blob: 64cb358459787ffa87b06437fc7208d6068a11c8 [file] [log] [blame]
Misha Brukmana85d6bc2002-11-22 22:42:50 +00001//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3501fea2003-01-14 22:00:31 +000010// This file contains the X86 implementation of the TargetInstrInfo class.
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
Chris Lattner055c9652002-10-29 21:05:24 +000014#include "X86InstrInfo.h"
Chris Lattner4ce42a72002-12-03 05:42:53 +000015#include "X86.h"
Chris Lattnerabf05b22003-08-03 21:55:55 +000016#include "X86GenInstrInfo.inc"
Evan Chengaa3c1412006-05-30 21:45:53 +000017#include "X86InstrBuilder.h"
Owen Andersond94b6a12008-01-04 23:57:37 +000018#include "X86MachineFunctionInfo.h"
Evan Chengaa3c1412006-05-30 21:45:53 +000019#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
Owen Anderson718cb662007-09-07 04:06:50 +000021#include "llvm/ADT/STLExtras.h"
Owen Andersond94b6a12008-01-04 23:57:37 +000022#include "llvm/CodeGen/MachineFrameInfo.h"
Evan Chengaa3c1412006-05-30 21:45:53 +000023#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner84bc5422007-12-31 04:13:23 +000024#include "llvm/CodeGen/MachineRegisterInfo.h"
Evan Cheng258ff672006-12-01 21:52:41 +000025#include "llvm/CodeGen/LiveVariables.h"
Owen Anderson43dbe052008-01-07 01:35:02 +000026#include "llvm/Support/CommandLine.h"
Evan Cheng0488db92007-09-25 01:57:46 +000027#include "llvm/Target/TargetOptions.h"
Owen Anderson43dbe052008-01-07 01:35:02 +000028
Brian Gaeked0fde302003-11-11 22:41:34 +000029using namespace llvm;
30
Owen Anderson43dbe052008-01-07 01:35:02 +000031namespace {
32 cl::opt<bool>
33 NoFusing("disable-spill-fusing",
34 cl::desc("Disable fusing of spill code into instructions"));
35 cl::opt<bool>
36 PrintFailedFusing("print-failed-fuse-candidates",
37 cl::desc("Print instructions that the allocator wants to"
38 " fuse, but the X86 backend currently can't"),
39 cl::Hidden);
Evan Chengd8850a52008-02-22 09:25:47 +000040 cl::opt<bool>
41 ReMatPICLoad("remat-pic-load",
42 cl::desc("Allow rematerializing pic load"),
Evan Chengc19eca32008-02-23 02:07:42 +000043 cl::init(true), cl::Hidden);
Owen Anderson43dbe052008-01-07 01:35:02 +000044}
45
Evan Chengaa3c1412006-05-30 21:45:53 +000046X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Chris Lattner64105522008-01-01 01:03:04 +000047 : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
Evan Cheng25ab6902006-09-08 06:48:29 +000048 TM(tm), RI(tm, *this) {
Owen Anderson43dbe052008-01-07 01:35:02 +000049 SmallVector<unsigned,16> AmbEntries;
50 static const unsigned OpTbl2Addr[][2] = {
51 { X86::ADC32ri, X86::ADC32mi },
52 { X86::ADC32ri8, X86::ADC32mi8 },
53 { X86::ADC32rr, X86::ADC32mr },
54 { X86::ADC64ri32, X86::ADC64mi32 },
55 { X86::ADC64ri8, X86::ADC64mi8 },
56 { X86::ADC64rr, X86::ADC64mr },
57 { X86::ADD16ri, X86::ADD16mi },
58 { X86::ADD16ri8, X86::ADD16mi8 },
59 { X86::ADD16rr, X86::ADD16mr },
60 { X86::ADD32ri, X86::ADD32mi },
61 { X86::ADD32ri8, X86::ADD32mi8 },
62 { X86::ADD32rr, X86::ADD32mr },
63 { X86::ADD64ri32, X86::ADD64mi32 },
64 { X86::ADD64ri8, X86::ADD64mi8 },
65 { X86::ADD64rr, X86::ADD64mr },
66 { X86::ADD8ri, X86::ADD8mi },
67 { X86::ADD8rr, X86::ADD8mr },
68 { X86::AND16ri, X86::AND16mi },
69 { X86::AND16ri8, X86::AND16mi8 },
70 { X86::AND16rr, X86::AND16mr },
71 { X86::AND32ri, X86::AND32mi },
72 { X86::AND32ri8, X86::AND32mi8 },
73 { X86::AND32rr, X86::AND32mr },
74 { X86::AND64ri32, X86::AND64mi32 },
75 { X86::AND64ri8, X86::AND64mi8 },
76 { X86::AND64rr, X86::AND64mr },
77 { X86::AND8ri, X86::AND8mi },
78 { X86::AND8rr, X86::AND8mr },
79 { X86::DEC16r, X86::DEC16m },
80 { X86::DEC32r, X86::DEC32m },
81 { X86::DEC64_16r, X86::DEC64_16m },
82 { X86::DEC64_32r, X86::DEC64_32m },
83 { X86::DEC64r, X86::DEC64m },
84 { X86::DEC8r, X86::DEC8m },
85 { X86::INC16r, X86::INC16m },
86 { X86::INC32r, X86::INC32m },
87 { X86::INC64_16r, X86::INC64_16m },
88 { X86::INC64_32r, X86::INC64_32m },
89 { X86::INC64r, X86::INC64m },
90 { X86::INC8r, X86::INC8m },
91 { X86::NEG16r, X86::NEG16m },
92 { X86::NEG32r, X86::NEG32m },
93 { X86::NEG64r, X86::NEG64m },
94 { X86::NEG8r, X86::NEG8m },
95 { X86::NOT16r, X86::NOT16m },
96 { X86::NOT32r, X86::NOT32m },
97 { X86::NOT64r, X86::NOT64m },
98 { X86::NOT8r, X86::NOT8m },
99 { X86::OR16ri, X86::OR16mi },
100 { X86::OR16ri8, X86::OR16mi8 },
101 { X86::OR16rr, X86::OR16mr },
102 { X86::OR32ri, X86::OR32mi },
103 { X86::OR32ri8, X86::OR32mi8 },
104 { X86::OR32rr, X86::OR32mr },
105 { X86::OR64ri32, X86::OR64mi32 },
106 { X86::OR64ri8, X86::OR64mi8 },
107 { X86::OR64rr, X86::OR64mr },
108 { X86::OR8ri, X86::OR8mi },
109 { X86::OR8rr, X86::OR8mr },
110 { X86::ROL16r1, X86::ROL16m1 },
111 { X86::ROL16rCL, X86::ROL16mCL },
112 { X86::ROL16ri, X86::ROL16mi },
113 { X86::ROL32r1, X86::ROL32m1 },
114 { X86::ROL32rCL, X86::ROL32mCL },
115 { X86::ROL32ri, X86::ROL32mi },
116 { X86::ROL64r1, X86::ROL64m1 },
117 { X86::ROL64rCL, X86::ROL64mCL },
118 { X86::ROL64ri, X86::ROL64mi },
119 { X86::ROL8r1, X86::ROL8m1 },
120 { X86::ROL8rCL, X86::ROL8mCL },
121 { X86::ROL8ri, X86::ROL8mi },
122 { X86::ROR16r1, X86::ROR16m1 },
123 { X86::ROR16rCL, X86::ROR16mCL },
124 { X86::ROR16ri, X86::ROR16mi },
125 { X86::ROR32r1, X86::ROR32m1 },
126 { X86::ROR32rCL, X86::ROR32mCL },
127 { X86::ROR32ri, X86::ROR32mi },
128 { X86::ROR64r1, X86::ROR64m1 },
129 { X86::ROR64rCL, X86::ROR64mCL },
130 { X86::ROR64ri, X86::ROR64mi },
131 { X86::ROR8r1, X86::ROR8m1 },
132 { X86::ROR8rCL, X86::ROR8mCL },
133 { X86::ROR8ri, X86::ROR8mi },
134 { X86::SAR16r1, X86::SAR16m1 },
135 { X86::SAR16rCL, X86::SAR16mCL },
136 { X86::SAR16ri, X86::SAR16mi },
137 { X86::SAR32r1, X86::SAR32m1 },
138 { X86::SAR32rCL, X86::SAR32mCL },
139 { X86::SAR32ri, X86::SAR32mi },
140 { X86::SAR64r1, X86::SAR64m1 },
141 { X86::SAR64rCL, X86::SAR64mCL },
142 { X86::SAR64ri, X86::SAR64mi },
143 { X86::SAR8r1, X86::SAR8m1 },
144 { X86::SAR8rCL, X86::SAR8mCL },
145 { X86::SAR8ri, X86::SAR8mi },
146 { X86::SBB32ri, X86::SBB32mi },
147 { X86::SBB32ri8, X86::SBB32mi8 },
148 { X86::SBB32rr, X86::SBB32mr },
149 { X86::SBB64ri32, X86::SBB64mi32 },
150 { X86::SBB64ri8, X86::SBB64mi8 },
151 { X86::SBB64rr, X86::SBB64mr },
Owen Anderson43dbe052008-01-07 01:35:02 +0000152 { X86::SHL16rCL, X86::SHL16mCL },
153 { X86::SHL16ri, X86::SHL16mi },
Owen Anderson43dbe052008-01-07 01:35:02 +0000154 { X86::SHL32rCL, X86::SHL32mCL },
155 { X86::SHL32ri, X86::SHL32mi },
Owen Anderson43dbe052008-01-07 01:35:02 +0000156 { X86::SHL64rCL, X86::SHL64mCL },
157 { X86::SHL64ri, X86::SHL64mi },
Owen Anderson43dbe052008-01-07 01:35:02 +0000158 { X86::SHL8rCL, X86::SHL8mCL },
159 { X86::SHL8ri, X86::SHL8mi },
160 { X86::SHLD16rrCL, X86::SHLD16mrCL },
161 { X86::SHLD16rri8, X86::SHLD16mri8 },
162 { X86::SHLD32rrCL, X86::SHLD32mrCL },
163 { X86::SHLD32rri8, X86::SHLD32mri8 },
164 { X86::SHLD64rrCL, X86::SHLD64mrCL },
165 { X86::SHLD64rri8, X86::SHLD64mri8 },
166 { X86::SHR16r1, X86::SHR16m1 },
167 { X86::SHR16rCL, X86::SHR16mCL },
168 { X86::SHR16ri, X86::SHR16mi },
169 { X86::SHR32r1, X86::SHR32m1 },
170 { X86::SHR32rCL, X86::SHR32mCL },
171 { X86::SHR32ri, X86::SHR32mi },
172 { X86::SHR64r1, X86::SHR64m1 },
173 { X86::SHR64rCL, X86::SHR64mCL },
174 { X86::SHR64ri, X86::SHR64mi },
175 { X86::SHR8r1, X86::SHR8m1 },
176 { X86::SHR8rCL, X86::SHR8mCL },
177 { X86::SHR8ri, X86::SHR8mi },
178 { X86::SHRD16rrCL, X86::SHRD16mrCL },
179 { X86::SHRD16rri8, X86::SHRD16mri8 },
180 { X86::SHRD32rrCL, X86::SHRD32mrCL },
181 { X86::SHRD32rri8, X86::SHRD32mri8 },
182 { X86::SHRD64rrCL, X86::SHRD64mrCL },
183 { X86::SHRD64rri8, X86::SHRD64mri8 },
184 { X86::SUB16ri, X86::SUB16mi },
185 { X86::SUB16ri8, X86::SUB16mi8 },
186 { X86::SUB16rr, X86::SUB16mr },
187 { X86::SUB32ri, X86::SUB32mi },
188 { X86::SUB32ri8, X86::SUB32mi8 },
189 { X86::SUB32rr, X86::SUB32mr },
190 { X86::SUB64ri32, X86::SUB64mi32 },
191 { X86::SUB64ri8, X86::SUB64mi8 },
192 { X86::SUB64rr, X86::SUB64mr },
193 { X86::SUB8ri, X86::SUB8mi },
194 { X86::SUB8rr, X86::SUB8mr },
195 { X86::XOR16ri, X86::XOR16mi },
196 { X86::XOR16ri8, X86::XOR16mi8 },
197 { X86::XOR16rr, X86::XOR16mr },
198 { X86::XOR32ri, X86::XOR32mi },
199 { X86::XOR32ri8, X86::XOR32mi8 },
200 { X86::XOR32rr, X86::XOR32mr },
201 { X86::XOR64ri32, X86::XOR64mi32 },
202 { X86::XOR64ri8, X86::XOR64mi8 },
203 { X86::XOR64rr, X86::XOR64mr },
204 { X86::XOR8ri, X86::XOR8mi },
205 { X86::XOR8rr, X86::XOR8mr }
206 };
207
208 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
209 unsigned RegOp = OpTbl2Addr[i][0];
210 unsigned MemOp = OpTbl2Addr[i][1];
211 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp, MemOp)))
212 assert(false && "Duplicated entries?");
213 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
214 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
215 std::make_pair(RegOp, AuxInfo))))
216 AmbEntries.push_back(MemOp);
217 }
218
219 // If the third value is 1, then it's folding either a load or a store.
