blob: 80d5f37bc4cd80136c777b1a4dc570215355a2df [file] [log] [blame]
Sean Silvaee47edf2012-12-05 00:26:32 +00001==================================================
2Kaleidoscope: Extending the Language: Control Flow
3==================================================
4
5.. contents::
6 :local:
7
Sean Silvaee47edf2012-12-05 00:26:32 +00008Chapter 5 Introduction
9======================
10
11Welcome to Chapter 5 of the "`Implementing a language with
12LLVM <index.html>`_" tutorial. Parts 1-4 described the implementation of
13the simple Kaleidoscope language and included support for generating
14LLVM IR, followed by optimizations and a JIT compiler. Unfortunately, as
15presented, Kaleidoscope is mostly useless: it has no control flow other
16than call and return. This means that you can't have conditional
17branches in the code, significantly limiting its power. In this episode
18of "build that compiler", we'll extend Kaleidoscope to have an
19if/then/else expression plus a simple 'for' loop.
20
21If/Then/Else
22============
23
24Extending Kaleidoscope to support if/then/else is quite straightforward.
25It basically requires adding support for this "new" concept to the
26lexer, parser, AST, and LLVM code emitter. This example is nice, because
27it shows how easy it is to "grow" a language over time, incrementally
28extending it as new ideas are discovered.
29
30Before we get going on "how" we add this extension, lets talk about
31"what" we want. The basic idea is that we want to be able to write this
32sort of thing:
33
34::
35
36 def fib(x)
37 if x < 3 then
38 1
39 else
40 fib(x-1)+fib(x-2);
41
42In Kaleidoscope, every construct is an expression: there are no
43statements. As such, the if/then/else expression needs to return a value
44like any other. Since we're using a mostly functional form, we'll have
45it evaluate its conditional, then return the 'then' or 'else' value
46based on how the condition was resolved. This is very similar to the C
47"?:" expression.
48
49The semantics of the if/then/else expression is that it evaluates the
50condition to a boolean equality value: 0.0 is considered to be false and
51everything else is considered to be true. If the condition is true, the
52first subexpression is evaluated and returned, if the condition is
53false, the second subexpression is evaluated and returned. Since
54Kaleidoscope allows side-effects, this behavior is important to nail
55down.
56
57Now that we know what we "want", lets break this down into its
58constituent pieces.
59
60Lexer Extensions for If/Then/Else
61---------------------------------
62
63The lexer extensions are straightforward. First we add new enum values
64for the relevant tokens:
65
66.. code-block:: c++
67
68 // control
69 tok_if = -6, tok_then = -7, tok_else = -8,
70
71Once we have that, we recognize the new keywords in the lexer. This is
72pretty simple stuff:
73
74.. code-block:: c++
75
76 ...
77 if (IdentifierStr == "def") return tok_def;
78 if (IdentifierStr == "extern") return tok_extern;
79 if (IdentifierStr == "if") return tok_if;
80 if (IdentifierStr == "then") return tok_then;
81 if (IdentifierStr == "else") return tok_else;
82 return tok_identifier;
83
84AST Extensions for If/Then/Else
85-------------------------------
86
87To represent the new expression we add a new AST node for it:
88
89.. code-block:: c++
90
91 /// IfExprAST - Expression class for if/then/else.
92 class IfExprAST : public ExprAST {
93 ExprAST *Cond, *Then, *Else;
94 public:
95 IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
96 : Cond(cond), Then(then), Else(_else) {}
97 virtual Value *Codegen();
98 };
99
100The AST node just has pointers to the various subexpressions.
101
102Parser Extensions for If/Then/Else
103----------------------------------
104
105Now that we have the relevant tokens coming from the lexer and we have
106the AST node to build, our parsing logic is relatively straightforward.
107First we define a new parsing function:
108
109.. code-block:: c++
110
111 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
112 static ExprAST *ParseIfExpr() {
113 getNextToken(); // eat the if.
114
115 // condition.
116 ExprAST *Cond = ParseExpression();
117 if (!Cond) return 0;
118
119 if (CurTok != tok_then)
120 return Error("expected then");
121 getNextToken(); // eat the then
122
123 ExprAST *Then = ParseExpression();
124 if (Then == 0) return 0;
125
126 if (CurTok != tok_else)
127 return Error("expected else");
128
129 getNextToken();
130
131 ExprAST *Else = ParseExpression();
132 if (!Else) return 0;
133
134 return new IfExprAST(Cond, Then, Else);
135 }
136
137Next we hook it up as a primary expression:
138
139.. code-block:: c++
140
141 static ExprAST *ParsePrimary() {
142 switch (CurTok) {
143 default: return Error("unknown token when expecting an expression");
144 case tok_identifier: return ParseIdentifierExpr();
145 case tok_number: return ParseNumberExpr();
146 case '(': return ParseParenExpr();
147 case tok_if: return ParseIfExpr();
148 }
149 }
150
151LLVM IR for If/Then/Else
152------------------------
153
154Now that we have it parsing and building the AST, the final piece is
155adding LLVM code generation support. This is the most interesting part
156of the if/then/else example, because this is where it starts to
157introduce new concepts. All of the code above has been thoroughly
158described in previous chapters.
159
160To motivate the code we want to produce, lets take a look at a simple
161example. Consider:
162
163::
164
165 extern foo();
166 extern bar();
167 def baz(x) if x then foo() else bar();
168
169If you disable optimizations, the code you'll (soon) get from
170Kaleidoscope looks like this:
171
172.. code-block:: llvm
173
174 declare double @foo()
175
176 declare double @bar()
177
178 define double @baz(double %x) {
179 entry:
180 %ifcond = fcmp one double %x, 0.000000e+00
181 br i1 %ifcond, label %then, label %else
182
183 then: ; preds = %entry
184 %calltmp = call double @foo()
185 br label %ifcont
186
187 else: ; preds = %entry
188 %calltmp1 = call double @bar()
189 br label %ifcont
190
191 ifcont: ; preds = %else, %then
192 %iftmp = phi double [ %calltmp, %then ], [ %calltmp1, %else ]
193 ret double %iftmp
194 }
195
196To visualize the control flow graph, you can use a nifty feature of the
197LLVM '`opt <http://llvm.org/cmds/opt.html>`_' tool. If you put this LLVM
198IR into "t.ll" and run "``llvm-as < t.ll | opt -analyze -view-cfg``", `a
199window will pop up <../ProgrammersManual.html#ViewGraph>`_ and you'll
200see this graph:
201
202.. figure:: LangImpl5-cfg.png
203 :align: center
204 :alt: Example CFG
205
206 Example CFG
207
208Another way to get this is to call "``F->viewCFG()``" or
209"``F->viewCFGOnly()``" (where F is a "``Function*``") either by
210inserting actual calls into the code and recompiling or by calling these
211in the debugger. LLVM has many nice features for visualizing various
212graphs.
