa<StructType>(ZeroIdxTy))
761 GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Type::Int32Ty);
762
763 if (const CompositeType *CT = dyn_cast<CompositeType>(ZeroIdxTy))
764 ZeroIdxTy = CT->getTypeAtIndex(GEP1Ops[i]);
765 }
766
767 // We know that GEP1Ops[FirstConstantOper] & GEP2Ops[FirstConstantOper] are ok
768
769 // Loop over the rest of the operands...
770 for (unsigned i = FirstConstantOper+1; i != MaxOperands; ++i) {
771 const Value *Op1 = i < NumGEP1Ops ? GEP1Ops[i] : 0;
772 const Value *Op2 = i < NumGEP2Ops ? GEP2Ops[i] : 0;
773 // If they are equal, use a zero index...
774 if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) {
775 if (!isa<ConstantInt>(Op1))
776 GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Op1->getType());
777 // Otherwise, just keep the constants we have.
778 } else {
779 if (Op1) {
780 if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
781 // If this is an array index, make sure the array element is in range.
782 if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty)) {
783 if (Op1C->getZExtValue() >= AT->getNumElements())
784 return MayAlias; // Be conservative with out-of-range accesses
Chris Lattnereaf7b232007-12-09 07:35:13 +0000785 } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty)) {
786 if (Op1C->getZExtValue() >= VT->getNumElements())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000787 return MayAlias; // Be conservative with out-of-range accesses
788 }
789
790 } else {
791 // GEP1 is known to produce a value less than GEP2. To be
792 // conservatively correct, we must assume the largest possible
793 // constant is used in this position. This cannot be the initial
794 // index to the GEP instructions (because we know we have at least one
795 // element before this one with the different constant arguments), so
796 // we know that the current index must be into either a struct or
797 // array. Because we know it's not constant, this cannot be a
798 // structure index. Because of this, we can calculate the maximum
799 // value possible.
800 //
801 if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
802 GEP1Ops[i] = ConstantInt::get(Type::Int64Ty,AT->getNumElements()-1);
Chris Lattnerc0656ad2007-11-06 05:58:42 +0000803 else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty))
804 GEP1Ops[i] = ConstantInt::get(Type::Int64Ty,VT->getNumElements()-1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000805 }
806 }
807
808 if (Op2) {
809 if (const ConstantInt *Op2C = dyn_cast<ConstantInt>(Op2)) {
810 // If this is an array index, make sure the array element is in range.
Chris Lattnereaf7b232007-12-09 07:35:13 +0000811 if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr2Ty)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000812 if (Op2C->getZExtValue() >= AT->getNumElements())
813 return MayAlias; // Be conservative with out-of-range accesses
Chris Lattnereaf7b232007-12-09 07:35:13 +0000814 } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr2Ty)) {
Chris Lattnerc0656ad2007-11-06 05:58:42 +0000815 if (Op2C->getZExtValue() >= VT->getNumElements())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000816 return MayAlias; // Be conservative with out-of-range accesses
817 }
818 } else { // Conservatively assume the minimum value for this index
819 GEP2Ops[i] = Constant::getNullValue(Op2->getType());
820 }
821 }
822 }
823
824 if (BasePtr1Ty && Op1) {
825 if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
826 BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[i]);
827 else
828 BasePtr1Ty = 0;
829 }
830
831 if (BasePtr2Ty && Op2) {
832 if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr2Ty))
833 BasePtr2Ty = CT->getTypeAtIndex(GEP2Ops[i]);
834 else
835 BasePtr2Ty = 0;
836 }
837 }
838
839 if (GEPPointerTy->getElementType()->isSized()) {
840 int64_t Offset1 =
841 getTargetData().getIndexedOffset(GEPPointerTy, GEP1Ops, NumGEP1Ops);
842 int64_t Offset2 =
843 getTargetData().getIndexedOffset(GEPPointerTy, GEP2Ops, NumGEP2Ops);
Chris Lattnerc0656ad2007-11-06 05:58:42 +0000844 assert(Offset1 != Offset2 &&
845 "There is at least one different constant here!");
846
847 // Make sure we compare the absolute difference.
848 if (Offset1 > Offset2)
849 std::swap(Offset1, Offset2);
850
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000851 if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
852 //cerr << "Determined that these two GEP's don't alias ["
853 // << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
854 return NoAlias;
855 }
856 }
857 return MayAlias;
858}
859
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000860// Make sure that anything that uses AliasAnalysis pulls in this file...
861DEFINING_FILE_FOR(BasicAliasAnalysis)