220 static const unsigned OpTbl0[][3] = {
221 { X86::CALL32r, X86::CALL32m, 1 },
222 { X86::CALL64r, X86::CALL64m, 1 },
223 { X86::CMP16ri, X86::CMP16mi, 1 },
224 { X86::CMP16ri8, X86::CMP16mi8, 1 },
Dan Gohman27845362008-03-25 16:53:19 +0000225 { X86::CMP16rr, X86::CMP16mr, 1 },
Owen Anderson43dbe052008-01-07 01:35:02 +0000226 { X86::CMP32ri, X86::CMP32mi, 1 },
227 { X86::CMP32ri8, X86::CMP32mi8, 1 },
Dan Gohman27845362008-03-25 16:53:19 +0000228 { X86::CMP32rr, X86::CMP32mr, 1 },
Owen Anderson43dbe052008-01-07 01:35:02 +0000229 { X86::CMP64ri32, X86::CMP64mi32, 1 },
230 { X86::CMP64ri8, X86::CMP64mi8, 1 },
Dan Gohman27845362008-03-25 16:53:19 +0000231 { X86::CMP64rr, X86::CMP64mr, 1 },
Owen Anderson43dbe052008-01-07 01:35:02 +0000232 { X86::CMP8ri, X86::CMP8mi, 1 },
Dan Gohman27845362008-03-25 16:53:19 +0000233 { X86::CMP8rr, X86::CMP8mr, 1 },
Owen Anderson43dbe052008-01-07 01:35:02 +0000234 { X86::DIV16r, X86::DIV16m, 1 },
235 { X86::DIV32r, X86::DIV32m, 1 },
236 { X86::DIV64r, X86::DIV64m, 1 },
237 { X86::DIV8r, X86::DIV8m, 1 },
238 { X86::FsMOVAPDrr, X86::MOVSDmr, 0 },
239 { X86::FsMOVAPSrr, X86::MOVSSmr, 0 },
240 { X86::IDIV16r, X86::IDIV16m, 1 },
241 { X86::IDIV32r, X86::IDIV32m, 1 },
242 { X86::IDIV64r, X86::IDIV64m, 1 },
243 { X86::IDIV8r, X86::IDIV8m, 1 },
244 { X86::IMUL16r, X86::IMUL16m, 1 },
245 { X86::IMUL32r, X86::IMUL32m, 1 },
246 { X86::IMUL64r, X86::IMUL64m, 1 },
247 { X86::IMUL8r, X86::IMUL8m, 1 },
248 { X86::JMP32r, X86::JMP32m, 1 },
249 { X86::JMP64r, X86::JMP64m, 1 },
250 { X86::MOV16ri, X86::MOV16mi, 0 },
251 { X86::MOV16rr, X86::MOV16mr, 0 },
252 { X86::MOV16to16_, X86::MOV16_mr, 0 },
253 { X86::MOV32ri, X86::MOV32mi, 0 },
254 { X86::MOV32rr, X86::MOV32mr, 0 },
255 { X86::MOV32to32_, X86::MOV32_mr, 0 },
256 { X86::MOV64ri32, X86::MOV64mi32, 0 },
257 { X86::MOV64rr, X86::MOV64mr, 0 },
258 { X86::MOV8ri, X86::MOV8mi, 0 },
259 { X86::MOV8rr, X86::MOV8mr, 0 },
260 { X86::MOVAPDrr, X86::MOVAPDmr, 0 },
261 { X86::MOVAPSrr, X86::MOVAPSmr, 0 },
262 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
263 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
264 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0 },
265 { X86::MOVSDrr, X86::MOVSDmr, 0 },
266 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
267 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0 },
268 { X86::MOVSSrr, X86::MOVSSmr, 0 },
269 { X86::MOVUPDrr, X86::MOVUPDmr, 0 },
270 { X86::MOVUPSrr, X86::MOVUPSmr, 0 },
271 { X86::MUL16r, X86::MUL16m, 1 },
272 { X86::MUL32r, X86::MUL32m, 1 },
273 { X86::MUL64r, X86::MUL64m, 1 },
274 { X86::MUL8r, X86::MUL8m, 1 },
275 { X86::SETAEr, X86::SETAEm, 0 },
276 { X86::SETAr, X86::SETAm, 0 },
277 { X86::SETBEr, X86::SETBEm, 0 },
278 { X86::SETBr, X86::SETBm, 0 },
279 { X86::SETEr, X86::SETEm, 0 },
280 { X86::SETGEr, X86::SETGEm, 0 },
281 { X86::SETGr, X86::SETGm, 0 },
282 { X86::SETLEr, X86::SETLEm, 0 },
283 { X86::SETLr, X86::SETLm, 0 },
284 { X86::SETNEr, X86::SETNEm, 0 },
285 { X86::SETNPr, X86::SETNPm, 0 },
286 { X86::SETNSr, X86::SETNSm, 0 },
287 { X86::SETPr, X86::SETPm, 0 },
288 { X86::SETSr, X86::SETSm, 0 },
289 { X86::TAILJMPr, X86::TAILJMPm, 1 },
290 { X86::TEST16ri, X86::TEST16mi, 1 },
291 { X86::TEST32ri, X86::TEST32mi, 1 },
292 { X86::TEST64ri32, X86::TEST64mi32, 1 },
Chris Lattnerf9b3f372008-01-11 18:00:50 +0000293 { X86::TEST8ri, X86::TEST8mi, 1 }
Owen Anderson43dbe052008-01-07 01:35:02 +0000294 };
295
296 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
297 unsigned RegOp = OpTbl0[i][0];
298 unsigned MemOp = OpTbl0[i][1];
299 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp, MemOp)))
300 assert(false && "Duplicated entries?");
301 unsigned FoldedLoad = OpTbl0[i][2];
302 // Index 0, folded load or store.
303 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
304 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
305 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
306 std::make_pair(RegOp, AuxInfo))))
307 AmbEntries.push_back(MemOp);
308 }
309
310 static const unsigned OpTbl1[][2] = {
311 { X86::CMP16rr, X86::CMP16rm },
312 { X86::CMP32rr, X86::CMP32rm },
313 { X86::CMP64rr, X86::CMP64rm },
314 { X86::CMP8rr, X86::CMP8rm },
315 { X86::CVTSD2SSrr, X86::CVTSD2SSrm },
316 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm },
317 { X86::CVTSI2SDrr, X86::CVTSI2SDrm },
318 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm },
319 { X86::CVTSI2SSrr, X86::CVTSI2SSrm },
320 { X86::CVTSS2SDrr, X86::CVTSS2SDrm },
321 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm },
322 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm },
323 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm },
324 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm },
325 { X86::FsMOVAPDrr, X86::MOVSDrm },
326 { X86::FsMOVAPSrr, X86::MOVSSrm },
327 { X86::IMUL16rri, X86::IMUL16rmi },
328 { X86::IMUL16rri8, X86::IMUL16rmi8 },
329 { X86::IMUL32rri, X86::IMUL32rmi },
330 { X86::IMUL32rri8, X86::IMUL32rmi8 },
331 { X86::IMUL64rri32, X86::IMUL64rmi32 },
332 { X86::IMUL64rri8, X86::IMUL64rmi8 },
333 { X86::Int_CMPSDrr, X86::Int_CMPSDrm },
334 { X86::Int_CMPSSrr, X86::Int_CMPSSrm },
335 { X86::Int_COMISDrr, X86::Int_COMISDrm },
336 { X86::Int_COMISSrr, X86::Int_COMISSrm },
337 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm },
338 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm },
339 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm },
340 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm },
341 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm },
342 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm },
343 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
344 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm },
345 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm },
346 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
347 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm },
348 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
349 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm },
350 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm },
351 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
352 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm },
353 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
354 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
355 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
356 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
357 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
358 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
359 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm },
360 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm },
361 { X86::MOV16rr, X86::MOV16rm },
362 { X86::MOV16to16_, X86::MOV16_rm },
363 { X86::MOV32rr, X86::MOV32rm },
364 { X86::MOV32to32_, X86::MOV32_rm },
365 { X86::MOV64rr, X86::MOV64rm },
366 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm },
367 { X86::MOV64toSDrr, X86::MOV64toSDrm },
368 { X86::MOV8rr, X86::MOV8rm },
369 { X86::MOVAPDrr, X86::MOVAPDrm },
370 { X86::MOVAPSrr, X86::MOVAPSrm },
371 { X86::MOVDDUPrr, X86::MOVDDUPrm },
372 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm },
373 { X86::MOVDI2SSrr, X86::MOVDI2SSrm },
374 { X86::MOVSD2PDrr, X86::MOVSD2PDrm },
375 { X86::MOVSDrr, X86::MOVSDrm },
376 { X86::MOVSHDUPrr, X86::MOVSHDUPrm },
377 { X86::MOVSLDUPrr, X86::MOVSLDUPrm },
378 { X86::MOVSS2PSrr, X86::MOVSS2PSrm },
379 { X86::MOVSSrr, X86::MOVSSrm },
380 { X86::MOVSX16rr8, X86::MOVSX16rm8 },
381 { X86::MOVSX32rr16, X86::MOVSX32rm16 },
382 { X86::MOVSX32rr8, X86::MOVSX32rm8 },
383 { X86::MOVSX64rr16, X86::MOVSX64rm16 },
384 { X86::MOVSX64rr32, X86::MOVSX64rm32 },
385 { X86::MOVSX64rr8, X86::MOVSX64rm8 },
386 { X86::MOVUPDrr, X86::MOVUPDrm },
387 { X86::MOVUPSrr, X86::MOVUPSrm },
388 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm },
389 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm },
390 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
391 { X86::MOVZX16rr8, X86::MOVZX16rm8 },
392 { X86::MOVZX32rr16, X86::MOVZX32rm16 },
393 { X86::MOVZX32rr8, X86::MOVZX32rm8 },
394 { X86::MOVZX64rr16, X86::MOVZX64rm16 },
395 { X86::MOVZX64rr8, X86::MOVZX64rm8 },
396 { X86::PSHUFDri, X86::PSHUFDmi },
397 { X86::PSHUFHWri, X86::PSHUFHWmi },
398 { X86::PSHUFLWri, X86::PSHUFLWmi },
Owen Anderson43dbe052008-01-07 01:35:02 +0000399 { X86::RCPPSr, X86::RCPPSm },
400 { X86::RCPPSr_Int, X86::RCPPSm_Int },
401 { X86::RSQRTPSr, X86::RSQRTPSm },
402 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int },
403 { X86::RSQRTSSr, X86::RSQRTSSm },
404 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int },
405 { X86::SQRTPDr, X86::SQRTPDm },
406 { X86::SQRTPDr_Int, X86::SQRTPDm_Int },
407 { X86::SQRTPSr, X86::SQRTPSm },
408 { X86::SQRTPSr_Int, X86::SQRTPSm_Int },
409 { X86::SQRTSDr, X86::SQRTSDm },
410 { X86::SQRTSDr_Int, X86::SQRTSDm_Int },
411 { X86::SQRTSSr, X86::SQRTSSm },
412 { X86::SQRTSSr_Int, X86::SQRTSSm_Int },
413 { X86::TEST16rr, X86::TEST16rm },
414 { X86::TEST32rr, X86::TEST32rm },
415 { X86::TEST64rr, X86::TEST64rm },
416 { X86::TEST8rr, X86::TEST8rm },
417 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
418 { X86::UCOMISDrr, X86::UCOMISDrm },
Chris Lattnerf9b3f372008-01-11 18:00:50 +0000419 { X86::UCOMISSrr, X86::UCOMISSrm }
Owen Anderson43dbe052008-01-07 01:35:02 +0000420 };
421
422 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
423 unsigned RegOp = OpTbl1[i][0];
424 unsigned MemOp = OpTbl1[i][1];
425 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp, MemOp)))
426 assert(false && "Duplicated entries?");
427 unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
428 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
429 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
430 std::make_pair(RegOp, AuxInfo))))
431 AmbEntries.push_back(MemOp);
432 }
433
434 static const unsigned OpTbl2[][2] = {
435 { X86::ADC32rr, X86::ADC32rm },
436 { X86::ADC64rr, X86::ADC64rm },
437 { X86::ADD16rr, X86::ADD16rm },
438 { X86::ADD32rr, X86::ADD32rm },
439 { X86::ADD64rr, X86::ADD64rm },
440 { X86::ADD8rr, X86::ADD8rm },
441 { X86::ADDPDrr, X86::ADDPDrm },
442 { X86::ADDPSrr, X86::ADDPSrm },
443 { X86::ADDSDrr, X86::ADDSDrm },
444 { X86::ADDSSrr, X86::ADDSSrm },
445 { X86::ADDSUBPDrr, X86::ADDSUBPDrm },
446 { X86::ADDSUBPSrr, X86::ADDSUBPSrm },
447 { X86::AND16rr, X86::AND16rm },
448 { X86::AND32rr, X86::AND32rm },
449 { X86::AND64rr, X86::AND64rm },
450 { X86::AND8rr, X86::AND8rm },
451 { X86::ANDNPDrr, X86::ANDNPDrm },
452 { X86::ANDNPSrr, X86::ANDNPSrm },
453 { X86::ANDPDrr, X86::ANDPDrm },
454 { X86::ANDPSrr, X86::ANDPSrm },
455 { X86::CMOVA16rr, X86::CMOVA16rm },
456 { X86::CMOVA32rr, X86::CMOVA32rm },
457 { X86::CMOVA64rr, X86::CMOVA64rm },
458 { X86::CMOVAE16rr, X86::CMOVAE16rm },
459 { X86::CMOVAE32rr, X86::CMOVAE32rm },
460 { X86::CMOVAE64rr, X86::CMOVAE64rm },
461 { X86::CMOVB16rr, X86::CMOVB16rm },
462 { X86::CMOVB32rr, X86::CMOVB32rm },
463 { X86::CMOVB64rr, X86::CMOVB64rm },
464 { X86::CMOVBE16rr, X86::CMOVBE16rm },
465 { X86::CMOVBE32rr, X86::CMOVBE32rm },
466 { X86::CMOVBE64rr, X86::CMOVBE64rm },
467 { X86::CMOVE16rr, X86::CMOVE16rm },
468 { X86::CMOVE32rr, X86::CMOVE32rm },
469 { X86::CMOVE64rr, X86::CMOVE64rm },
470 { X86::CMOVG16rr, X86::CMOVG16rm },
471 { X86::CMOVG32rr, X86::CMOVG32rm },
472 { X86::CMOVG64rr, X86::CMOVG64rm },
473 { X86::CMOVGE16rr, X86::CMOVGE16rm },
474 { X86::CMOVGE32rr, X86::CMOVGE32rm },
475 { X86::CMOVGE64rr, X86::CMOVGE64rm },
476 { X86::CMOVL16rr, X86::CMOVL16rm },
477 { X86::CMOVL32rr, X86::CMOVL32rm },