213
214Getting back to the generated code, it is fairly simple: the entry block
215evaluates the conditional expression ("x" in our case here) and compares
216the result to 0.0 with the "``fcmp one``" instruction ('one' is "Ordered
217and Not Equal"). Based on the result of this expression, the code jumps
218to either the "then" or "else" blocks, which contain the expressions for
219the true/false cases.
220
221Once the then/else blocks are finished executing, they both branch back
222to the 'ifcont' block to execute the code that happens after the
223if/then/else. In this case the only thing left to do is to return to the
224caller of the function. The question then becomes: how does the code
225know which expression to return?
226
227The answer to this question involves an important SSA operation: the
228`Phi
229operation <http://en.wikipedia.org/wiki/Static_single_assignment_form>`_.
230If you're not familiar with SSA, `the wikipedia
231article <http://en.wikipedia.org/wiki/Static_single_assignment_form>`_
232is a good introduction and there are various other introductions to it
233available on your favorite search engine. The short version is that
234"execution" of the Phi operation requires "remembering" which block
235control came from. The Phi operation takes on the value corresponding to
236the input control block. In this case, if control comes in from the
237"then" block, it gets the value of "calltmp". If control comes from the
238"else" block, it gets the value of "calltmp1".
239
240At this point, you are probably starting to think "Oh no! This means my
241simple and elegant front-end will have to start generating SSA form in
242order to use LLVM!". Fortunately, this is not the case, and we strongly
243advise *not* implementing an SSA construction algorithm in your
244front-end unless there is an amazingly good reason to do so. In
245practice, there are two sorts of values that float around in code
246written for your average imperative programming language that might need
247Phi nodes:
248
249#. Code that involves user variables: ``x = 1; x = x + 1;``
250#. Values that are implicit in the structure of your AST, such as the
251 Phi node in this case.
252
253In `Chapter 7 <LangImpl7.html>`_ of this tutorial ("mutable variables"),
254we'll talk about #1 in depth. For now, just believe me that you don't
255need SSA construction to handle this case. For #2, you have the choice
256of using the techniques that we will describe for #1, or you can insert
257Phi nodes directly, if convenient. In this case, it is really really
258easy to generate the Phi node, so we choose to do it directly.
259
260Okay, enough of the motivation and overview, lets generate code!
261
262Code Generation for If/Then/Else
263--------------------------------
264
265In order to generate code for this, we implement the ``Codegen`` method
266for ``IfExprAST``:
267
268.. code-block:: c++
269
270 Value *IfExprAST::Codegen() {
271 Value *CondV = Cond->Codegen();
272 if (CondV == 0) return 0;
273
274 // Convert condition to a bool by comparing equal to 0.0.
275 CondV = Builder.CreateFCmpONE(CondV,
276 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
277 "ifcond");
278
279This code is straightforward and similar to what we saw before. We emit
280the expression for the condition, then compare that value to zero to get
281a truth value as a 1-bit (bool) value.
282
283.. code-block:: c++
284
285 Function *TheFunction = Builder.GetInsertBlock()->getParent();
286
287 // Create blocks for the then and else cases. Insert the 'then' block at the
288 // end of the function.
289 BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
290 BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
291 BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
292
293 Builder.CreateCondBr(CondV, ThenBB, ElseBB);
294
295This code creates the basic blocks that are related to the if/then/else
296statement, and correspond directly to the blocks in the example above.
297The first line gets the current Function object that is being built. It
298gets this by asking the builder for the current BasicBlock, and asking
299that block for its "parent" (the function it is currently embedded
300into).
301
302Once it has that, it creates three blocks. Note that it passes
303"TheFunction" into the constructor for the "then" block. This causes the
304constructor to automatically insert the new block into the end of the
305specified function. The other two blocks are created, but aren't yet
306inserted into the function.
307
308Once the blocks are created, we can emit the conditional branch that
309chooses between them. Note that creating new blocks does not implicitly
310affect the IRBuilder, so it is still inserting into the block that the
311condition went into. Also note that it is creating a branch to the
312"then" block and the "else" block, even though the "else" block isn't
313inserted into the function yet. This is all ok: it is the standard way
314that LLVM supports forward references.
315
316.. code-block:: c++
317
318 // Emit then value.
319 Builder.SetInsertPoint(ThenBB);
320
321 Value *ThenV = Then->Codegen();
322 if (ThenV == 0) return 0;
323
324 Builder.CreateBr(MergeBB);
325 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
326 ThenBB = Builder.GetInsertBlock();
327
328After the conditional branch is inserted, we move the builder to start
329inserting into the "then" block. Strictly speaking, this call moves the
330insertion point to be at the end of the specified block. However, since
331the "then" block is empty, it also starts out by inserting at the
332beginning of the block. :)
333
334Once the insertion point is set, we recursively codegen the "then"
335expression from the AST. To finish off the "then" block, we create an
336unconditional branch to the merge block. One interesting (and very
337important) aspect of the LLVM IR is that it `requires all basic blocks
338to be "terminated" <../LangRef.html#functionstructure>`_ with a `control
339flow instruction <../LangRef.html#terminators>`_ such as return or
340branch. This means that all control flow, *including fall throughs* must
341be made explicit in the LLVM IR. If you violate this rule, the verifier
342will emit an error.
343
344The final line here is quite subtle, but is very important. The basic
345issue is that when we create the Phi node in the merge block, we need to
346set up the block/value pairs that indicate how the Phi will work.
347Importantly, the Phi node expects to have an entry for each predecessor
348of the block in the CFG. Why then, are we getting the current block when
349we just set it to ThenBB 5 lines above? The problem is that the "Then"
350expression may actually itself change the block that the Builder is
351emitting into if, for example, it contains a nested "if/then/else"
352expression. Because calling Codegen recursively could arbitrarily change
353the notion of the current block, we are required to get an up-to-date
354value for code that will set up the Phi node.
355
356.. code-block:: c++
357
358 // Emit else block.
359 TheFunction->getBasicBlockList().push_back(ElseBB);
360 Builder.SetInsertPoint(ElseBB);
361
362 Value *ElseV = Else->Codegen();
363 if (ElseV == 0) return 0;
364
365 Builder.CreateBr(MergeBB);
366 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
367 ElseBB = Builder.GetInsertBlock();
368
369Code generation for the 'else' block is basically identical to codegen
370for the 'then' block. The only significant difference is the first line,
371which adds the 'else' block to the function. Recall previously that the
372'else' block was created, but not added to the function. Now that the
373'then' and 'else' blocks are emitted, we can finish up with the merge
374code:
375
376.. code-block:: c++
377
378 // Emit merge block.
