Sean Silva | ee47edf | 2012-12-05 00:26:32 +0000 | [diff] [blame^] | 1 | ================================================== |
| 2 | Kaleidoscope: Extending the Language: Control Flow |
| 3 | ================================================== |
| 4 | |
| 5 | .. contents:: |
| 6 | :local: |
| 7 | |
| 8 | Written by `Chris Lattner <mailto:sabre@nondot.org>`_ |
| 9 | |
| 10 | Chapter 5 Introduction |
| 11 | ====================== |
| 12 | |
| 13 | Welcome to Chapter 5 of the "`Implementing a language with |
| 14 | LLVM <index.html>`_" tutorial. Parts 1-4 described the implementation of |
| 15 | the simple Kaleidoscope language and included support for generating |
| 16 | LLVM IR, followed by optimizations and a JIT compiler. Unfortunately, as |
| 17 | presented, Kaleidoscope is mostly useless: it has no control flow other |
| 18 | than call and return. This means that you can't have conditional |
| 19 | branches in the code, significantly limiting its power. In this episode |
| 20 | of "build that compiler", we'll extend Kaleidoscope to have an |
| 21 | if/then/else expression plus a simple 'for' loop. |
| 22 | |
| 23 | If/Then/Else |
| 24 | ============ |
| 25 | |
| 26 | Extending Kaleidoscope to support if/then/else is quite straightforward. |
| 27 | It basically requires adding support for this "new" concept to the |
| 28 | lexer, parser, AST, and LLVM code emitter. This example is nice, because |
| 29 | it shows how easy it is to "grow" a language over time, incrementally |
| 30 | extending it as new ideas are discovered. |
| 31 | |
| 32 | Before we get going on "how" we add this extension, lets talk about |
| 33 | "what" we want. The basic idea is that we want to be able to write this |
| 34 | sort of thing: |
| 35 | |
| 36 | :: |
| 37 | |
| 38 | def fib(x) |
| 39 | if x < 3 then |
| 40 | 1 |
| 41 | else |
| 42 | fib(x-1)+fib(x-2); |
| 43 | |
| 44 | In Kaleidoscope, every construct is an expression: there are no |
| 45 | statements. As such, the if/then/else expression needs to return a value |
| 46 | like any other. Since we're using a mostly functional form, we'll have |
| 47 | it evaluate its conditional, then return the 'then' or 'else' value |
| 48 | based on how the condition was resolved. This is very similar to the C |
| 49 | "?:" expression. |
| 50 | |
| 51 | The semantics of the if/then/else expression is that it evaluates the |
| 52 | condition to a boolean equality value: 0.0 is considered to be false and |
| 53 | everything else is considered to be true. If the condition is true, the |
| 54 | first subexpression is evaluated and returned, if the condition is |
| 55 | false, the second subexpression is evaluated and returned. Since |
| 56 | Kaleidoscope allows side-effects, this behavior is important to nail |
| 57 | down. |
| 58 | |
| 59 | Now that we know what we "want", lets break this down into its |
| 60 | constituent pieces. |
| 61 | |
| 62 | Lexer Extensions for If/Then/Else |
| 63 | --------------------------------- |
| 64 | |
| 65 | The lexer extensions are straightforward. First we add new enum values |
| 66 | for the relevant tokens: |
| 67 | |
| 68 | .. code-block:: c++ |
| 69 | |
| 70 | // control |
| 71 | tok_if = -6, tok_then = -7, tok_else = -8, |
| 72 | |
| 73 | Once we have that, we recognize the new keywords in the lexer. This is |
| 74 | pretty simple stuff: |
| 75 | |
| 76 | .. code-block:: c++ |
| 77 | |
| 78 | ... |
| 79 | if (IdentifierStr == "def") return tok_def; |
| 80 | if (IdentifierStr == "extern") return tok_extern; |
| 81 | if (IdentifierStr == "if") return tok_if; |
| 82 | if (IdentifierStr == "then") return tok_then; |
| 83 | if (IdentifierStr == "else") return tok_else; |
| 84 | return tok_identifier; |
| 85 | |
| 86 | AST Extensions for If/Then/Else |
| 87 | ------------------------------- |
| 88 | |
| 89 | To represent the new expression we add a new AST node for it: |