478 { X86::CMOVL64rr, X86::CMOVL64rm },
479 { X86::CMOVLE16rr, X86::CMOVLE16rm },
480 { X86::CMOVLE32rr, X86::CMOVLE32rm },
481 { X86::CMOVLE64rr, X86::CMOVLE64rm },
482 { X86::CMOVNE16rr, X86::CMOVNE16rm },
483 { X86::CMOVNE32rr, X86::CMOVNE32rm },
484 { X86::CMOVNE64rr, X86::CMOVNE64rm },
485 { X86::CMOVNP16rr, X86::CMOVNP16rm },
486 { X86::CMOVNP32rr, X86::CMOVNP32rm },
487 { X86::CMOVNP64rr, X86::CMOVNP64rm },
488 { X86::CMOVNS16rr, X86::CMOVNS16rm },
489 { X86::CMOVNS32rr, X86::CMOVNS32rm },
490 { X86::CMOVNS64rr, X86::CMOVNS64rm },
491 { X86::CMOVP16rr, X86::CMOVP16rm },
492 { X86::CMOVP32rr, X86::CMOVP32rm },
493 { X86::CMOVP64rr, X86::CMOVP64rm },
494 { X86::CMOVS16rr, X86::CMOVS16rm },
495 { X86::CMOVS32rr, X86::CMOVS32rm },
496 { X86::CMOVS64rr, X86::CMOVS64rm },
497 { X86::CMPPDrri, X86::CMPPDrmi },
498 { X86::CMPPSrri, X86::CMPPSrmi },
499 { X86::CMPSDrr, X86::CMPSDrm },
500 { X86::CMPSSrr, X86::CMPSSrm },
501 { X86::DIVPDrr, X86::DIVPDrm },
502 { X86::DIVPSrr, X86::DIVPSrm },
503 { X86::DIVSDrr, X86::DIVSDrm },
504 { X86::DIVSSrr, X86::DIVSSrm },
Evan Cheng33663fc2008-02-08 00:12:56 +0000505 { X86::FsANDNPDrr, X86::FsANDNPDrm },
506 { X86::FsANDNPSrr, X86::FsANDNPSrm },
507 { X86::FsANDPDrr, X86::FsANDPDrm },
508 { X86::FsANDPSrr, X86::FsANDPSrm },
509 { X86::FsORPDrr, X86::FsORPDrm },
510 { X86::FsORPSrr, X86::FsORPSrm },
511 { X86::FsXORPDrr, X86::FsXORPDrm },
512 { X86::FsXORPSrr, X86::FsXORPSrm },
Owen Anderson43dbe052008-01-07 01:35:02 +0000513 { X86::HADDPDrr, X86::HADDPDrm },
514 { X86::HADDPSrr, X86::HADDPSrm },
515 { X86::HSUBPDrr, X86::HSUBPDrm },
516 { X86::HSUBPSrr, X86::HSUBPSrm },
517 { X86::IMUL16rr, X86::IMUL16rm },
518 { X86::IMUL32rr, X86::IMUL32rm },
519 { X86::IMUL64rr, X86::IMUL64rm },
520 { X86::MAXPDrr, X86::MAXPDrm },
521 { X86::MAXPDrr_Int, X86::MAXPDrm_Int },
522 { X86::MAXPSrr, X86::MAXPSrm },
523 { X86::MAXPSrr_Int, X86::MAXPSrm_Int },
524 { X86::MAXSDrr, X86::MAXSDrm },
525 { X86::MAXSDrr_Int, X86::MAXSDrm_Int },
526 { X86::MAXSSrr, X86::MAXSSrm },
527 { X86::MAXSSrr_Int, X86::MAXSSrm_Int },
528 { X86::MINPDrr, X86::MINPDrm },
529 { X86::MINPDrr_Int, X86::MINPDrm_Int },
530 { X86::MINPSrr, X86::MINPSrm },
531 { X86::MINPSrr_Int, X86::MINPSrm_Int },
532 { X86::MINSDrr, X86::MINSDrm },
533 { X86::MINSDrr_Int, X86::MINSDrm_Int },
534 { X86::MINSSrr, X86::MINSSrm },
535 { X86::MINSSrr_Int, X86::MINSSrm_Int },
536 { X86::MULPDrr, X86::MULPDrm },
537 { X86::MULPSrr, X86::MULPSrm },
538 { X86::MULSDrr, X86::MULSDrm },
539 { X86::MULSSrr, X86::MULSSrm },
540 { X86::OR16rr, X86::OR16rm },
541 { X86::OR32rr, X86::OR32rm },
542 { X86::OR64rr, X86::OR64rm },
543 { X86::OR8rr, X86::OR8rm },
544 { X86::ORPDrr, X86::ORPDrm },
545 { X86::ORPSrr, X86::ORPSrm },
546 { X86::PACKSSDWrr, X86::PACKSSDWrm },
547 { X86::PACKSSWBrr, X86::PACKSSWBrm },
548 { X86::PACKUSWBrr, X86::PACKUSWBrm },
549 { X86::PADDBrr, X86::PADDBrm },
550 { X86::PADDDrr, X86::PADDDrm },
551 { X86::PADDQrr, X86::PADDQrm },
552 { X86::PADDSBrr, X86::PADDSBrm },
553 { X86::PADDSWrr, X86::PADDSWrm },
554 { X86::PADDWrr, X86::PADDWrm },
555 { X86::PANDNrr, X86::PANDNrm },
556 { X86::PANDrr, X86::PANDrm },
557 { X86::PAVGBrr, X86::PAVGBrm },
558 { X86::PAVGWrr, X86::PAVGWrm },
559 { X86::PCMPEQBrr, X86::PCMPEQBrm },
560 { X86::PCMPEQDrr, X86::PCMPEQDrm },
561 { X86::PCMPEQWrr, X86::PCMPEQWrm },
562 { X86::PCMPGTBrr, X86::PCMPGTBrm },
563 { X86::PCMPGTDrr, X86::PCMPGTDrm },
564 { X86::PCMPGTWrr, X86::PCMPGTWrm },
565 { X86::PINSRWrri, X86::PINSRWrmi },
566 { X86::PMADDWDrr, X86::PMADDWDrm },
567 { X86::PMAXSWrr, X86::PMAXSWrm },
568 { X86::PMAXUBrr, X86::PMAXUBrm },
569 { X86::PMINSWrr, X86::PMINSWrm },
570 { X86::PMINUBrr, X86::PMINUBrm },
571 { X86::PMULHUWrr, X86::PMULHUWrm },
572 { X86::PMULHWrr, X86::PMULHWrm },
573 { X86::PMULLWrr, X86::PMULLWrm },
574 { X86::PMULUDQrr, X86::PMULUDQrm },
575 { X86::PORrr, X86::PORrm },
576 { X86::PSADBWrr, X86::PSADBWrm },
577 { X86::PSLLDrr, X86::PSLLDrm },
578 { X86::PSLLQrr, X86::PSLLQrm },
579 { X86::PSLLWrr, X86::PSLLWrm },
580 { X86::PSRADrr, X86::PSRADrm },
581 { X86::PSRAWrr, X86::PSRAWrm },
582 { X86::PSRLDrr, X86::PSRLDrm },
583 { X86::PSRLQrr, X86::PSRLQrm },
584 { X86::PSRLWrr, X86::PSRLWrm },
585 { X86::PSUBBrr, X86::PSUBBrm },
586 { X86::PSUBDrr, X86::PSUBDrm },
587 { X86::PSUBSBrr, X86::PSUBSBrm },
588 { X86::PSUBSWrr, X86::PSUBSWrm },
589 { X86::PSUBWrr, X86::PSUBWrm },
590 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm },
591 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm },
592 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm },
593 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm },
594 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm },
595 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm },
596 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm },
597 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm },
598 { X86::PXORrr, X86::PXORrm },
599 { X86::SBB32rr, X86::SBB32rm },
600 { X86::SBB64rr, X86::SBB64rm },
601 { X86::SHUFPDrri, X86::SHUFPDrmi },
602 { X86::SHUFPSrri, X86::SHUFPSrmi },
603 { X86::SUB16rr, X86::SUB16rm },
604 { X86::SUB32rr, X86::SUB32rm },
605 { X86::SUB64rr, X86::SUB64rm },
606 { X86::SUB8rr, X86::SUB8rm },
607 { X86::SUBPDrr, X86::SUBPDrm },
608 { X86::SUBPSrr, X86::SUBPSrm },
609 { X86::SUBSDrr, X86::SUBSDrm },
610 { X86::SUBSSrr, X86::SUBSSrm },
611 // FIXME: TEST*rr -> swapped operand of TEST*mr.
612 { X86::UNPCKHPDrr, X86::UNPCKHPDrm },
613 { X86::UNPCKHPSrr, X86::UNPCKHPSrm },
614 { X86::UNPCKLPDrr, X86::UNPCKLPDrm },
615 { X86::UNPCKLPSrr, X86::UNPCKLPSrm },
616 { X86::XOR16rr, X86::XOR16rm },
617 { X86::XOR32rr, X86::XOR32rm },
618 { X86::XOR64rr, X86::XOR64rm },
619 { X86::XOR8rr, X86::XOR8rm },
620 { X86::XORPDrr, X86::XORPDrm },
621 { X86::XORPSrr, X86::XORPSrm }
622 };
623
624 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
625 unsigned RegOp = OpTbl2[i][0];
626 unsigned MemOp = OpTbl2[i][1];
627 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp, MemOp)))
628 assert(false && "Duplicated entries?");
629 unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
630 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
631 std::make_pair(RegOp, AuxInfo))))
632 AmbEntries.push_back(MemOp);
633 }
634
635 // Remove ambiguous entries.
636 assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
Chris Lattner72614082002-10-25 22:55:53 +0000637}
638
Alkis Evlogimenos5e300022003-12-28 17:35:08 +0000639bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
640 unsigned& sourceReg,
641 unsigned& destReg) const {
Chris Lattner07f7cc32008-03-11 19:28:17 +0000642 switch (MI.getOpcode()) {
643 default:
644 return false;
645 case X86::MOV8rr:
646 case X86::MOV16rr:
647 case X86::MOV32rr:
648 case X86::MOV64rr:
649 case X86::MOV16to16_:
650 case X86::MOV32to32_:
Chris Lattner07f7cc32008-03-11 19:28:17 +0000651 case X86::MOVSSrr:
652 case X86::MOVSDrr:
Chris Lattner1d386772008-03-11 19:30:09 +0000653
654 // FP Stack register class copies
655 case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
656 case X86::MOV_Fp3264: case X86::MOV_Fp3280:
657 case X86::MOV_Fp6432: case X86::MOV_Fp8032:
658
Chris Lattner07f7cc32008-03-11 19:28:17 +0000659 case X86::FsMOVAPSrr:
660 case X86::FsMOVAPDrr:
661 case X86::MOVAPSrr:
662 case X86::MOVAPDrr:
663 case X86::MOVSS2PSrr:
664 case X86::MOVSD2PDrr:
665 case X86::MOVPS2SSrr:
666 case X86::MOVPD2SDrr:
667 case X86::MMX_MOVD64rr:
668 case X86::MMX_MOVQ64rr:
669 assert(MI.getNumOperands() >= 2 &&
670 MI.getOperand(0).isRegister() &&
671 MI.getOperand(1).isRegister() &&
672 "invalid register-register move instruction");
673 sourceReg = MI.getOperand(1).getReg();
674 destReg = MI.getOperand(0).getReg();
675 return true;
Alkis Evlogimenos5e300022003-12-28 17:35:08 +0000676 }
Alkis Evlogimenos5e300022003-12-28 17:35:08 +0000677}
Alkis Evlogimenos36f506e2004-07-31 09:38:47 +0000678
Chris Lattner40839602006-02-02 20:12:32 +0000679unsigned X86InstrInfo::isLoadFromStackSlot(MachineInstr *MI,
680 int &FrameIndex) const {
681 switch (MI->getOpcode()) {
682 default: break;
683 case X86::MOV8rm:
684 case X86::MOV16rm:
Evan Chengf4df6802006-05-11 07:33:49 +0000685 case X86::MOV16_rm:
Chris Lattner40839602006-02-02 20:12:32 +0000686 case X86::MOV32rm:
Evan Chengf4df6802006-05-11 07:33:49 +0000687 case X86::MOV32_rm:
Evan Cheng25ab6902006-09-08 06:48:29 +0000688 case X86::MOV64rm:
Dale Johannesene377d4d2007-07-04 21:07:47 +0000689 case X86::LD_Fp64m:
Chris Lattner40839602006-02-02 20:12:32 +0000690 case X86::MOVSSrm:
691 case X86::MOVSDrm:
Chris Lattner993c8972006-04-18 16:44:51 +0000692 case X86::MOVAPSrm:
693 case X86::MOVAPDrm:
Bill Wendling823efee2007-04-03 06:00:37 +0000694 case X86::MMX_MOVD64rm:
695 case X86::MMX_MOVQ64rm:
Chris Lattner8aa797a2007-12-30 23:10:15 +0000696 if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
697 MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000698 MI->getOperand(2).getImm() == 1 &&
Chris Lattner40839602006-02-02 20:12:32 +0000699 MI->getOperand(3).getReg() == 0 &&
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000700 MI->getOperand(4).getImm() == 0) {
Chris Lattner8aa797a2007-12-30 23:10:15 +0000701 FrameIndex = MI->getOperand(1).getIndex();
Chris Lattner40839602006-02-02 20:12:32 +0000702 return MI->getOperand(0).getReg();
703 }
704 break;
705 }
706 return 0;
707}
708
709unsigned X86InstrInfo::isStoreToStackSlot(MachineInstr *MI,
710 int &FrameIndex) const {
711 switch (MI->getOpcode()) {
712 default: break;
713 case X86::MOV8mr:
714 case X86::MOV16mr:
Evan Chengf4df6802006-05-11 07:33:49 +0000715 case X86::MOV16_mr:
Chris Lattner40839602006-02-02 20:12:32 +0000716 case X86::MOV32mr:
Evan Chengf4df6802006-05-11 07:33:49 +0000717 case X86::MOV32_mr:
Evan Cheng25ab6902006-09-08 06:48:29 +0000718 case X86::MOV64mr:
Dale Johannesene377d4d2007-07-04 21:07:47 +0000719 case X86::ST_FpP64m:
Chris Lattner40839602006-02-02 20:12:32 +0000720 case X86::MOVSSmr:
721 case X86::MOVSDmr:
Chris Lattner993c8972006-04-18 16:44:51 +0000722 case X86::MOVAPSmr:
723 case X86::MOVAPDmr:
Bill Wendling823efee2007-04-03 06:00:37 +0000724 case X86::MMX_MOVD64mr:
725 case X86::MMX_MOVQ64mr:
Bill Wendling71bfd112007-04-03 23:48:32 +0000726 case X86::MMX_MOVNTQmr:
Chris Lattner8aa797a2007-12-30 23:10:15 +0000727 if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
728 MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000729 MI->getOperand(1).getImm() == 1 &&
Chris Lattner1c07e722006-02-02 20:38:12 +0000730 MI->getOperand(2).getReg() == 0 &&
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000731 MI->getOperand(3).getImm() == 0) {
Chris Lattner8aa797a2007-12-30 23:10:15 +0000732 FrameIndex = MI->getOperand(0).getIndex();
Chris Lattner40839602006-02-02 20:12:32 +0000733 return MI->getOperand(4).getReg();
734 }
735 break;
736 }
737 return 0;
738}
739
740
Bill Wendling041b3f82007-12-08 23:58:46 +0000741bool X86InstrInfo::isReallyTriviallyReMaterializable(MachineInstr *MI) const {
Dan Gohmanc101e952007-06-14 20:50:44 +0000742 switch (MI->getOpcode()) {
743 default: break;
744 case X86::MOV8rm:
745 case X86::MOV16rm:
746 case X86::MOV16_rm:
747 case X86::MOV32rm:
748 case X86::MOV32_rm:
749 case X86::MOV64rm:
Dale Johannesene377d4d2007-07-04 21:07:47 +0000750 case X86::LD_Fp64m:
Dan Gohmanc101e952007-06-14 20:50:44 +0000751 case X86::MOVSSrm:
752 case X86::MOVSDrm:
753 case X86::MOVAPSrm:
754 case X86::MOVAPDrm:
755 case X86::MMX_MOVD64rm:
756 case X86::MMX_MOVQ64rm:
Dan Gohman82a87a02007-06-19 01:48:05 +0000757 // Loads from constant pools are trivially rematerializable.