379 TheFunction->getBasicBlockList().push_back(MergeBB);
380 Builder.SetInsertPoint(MergeBB);
381 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
382 "iftmp");
383
384 PN->addIncoming(ThenV, ThenBB);
385 PN->addIncoming(ElseV, ElseBB);
386 return PN;
387 }
388
389The first two lines here are now familiar: the first adds the "merge"
390block to the Function object (it was previously floating, like the else
391block above). The second block changes the insertion point so that newly
392created code will go into the "merge" block. Once that is done, we need
393to create the PHI node and set up the block/value pairs for the PHI.
394
395Finally, the CodeGen function returns the phi node as the value computed
396by the if/then/else expression. In our example above, this returned
397value will feed into the code for the top-level function, which will
398create the return instruction.
399
400Overall, we now have the ability to execute conditional code in
401Kaleidoscope. With this extension, Kaleidoscope is a fairly complete
402language that can calculate a wide variety of numeric functions. Next up
403we'll add another useful expression that is familiar from non-functional
404languages...
405
406'for' Loop Expression
407=====================
408
409Now that we know how to add basic control flow constructs to the
410language, we have the tools to add more powerful things. Lets add
411something more aggressive, a 'for' expression:
412
413::
414
415 extern putchard(char)
416 def printstar(n)
417 for i = 1, i < n, 1.0 in
418 putchard(42); # ascii 42 = '*'
419
420 # print 100 '*' characters
421 printstar(100);
422
423This expression defines a new variable ("i" in this case) which iterates
424from a starting value, while the condition ("i < n" in this case) is
425true, incrementing by an optional step value ("1.0" in this case). If
426the step value is omitted, it defaults to 1.0. While the loop is true,
427it executes its body expression. Because we don't have anything better
428to return, we'll just define the loop as always returning 0.0. In the
429future when we have mutable variables, it will get more useful.
430
431As before, lets talk about the changes that we need to Kaleidoscope to
432support this.
433
434Lexer Extensions for the 'for' Loop
435-----------------------------------
436
437The lexer extensions are the same sort of thing as for if/then/else:
438
439.. code-block:: c++
440
441 ... in enum Token ...
442 // control
443 tok_if = -6, tok_then = -7, tok_else = -8,
444 tok_for = -9, tok_in = -10
445
446 ... in gettok ...
447 if (IdentifierStr == "def") return tok_def;
448 if (IdentifierStr == "extern") return tok_extern;
449 if (IdentifierStr == "if") return tok_if;
450 if (IdentifierStr == "then") return tok_then;
451 if (IdentifierStr == "else") return tok_else;
452 if (IdentifierStr == "for") return tok_for;
453 if (IdentifierStr == "in") return tok_in;
454 return tok_identifier;
455
456AST Extensions for the 'for' Loop
457---------------------------------
458
459The AST node is just as simple. It basically boils down to capturing the
460variable name and the constituent expressions in the node.
461
462.. code-block:: c++
463
464 /// ForExprAST - Expression class for for/in.
465 class ForExprAST : public ExprAST {
466 std::string VarName;
467 ExprAST *Start, *End, *Step, *Body;
468 public:
469 ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
470 ExprAST *step, ExprAST *body)
471 : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
472 virtual Value *Codegen();
473 };
474
475Parser Extensions for the 'for' Loop
476------------------------------------
477
478The parser code is also fairly standard. The only interesting thing here
479is handling of the optional step value. The parser code handles it by
480checking to see if the second comma is present. If not, it sets the step
481value to null in the AST node:
482
483.. code-block:: c++
484
485 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
486 static ExprAST *ParseForExpr() {
487 getNextToken(); // eat the for.
488
489 if (CurTok != tok_identifier)
490 return Error("expected identifier after for");
491
492 std::string IdName = IdentifierStr;
493 getNextToken(); // eat identifier.
494
495 if (CurTok != '=')
496 return Error("expected '=' after for");
497 getNextToken(); // eat '='.
498
499
500 ExprAST *Start = ParseExpression();
501 if (Start == 0) return 0;
502 if (CurTok != ',')
503 return Error("expected ',' after for start value");
504 getNextToken();
505
506 ExprAST *End = ParseExpression();
507 if (End == 0) return 0;
508
509 // The step value is optional.
510 ExprAST *Step = 0;
511 if (CurTok == ',') {
512 getNextToken();
513 Step = ParseExpression();
514 if (Step == 0) return 0;
515 }
516
517 if (CurTok != tok_in)
518 return Error("expected 'in' after for");
519 getNextToken(); // eat 'in'.
520
521 ExprAST *Body = ParseExpression();
522 if (Body == 0) return 0;
523
524 return new ForExprAST(IdName, Start, End, Step, Body);
525 }
526
527LLVM IR for the 'for' Loop
528--------------------------
529
530Now we get to the good part: the LLVM IR we want to generate for this
531thing. With the simple example above, we get this LLVM IR (note that
532this dump is generated with optimizations disabled for clarity):
533
534.. code-block:: llvm
535
536 declare double @putchard(double)
537
538 define double @printstar(double %n) {
539 entry:
540 ; initial value = 1.0 (inlined into phi)
541 br label %loop
542
543 loop: ; preds = %loop, %entry
544 %i = phi double [ 1.000000e+00, %entry ], [ %nextvar, %loop ]
545 ; body
546 %calltmp = call double @putchard(double 4.200000e+01)
547 ; increment
548 %nextvar = fadd double %i, 1.000000e+00
549
550 ; termination test
551 %cmptmp = fcmp ult double %i, %n
552 %booltmp = uitofp i1 %cmptmp to double
553 %loopcond = fcmp one double %booltmp, 0.000000e+00
554 br i1 %loopcond, label %loop, label %afterloop
555
556 afterloop: ; preds = %loop
557 ; loop always returns 0.0
558 ret double 0.000000e+00
559 }
560
561This loop contains all the same constructs we saw before: a phi node,
562several expressions, and some basic blocks. Lets see how this fits
563together.
564
565Code Generation for the 'for' Loop
566----------------------------------
567
568The first part of Codegen is very simple: we just output the start
569expression for the loop value:
570
571.. code-block:: c++
572
573 Value *ForExprAST::Codegen() {
574 // Emit the start code first, without 'variable' in scope.
575 Value *StartVal = Start->Codegen();
576 if (StartVal == 0) return 0;
577
578With this out of the way, the next step is to set up the LLVM basic
579block for the start of the loop body. In the case above, the whole loop
580body is one block, but remember that the body code itself could consist
581of multiple blocks (e.g. if it contains an if/then/else or a for/in
582expression).