| 90 | |
| 91 | .. code-block:: c++ |
| 92 | |
| 93 | /// IfExprAST - Expression class for if/then/else. |
| 94 | class IfExprAST : public ExprAST { |
| 95 | ExprAST *Cond, *Then, *Else; |
| 96 | public: |
| 97 | IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else) |
| 98 | : Cond(cond), Then(then), Else(_else) {} |
| 99 | virtual Value *Codegen(); |
| 100 | }; |
| 101 | |
| 102 | The AST node just has pointers to the various subexpressions. |
| 103 | |
| 104 | Parser Extensions for If/Then/Else |
| 105 | ---------------------------------- |
| 106 | |
| 107 | Now that we have the relevant tokens coming from the lexer and we have |
| 108 | the AST node to build, our parsing logic is relatively straightforward. |
| 109 | First we define a new parsing function: |
| 110 | |
| 111 | .. code-block:: c++ |
| 112 | |
| 113 | /// ifexpr ::= 'if' expression 'then' expression 'else' expression |
| 114 | static ExprAST *ParseIfExpr() { |
| 115 | getNextToken(); // eat the if. |
| 116 | |
| 117 | // condition. |
| 118 | ExprAST *Cond = ParseExpression(); |
| 119 | if (!Cond) return 0; |
| 120 | |
| 121 | if (CurTok != tok_then) |
| 122 | return Error("expected then"); |
| 123 | getNextToken(); // eat the then |
| 124 | |
| 125 | ExprAST *Then = ParseExpression(); |
| 126 | if (Then == 0) return 0; |
| 127 | |
| 128 | if (CurTok != tok_else) |
| 129 | return Error("expected else"); |
| 130 | |
| 131 | getNextToken(); |
| 132 | |
| 133 | ExprAST *Else = ParseExpression(); |
| 134 | if (!Else) return 0; |
| 135 | |
| 136 | return new IfExprAST(Cond, Then, Else); |
| 137 | } |
| 138 | |
| 139 | Next we hook it up as a primary expression: |
| 140 | |
| 141 | .. code-block:: c++ |
| 142 | |
| 143 | static ExprAST *ParsePrimary() { |
| 144 | switch (CurTok) { |
| 145 | default: return Error("unknown token when expecting an expression"); |
| 146 | case tok_identifier: return ParseIdentifierExpr(); |
| 147 | case tok_number: return ParseNumberExpr(); |
| 148 | case '(': return ParseParenExpr(); |
| 149 | case tok_if: return ParseIfExpr(); |
| 150 | } |
| 151 | } |
| 152 | |
| 153 | LLVM IR for If/Then/Else |
| 154 | ------------------------ |
| 155 | |
| 156 | Now that we have it parsing and building the AST, the final piece is |
| 157 | adding LLVM code generation support. This is the most interesting part |
| 158 | of the if/then/else example, because this is where it starts to |
| 159 | introduce new concepts. All of the code above has been thoroughly |
| 160 | described in previous chapters. |
| 161 | |
| 162 | To motivate the code we want to produce, lets take a look at a simple |
| 163 | example. Consider: |
| 164 | |
| 165 | :: |
| 166 | |
| 167 | extern foo(); |
| 168 | extern bar(); |
| 169 | def baz(x) if x then foo() else bar(); |
| 170 | |
| 171 | If you disable optimizations, the code you'll (soon) get from |
| 172 | Kaleidoscope looks like this: |
| 173 | |
| 174 | .. code-block:: llvm |
| 175 | |
| 176 | declare double @foo() |
| 177 | |
| 178 | declare double @bar() |
| 179 | |
| 180 | define double @baz(double %x) { |
| 181 | entry: |
| 182 | %ifcond = fcmp one double %x, 0.000000e+00 |
| 183 | br i1 %ifcond, label %then, label %else |
| 184 | |
| 185 | then: ; preds = %entry |
| 186 | %calltmp = call double @foo() |
| 187 | br label %ifcont |
| 188 | |
| 189 | else: ; preds = %entry |
| 190 | %calltmp1 = call double @bar() |
| 191 | br label %ifcont |
| 192 | |
| 193 | ifcont: ; preds = %else, %then |
| 194 | %iftmp = phi double [ %calltmp, %then ], [ %calltmp1, %else ] |
| 195 | ret double %iftmp |
| 196 | } |
| 197 | |
| 198 | To visualize the control flow graph, you can use a nifty feature of the |
| 199 | LLVM '`opt <http://llvm.org/cmds/opt.html>`_' tool. If you put this LLVM |
| 200 | IR into "t.ll" and run "``llvm-as < t.ll | opt -analyze -view-cfg``", `a |
| 201 | window will pop up <../ProgrammersManual.html#ViewGraph>`_ and you'll |