Chris Lattner3b5a2212008-01-05 05:28:30 +0000758 if (MI->getOperand(1).isReg() && MI->getOperand(2).isImm() &&
759 MI->getOperand(3).isReg() && MI->getOperand(4).isCPI() &&
Chris Lattner3b5a2212008-01-05 05:28:30 +0000760 MI->getOperand(2).getImm() == 1 &&
Evan Chengd8850a52008-02-22 09:25:47 +0000761 MI->getOperand(3).getReg() == 0) {
762 unsigned BaseReg = MI->getOperand(1).getReg();
763 if (BaseReg == 0)
764 return true;
765 if (!ReMatPICLoad)
766 return false;
767 // Allow re-materialization of PIC load.
768 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
769 bool isPICBase = false;
770 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
771 E = MRI.def_end(); I != E; ++I) {
772 MachineInstr *DefMI = I.getOperand().getParent();
773 if (DefMI->getOpcode() != X86::MOVPC32r)
774 return false;
775 assert(!isPICBase && "More than one PIC base?");
776 isPICBase = true;
777 }
778 return isPICBase;
779 }
Chris Lattnerf29495a2008-01-05 06:10:42 +0000780
Chris Lattner3b5a2212008-01-05 05:28:30 +0000781 return false;
Dan Gohmanc101e952007-06-14 20:50:44 +0000782 }
Dan Gohmand45eddd2007-06-26 00:48:07 +0000783 // All other instructions marked M_REMATERIALIZABLE are always trivially
784 // rematerializable.
785 return true;
Dan Gohmanc101e952007-06-14 20:50:44 +0000786}
787
Chris Lattnera22edc82008-01-10 23:08:24 +0000788/// isInvariantLoad - Return true if the specified instruction (which is marked
789/// mayLoad) is loading from a location whose value is invariant across the
790/// function. For example, loading a value from the constant pool or from
791/// from the argument area of a function if it does not change. This should
792/// only return true of *all* loads the instruction does are invariant (if it
793/// does multiple loads).
794bool X86InstrInfo::isInvariantLoad(MachineInstr *MI) const {
Chris Lattner828bb6c2008-01-12 00:35:08 +0000795 // This code cares about loads from three cases: constant pool entries,
796 // invariant argument slots, and global stubs. In order to handle these cases
797 // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
Chris Lattner144ad582008-01-12 00:53:16 +0000798 // operand and base our analysis on it. This is safe because the address of
Chris Lattner828bb6c2008-01-12 00:35:08 +0000799 // none of these three cases is ever used as anything other than a load base
800 // and X86 doesn't have any instructions that load from multiple places.
801
802 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
803 const MachineOperand &MO = MI->getOperand(i);
Chris Lattnera22edc82008-01-10 23:08:24 +0000804 // Loads from constant pools are trivially invariant.
Chris Lattner828bb6c2008-01-12 00:35:08 +0000805 if (MO.isCPI())
Chris Lattner3b5a2212008-01-05 05:28:30 +0000806 return true;
Chris Lattner828bb6c2008-01-12 00:35:08 +0000807
808 if (MO.isGlobal()) {
809 if (TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(MO.getGlobal(),
810 TM, false))
811 return true;
812 return false;
813 }
814
815 // If this is a load from an invariant stack slot, the load is a constant.
816 if (MO.isFI()) {
817 const MachineFrameInfo &MFI =
818 *MI->getParent()->getParent()->getFrameInfo();
819 int Idx = MO.getIndex();
Chris Lattner87943902008-01-10 04:16:31 +0000820 return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
821 }
Bill Wendling627c00b2007-12-17 23:07:56 +0000822 }
Chris Lattner828bb6c2008-01-12 00:35:08 +0000823
Chris Lattnera22edc82008-01-10 23:08:24 +0000824 // All other instances of these instructions are presumed to have other
825 // issues.
Chris Lattnera83b34b2008-01-05 05:26:26 +0000826 return false;
Bill Wendling627c00b2007-12-17 23:07:56 +0000827}
828
Evan Cheng3f411c72007-10-05 08:04:01 +0000829/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
830/// is not marked dead.
831static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Cheng3f411c72007-10-05 08:04:01 +0000832 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
833 MachineOperand &MO = MI->getOperand(i);
834 if (MO.isRegister() && MO.isDef() &&
835 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
836 return true;
837 }
838 }
839 return false;
840}
841
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000842/// convertToThreeAddress - This method must be implemented by targets that
843/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
844/// may be able to convert a two-address instruction into a true
845/// three-address instruction on demand. This allows the X86 target (for
846/// example) to convert ADD and SHL instructions into LEA instructions if they
847/// would require register copies due to two-addressness.
848///
849/// This method returns a null pointer if the transformation cannot be
850/// performed, otherwise it returns the new instruction.
851///
Evan Cheng258ff672006-12-01 21:52:41 +0000852MachineInstr *
853X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
854 MachineBasicBlock::iterator &MBBI,
855 LiveVariables &LV) const {
856 MachineInstr *MI = MBBI;
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000857 // All instructions input are two-addr instructions. Get the known operands.
858 unsigned Dest = MI->getOperand(0).getReg();
859 unsigned Src = MI->getOperand(1).getReg();
860
Evan Cheng6ce7dc22006-11-15 20:58:11 +0000861 MachineInstr *NewMI = NULL;
Evan Cheng258ff672006-12-01 21:52:41 +0000862 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000863 // we have better subtarget support, enable the 16-bit LEA generation here.
Evan Cheng258ff672006-12-01 21:52:41 +0000864 bool DisableLEA16 = true;
865
Evan Cheng559dc462007-10-05 20:34:26 +0000866 unsigned MIOpc = MI->getOpcode();
867 switch (MIOpc) {
Evan Chengccba76b2006-05-30 20:26:50 +0000868 case X86::SHUFPSrri: {
869 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000870 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
871
Evan Chengaa3c1412006-05-30 21:45:53 +0000872 unsigned A = MI->getOperand(0).getReg();
873 unsigned B = MI->getOperand(1).getReg();
874 unsigned C = MI->getOperand(2).getReg();
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000875 unsigned M = MI->getOperand(3).getImm();
876 if (B != C) return 0;
Evan Chengc0f64ff2006-11-27 23:37:22 +0000877 NewMI = BuildMI(get(X86::PSHUFDri), A).addReg(B).addImm(M);
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000878 break;
879 }
Chris Lattner995f5502007-03-28 18:12:31 +0000880 case X86::SHL64ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +0000881 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Chris Lattner995f5502007-03-28 18:12:31 +0000882 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
883 // the flags produced by a shift yet, so this is safe.
884 unsigned Dest = MI->getOperand(0).getReg();
885 unsigned Src = MI->getOperand(1).getReg();
886 unsigned ShAmt = MI->getOperand(2).getImm();
887 if (ShAmt == 0 || ShAmt >= 4) return 0;
888
889 NewMI = BuildMI(get(X86::LEA64r), Dest)
890 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
891 break;
892 }
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000893 case X86::SHL32ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +0000894 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000895 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
896 // the flags produced by a shift yet, so this is safe.
897 unsigned Dest = MI->getOperand(0).getReg();
898 unsigned Src = MI->getOperand(1).getReg();
899 unsigned ShAmt = MI->getOperand(2).getImm();
900 if (ShAmt == 0 || ShAmt >= 4) return 0;
901
Chris Lattnerf2177b82007-03-28 00:58:40 +0000902 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
903 X86::LEA64_32r : X86::LEA32r;
904 NewMI = BuildMI(get(Opc), Dest)
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000905 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
906 break;
907 }
908 case X86::SHL16ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +0000909 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng61d9c862007-09-06 00:14:41 +0000910 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
911 // the flags produced by a shift yet, so this is safe.
912 unsigned Dest = MI->getOperand(0).getReg();
913 unsigned Src = MI->getOperand(1).getReg();
914 unsigned ShAmt = MI->getOperand(2).getImm();
915 if (ShAmt == 0 || ShAmt >= 4) return 0;
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000916
Christopher Lambb8133712007-08-10 21:18:25 +0000917 if (DisableLEA16) {
918 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
Chris Lattner84bc5422007-12-31 04:13:23 +0000919 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Evan Cheng61d9c862007-09-06 00:14:41 +0000920 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
921 ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner84bc5422007-12-31 04:13:23 +0000922 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
923 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Evan Cheng4499e492008-03-10 19:31:26 +0000924
Christopher Lamb1bc10082008-03-11 10:27:36 +0000925 // Build and insert into an implicit UNDEF value. This is OK because
926 // well be shifting and then extracting the lower 16-bits.
Christopher Lambc9298232008-03-16 03:12:01 +0000927 MachineInstr *Undef = BuildMI(get(X86::IMPLICIT_DEF), leaInReg);
928
Christopher Lamb1bc10082008-03-11 10:27:36 +0000929 MachineInstr *Ins =
Christopher Lamb6634e262008-03-13 05:47:01 +0000930 BuildMI(get(X86::INSERT_SUBREG),leaInReg)
Christopher Lambc9298232008-03-16 03:12:01 +0000931 .addReg(leaInReg).addReg(Src).addImm(X86::SUBREG_16BIT);
Christopher Lambb8133712007-08-10 21:18:25 +0000932
933 NewMI = BuildMI(get(Opc), leaOutReg)
934 .addReg(0).addImm(1 << ShAmt).addReg(leaInReg).addImm(0);
935
Evan Cheng61d9c862007-09-06 00:14:41 +0000936 MachineInstr *Ext =
Christopher Lamb1bc10082008-03-11 10:27:36 +0000937 BuildMI(get(X86::EXTRACT_SUBREG), Dest)
938 .addReg(leaOutReg).addImm(X86::SUBREG_16BIT);
Christopher Lambb8133712007-08-10 21:18:25 +0000939 Ext->copyKillDeadInfo(MI);
940
Christopher Lambc9298232008-03-16 03:12:01 +0000941 MFI->insert(MBBI, Undef);
Christopher Lambb8133712007-08-10 21:18:25 +0000942 MFI->insert(MBBI, Ins); // Insert the insert_subreg
943 LV.instructionChanged(MI, NewMI); // Update live variables
944 LV.addVirtualRegisterKilled(leaInReg, NewMI);
945 MFI->insert(MBBI, NewMI); // Insert the new inst
946 LV.addVirtualRegisterKilled(leaOutReg, Ext);
Evan Cheng61d9c862007-09-06 00:14:41 +0000947 MFI->insert(MBBI, Ext); // Insert the extract_subreg
Christopher Lambb8133712007-08-10 21:18:25 +0000948 return Ext;
949 } else {
950 NewMI = BuildMI(get(X86::LEA16r), Dest)
951 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
952 }
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000953 break;
Evan Chengccba76b2006-05-30 20:26:50 +0000954 }
Evan Cheng559dc462007-10-05 20:34:26 +0000955 default: {
956 // The following opcodes also sets the condition code register(s). Only
957 // convert them to equivalent lea if the condition code register def's
958 // are dead!