583
584.. code-block:: c++
585
586 // Make the new basic block for the loop header, inserting after current
587 // block.
588 Function *TheFunction = Builder.GetInsertBlock()->getParent();
589 BasicBlock *PreheaderBB = Builder.GetInsertBlock();
590 BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
591
592 // Insert an explicit fall through from the current block to the LoopBB.
593 Builder.CreateBr(LoopBB);
594
595This code is similar to what we saw for if/then/else. Because we will
596need it to create the Phi node, we remember the block that falls through
597into the loop. Once we have that, we create the actual block that starts
598the loop and create an unconditional branch for the fall-through between
599the two blocks.
600
601.. code-block:: c++
602
603 // Start insertion in LoopBB.
604 Builder.SetInsertPoint(LoopBB);
605
606 // Start the PHI node with an entry for Start.
607 PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, VarName.c_str());
608 Variable->addIncoming(StartVal, PreheaderBB);
609
610Now that the "preheader" for the loop is set up, we switch to emitting
611code for the loop body. To begin with, we move the insertion point and
612create the PHI node for the loop induction variable. Since we already
613know the incoming value for the starting value, we add it to the Phi
614node. Note that the Phi will eventually get a second value for the
615backedge, but we can't set it up yet (because it doesn't exist!).
616
617.. code-block:: c++
618
619 // Within the loop, the variable is defined equal to the PHI node. If it
620 // shadows an existing variable, we have to restore it, so save it now.
621 Value *OldVal = NamedValues[VarName];
622 NamedValues[VarName] = Variable;
623
624 // Emit the body of the loop. This, like any other expr, can change the
625 // current BB. Note that we ignore the value computed by the body, but don't
626 // allow an error.
627 if (Body->Codegen() == 0)
628 return 0;
629
630Now the code starts to get more interesting. Our 'for' loop introduces a
631new variable to the symbol table. This means that our symbol table can
632now contain either function arguments or loop variables. To handle this,
633before we codegen the body of the loop, we add the loop variable as the
634current value for its name. Note that it is possible that there is a
635variable of the same name in the outer scope. It would be easy to make
636this an error (emit an error and return null if there is already an
637entry for VarName) but we choose to allow shadowing of variables. In
638order to handle this correctly, we remember the Value that we are
639potentially shadowing in ``OldVal`` (which will be null if there is no
640shadowed variable).
641
642Once the loop variable is set into the symbol table, the code
643recursively codegen's the body. This allows the body to use the loop
644variable: any references to it will naturally find it in the symbol
645table.
646
647.. code-block:: c++
648
649 // Emit the step value.
650 Value *StepVal;
651 if (Step) {
652 StepVal = Step->Codegen();
653 if (StepVal == 0) return 0;
654 } else {
655 // If not specified, use 1.0.
656 StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
657 }
658
659 Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar");
660
661Now that the body is emitted, we compute the next value of the iteration
662variable by adding the step value, or 1.0 if it isn't present.
663'``NextVar``' will be the value of the loop variable on the next
664iteration of the loop.
665
666.. code-block:: c++
667
668 // Compute the end condition.
669 Value *EndCond = End->Codegen();
670 if (EndCond == 0) return EndCond;
671
672 // Convert condition to a bool by comparing equal to 0.0.
673 EndCond = Builder.CreateFCmpONE(EndCond,
674 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
675 "loopcond");
676
677Finally, we evaluate the exit value of the loop, to determine whether
678the loop should exit. This mirrors the condition evaluation for the
679if/then/else statement.
680
681.. code-block:: c++
682
683 // Create the "after loop" block and insert it.
684 BasicBlock *LoopEndBB = Builder.GetInsertBlock();
685 BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
686
687 // Insert the conditional branch into the end of LoopEndBB.
688 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
689
690 // Any new code will be inserted in AfterBB.
691 Builder.SetInsertPoint(AfterBB);
692
693With the code for the body of the loop complete, we just need to finish
694up the control flow for it. This code remembers the end block (for the
695phi node), then creates the block for the loop exit ("afterloop"). Based
696on the value of the exit condition, it creates a conditional branch that
697chooses between executing the loop again and exiting the loop. Any
698future code is emitted in the "afterloop" block, so it sets the
699insertion position to it.
700
701.. code-block:: c++
702
703 // Add a new entry to the PHI node for the backedge.
704 Variable->addIncoming(NextVar, LoopEndBB);
705
706 // Restore the unshadowed variable.
707 if (OldVal)
708 NamedValues[VarName] = OldVal;
709 else
710 NamedValues.erase(VarName);
711
712 // for expr always returns 0.0.
713 return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
714 }
715
716The final code handles various cleanups: now that we have the "NextVar"
717value, we can add the incoming value to the loop PHI node. After that,
718we remove the loop variable from the symbol table, so that it isn't in
719scope after the for loop. Finally, code generation of the for loop
720always returns 0.0, so that is what we return from
721``ForExprAST::Codegen``.
722
723With this, we conclude the "adding control flow to Kaleidoscope" chapter
724of the tutorial. In this chapter we added two control flow constructs,
725and used them to motivate a couple of aspects of the LLVM IR that are
726important for front-end implementors to know. In the next chapter of our
727saga, we will get a bit crazier and add `user-defined
728operators <LangImpl6.html>`_ to our poor innocent language.
729
730Full Code Listing
731=================
732
733Here is the complete code listing for our running example, enhanced with
734the if/then/else and for expressions.. To build this example, use:
735
736.. code-block:: bash
737
738 # Compile
739 clang++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy
740 # Run
741 ./toy
742
743Here is the code:
744
745.. code-block:: c++
746
747 #include "llvm/DerivedTypes.h"
748 #include "llvm/ExecutionEngine/ExecutionEngine.h"
749 #include "llvm/ExecutionEngine/JIT.h"
750 #include "llvm/IRBuilder.h"
751 #include "llvm/LLVMContext.h"
752 #include "llvm/Module.h"
753 #include "llvm/PassManager.h"
754 #include "llvm/Analysis/Verifier.h"
755 #include "llvm/Analysis/Passes.h"
756 #include "llvm/DataLayout.h"
757 #include "llvm/Transforms/Scalar.h"
758 #include "llvm/Support/TargetSelect.h"
759 #include <cstdio>
760 #include <string>
761 #include <map>
762 #include <vector>
763 using namespace llvm;
764
765 //===----------------------------------------------------------------------===//
766 // Lexer
767 //===----------------------------------------------------------------------===//
768
769 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
770 // of these for known things.