| 202 | see this graph: |
| 203 | |
| 204 | .. figure:: LangImpl5-cfg.png |
| 205 | :align: center |
| 206 | :alt: Example CFG |
| 207 | |
| 208 | Example CFG |
| 209 | |
| 210 | Another way to get this is to call "``F->viewCFG()``" or |
| 211 | "``F->viewCFGOnly()``" (where F is a "``Function*``") either by |
| 212 | inserting actual calls into the code and recompiling or by calling these |
| 213 | in the debugger. LLVM has many nice features for visualizing various |
| 214 | graphs. |
| 215 | |
| 216 | Getting back to the generated code, it is fairly simple: the entry block |
| 217 | evaluates the conditional expression ("x" in our case here) and compares |
| 218 | the result to 0.0 with the "``fcmp one``" instruction ('one' is "Ordered |
| 219 | and Not Equal"). Based on the result of this expression, the code jumps |
| 220 | to either the "then" or "else" blocks, which contain the expressions for |
| 221 | the true/false cases. |
| 222 | |
| 223 | Once the then/else blocks are finished executing, they both branch back |
| 224 | to the 'ifcont' block to execute the code that happens after the |
| 225 | if/then/else. In this case the only thing left to do is to return to the |
| 226 | caller of the function. The question then becomes: how does the code |
| 227 | know which expression to return? |
| 228 | |
| 229 | The answer to this question involves an important SSA operation: the |
| 230 | `Phi |
| 231 | operation <http://en.wikipedia.org/wiki/Static_single_assignment_form>`_. |
| 232 | If you're not familiar with SSA, `the wikipedia |
| 233 | article <http://en.wikipedia.org/wiki/Static_single_assignment_form>`_ |
| 234 | is a good introduction and there are various other introductions to it |
| 235 | available on your favorite search engine. The short version is that |
| 236 | "execution" of the Phi operation requires "remembering" which block |
| 237 | control came from. The Phi operation takes on the value corresponding to |
| 238 | the input control block. In this case, if control comes in from the |
| 239 | "then" block, it gets the value of "calltmp". If control comes from the |
| 240 | "else" block, it gets the value of "calltmp1". |
| 241 | |
| 242 | At this point, you are probably starting to think "Oh no! This means my |
| 243 | simple and elegant front-end will have to start generating SSA form in |
| 244 | order to use LLVM!". Fortunately, this is not the case, and we strongly |
| 245 | advise *not* implementing an SSA construction algorithm in your |
| 246 | front-end unless there is an amazingly good reason to do so. In |
| 247 | practice, there are two sorts of values that float around in code |
| 248 | written for your average imperative programming language that might need |
| 249 | Phi nodes: |
| 250 | |
| 251 | #. Code that involves user variables: ``x = 1; x = x + 1;`` |
| 252 | #. Values that are implicit in the structure of your AST, such as the |
| 253 | Phi node in this case. |
| 254 | |
| 255 | In `Chapter 7 <LangImpl7.html>`_ of this tutorial ("mutable variables"), |
| 256 | we'll talk about #1 in depth. For now, just believe me that you don't |
| 257 | need SSA construction to handle this case. For #2, you have the choice |
| 258 | of using the techniques that we will describe for #1, or you can insert |
| 259 | Phi nodes directly, if convenient. In this case, it is really really |
| 260 | easy to generate the Phi node, so we choose to do it directly. |
| 261 | |
| 262 | Okay, enough of the motivation and overview, lets generate code! |
| 263 | |
| 264 | Code Generation for If/Then/Else |
| 265 | -------------------------------- |
| 266 | |
| 267 | In order to generate code for this, we implement the ``Codegen`` method |
| 268 | for ``IfExprAST``: |
| 269 | |
| 270 | .. code-block:: c++ |
| 271 | |
| 272 | Value *IfExprAST::Codegen() { |
| 273 | Value *CondV = Cond->Codegen(); |