959 if (hasLiveCondCodeDef(MI))
960 return 0;
Evan Chengccba76b2006-05-30 20:26:50 +0000961
Evan Chengb76143c2007-10-09 07:14:53 +0000962 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng559dc462007-10-05 20:34:26 +0000963 switch (MIOpc) {
964 default: return 0;
965 case X86::INC64r:
Evan Chengb75ed322007-10-05 21:55:32 +0000966 case X86::INC32r: {
Evan Cheng559dc462007-10-05 20:34:26 +0000967 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +0000968 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
969 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Cheng559dc462007-10-05 20:34:26 +0000970 NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src, 1);
971 break;
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000972 }
Evan Cheng559dc462007-10-05 20:34:26 +0000973 case X86::INC16r:
974 case X86::INC64_16r:
975 if (DisableLEA16) return 0;
976 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
977 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, 1);
978 break;
979 case X86::DEC64r:
Evan Chengb75ed322007-10-05 21:55:32 +0000980 case X86::DEC32r: {
Evan Cheng559dc462007-10-05 20:34:26 +0000981 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +0000982 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
983 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Cheng559dc462007-10-05 20:34:26 +0000984 NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src, -1);
985 break;
986 }
987 case X86::DEC16r:
988 case X86::DEC64_16r:
989 if (DisableLEA16) return 0;
990 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
991 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, -1);
992 break;
993 case X86::ADD64rr:
994 case X86::ADD32rr: {
995 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +0000996 unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
997 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Cheng559dc462007-10-05 20:34:26 +0000998 NewMI = addRegReg(BuildMI(get(Opc), Dest), Src,
999 MI->getOperand(2).getReg());
1000 break;
1001 }
1002 case X86::ADD16rr:
1003 if (DisableLEA16) return 0;
1004 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1005 NewMI = addRegReg(BuildMI(get(X86::LEA16r), Dest), Src,
1006 MI->getOperand(2).getReg());
1007 break;
1008 case X86::ADD64ri32:
1009 case X86::ADD64ri8:
1010 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1011 if (MI->getOperand(2).isImmediate())
1012 NewMI = addRegOffset(BuildMI(get(X86::LEA64r), Dest), Src,
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001013 MI->getOperand(2).getImm());
Evan Cheng559dc462007-10-05 20:34:26 +00001014 break;
1015 case X86::ADD32ri:
1016 case X86::ADD32ri8:
1017 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +00001018 if (MI->getOperand(2).isImmediate()) {
1019 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1020 NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src,
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001021 MI->getOperand(2).getImm());
Evan Chengb76143c2007-10-09 07:14:53 +00001022 }
Evan Cheng559dc462007-10-05 20:34:26 +00001023 break;
1024 case X86::ADD16ri:
1025 case X86::ADD16ri8:
1026 if (DisableLEA16) return 0;
1027 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1028 if (MI->getOperand(2).isImmediate())
1029 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src,
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001030 MI->getOperand(2).getImm());
Evan Cheng559dc462007-10-05 20:34:26 +00001031 break;
1032 case X86::SHL16ri:
1033 if (DisableLEA16) return 0;
1034 case X86::SHL32ri:
1035 case X86::SHL64ri: {
1036 assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImmediate() &&
1037 "Unknown shl instruction!");
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001038 unsigned ShAmt = MI->getOperand(2).getImm();
Evan Cheng559dc462007-10-05 20:34:26 +00001039 if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1040 X86AddressMode AM;
1041 AM.Scale = 1 << ShAmt;
1042 AM.IndexReg = Src;
1043 unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
Evan Chengb76143c2007-10-09 07:14:53 +00001044 : (MIOpc == X86::SHL32ri
1045 ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
Evan Cheng559dc462007-10-05 20:34:26 +00001046 NewMI = addFullAddress(BuildMI(get(Opc), Dest), AM);
1047 }
1048 break;
1049 }
1050 }
1051 }
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001052 }
1053
Evan Cheng15246732008-02-07 08:29:53 +00001054 if (!NewMI) return 0;
1055
Evan Cheng559dc462007-10-05 20:34:26 +00001056 NewMI->copyKillDeadInfo(MI);
1057 LV.instructionChanged(MI, NewMI); // Update live variables
1058 MFI->insert(MBBI, NewMI); // Insert the new inst
Evan Cheng6ce7dc22006-11-15 20:58:11 +00001059 return NewMI;
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001060}
1061
Chris Lattner41e431b2005-01-19 07:11:01 +00001062/// commuteInstruction - We have a few instructions that must be hacked on to
1063/// commute them.
1064///
1065MachineInstr *X86InstrInfo::commuteInstruction(MachineInstr *MI) const {
1066 switch (MI->getOpcode()) {
Chris Lattner0df53d22005-01-19 07:31:24 +00001067 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1068 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
Chris Lattner41e431b2005-01-19 07:11:01 +00001069 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohmane47f1f92007-09-14 23:17:45 +00001070 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1071 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1072 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Chris Lattner0df53d22005-01-19 07:31:24 +00001073 unsigned Opc;
1074 unsigned Size;
1075 switch (MI->getOpcode()) {
1076 default: assert(0 && "Unreachable!");
1077 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1078 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1079 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1080 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohmane47f1f92007-09-14 23:17:45 +00001081 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1082 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Chris Lattner0df53d22005-01-19 07:31:24 +00001083 }
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001084 unsigned Amt = MI->getOperand(3).getImm();
Chris Lattner41e431b2005-01-19 07:11:01 +00001085 unsigned A = MI->getOperand(0).getReg();
1086 unsigned B = MI->getOperand(1).getReg();
1087 unsigned C = MI->getOperand(2).getReg();
Evan Cheng6ce7dc22006-11-15 20:58:11 +00001088 bool BisKill = MI->getOperand(1).isKill();
1089 bool CisKill = MI->getOperand(2).isKill();
Evan Chenga4d16a12008-02-13 02:46:49 +00001090 // If machine instrs are no longer in two-address forms, update
1091 // destination register as well.
1092 if (A == B) {
1093 // Must be two address instruction!
1094 assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) &&
1095 "Expecting a two-address instruction!");
1096 A = C;
1097 CisKill = false;
1098 }
Evan Chengc0f64ff2006-11-27 23:37:22 +00001099 return BuildMI(get(Opc), A).addReg(C, false, false, CisKill)
Evan Cheng6ce7dc22006-11-15 20:58:11 +00001100 .addReg(B, false, false, BisKill).addImm(Size-Amt);
Chris Lattner41e431b2005-01-19 07:11:01 +00001101 }
Evan Cheng7ad42d92007-10-05 23:13:21 +00001102 case X86::CMOVB16rr:
1103 case X86::CMOVB32rr:
1104 case X86::CMOVB64rr:
1105 case X86::CMOVAE16rr:
1106 case X86::CMOVAE32rr:
1107 case X86::CMOVAE64rr:
1108 case X86::CMOVE16rr:
1109 case X86::CMOVE32rr:
1110 case X86::CMOVE64rr:
1111 case X86::CMOVNE16rr:
1112 case X86::CMOVNE32rr:
1113 case X86::CMOVNE64rr:
1114 case X86::CMOVBE16rr:
1115 case X86::CMOVBE32rr:
1116 case X86::CMOVBE64rr:
1117 case X86::CMOVA16rr:
1118 case X86::CMOVA32rr:
1119 case X86::CMOVA64rr:
1120 case X86::CMOVL16rr:
1121 case X86::CMOVL32rr:
1122 case X86::CMOVL64rr:
1123 case X86::CMOVGE16rr:
1124 case X86::CMOVGE32rr:
1125 case X86::CMOVGE64rr:
1126 case X86::CMOVLE16rr:
1127 case X86::CMOVLE32rr:
1128 case X86::CMOVLE64rr:
1129 case X86::CMOVG16rr:
1130 case X86::CMOVG32rr:
1131 case X86::CMOVG64rr:
1132 case X86::CMOVS16rr:
1133 case X86::CMOVS32rr:
1134 case X86::CMOVS64rr:
1135 case X86::CMOVNS16rr:
1136 case X86::CMOVNS32rr:
1137 case X86::CMOVNS64rr:
1138 case X86::CMOVP16rr:
1139 case X86::CMOVP32rr:
1140 case X86::CMOVP64rr:
1141 case X86::CMOVNP16rr:
1142 case X86::CMOVNP32rr:
1143 case X86::CMOVNP64rr: {
Evan Cheng7ad42d92007-10-05 23:13:21 +00001144 unsigned Opc = 0;
1145 switch (MI->getOpcode()) {
1146 default: break;
1147 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1148 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1149 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1150 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1151 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1152 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1153 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1154 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1155 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1156 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1157 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1158 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1159 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1160 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1161 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1162 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1163 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1164 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1165 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1166 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1167 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1168 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1169 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1170 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1171 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1172 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1173 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1174 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1175 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1176 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1177 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1178 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
1179 case X86::CMOVS64rr: Opc = X86::CMOVNS32rr; break;
1180 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1181 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1182 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1183 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1184 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
1185 case X86::CMOVP64rr: Opc = X86::CMOVNP32rr; break;
1186 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1187 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1188 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1189 }
1190
Chris Lattner5080f4d2008-01-11 18:10:50 +00001191 MI->setDesc(get(Opc));
Evan Cheng7ad42d92007-10-05 23:13:21 +00001192 // Fallthrough intended.
1193 }
Chris Lattner41e431b2005-01-19 07:11:01 +00001194 default:
Chris Lattner264e6fe2008-01-01 01:05:34 +00001195 return TargetInstrInfoImpl::commuteInstruction(MI);
Chris Lattner41e431b2005-01-19 07:11:01 +00001196 }
1197}
1198
Chris Lattner7fbe9722006-10-20 17:42:20 +00001199static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1200 switch (BrOpc) {
1201 default: return X86::COND_INVALID;
1202 case X86::JE: return X86::COND_E;
1203 case X86::JNE: return X86::COND_NE;
1204 case X86::JL: return X86::COND_L;
1205 case X86::JLE: return X86::COND_LE;
1206 case X86::JG: return X86::COND_G;
1207 case X86::JGE: return X86::COND_GE;
1208 case X86::JB: return X86::COND_B;
1209 case X86::JBE: return X86::COND_BE;
1210 case X86::JA: return X86::COND_A;
1211 case X86::JAE: return X86::COND_AE;
1212 case X86::JS: return X86::COND_S;
1213 case X86::JNS: return X86::COND_NS;
1214 case X86::JP: return X86::COND_P;
1215 case X86::JNP: return X86::COND_NP;
1216 case X86::JO: return X86::COND_O;
1217 case X86::JNO: return X86::COND_NO;
1218 }
1219}
1220
1221unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1222 switch (CC) {
1223 default: assert(0 && "Illegal condition code!");
Evan Chenge5f62042007-09-29 00:00:36 +00001224 case X86::COND_E: return X86::JE;
1225 case X86::COND_NE: return X86::JNE;
1226 case X86::COND_L: return X86::JL;
1227 case X86::COND_LE: return X86::JLE;
1228 case X86::COND_G: return X86::JG;
1229 case X86::COND_GE: return X86::JGE;
1230 case X86::COND_B: return X86::JB;
1231 case X86::COND_BE: return X86::JBE;
1232 case X86::COND_A: return X86::JA;
1233 case X86::COND_AE: return X86::JAE;
1234 case X86::COND_S: return X86::JS;
1235 case X86::COND_NS: return X86::JNS;
1236 case X86::COND_P: return X86::JP;
1237 case X86::COND_NP: return X86::JNP;
1238 case X86::COND_O: return X86::JO;
1239 case X86::COND_NO: return X86::JNO;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001240 }
1241}
1242
Chris Lattner9cd68752006-10-21 05:52:40 +00001243/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1244/// e.g. turning COND_E to COND_NE.
1245X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1246 switch (CC) {
1247 default: assert(0 && "Illegal condition code!");
1248 case X86::COND_E: return X86::COND_NE;
1249 case X86::COND_NE: return X86::COND_E;
1250 case X86::COND_L: return X86::COND_GE;
1251 case X86::COND_LE: return X86::COND_G;
1252 case X86::COND_G: return X86::COND_LE;
1253 case X86::COND_GE: return X86::COND_L;
1254 case X86::COND_B: return X86::COND_AE;
1255 case X86::COND_BE: return X86::COND_A;
1256 case X86::COND_A: return X86::COND_BE;
1257 case X86::COND_AE: return X86::COND_B;
1258 case X86::COND_S: return X86::COND_NS;
1259 case X86::COND_NS: return X86::COND_S;
1260 case X86::COND_P: return X86::COND_NP;
1261 case X86::COND_NP: return X86::COND_P;
1262 case X86::COND_O: return X86::COND_NO;
1263 case X86::COND_NO: return X86::COND_O;
1264 }
1265}
1266
Dale Johannesen318093b2007-06-14 22:03:45 +00001267bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Chris Lattner749c6f62008-01-07 07:27:27 +00001268 const TargetInstrDesc &TID = MI->getDesc();
1269 if (!TID.isTerminator()) return false;
Chris Lattner69244302008-01-07 01:56:04 +00001270
1271 // Conditional branch is a special case.
Chris Lattner749c6f62008-01-07 07:27:27 +00001272 if (TID.isBranch() && !TID.isBarrier())
Chris Lattner69244302008-01-07 01:56:04 +00001273 return true;
Chris Lattner749c6f62008-01-07 07:27:27 +00001274 if (!TID.isPredicable())
Chris Lattner69244302008-01-07 01:56:04 +00001275 return true;
1276 return !isPredicated(MI);
Dale Johannesen318093b2007-06-14 22:03:45 +00001277}
Chris Lattner9cd68752006-10-21 05:52:40 +00001278
Evan Cheng85dce6c2007-07-26 17:32:14 +00001279// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1280static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1281 const X86InstrInfo &TII) {
1282 if (MI->getOpcode() == X86::FP_REG_KILL)
1283 return false;
1284 return TII.isUnpredicatedTerminator(MI);
1285}
1286
Chris Lattner7fbe9722006-10-20 17:42:20 +00001287bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1288 MachineBasicBlock *&TBB,
1289 MachineBasicBlock *&FBB,
1290 std::vector<MachineOperand> &Cond) const {
Chris Lattner7fbe9722006-10-20 17:42:20 +00001291 // If the block has no terminators, it just falls into the block after it.
1292 MachineBasicBlock::iterator I = MBB.end();
Evan Cheng85dce6c2007-07-26 17:32:14 +00001293 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this))
Chris Lattner7fbe9722006-10-20 17:42:20 +00001294 return false;
1295
1296 // Get the last instruction in the block.
1297 MachineInstr *LastInst = I;
1298
1299 // If there is only one terminator instruction, process it.