771 enum Token {
772 tok_eof = -1,
773
774 // commands
775 tok_def = -2, tok_extern = -3,
776
777 // primary
778 tok_identifier = -4, tok_number = -5,
779
780 // control
781 tok_if = -6, tok_then = -7, tok_else = -8,
782 tok_for = -9, tok_in = -10
783 };
784
785 static std::string IdentifierStr; // Filled in if tok_identifier
786 static double NumVal; // Filled in if tok_number
787
788 /// gettok - Return the next token from standard input.
789 static int gettok() {
790 static int LastChar = ' ';
791
792 // Skip any whitespace.
793 while (isspace(LastChar))
794 LastChar = getchar();
795
796 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
797 IdentifierStr = LastChar;
798 while (isalnum((LastChar = getchar())))
799 IdentifierStr += LastChar;
800
801 if (IdentifierStr == "def") return tok_def;
802 if (IdentifierStr == "extern") return tok_extern;
803 if (IdentifierStr == "if") return tok_if;
804 if (IdentifierStr == "then") return tok_then;
805 if (IdentifierStr == "else") return tok_else;
806 if (IdentifierStr == "for") return tok_for;
807 if (IdentifierStr == "in") return tok_in;
808 return tok_identifier;
809 }
810
811 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
812 std::string NumStr;
813 do {
814 NumStr += LastChar;
815 LastChar = getchar();
816 } while (isdigit(LastChar) || LastChar == '.');
817
818 NumVal = strtod(NumStr.c_str(), 0);
819 return tok_number;
820 }
821
822 if (LastChar == '#') {
823 // Comment until end of line.
824 do LastChar = getchar();
825 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
826
827 if (LastChar != EOF)
828 return gettok();
829 }
830
831 // Check for end of file. Don't eat the EOF.
832 if (LastChar == EOF)
833 return tok_eof;
834
835 // Otherwise, just return the character as its ascii value.
836 int ThisChar = LastChar;
837 LastChar = getchar();
838 return ThisChar;
839 }
840
841 //===----------------------------------------------------------------------===//
842 // Abstract Syntax Tree (aka Parse Tree)
843 //===----------------------------------------------------------------------===//
844
845 /// ExprAST - Base class for all expression nodes.
846 class ExprAST {
847 public:
848 virtual ~ExprAST() {}
849 virtual Value *Codegen() = 0;
850 };
851
852 /// NumberExprAST - Expression class for numeric literals like "1.0".
853 class NumberExprAST : public ExprAST {
854 double Val;
855 public:
856 NumberExprAST(double val) : Val(val) {}
857 virtual Value *Codegen();
858 };
859
860 /// VariableExprAST - Expression class for referencing a variable, like "a".
861 class VariableExprAST : public ExprAST {
862 std::string Name;
863 public:
864 VariableExprAST(const std::string &name) : Name(name) {}
865 virtual Value *Codegen();
866 };
867
868 /// BinaryExprAST - Expression class for a binary operator.
869 class BinaryExprAST : public ExprAST {
870 char Op;
871 ExprAST *LHS, *RHS;
872 public:
873 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
874 : Op(op), LHS(lhs), RHS(rhs) {}
875 virtual Value *Codegen();
876 };
877
878 /// CallExprAST - Expression class for function calls.
879 class CallExprAST : public ExprAST {
880 std::string Callee;
881 std::vector<ExprAST*> Args;
882 public:
883 CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
884 : Callee(callee), Args(args) {}
885 virtual Value *Codegen();
886 };
887
888 /// IfExprAST - Expression class for if/then/else.
889 class IfExprAST : public ExprAST {
890 ExprAST *Cond, *Then, *Else;
891 public:
892 IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
893 : Cond(cond), Then(then), Else(_else) {}
894 virtual Value *Codegen();
895 };
896
897 /// ForExprAST - Expression class for for/in.
898 class ForExprAST : public ExprAST {
899 std::string VarName;
900 ExprAST *Start, *End, *Step, *Body;
901 public:
902 ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
903 ExprAST *step, ExprAST *body)
904 : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
905 virtual Value *Codegen();
906 };
907
908 /// PrototypeAST - This class represents the "prototype" for a function,
909 /// which captures its name, and its argument names (thus implicitly the number
910 /// of arguments the function takes).
911 class PrototypeAST {
912 std::string Name;
913 std::vector<std::string> Args;
914 public:
915 PrototypeAST(const std::string &name, const std::vector<std::string> &args)
916 : Name(name), Args(args) {}
917
918 Function *Codegen();
919 };
920
921 /// FunctionAST - This class represents a function definition itself.
922 class FunctionAST {
923 PrototypeAST *Proto;
924 ExprAST *Body;
925 public:
926 FunctionAST(PrototypeAST *proto, ExprAST *body)
927 : Proto(proto), Body(body) {}
928
929 Function *Codegen();
930 };
931
932 //===----------------------------------------------------------------------===//
933 // Parser
934 //===----------------------------------------------------------------------===//
935
936 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
937 /// token the parser is looking at. getNextToken reads another token from the
938 /// lexer and updates CurTok with its results.
939 static int CurTok;
940 static int getNextToken() {
941 return CurTok = gettok();
942 }
943
944 /// BinopPrecedence - This holds the precedence for each binary operator that is
945 /// defined.
946 static std::map<char, int> BinopPrecedence;
947
948 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
949 static int GetTokPrecedence() {
950 if (!isascii(CurTok))
951 return -1;
952
953 // Make sure it's a declared binop.
954 int TokPrec = BinopPrecedence[CurTok];
955 if (TokPrec <= 0) return -1;
956 return TokPrec;
957 }
958
959 /// Error* - These are little helper functions for error handling.
960 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
961 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
962 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
963
964 static ExprAST *ParseExpression();
965
966 /// identifierexpr
967 /// ::= identifier
968 /// ::= identifier '(' expression* ')'
969 static ExprAST *ParseIdentifierExpr() {
970 std::string IdName = IdentifierStr;
971
972 getNextToken(); // eat identifier.
973
974 if (CurTok != '(') // Simple variable ref.
975 return new VariableExprAST(IdName);
976
977 // Call.
978 getNextToken(); // eat (
979 std::vector<ExprAST*> Args;
980 if (CurTok != ')') {
981 while (1) {
982 ExprAST *Arg = ParseExpression();
983 if (!Arg) return 0;
984 Args.push_back(Arg);
985
986 if (CurTok == ')') break;
987
988 if (CurTok != ',')
989 return Error("Expected ')' or ',' in argument list");
990 getNextToken();
991 }
992 }
993
994 // Eat the ')'.
995 getNextToken();
996
997 return new CallExprAST(IdName, Args);
998 }
999
1000 /// numberexpr ::= number
1001 static ExprAST *ParseNumberExpr() {
1002 ExprAST *Result = new NumberExprAST(NumVal);
1003 getNextToken(); // consume the number
1004 return Result;
1005 }
1006
1007 /// parenexpr ::= '(' expression ')'
1008 static ExprAST *ParseParenExpr() {
1009 getNextToken(); // eat (.