| 274 | if (CondV == 0) return 0; |
| 275 | |
| 276 | // Convert condition to a bool by comparing equal to 0.0. |
| 277 | CondV = Builder.CreateFCmpONE(CondV, |
| 278 | ConstantFP::get(getGlobalContext(), APFloat(0.0)), |
| 279 | "ifcond"); |
| 280 | |
| 281 | This code is straightforward and similar to what we saw before. We emit |
| 282 | the expression for the condition, then compare that value to zero to get |
| 283 | a truth value as a 1-bit (bool) value. |
| 284 | |
| 285 | .. code-block:: c++ |
| 286 | |
| 287 | Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| 288 | |
| 289 | // Create blocks for the then and else cases. Insert the 'then' block at the |
| 290 | // end of the function. |
| 291 | BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction); |
| 292 | BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else"); |
| 293 | BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont"); |
| 294 | |
| 295 | Builder.CreateCondBr(CondV, ThenBB, ElseBB); |
| 296 | |
| 297 | This code creates the basic blocks that are related to the if/then/else |
| 298 | statement, and correspond directly to the blocks in the example above. |
| 299 | The first line gets the current Function object that is being built. It |
| 300 | gets this by asking the builder for the current BasicBlock, and asking |
| 301 | that block for its "parent" (the function it is currently embedded |
| 302 | into). |
| 303 | |
| 304 | Once it has that, it creates three blocks. Note that it passes |
| 305 | "TheFunction" into the constructor for the "then" block. This causes the |
| 306 | constructor to automatically insert the new block into the end of the |
| 307 | specified function. The other two blocks are created, but aren't yet |
| 308 | inserted into the function. |
| 309 | |
| 310 | Once the blocks are created, we can emit the conditional branch that |
| 311 | chooses between them. Note that creating new blocks does not implicitly |
| 312 | affect the IRBuilder, so it is still inserting into the block that the |
| 313 | condition went into. Also note that it is creating a branch to the |
| 314 | "then" block and the "else" block, even though the "else" block isn't |
| 315 | inserted into the function yet. This is all ok: it is the standard way |
| 316 | that LLVM supports forward references. |
| 317 | |
| 318 | .. code-block:: c++ |
| 319 | |
| 320 | // Emit then value. |
| 321 | Builder.SetInsertPoint(ThenBB); |
| 322 | |
| 323 | Value *ThenV = Then->Codegen(); |
| 324 | if (ThenV == 0) return 0; |
| 325 | |
| 326 | Builder.CreateBr(MergeBB); |
| 327 | // Codegen of 'Then' can change the current block, update ThenBB for the PHI. |
| 328 | ThenBB = Builder.GetInsertBlock(); |
| 329 | |
| 330 | After the conditional branch is inserted, we move the builder to start |
| 331 | inserting into the "then" block. Strictly speaking, this call moves the |
| 332 | insertion point to be at the end of the specified block. However, since |
| 333 | the "then" block is empty, it also starts out by inserting at the |
| 334 | beginning of the block. :) |
| 335 | |
| 336 | Once the insertion point is set, we recursively codegen the "then" |
| 337 | expression from the AST. To finish off the "then" block, we create an |
| 338 | unconditional branch to the merge block. One interesting (and very |
| 339 | important) aspect of the LLVM IR is that it `requires all basic blocks |
| 340 | to be "terminated" <../LangRef.html#functionstructure>`_ with a `control |
| 341 | flow instruction <../LangRef.html#terminators>`_ such as return or |
| 342 | branch. This means that all control flow, *including fall throughs* must |
| 343 | be made explicit in the LLVM IR. If you violate this rule, the verifier |
| 344 | will emit an error. |
| 345 | |
| 346 | The final line here is quite subtle, but is very important. The basic |