Evan Cheng85dce6c2007-07-26 17:32:14 +00001300 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this)) {
Chris Lattner749c6f62008-01-07 07:27:27 +00001301 if (!LastInst->getDesc().isBranch())
Chris Lattner7fbe9722006-10-20 17:42:20 +00001302 return true;
1303
1304 // If the block ends with a branch there are 3 possibilities:
1305 // it's an unconditional, conditional, or indirect branch.
1306
1307 if (LastInst->getOpcode() == X86::JMP) {
Chris Lattner8aa797a2007-12-30 23:10:15 +00001308 TBB = LastInst->getOperand(0).getMBB();
Chris Lattner7fbe9722006-10-20 17:42:20 +00001309 return false;
1310 }
1311 X86::CondCode BranchCode = GetCondFromBranchOpc(LastInst->getOpcode());
1312 if (BranchCode == X86::COND_INVALID)
1313 return true; // Can't handle indirect branch.
1314
1315 // Otherwise, block ends with fall-through condbranch.
Chris Lattner8aa797a2007-12-30 23:10:15 +00001316 TBB = LastInst->getOperand(0).getMBB();
Chris Lattner7fbe9722006-10-20 17:42:20 +00001317 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1318 return false;
1319 }
1320
1321 // Get the instruction before it if it's a terminator.
1322 MachineInstr *SecondLastInst = I;
1323
1324 // If there are three terminators, we don't know what sort of block this is.
Evan Cheng85dce6c2007-07-26 17:32:14 +00001325 if (SecondLastInst && I != MBB.begin() &&
1326 isBrAnalysisUnpredicatedTerminator(--I, *this))
Chris Lattner7fbe9722006-10-20 17:42:20 +00001327 return true;
1328
Chris Lattner6ce64432006-10-30 22:27:23 +00001329 // If the block ends with X86::JMP and a conditional branch, handle it.
Chris Lattner7fbe9722006-10-20 17:42:20 +00001330 X86::CondCode BranchCode = GetCondFromBranchOpc(SecondLastInst->getOpcode());
1331 if (BranchCode != X86::COND_INVALID && LastInst->getOpcode() == X86::JMP) {
Chris Lattner8aa797a2007-12-30 23:10:15 +00001332 TBB = SecondLastInst->getOperand(0).getMBB();
Chris Lattner6ce64432006-10-30 22:27:23 +00001333 Cond.push_back(MachineOperand::CreateImm(BranchCode));
Chris Lattner8aa797a2007-12-30 23:10:15 +00001334 FBB = LastInst->getOperand(0).getMBB();
Chris Lattner6ce64432006-10-30 22:27:23 +00001335 return false;
1336 }
Chris Lattner7fbe9722006-10-20 17:42:20 +00001337
Dale Johannesen13e8b512007-06-13 17:59:52 +00001338 // If the block ends with two X86::JMPs, handle it. The second one is not
1339 // executed, so remove it.
1340 if (SecondLastInst->getOpcode() == X86::JMP &&
1341 LastInst->getOpcode() == X86::JMP) {
Chris Lattner8aa797a2007-12-30 23:10:15 +00001342 TBB = SecondLastInst->getOperand(0).getMBB();
Dale Johannesen13e8b512007-06-13 17:59:52 +00001343 I = LastInst;
1344 I->eraseFromParent();
1345 return false;
1346 }
1347
Chris Lattner7fbe9722006-10-20 17:42:20 +00001348 // Otherwise, can't handle this.
1349 return true;
1350}
1351
Evan Cheng6ae36262007-05-18 00:18:17 +00001352unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
Chris Lattner7fbe9722006-10-20 17:42:20 +00001353 MachineBasicBlock::iterator I = MBB.end();
Evan Cheng6ae36262007-05-18 00:18:17 +00001354 if (I == MBB.begin()) return 0;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001355 --I;
1356 if (I->getOpcode() != X86::JMP &&
1357 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
Evan Cheng6ae36262007-05-18 00:18:17 +00001358 return 0;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001359
1360 // Remove the branch.
1361 I->eraseFromParent();
1362
1363 I = MBB.end();
1364
Evan Cheng6ae36262007-05-18 00:18:17 +00001365 if (I == MBB.begin()) return 1;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001366 --I;
1367 if (GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
Evan Cheng6ae36262007-05-18 00:18:17 +00001368 return 1;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001369
1370 // Remove the branch.
1371 I->eraseFromParent();
Evan Cheng6ae36262007-05-18 00:18:17 +00001372 return 2;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001373}
1374
Owen Andersonf6372aa2008-01-01 21:11:32 +00001375static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
1376 MachineOperand &MO) {
1377 if (MO.isRegister())
1378 MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit(),
1379 false, false, MO.getSubReg());
1380 else if (MO.isImmediate())
1381 MIB = MIB.addImm(MO.getImm());
1382 else if (MO.isFrameIndex())
1383 MIB = MIB.addFrameIndex(MO.getIndex());
1384 else if (MO.isGlobalAddress())
1385 MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
1386 else if (MO.isConstantPoolIndex())
1387 MIB = MIB.addConstantPoolIndex(MO.getIndex(), MO.getOffset());
1388 else if (MO.isJumpTableIndex())
1389 MIB = MIB.addJumpTableIndex(MO.getIndex());
1390 else if (MO.isExternalSymbol())
1391 MIB = MIB.addExternalSymbol(MO.getSymbolName());
1392 else
1393 assert(0 && "Unknown operand for X86InstrAddOperand!");
1394
1395 return MIB;
1396}
1397
Evan Cheng6ae36262007-05-18 00:18:17 +00001398unsigned
1399X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1400 MachineBasicBlock *FBB,
1401 const std::vector<MachineOperand> &Cond) const {
Chris Lattner7fbe9722006-10-20 17:42:20 +00001402 // Shouldn't be a fall through.
1403 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
Chris Lattner34a84ac2006-10-21 05:34:23 +00001404 assert((Cond.size() == 1 || Cond.size() == 0) &&
1405 "X86 branch conditions have one component!");
1406
1407 if (FBB == 0) { // One way branch.
1408 if (Cond.empty()) {
1409 // Unconditional branch?
Evan Chengc0f64ff2006-11-27 23:37:22 +00001410 BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
Chris Lattner34a84ac2006-10-21 05:34:23 +00001411 } else {
1412 // Conditional branch.
1413 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
Evan Chengc0f64ff2006-11-27 23:37:22 +00001414 BuildMI(&MBB, get(Opc)).addMBB(TBB);
Chris Lattner34a84ac2006-10-21 05:34:23 +00001415 }
Evan Cheng6ae36262007-05-18 00:18:17 +00001416 return 1;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001417 }
1418
Chris Lattner879d09c2006-10-21 05:42:09 +00001419 // Two-way Conditional branch.
Chris Lattner7fbe9722006-10-20 17:42:20 +00001420 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
Evan Chengc0f64ff2006-11-27 23:37:22 +00001421 BuildMI(&MBB, get(Opc)).addMBB(TBB);
1422 BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
Evan Cheng6ae36262007-05-18 00:18:17 +00001423 return 2;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001424}
1425
Owen Andersond10fd972007-12-31 06:32:00 +00001426void X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
Chris Lattner5c927502008-03-09 08:46:19 +00001427 MachineBasicBlock::iterator MI,
1428 unsigned DestReg, unsigned SrcReg,
1429 const TargetRegisterClass *DestRC,
1430 const TargetRegisterClass *SrcRC) const {
Chris Lattner90b347d2008-03-09 07:58:04 +00001431 if (DestRC == SrcRC) {
1432 unsigned Opc;
1433 if (DestRC == &X86::GR64RegClass) {
1434 Opc = X86::MOV64rr;
1435 } else if (DestRC == &X86::GR32RegClass) {
1436 Opc = X86::MOV32rr;
1437 } else if (DestRC == &X86::GR16RegClass) {
1438 Opc = X86::MOV16rr;
1439 } else if (DestRC == &X86::GR8RegClass) {
1440 Opc = X86::MOV8rr;
1441 } else if (DestRC == &X86::GR32_RegClass) {
1442 Opc = X86::MOV32_rr;
1443 } else if (DestRC == &X86::GR16_RegClass) {
1444 Opc = X86::MOV16_rr;
1445 } else if (DestRC == &X86::RFP32RegClass) {
1446 Opc = X86::MOV_Fp3232;
1447 } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
1448 Opc = X86::MOV_Fp6464;
1449 } else if (DestRC == &X86::RFP80RegClass) {
1450 Opc = X86::MOV_Fp8080;
1451 } else if (DestRC == &X86::FR32RegClass) {
1452 Opc = X86::FsMOVAPSrr;
1453 } else if (DestRC == &X86::FR64RegClass) {
1454 Opc = X86::FsMOVAPDrr;
1455 } else if (DestRC == &X86::VR128RegClass) {
1456 Opc = X86::MOVAPSrr;
1457 } else if (DestRC == &X86::VR64RegClass) {
1458 Opc = X86::MMX_MOVQ64rr;
1459 } else {
1460 assert(0 && "Unknown regclass");
1461 abort();
Owen Andersond10fd972007-12-31 06:32:00 +00001462 }
Chris Lattner90b347d2008-03-09 07:58:04 +00001463 BuildMI(MBB, MI, get(Opc), DestReg).addReg(SrcReg);
1464 return;
Owen Andersond10fd972007-12-31 06:32:00 +00001465 }
Chris Lattner90b347d2008-03-09 07:58:04 +00001466
1467 // Moving EFLAGS to / from another register requires a push and a pop.
1468 if (SrcRC == &X86::CCRRegClass) {
1469 assert(SrcReg == X86::EFLAGS);
1470 if (DestRC == &X86::GR64RegClass) {
1471 BuildMI(MBB, MI, get(X86::PUSHFQ));
1472 BuildMI(MBB, MI, get(X86::POP64r), DestReg);
1473 return;
1474 } else if (DestRC == &X86::GR32RegClass) {
1475 BuildMI(MBB, MI, get(X86::PUSHFD));
1476 BuildMI(MBB, MI, get(X86::POP32r), DestReg);
1477 return;
1478 }
1479 } else if (DestRC == &X86::CCRRegClass) {
1480 assert(DestReg == X86::EFLAGS);
1481 if (SrcRC == &X86::GR64RegClass) {
1482 BuildMI(MBB, MI, get(X86::PUSH64r)).addReg(SrcReg);
1483 BuildMI(MBB, MI, get(X86::POPFQ));
1484 return;
1485 } else if (SrcRC == &X86::GR32RegClass) {
1486 BuildMI(MBB, MI, get(X86::PUSH32r)).addReg(SrcReg);
1487 BuildMI(MBB, MI, get(X86::POPFD));
1488 return;
1489 }
Owen Andersond10fd972007-12-31 06:32:00 +00001490 }
Chris Lattner5c927502008-03-09 08:46:19 +00001491
Chris Lattnerf30e1cf2008-03-09 09:15:31 +00001492 // Moving from ST(0) turns into FpGET_ST0_32 etc.
Chris Lattner5c927502008-03-09 08:46:19 +00001493 if (SrcRC == &X86::RSTRegClass) {
Chris Lattner24e0a542008-03-21 06:38:26 +00001494 // Copying from ST(0)/ST(1).
1495 assert((SrcReg == X86::ST0 || SrcReg == X86::ST1) &&
1496 "Can only copy from ST(0)/ST(1) right now");
1497 bool isST0 = SrcReg == X86::ST0;
Chris Lattner5c927502008-03-09 08:46:19 +00001498 unsigned Opc;
1499 if (DestRC == &X86::RFP32RegClass)
Chris Lattner24e0a542008-03-21 06:38:26 +00001500 Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
Chris Lattner5c927502008-03-09 08:46:19 +00001501 else if (DestRC == &X86::RFP64RegClass)
Chris Lattner24e0a542008-03-21 06:38:26 +00001502 Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
Chris Lattner5c927502008-03-09 08:46:19 +00001503 else {
1504 assert(DestRC == &X86::RFP80RegClass);
Chris Lattner24e0a542008-03-21 06:38:26 +00001505 Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
Chris Lattner5c927502008-03-09 08:46:19 +00001506 }
1507 BuildMI(MBB, MI, get(Opc), DestReg);
1508 return;
1509 }
Chris Lattnerf30e1cf2008-03-09 09:15:31 +00001510
1511 // Moving to ST(0) turns into FpSET_ST0_32 etc.
1512 if (DestRC == &X86::RSTRegClass) {
1513 // Copying to ST(0). FIXME: handle ST(1) also
1514 assert(DestReg == X86::ST0 && "Can only copy to TOS right now");
1515 unsigned Opc;
1516 if (SrcRC == &X86::RFP32RegClass)
1517 Opc = X86::FpSET_ST0_32;
1518 else if (SrcRC == &X86::RFP64RegClass)
1519 Opc = X86::FpSET_ST0_64;
1520 else {
1521 assert(SrcRC == &X86::RFP80RegClass);
1522 Opc = X86::FpSET_ST0_80;
1523 }
1524 BuildMI(MBB, MI, get(Opc)).addReg(SrcReg);
1525 return;
1526 }
Chris Lattner5c927502008-03-09 08:46:19 +00001527
Chris Lattner183275a2008-03-10 23:56:08 +00001528 assert(0 && "Not yet supported!");
Chris Lattner90b347d2008-03-09 07:58:04 +00001529 abort();
Owen Andersond10fd972007-12-31 06:32:00 +00001530}
1531
Owen Andersonf6372aa2008-01-01 21:11:32 +00001532static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
1533 unsigned StackAlign) {
1534 unsigned Opc = 0;
1535 if (RC == &X86::GR64RegClass) {
1536 Opc = X86::MOV64mr;
1537 } else if (RC == &X86::GR32RegClass) {
1538 Opc = X86::MOV32mr;
1539 } else if (RC == &X86::GR16RegClass) {
1540 Opc = X86::MOV16mr;
1541 } else if (RC == &X86::GR8RegClass) {
1542 Opc = X86::MOV8mr;
1543 } else if (RC == &X86::GR32_RegClass) {
1544 Opc = X86::MOV32_mr;
1545 } else if (RC == &X86::GR16_RegClass) {
1546 Opc = X86::MOV16_mr;
1547 } else if (RC == &X86::RFP80RegClass) {
1548 Opc = X86::ST_FpP80m; // pops
1549 } else if (RC == &X86::RFP64RegClass) {
1550 Opc = X86::ST_Fp64m;
1551 } else if (RC == &X86::RFP32RegClass) {
1552 Opc = X86::ST_Fp32m;
1553 } else if (RC == &X86::FR32RegClass) {
1554 Opc = X86::MOVSSmr;
1555 } else if (RC == &X86::FR64RegClass) {
1556 Opc = X86::MOVSDmr;
1557 } else if (RC == &X86::VR128RegClass) {
1558 // FIXME: Use movaps once we are capable of selectively
1559 // aligning functions that spill SSE registers on 16-byte boundaries.