1010 ExprAST *V = ParseExpression();
1011 if (!V) return 0;
1012
1013 if (CurTok != ')')
1014 return Error("expected ')'");
1015 getNextToken(); // eat ).
1016 return V;
1017 }
1018
1019 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
1020 static ExprAST *ParseIfExpr() {
1021 getNextToken(); // eat the if.
1022
1023 // condition.
1024 ExprAST *Cond = ParseExpression();
1025 if (!Cond) return 0;
1026
1027 if (CurTok != tok_then)
1028 return Error("expected then");
1029 getNextToken(); // eat the then
1030
1031 ExprAST *Then = ParseExpression();
1032 if (Then == 0) return 0;
1033
1034 if (CurTok != tok_else)
1035 return Error("expected else");
1036
1037 getNextToken();
1038
1039 ExprAST *Else = ParseExpression();
1040 if (!Else) return 0;
1041
1042 return new IfExprAST(Cond, Then, Else);
1043 }
1044
1045 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
1046 static ExprAST *ParseForExpr() {
1047 getNextToken(); // eat the for.
1048
1049 if (CurTok != tok_identifier)
1050 return Error("expected identifier after for");
1051
1052 std::string IdName = IdentifierStr;
1053 getNextToken(); // eat identifier.
1054
1055 if (CurTok != '=')
1056 return Error("expected '=' after for");
1057 getNextToken(); // eat '='.
1058
1059
1060 ExprAST *Start = ParseExpression();
1061 if (Start == 0) return 0;
1062 if (CurTok != ',')
1063 return Error("expected ',' after for start value");
1064 getNextToken();
1065
1066 ExprAST *End = ParseExpression();
1067 if (End == 0) return 0;
1068
1069 // The step value is optional.
1070 ExprAST *Step = 0;
1071 if (CurTok == ',') {
1072 getNextToken();
1073 Step = ParseExpression();
1074 if (Step == 0) return 0;
1075 }
1076
1077 if (CurTok != tok_in)
1078 return Error("expected 'in' after for");
1079 getNextToken(); // eat 'in'.
1080
1081 ExprAST *Body = ParseExpression();
1082 if (Body == 0) return 0;
1083
1084 return new ForExprAST(IdName, Start, End, Step, Body);
1085 }
1086
1087 /// primary
1088 /// ::= identifierexpr
1089 /// ::= numberexpr
1090 /// ::= parenexpr
1091 /// ::= ifexpr
1092 /// ::= forexpr
1093 static ExprAST *ParsePrimary() {
1094 switch (CurTok) {
1095 default: return Error("unknown token when expecting an expression");
1096 case tok_identifier: return ParseIdentifierExpr();
1097 case tok_number: return ParseNumberExpr();
1098 case '(': return ParseParenExpr();
1099 case tok_if: return ParseIfExpr();
1100 case tok_for: return ParseForExpr();
1101 }
1102 }
1103
1104 /// binoprhs
1105 /// ::= ('+' primary)*
1106 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
1107 // If this is a binop, find its precedence.
1108 while (1) {
1109 int TokPrec = GetTokPrecedence();
1110
1111 // If this is a binop that binds at least as tightly as the current binop,
1112 // consume it, otherwise we are done.
1113 if (TokPrec < ExprPrec)
1114 return LHS;
1115
1116 // Okay, we know this is a binop.
1117 int BinOp = CurTok;
1118 getNextToken(); // eat binop
1119
1120 // Parse the primary expression after the binary operator.
1121 ExprAST *RHS = ParsePrimary();
1122 if (!RHS) return 0;
1123
1124 // If BinOp binds less tightly with RHS than the operator after RHS, let
1125 // the pending operator take RHS as its LHS.
1126 int NextPrec = GetTokPrecedence();
1127 if (TokPrec < NextPrec) {
1128 RHS = ParseBinOpRHS(TokPrec+1, RHS);
1129 if (RHS == 0) return 0;
1130 }
1131
1132 // Merge LHS/RHS.
1133 LHS = new BinaryExprAST(BinOp, LHS, RHS);
1134 }
1135 }
1136
1137 /// expression
1138 /// ::= primary binoprhs
1139 ///
1140 static ExprAST *ParseExpression() {
1141 ExprAST *LHS = ParsePrimary();
1142 if (!LHS) return 0;
1143
1144 return ParseBinOpRHS(0, LHS);
1145 }
1146
1147 /// prototype
1148 /// ::= id '(' id* ')'
1149 static PrototypeAST *ParsePrototype() {
1150 if (CurTok != tok_identifier)
1151 return ErrorP("Expected function name in prototype");
1152
1153 std::string FnName = IdentifierStr;
1154 getNextToken();
1155
1156 if (CurTok != '(')
1157 return ErrorP("Expected '(' in prototype");
1158
1159 std::vector<std::string> ArgNames;
1160 while (getNextToken() == tok_identifier)
1161 ArgNames.push_back(IdentifierStr);
1162 if (CurTok != ')')
1163 return ErrorP("Expected ')' in prototype");
1164
1165 // success.
1166 getNextToken(); // eat ')'.
1167
1168 return new PrototypeAST(FnName, ArgNames);
1169 }
1170
1171 /// definition ::= 'def' prototype expression
1172 static FunctionAST *ParseDefinition() {
1173 getNextToken(); // eat def.
1174 PrototypeAST *Proto = ParsePrototype();
1175 if (Proto == 0) return 0;
1176
1177 if (ExprAST *E = ParseExpression())
1178 return new FunctionAST(Proto, E);
1179 return 0;
1180 }
1181
1182 /// toplevelexpr ::= expression
1183 static FunctionAST *ParseTopLevelExpr() {
1184 if (ExprAST *E = ParseExpression()) {
1185 // Make an anonymous proto.
1186 PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
1187 return new FunctionAST(Proto, E);
1188 }
1189 return 0;
1190 }
1191
1192 /// external ::= 'extern' prototype
1193 static PrototypeAST *ParseExtern() {
1194 getNextToken(); // eat extern.
1195 return ParsePrototype();
1196 }
1197
1198 //===----------------------------------------------------------------------===//
1199 // Code Generation
1200 //===----------------------------------------------------------------------===//
1201
1202 static Module *TheModule;
1203 static IRBuilder<> Builder(getGlobalContext());
1204 static std::map<std::string, Value*> NamedValues;
1205 static FunctionPassManager *TheFPM;
1206
1207 Value *ErrorV(const char *Str) { Error(Str); return 0; }
1208
1209 Value *NumberExprAST::Codegen() {
1210 return ConstantFP::get(getGlobalContext(), APFloat(Val));
1211 }
1212
1213 Value *VariableExprAST::Codegen() {
1214 // Look this variable up in the function.