1560 Opc = StackAlign >= 16 ? X86::MOVAPSmr : X86::MOVUPSmr;
1561 } else if (RC == &X86::VR64RegClass) {
1562 Opc = X86::MMX_MOVQ64mr;
1563 } else {
1564 assert(0 && "Unknown regclass");
1565 abort();
1566 }
1567
1568 return Opc;
1569}
1570
1571void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1572 MachineBasicBlock::iterator MI,
1573 unsigned SrcReg, bool isKill, int FrameIdx,
1574 const TargetRegisterClass *RC) const {
1575 unsigned Opc = getStoreRegOpcode(RC, RI.getStackAlignment());
1576 addFrameReference(BuildMI(MBB, MI, get(Opc)), FrameIdx)
1577 .addReg(SrcReg, false, false, isKill);
1578}
1579
1580void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1581 bool isKill,
1582 SmallVectorImpl<MachineOperand> &Addr,
1583 const TargetRegisterClass *RC,
1584 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1585 unsigned Opc = getStoreRegOpcode(RC, RI.getStackAlignment());
1586 MachineInstrBuilder MIB = BuildMI(get(Opc));
1587 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1588 MIB = X86InstrAddOperand(MIB, Addr[i]);
1589 MIB.addReg(SrcReg, false, false, isKill);
1590 NewMIs.push_back(MIB);
1591}
1592
1593static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
1594 unsigned StackAlign) {
1595 unsigned Opc = 0;
1596 if (RC == &X86::GR64RegClass) {
1597 Opc = X86::MOV64rm;
1598 } else if (RC == &X86::GR32RegClass) {
1599 Opc = X86::MOV32rm;
1600 } else if (RC == &X86::GR16RegClass) {
1601 Opc = X86::MOV16rm;
1602 } else if (RC == &X86::GR8RegClass) {
1603 Opc = X86::MOV8rm;
1604 } else if (RC == &X86::GR32_RegClass) {
1605 Opc = X86::MOV32_rm;
1606 } else if (RC == &X86::GR16_RegClass) {
1607 Opc = X86::MOV16_rm;
1608 } else if (RC == &X86::RFP80RegClass) {
1609 Opc = X86::LD_Fp80m;
1610 } else if (RC == &X86::RFP64RegClass) {
1611 Opc = X86::LD_Fp64m;
1612 } else if (RC == &X86::RFP32RegClass) {
1613 Opc = X86::LD_Fp32m;
1614 } else if (RC == &X86::FR32RegClass) {
1615 Opc = X86::MOVSSrm;
1616 } else if (RC == &X86::FR64RegClass) {
1617 Opc = X86::MOVSDrm;
1618 } else if (RC == &X86::VR128RegClass) {
1619 // FIXME: Use movaps once we are capable of selectively
1620 // aligning functions that spill SSE registers on 16-byte boundaries.
1621 Opc = StackAlign >= 16 ? X86::MOVAPSrm : X86::MOVUPSrm;
1622 } else if (RC == &X86::VR64RegClass) {
1623 Opc = X86::MMX_MOVQ64rm;
1624 } else {
1625 assert(0 && "Unknown regclass");
1626 abort();
1627 }
1628
1629 return Opc;
1630}
1631
1632void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1633 MachineBasicBlock::iterator MI,
1634 unsigned DestReg, int FrameIdx,
1635 const TargetRegisterClass *RC) const{
1636 unsigned Opc = getLoadRegOpcode(RC, RI.getStackAlignment());
1637 addFrameReference(BuildMI(MBB, MI, get(Opc), DestReg), FrameIdx);
1638}
1639
1640void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
1641 SmallVectorImpl<MachineOperand> &Addr,
1642 const TargetRegisterClass *RC,
1643 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1644 unsigned Opc = getLoadRegOpcode(RC, RI.getStackAlignment());
1645 MachineInstrBuilder MIB = BuildMI(get(Opc), DestReg);
1646 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1647 MIB = X86InstrAddOperand(MIB, Addr[i]);
1648 NewMIs.push_back(MIB);
1649}
1650
Owen Andersond94b6a12008-01-04 23:57:37 +00001651bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
1652 MachineBasicBlock::iterator MI,
1653 const std::vector<CalleeSavedInfo> &CSI) const {
1654 if (CSI.empty())
1655 return false;
1656
1657 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1658 unsigned SlotSize = is64Bit ? 8 : 4;
1659
1660 MachineFunction &MF = *MBB.getParent();
1661 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1662 X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
1663
1664 unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
1665 for (unsigned i = CSI.size(); i != 0; --i) {
1666 unsigned Reg = CSI[i-1].getReg();
1667 // Add the callee-saved register as live-in. It's killed at the spill.
1668 MBB.addLiveIn(Reg);
1669 BuildMI(MBB, MI, get(Opc)).addReg(Reg);
1670 }
1671 return true;
1672}
1673
1674bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1675 MachineBasicBlock::iterator MI,
1676 const std::vector<CalleeSavedInfo> &CSI) const {
1677 if (CSI.empty())
1678 return false;
1679
1680 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1681
1682 unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
1683 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1684 unsigned Reg = CSI[i].getReg();
1685 BuildMI(MBB, MI, get(Opc), Reg);
1686 }
1687 return true;
1688}
1689
Owen Anderson43dbe052008-01-07 01:35:02 +00001690static MachineInstr *FuseTwoAddrInst(unsigned Opcode,
1691 SmallVector<MachineOperand,4> &MOs,
1692 MachineInstr *MI, const TargetInstrInfo &TII) {
1693 // Create the base instruction with the memory operand as the first part.
1694 MachineInstr *NewMI = new MachineInstr(TII.get(Opcode), true);
1695 MachineInstrBuilder MIB(NewMI);
1696 unsigned NumAddrOps = MOs.size();
1697 for (unsigned i = 0; i != NumAddrOps; ++i)
1698 MIB = X86InstrAddOperand(MIB, MOs[i]);
1699 if (NumAddrOps < 4) // FrameIndex only
1700 MIB.addImm(1).addReg(0).addImm(0);
1701
1702 // Loop over the rest of the ri operands, converting them over.
Chris Lattner749c6f62008-01-07 07:27:27 +00001703 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson43dbe052008-01-07 01:35:02 +00001704 for (unsigned i = 0; i != NumOps; ++i) {
1705 MachineOperand &MO = MI->getOperand(i+2);
1706 MIB = X86InstrAddOperand(MIB, MO);
1707 }
1708 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
1709 MachineOperand &MO = MI->getOperand(i);
1710 MIB = X86InstrAddOperand(MIB, MO);
1711 }
1712 return MIB;
1713}
1714
1715static MachineInstr *FuseInst(unsigned Opcode, unsigned OpNo,
1716 SmallVector<MachineOperand,4> &MOs,
1717 MachineInstr *MI, const TargetInstrInfo &TII) {
1718 MachineInstr *NewMI = new MachineInstr(TII.get(Opcode), true);
1719 MachineInstrBuilder MIB(NewMI);
1720
1721 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1722 MachineOperand &MO = MI->getOperand(i);
1723 if (i == OpNo) {
1724 assert(MO.isRegister() && "Expected to fold into reg operand!");
1725 unsigned NumAddrOps = MOs.size();
1726 for (unsigned i = 0; i != NumAddrOps; ++i)
1727 MIB = X86InstrAddOperand(MIB, MOs[i]);
1728 if (NumAddrOps < 4) // FrameIndex only
1729 MIB.addImm(1).addReg(0).addImm(0);
1730 } else {
1731 MIB = X86InstrAddOperand(MIB, MO);
1732 }
1733 }
1734 return MIB;
1735}
1736
1737static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
1738 SmallVector<MachineOperand,4> &MOs,
1739 MachineInstr *MI) {
1740 MachineInstrBuilder MIB = BuildMI(TII.get(Opcode));
1741
1742 unsigned NumAddrOps = MOs.size();
1743 for (unsigned i = 0; i != NumAddrOps; ++i)
1744 MIB = X86InstrAddOperand(MIB, MOs[i]);
1745 if (NumAddrOps < 4) // FrameIndex only
1746 MIB.addImm(1).addReg(0).addImm(0);
1747 return MIB.addImm(0);
1748}
1749
1750MachineInstr*
1751X86InstrInfo::foldMemoryOperand(MachineInstr *MI, unsigned i,
Evan Cheng5fd79d02008-02-08 21:20:40 +00001752 SmallVector<MachineOperand,4> &MOs) const {
Owen Anderson43dbe052008-01-07 01:35:02 +00001753 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1754 bool isTwoAddrFold = false;
Chris Lattner749c6f62008-01-07 07:27:27 +00001755 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson43dbe052008-01-07 01:35:02 +00001756 bool isTwoAddr = NumOps > 1 &&
Chris Lattner749c6f62008-01-07 07:27:27 +00001757 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson43dbe052008-01-07 01:35:02 +00001758
1759 MachineInstr *NewMI = NULL;
1760 // Folding a memory location into the two-address part of a two-address
1761 // instruction is different than folding it other places. It requires
1762 // replacing the *two* registers with the memory location.
1763 if (isTwoAddr && NumOps >= 2 && i < 2 &&
1764 MI->getOperand(0).isRegister() &&
1765 MI->getOperand(1).isRegister() &&
1766 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
1767 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1768 isTwoAddrFold = true;
1769 } else if (i == 0) { // If operand 0
1770 if (MI->getOpcode() == X86::MOV16r0)
1771 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
1772 else if (MI->getOpcode() == X86::MOV32r0)
1773 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
1774 else if (MI->getOpcode() == X86::MOV64r0)
1775 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
1776 else if (MI->getOpcode() == X86::MOV8r0)
1777 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
1778 if (NewMI) {
1779 NewMI->copyKillDeadInfo(MI);
1780 return NewMI;
1781 }
1782
1783 OpcodeTablePtr = &RegOp2MemOpTable0;
1784 } else if (i == 1) {
1785 OpcodeTablePtr = &RegOp2MemOpTable1;
1786 } else if (i == 2) {
1787 OpcodeTablePtr = &RegOp2MemOpTable2;
1788 }
1789
1790 // If table selected...
1791 if (OpcodeTablePtr) {
1792 // Find the Opcode to fuse
1793 DenseMap<unsigned*, unsigned>::iterator I =
1794 OpcodeTablePtr->find((unsigned*)MI->getOpcode());
1795 if (I != OpcodeTablePtr->end()) {
1796 if (isTwoAddrFold)
1797 NewMI = FuseTwoAddrInst(I->second, MOs, MI, *this);
1798 else
1799 NewMI = FuseInst(I->second, i, MOs, MI, *this);
1800 NewMI->copyKillDeadInfo(MI);
1801 return NewMI;
1802 }
1803 }
1804
1805 // No fusion
1806 if (PrintFailedFusing)
Chris Lattner269f0592008-01-09 00:37:18 +00001807 cerr << "We failed to fuse operand " << i << *MI;
Owen Anderson43dbe052008-01-07 01:35:02 +00001808 return NULL;
1809}
1810
1811
Evan Cheng5fd79d02008-02-08 21:20:40 +00001812MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
1813 MachineInstr *MI,
Owen Anderson43dbe052008-01-07 01:35:02 +00001814 SmallVectorImpl<unsigned> &Ops,
1815 int FrameIndex) const {
1816 // Check switch flag
1817 if (NoFusing) return NULL;
1818
Evan Cheng5fd79d02008-02-08 21:20:40 +00001819 const MachineFrameInfo *MFI = MF.getFrameInfo();
1820 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
1821 // FIXME: Move alignment requirement into tables?
1822 if (Alignment < 16) {
1823 switch (MI->getOpcode()) {
1824 default: break;
1825 // Not always safe to fold movsd into these instructions since their load
1826 // folding variants expects the address to be 16 byte aligned.
1827 case X86::FsANDNPDrr:
1828 case X86::FsANDNPSrr:
1829 case X86::FsANDPDrr:
1830 case X86::FsANDPSrr:
1831 case X86::FsORPDrr:
1832 case X86::FsORPSrr:
1833 case X86::FsXORPDrr:
1834 case X86::FsXORPSrr:
1835 return NULL;
1836 }
1837 }
1838
Owen Anderson43dbe052008-01-07 01:35:02 +00001839 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1840 unsigned NewOpc = 0;
1841 switch (MI->getOpcode()) {
1842 default: return NULL;
1843 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
1844 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
1845 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
1846 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
1847 }
1848 // Change to CMPXXri r, 0 first.
Chris Lattner5080f4d2008-01-11 18:10:50 +00001849 MI->setDesc(get(NewOpc));
Owen Anderson43dbe052008-01-07 01:35:02 +00001850 MI->getOperand(1).ChangeToImmediate(0);
1851 } else if (Ops.size() != 1)
1852 return NULL;
1853
1854 SmallVector<MachineOperand,4> MOs;
1855 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
1856 return foldMemoryOperand(MI, Ops[0], MOs);
1857}
1858
Evan Cheng5fd79d02008-02-08 21:20:40 +00001859MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
1860 MachineInstr *MI,
Chris Lattner269f0592008-01-09 00:37:18 +00001861 SmallVectorImpl<unsigned> &Ops,
1862 MachineInstr *LoadMI) const {
Owen Anderson43dbe052008-01-07 01:35:02 +00001863 // Check switch flag
1864 if (NoFusing) return NULL;
1865
Evan Cheng5fd79d02008-02-08 21:20:40 +00001866 unsigned Alignment = 0;
1867 for (unsigned i = 0, e = LoadMI->getNumMemOperands(); i != e; ++i) {
1868 const MemOperand &MRO = LoadMI->getMemOperand(i);
1869 unsigned Align = MRO.getAlignment();
1870 if (Align > Alignment)
1871 Alignment = Align;
1872 }
1873
1874 // FIXME: Move alignment requirement into tables?
1875 if (Alignment < 16) {
1876 switch (MI->getOpcode()) {
1877 default: break;
1878 // Not always safe to fold movsd into these instructions since their load
1879 // folding variants expects the address to be 16 byte aligned.
1880 case X86::FsANDNPDrr:
1881 case X86::FsANDNPSrr:
1882 case X86::FsANDPDrr:
1883 case X86::FsANDPSrr:
1884 case X86::FsORPDrr:
1885 case X86::FsORPSrr:
1886 case X86::FsXORPDrr:
1887 case X86::FsXORPSrr:
1888 return NULL;
1889 }
1890 }
1891
Owen Anderson43dbe052008-01-07 01:35:02 +00001892 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1893 unsigned NewOpc = 0;
1894 switch (MI->getOpcode()) {
1895 default: return NULL;
1896 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
1897 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
1898 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
1899 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
1900 }
1901 // Change to CMPXXri r, 0 first.
Chris Lattner5080f4d2008-01-11 18:10:50 +00001902 MI->setDesc(get(NewOpc));
Owen Anderson43dbe052008-01-07 01:35:02 +00001903 MI->getOperand(1).ChangeToImmediate(0);
1904 } else if (Ops.size() != 1)
1905 return NULL;
1906
1907 SmallVector<MachineOperand,4> MOs;
Chris Lattner749c6f62008-01-07 07:27:27 +00001908 unsigned NumOps = LoadMI->getDesc().getNumOperands();
Owen Anderson43dbe052008-01-07 01:35:02 +00001909 for (unsigned i = NumOps - 4; i != NumOps; ++i)
1910 MOs.push_back(LoadMI->getOperand(i));
1911 return foldMemoryOperand(MI, Ops[0], MOs);
1912}
1913
1914
1915bool X86InstrInfo::canFoldMemoryOperand(MachineInstr *MI,
Chris Lattner269f0592008-01-09 00:37:18 +00001916 SmallVectorImpl<unsigned> &Ops) const {
Owen Anderson43dbe052008-01-07 01:35:02 +00001917 // Check switch flag
1918 if (NoFusing) return 0;
1919
1920 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1921 switch (MI->getOpcode()) {
1922 default: return false;
1923 case X86::TEST8rr:
1924 case X86::TEST16rr:
1925 case X86::TEST32rr:
1926 case X86::TEST64rr:
1927 return true;
1928 }
1929 }
1930
1931 if (Ops.size() != 1)
1932 return false;
1933
1934 unsigned OpNum = Ops[0];
1935 unsigned Opc = MI->getOpcode();
Chris Lattner749c6f62008-01-07 07:27:27 +00001936 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson43dbe052008-01-07 01:35:02 +00001937 bool isTwoAddr = NumOps > 1 &&
Chris Lattner749c6f62008-01-07 07:27:27 +00001938 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson43dbe052008-01-07 01:35:02 +00001939
1940 // Folding a memory location into the two-address part of a two-address
1941 // instruction is different than folding it other places. It requires
1942 // replacing the *two* registers with the memory location.
1943 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1944 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
1945 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1946 } else if (OpNum == 0) { // If operand 0
1947 switch (Opc) {
1948 case X86::MOV16r0:
1949 case X86::MOV32r0:
1950 case X86::MOV64r0:
1951 case X86::MOV8r0:
1952 return true;
1953 default: break;
1954 }
1955 OpcodeTablePtr = &RegOp2MemOpTable0;
1956 } else if (OpNum == 1) {
1957 OpcodeTablePtr = &RegOp2MemOpTable1;
1958 } else if (OpNum == 2) {
1959 OpcodeTablePtr = &RegOp2MemOpTable2;
1960 }
1961
1962 if (OpcodeTablePtr) {
1963 // Find the Opcode to fuse
1964 DenseMap<unsigned*, unsigned>::iterator I =
1965 OpcodeTablePtr->find((unsigned*)Opc);
1966 if (I != OpcodeTablePtr->end())
1967 return true;
1968 }
1969 return false;
1970}
1971
1972bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
1973 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
1974 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1975 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
1976 MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
1977 if (I == MemOp2RegOpTable.end())
1978 return false;
1979 unsigned Opc = I->second.first;
1980 unsigned Index = I->second.second & 0xf;
1981 bool FoldedLoad = I->second.second & (1 << 4);
1982 bool FoldedStore = I->second.second & (1 << 5);
1983 if (UnfoldLoad && !FoldedLoad)
1984 return false;
1985 UnfoldLoad &= FoldedLoad;
1986 if (UnfoldStore && !FoldedStore)
1987 return false;
1988 UnfoldStore &= FoldedStore;
1989
Chris Lattner749c6f62008-01-07 07:27:27 +00001990 const TargetInstrDesc &TID = get(Opc);
Owen Anderson43dbe052008-01-07 01:35:02 +00001991 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattner8ca5c672008-01-07 02:39:19 +00001992 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson43dbe052008-01-07 01:35:02 +00001993 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
1994 SmallVector<MachineOperand,4> AddrOps;
1995 SmallVector<MachineOperand,2> BeforeOps;
1996 SmallVector<MachineOperand,2> AfterOps;
1997 SmallVector<MachineOperand,4> ImpOps;
1998 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1999 MachineOperand &Op = MI->getOperand(i);
2000 if (i >= Index && i < Index+4)
2001 AddrOps.push_back(Op);
2002 else if (Op.isRegister() && Op.isImplicit())
2003 ImpOps.push_back(Op);
2004 else if (i < Index)
2005 BeforeOps.push_back(Op);
2006 else if (i > Index)
2007 AfterOps.push_back(Op);
2008 }
2009
2010 // Emit the load instruction.
2011 if (UnfoldLoad) {
2012 loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
2013 if (UnfoldStore) {
2014 // Address operands cannot be marked isKill.
2015 for (unsigned i = 1; i != 5; ++i) {
2016 MachineOperand &MO = NewMIs[0]->getOperand(i);
2017 if (MO.isRegister())
2018 MO.setIsKill(false);
2019 }
2020 }
2021 }
2022
2023 // Emit the data processing instruction.
2024 MachineInstr *DataMI = new MachineInstr(TID, true);
2025 MachineInstrBuilder MIB(DataMI);
2026
2027 if (FoldedStore)
2028 MIB.addReg(Reg, true);
2029 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2030 MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
2031 if (FoldedLoad)
2032 MIB.addReg(Reg);
2033 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2034 MIB = X86InstrAddOperand(MIB, AfterOps[i]);
2035 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2036 MachineOperand &MO = ImpOps[i];
2037 MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
2038 }
2039 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2040 unsigned NewOpc = 0;
2041 switch (DataMI->getOpcode()) {
2042 default: break;
2043 case X86::CMP64ri32:
2044 case X86::CMP32ri:
2045 case X86::CMP16ri:
2046 case X86::CMP8ri: {
2047 MachineOperand &MO0 = DataMI->getOperand(0);
2048 MachineOperand &MO1 = DataMI->getOperand(1);
2049 if (MO1.getImm() == 0) {
2050 switch (DataMI->getOpcode()) {
2051 default: break;
2052 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2053 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
2054 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
2055 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
2056 }
Chris Lattner5080f4d2008-01-11 18:10:50 +00002057 DataMI->setDesc(get(NewOpc));
Owen Anderson43dbe052008-01-07 01:35:02 +00002058 MO1.ChangeToRegister(MO0.getReg(), false);
2059 }
2060 }
2061 }
2062 NewMIs.push_back(DataMI);
2063
2064 // Emit the store instruction.
2065 if (UnfoldStore) {
2066 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattner8ca5c672008-01-07 02:39:19 +00002067 const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson43dbe052008-01-07 01:35:02 +00002068 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2069 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2070 }
2071
2072 return true;
2073}
2074
2075bool
2076X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2077 SmallVectorImpl<SDNode*> &NewNodes) const {
2078 if (!N->isTargetOpcode())
2079 return false;
2080
2081 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2082 MemOp2RegOpTable.find((unsigned*)N->getTargetOpcode());
2083 if (I == MemOp2RegOpTable.end())
2084 return false;
2085 unsigned Opc = I->second.first;
2086 unsigned Index = I->second.second & 0xf;
2087 bool FoldedLoad = I->second.second & (1 << 4);
2088 bool FoldedStore = I->second.second & (1 << 5);
Chris Lattner749c6f62008-01-07 07:27:27 +00002089 const TargetInstrDesc &TID = get(Opc);
Owen Anderson43dbe052008-01-07 01:35:02 +00002090 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattner8ca5c672008-01-07 02:39:19 +00002091 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson43dbe052008-01-07 01:35:02 +00002092 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2093 std::vector<SDOperand> AddrOps;
2094 std::vector<SDOperand> BeforeOps;
2095 std::vector<SDOperand> AfterOps;
2096 unsigned NumOps = N->getNumOperands();
2097 for (unsigned i = 0; i != NumOps-1; ++i) {
2098 SDOperand Op = N->getOperand(i);
2099 if (i >= Index && i < Index+4)
2100 AddrOps.push_back(Op);
2101 else if (i < Index)
2102 BeforeOps.push_back(Op);
2103 else if (i > Index)
2104 AfterOps.push_back(Op);
2105 }
2106 SDOperand Chain = N->getOperand(NumOps-1);
2107 AddrOps.push_back(Chain);
2108
2109 // Emit the load instruction.
2110 SDNode *Load = 0;
2111 if (FoldedLoad) {
2112 MVT::ValueType VT = *RC->vt_begin();
2113 Load = DAG.getTargetNode(getLoadRegOpcode(RC, RI.getStackAlignment()), VT,
2114 MVT::Other, &AddrOps[0], AddrOps.size());
2115 NewNodes.push_back(Load);
2116 }
2117
2118 // Emit the data processing instruction.
2119 std::vector<MVT::ValueType> VTs;
2120 const TargetRegisterClass *DstRC = 0;
Chris Lattner349c4952008-01-07 03:13:06 +00002121 if (TID.getNumDefs() > 0) {
Owen Anderson43dbe052008-01-07 01:35:02 +00002122 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattner8ca5c672008-01-07 02:39:19 +00002123 DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson43dbe052008-01-07 01:35:02 +00002124 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2125 VTs.push_back(*DstRC->vt_begin());
2126 }
2127 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
2128 MVT::ValueType VT = N->getValueType(i);
Chris Lattner349c4952008-01-07 03:13:06 +00002129 if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
Owen Anderson43dbe052008-01-07 01:35:02 +00002130 VTs.push_back(VT);
2131 }
2132 if (Load)
2133 BeforeOps.push_back(SDOperand(Load, 0));
2134 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2135 SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
2136 NewNodes.push_back(NewNode);
2137
2138 // Emit the store instruction.
2139 if (FoldedStore) {
2140 AddrOps.pop_back();
2141 AddrOps.push_back(SDOperand(NewNode, 0));
2142 AddrOps.push_back(Chain);
2143 SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, RI.getStackAlignment()),
2144 MVT::Other, &AddrOps[0], AddrOps.size());
2145 NewNodes.push_back(Store);
2146 }
2147
2148 return true;
2149}
2150
2151unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2152 bool UnfoldLoad, bool UnfoldStore) const {
2153 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2154 MemOp2RegOpTable.find((unsigned*)Opc);
2155 if (I == MemOp2RegOpTable.end())
2156 return 0;
2157 bool FoldedLoad = I->second.second & (1 << 4);
2158 bool FoldedStore = I->second.second & (1 << 5);
2159 if (UnfoldLoad && !FoldedLoad)
2160 return 0;
2161 if (UnfoldStore && !FoldedStore)
2162 return 0;
2163 return I->second.first;
2164}
2165
Chris Lattnerc24ff8e2006-10-28 17:29:57 +00002166bool X86InstrInfo::BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
2167 if (MBB.empty()) return false;
2168
2169 switch (MBB.back().getOpcode()) {
Arnold Schwaighoferc85e1712007-10-11 19:40:01 +00002170 case X86::TCRETURNri:
2171 case X86::TCRETURNdi:
Evan Cheng126f17a2007-05-21 18:44:17 +00002172 case X86::RET: // Return.
2173 case X86::RETI:
2174 case X86::TAILJMPd:
2175 case X86::TAILJMPr:
2176 case X86::TAILJMPm:
Chris Lattnerc24ff8e2006-10-28 17:29:57 +00002177 case X86::JMP: // Uncond branch.
2178 case X86::JMP32r: // Indirect branch.
Dan Gohmana0a7c1d2007-09-17 15:19:08 +00002179 case X86::JMP64r: // Indirect branch (64-bit).
Chris Lattnerc24ff8e2006-10-28 17:29:57 +00002180 case X86::JMP32m: // Indirect branch through mem.
Dan Gohmana0a7c1d2007-09-17 15:19:08 +00002181 case X86::JMP64m: // Indirect branch through mem (64-bit).
Chris Lattnerc24ff8e2006-10-28 17:29:57 +00002182 return true;
2183 default: return false;
2184 }
2185}
2186
Chris Lattner7fbe9722006-10-20 17:42:20 +00002187bool X86InstrInfo::
2188ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
Chris Lattner9cd68752006-10-21 05:52:40 +00002189 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
2190 Cond[0].setImm(GetOppositeBranchCondition((X86::CondCode)Cond[0].getImm()));
2191 return false;
Chris Lattner7fbe9722006-10-20 17:42:20 +00002192}
2193
Evan Cheng25ab6902006-09-08 06:48:29 +00002194const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
2195 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
2196 if (Subtarget->is64Bit())
2197 return &X86::GR64RegClass;
2198 else
2199 return &X86::GR32RegClass;
2200}