1215 Value *V = NamedValues[Name];
1216 return V ? V : ErrorV("Unknown variable name");
1217 }
1218
1219 Value *BinaryExprAST::Codegen() {
1220 Value *L = LHS->Codegen();
1221 Value *R = RHS->Codegen();
1222 if (L == 0 || R == 0) return 0;
1223
1224 switch (Op) {
1225 case '+': return Builder.CreateFAdd(L, R, "addtmp");
1226 case '-': return Builder.CreateFSub(L, R, "subtmp");
1227 case '*': return Builder.CreateFMul(L, R, "multmp");
1228 case '<':
1229 L = Builder.CreateFCmpULT(L, R, "cmptmp");
1230 // Convert bool 0/1 to double 0.0 or 1.0
1231 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
1232 "booltmp");
1233 default: return ErrorV("invalid binary operator");
1234 }
1235 }
1236
1237 Value *CallExprAST::Codegen() {
1238 // Look up the name in the global module table.
1239 Function *CalleeF = TheModule->getFunction(Callee);
1240 if (CalleeF == 0)
1241 return ErrorV("Unknown function referenced");
1242
1243 // If argument mismatch error.
1244 if (CalleeF->arg_size() != Args.size())
1245 return ErrorV("Incorrect # arguments passed");
1246
1247 std::vector<Value*> ArgsV;
1248 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1249 ArgsV.push_back(Args[i]->Codegen());
1250 if (ArgsV.back() == 0) return 0;
1251 }
1252
1253 return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
1254 }
1255
1256 Value *IfExprAST::Codegen() {
1257 Value *CondV = Cond->Codegen();
1258 if (CondV == 0) return 0;
1259
1260 // Convert condition to a bool by comparing equal to 0.0.
1261 CondV = Builder.CreateFCmpONE(CondV,
1262 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
1263 "ifcond");
1264
1265 Function *TheFunction = Builder.GetInsertBlock()->getParent();
1266
1267 // Create blocks for the then and else cases. Insert the 'then' block at the
1268 // end of the function.
1269 BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
1270 BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
1271 BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
1272
1273 Builder.CreateCondBr(CondV, ThenBB, ElseBB);
1274
1275 // Emit then value.
1276 Builder.SetInsertPoint(ThenBB);
1277
1278 Value *ThenV = Then->Codegen();
1279 if (ThenV == 0) return 0;
1280
1281 Builder.CreateBr(MergeBB);
1282 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
1283 ThenBB = Builder.GetInsertBlock();
1284
1285 // Emit else block.
1286 TheFunction->getBasicBlockList().push_back(ElseBB);
1287 Builder.SetInsertPoint(ElseBB);
1288
1289 Value *ElseV = Else->Codegen();
1290 if (ElseV == 0) return 0;
1291
1292 Builder.CreateBr(MergeBB);
1293 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
1294 ElseBB = Builder.GetInsertBlock();
1295
1296 // Emit merge block.
1297 TheFunction->getBasicBlockList().push_back(MergeBB);
1298 Builder.SetInsertPoint(MergeBB);
1299 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
1300 "iftmp");
1301
1302 PN->addIncoming(ThenV, ThenBB);
1303 PN->addIncoming(ElseV, ElseBB);
1304 return PN;
1305 }
1306
1307 Value *ForExprAST::Codegen() {
1308 // Output this as:
1309 // ...
1310 // start = startexpr
1311 // goto loop
1312 // loop:
1313 // variable = phi [start, loopheader], [nextvariable, loopend]
1314 // ...
1315 // bodyexpr
1316 // ...
1317 // loopend:
1318 // step = stepexpr
1319 // nextvariable = variable + step
1320 // endcond = endexpr
1321 // br endcond, loop, endloop
1322 // outloop:
1323
1324 // Emit the start code first, without 'variable' in scope.
1325 Value *StartVal = Start->Codegen();
1326 if (StartVal == 0) return 0;
1327
1328 // Make the new basic block for the loop header, inserting after current
1329 // block.
1330 Function *TheFunction = Builder.GetInsertBlock()->getParent();
1331 BasicBlock *PreheaderBB = Builder.GetInsertBlock();
1332 BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
1333
1334 // Insert an explicit fall through from the current block to the LoopBB.
1335 Builder.CreateBr(LoopBB);
1336
1337 // Start insertion in LoopBB.
1338 Builder.SetInsertPoint(LoopBB);
1339
1340 // Start the PHI node with an entry for Start.
1341 PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, VarName.c_str());
1342 Variable->addIncoming(StartVal, PreheaderBB);
1343
1344 // Within the loop, the variable is defined equal to the PHI node. If it
1345 // shadows an existing variable, we have to restore it, so save it now.
1346 Value *OldVal = NamedValues[VarName];
1347 NamedValues[VarName] = Variable;
1348
1349 // Emit the body of the loop. This, like any other expr, can change the
1350 // current BB. Note that we ignore the value computed by the body, but don't
1351 // allow an error.
1352 if (Body->Codegen() == 0)
1353 return 0;
1354
1355 // Emit the step value.
1356 Value *StepVal;
1357 if (Step) {
1358 StepVal = Step->Codegen();
1359 if (StepVal == 0) return 0;
1360 } else {
1361 // If not specified, use 1.0.
1362 StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
1363 }
1364
1365 Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar");
1366
1367 // Compute the end condition.
1368 Value *EndCond = End->Codegen();
1369 if (EndCond == 0) return EndCond;
1370
1371 // Convert condition to a bool by comparing equal to 0.0.
1372 EndCond = Builder.CreateFCmpONE(EndCond,
1373 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
1374 "loopcond");
1375
1376 // Create the "after loop" block and insert it.
1377 BasicBlock *LoopEndBB = Builder.GetInsertBlock();
1378 BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
1379
1380 // Insert the conditional branch into the end of LoopEndBB.
1381 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
1382
1383 // Any new code will be inserted in AfterBB.
1384 Builder.SetInsertPoint(AfterBB);
1385
1386 // Add a new entry to the PHI node for the backedge.
1387 Variable->addIncoming(NextVar, LoopEndBB);
1388
1389 // Restore the unshadowed variable.
1390 if (OldVal)
1391 NamedValues[VarName] = OldVal;
1392 else
1393 NamedValues.erase(VarName);
1394
1395
1396 // for expr always returns 0.0.
1397 return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
1398 }
1399
1400 Function *PrototypeAST::Codegen() {
1401 // Make the function type: double(double,double) etc.
1402 std::vector<Type*> Doubles(Args.size(),
1403 Type::getDoubleTy(getGlobalContext()));
1404 FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
1405 Doubles, false);
1406
1407 Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
1408
1409 // If F conflicted, there was already something named 'Name'. If it has a
1410 // body, don't allow redefinition or reextern.
1411 if (F->getName() != Name) {
1412 // Delete the one we just made and get the existing one.
1413 F->eraseFromParent();
1414 F = TheModule->getFunction(Name);
1415
1416 // If F already has a body, reject this.
1417 if (!F->empty()) {
1418 ErrorF("redefinition of function");
1419 return 0;
1420 }
1421
1422 // If F took a different number of args, reject.
1423 if (F->arg_size() != Args.size()) {
1424 ErrorF("redefinition of function with different # args");
1425 return 0;
1426 }
1427 }
1428
1429 // Set names for all arguments.
1430 unsigned Idx = 0;
1431 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
1432 ++AI, ++Idx) {
1433 AI->setName(Args[Idx]);
1434
1435 // Add arguments to variable symbol table.
1436 NamedValues[Args[Idx]] = AI;
1437 }
1438
1439 return F;
1440 }
1441
1442 Function *FunctionAST::Codegen() {
1443 NamedValues.clear();
1444
1445 Function *TheFunction = Proto->Codegen();
1446 if (TheFunction == 0)
1447 return 0;
1448
1449 // Create a new basic block to start insertion into.
1450 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
1451 Builder.SetInsertPoint(BB);
1452
1453 if (Value *RetVal = Body->Codegen()) {
1454 // Finish off the function.
1455 Builder.CreateRet(RetVal);
1456
1457 // Validate the generated code, checking for consistency.
1458 verifyFunction(*TheFunction);
1459
1460 // Optimize the function.
1461 TheFPM->run(*TheFunction);
1462
1463 return TheFunction;
1464 }
1465
1466 // Error reading body, remove function.
1467 TheFunction->eraseFromParent();
1468 return 0;
1469 }
1470
1471 //===----------------------------------------------------------------------===//
1472 // Top-Level parsing and JIT Driver
1473 //===----------------------------------------------------------------------===//
1474
1475 static ExecutionEngine *TheExecutionEngine;
1476
1477 static void HandleDefinition() {
1478 if (FunctionAST *F = ParseDefinition()) {
1479 if (Function *LF = F->Codegen()) {
1480 fprintf(stderr, "Read function definition:");
1481 LF->dump();
1482 }
1483 } else {
1484 // Skip token for error recovery.
1485 getNextToken();
1486 }
1487 }
1488
1489 static void HandleExtern() {
1490 if (PrototypeAST *P = ParseExtern()) {
1491 if (Function *F = P->Codegen()) {
1492 fprintf(stderr, "Read extern: ");
1493 F->dump();
1494 }
1495 } else {
1496 // Skip token for error recovery.
1497 getNextToken();
1498 }
1499 }
1500
1501 static void HandleTopLevelExpression() {
1502 // Evaluate a top-level expression into an anonymous function.
1503 if (FunctionAST *F = ParseTopLevelExpr()) {
1504 if (Function *LF = F->Codegen()) {
1505 // JIT the function, returning a function pointer.
1506 void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
1507
1508 // Cast it to the right type (takes no arguments, returns a double) so we
1509 // can call it as a native function.
1510 double (*FP)() = (double (*)())(intptr_t)FPtr;
1511 fprintf(stderr, "Evaluated to %f\n", FP());
1512 }
1513 } else {
1514 // Skip token for error recovery.
1515 getNextToken();
1516 }
1517 }
1518
1519 /// top ::= definition | external | expression | ';'
1520 static void MainLoop() {
1521 while (1) {
1522 fprintf(stderr, "ready> ");
1523 switch (CurTok) {
1524 case tok_eof: return;
1525 case ';': getNextToken(); break; // ignore top-level semicolons.
1526 case tok_def: HandleDefinition(); break;
1527 case tok_extern: HandleExtern(); break;
1528 default: HandleTopLevelExpression(); break;
1529 }
1530 }
1531 }
1532
1533 //===----------------------------------------------------------------------===//
1534 // "Library" functions that can be "extern'd" from user code.
1535 //===----------------------------------------------------------------------===//
1536
1537 /// putchard - putchar that takes a double and returns 0.
1538 extern "C"
1539 double putchard(double X) {
1540 putchar((char)X);
1541 return 0;
1542 }
1543
1544 //===----------------------------------------------------------------------===//
1545 // Main driver code.
1546 //===----------------------------------------------------------------------===//
1547
1548 int main() {
1549 InitializeNativeTarget();
1550 LLVMContext &Context = getGlobalContext();
1551
1552 // Install standard binary operators.
1553 // 1 is lowest precedence.
1554 BinopPrecedence['<'] = 10;
1555 BinopPrecedence['+'] = 20;
1556 BinopPrecedence['-'] = 20;
1557 BinopPrecedence['*'] = 40; // highest.
1558
1559 // Prime the first token.
1560 fprintf(stderr, "ready> ");
1561 getNextToken();
1562
1563 // Make the module, which holds all the code.
1564 TheModule = new Module("my cool jit", Context);
1565
1566 // Create the JIT. This takes ownership of the module.
1567 std::string ErrStr;
1568 TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
1569 if (!TheExecutionEngine) {
1570 fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
1571 exit(1);
1572 }
1573
1574 FunctionPassManager OurFPM(TheModule);
1575
1576 // Set up the optimizer pipeline. Start with registering info about how the
1577 // target lays out data structures.
1578 OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout()));
1579 // Provide basic AliasAnalysis support for GVN.
1580 OurFPM.add(createBasicAliasAnalysisPass());
1581 // Do simple "peephole" optimizations and bit-twiddling optzns.
1582 OurFPM.add(createInstructionCombiningPass());
1583 // Reassociate expressions.
1584 OurFPM.add(createReassociatePass());
1585 // Eliminate Common SubExpressions.
1586 OurFPM.add(createGVNPass());
1587 // Simplify the control flow graph (deleting unreachable blocks, etc).
1588 OurFPM.add(createCFGSimplificationPass());
1589
1590 OurFPM.doInitialization();
1591
1592 // Set the global so the code gen can use this.
1593 TheFPM = &OurFPM;
1594
1595 // Run the main "interpreter loop" now.
1596 MainLoop();
1597
1598 TheFPM = 0;
1599
1600 // Print out all of the generated code.
1601 TheModule->dump();
1602
1603 return 0;
1604 }
1605
1606`Next: Extending the language: user-defined operators <LangImpl6.html>`_
1607