| 347 | issue is that when we create the Phi node in the merge block, we need to |
| 348 | set up the block/value pairs that indicate how the Phi will work. |
| 349 | Importantly, the Phi node expects to have an entry for each predecessor |
| 350 | of the block in the CFG. Why then, are we getting the current block when |
| 351 | we just set it to ThenBB 5 lines above? The problem is that the "Then" |
| 352 | expression may actually itself change the block that the Builder is |
| 353 | emitting into if, for example, it contains a nested "if/then/else" |
| 354 | expression. Because calling Codegen recursively could arbitrarily change |
| 355 | the notion of the current block, we are required to get an up-to-date |
| 356 | value for code that will set up the Phi node. |
| 357 | |
| 358 | .. code-block:: c++ |
| 359 | |
| 360 | // Emit else block. |
| 361 | TheFunction->getBasicBlockList().push_back(ElseBB); |
| 362 | Builder.SetInsertPoint(ElseBB); |
| 363 | |
| 364 | Value *ElseV = Else->Codegen(); |
| 365 | if (ElseV == 0) return 0; |
| 366 | |
| 367 | Builder.CreateBr(MergeBB); |
| 368 | // Codegen of 'Else' can change the current block, update ElseBB for the PHI. |
| 369 | ElseBB = Builder.GetInsertBlock(); |
| 370 | |
| 371 | Code generation for the 'else' block is basically identical to codegen |
| 372 | for the 'then' block. The only significant difference is the first line, |
| 373 | which adds the 'else' block to the function. Recall previously that the |
| 374 | 'else' block was created, but not added to the function. Now that the |
| 375 | 'then' and 'else' blocks are emitted, we can finish up with the merge |
| 376 | code: |
| 377 | |
| 378 | .. code-block:: c++ |
| 379 | |
| 380 | // Emit merge block. |
| 381 | TheFunction->getBasicBlockList().push_back(MergeBB); |
| 382 | Builder.SetInsertPoint(MergeBB); |
| 383 | PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, |
| 384 | "iftmp"); |
| 385 | |
| 386 | PN->addIncoming(ThenV, ThenBB); |
| 387 | PN->addIncoming(ElseV, ElseBB); |
| 388 | return PN; |
| 389 | } |
| 390 | |
| 391 | The first two lines here are now familiar: the first adds the "merge" |
| 392 | block to the Function object (it was previously floating, like the else |
| 393 | block above). The second block changes the insertion point so that newly |
| 394 | created code will go into the "merge" block. Once that is done, we need |
| 395 | to create the PHI node and set up the block/value pairs for the PHI. |
| 396 | |
| 397 | Finally, the CodeGen function returns the phi node as the value computed |
| 398 | by the if/then/else expression. In our example above, this returned |
| 399 | value will feed into the code for the top-level function, which will |
| 400 | create the return instruction. |
| 401 | |
| 402 | Overall, we now have the ability to execute conditional code in |
| 403 | Kaleidoscope. With this extension, Kaleidoscope is a fairly complete |
| 404 | language that can calculate a wide variety of numeric functions. Next up |
| 405 | we'll add another useful expression that is familiar from non-functional |
| 406 | languages... |
| 407 | |
| 408 | 'for' Loop Expression |
| 409 | ===================== |
| 410 | |
| 411 | Now that we know how to add basic control flow constructs to the |
| 412 | language, we have the tools to add more powerful things. Lets add |
| 413 | something more aggressive, a 'for' expression: |
| 414 | |
| 415 | :: |
| 416 | |
| 417 | extern putchard(char) |
| 418 | def printstar(n) |
| 419 | for i = 1, i < n, 1.0 in |
| 420 | putchard(42); # ascii 42 = '*' |
| 421 | |
| 422 | # print 100 '*' characters |
| 423 | printstar(100); |
| 424 | |
| 425 | This expression defines a new variable ("i" in this case) which iterates |
| 426 | from a starting value, while the condition ("i < n" in this case) is |
| 427 | true, incrementing by an optional step value ("1.0" in this case). If |
| 428 | the step value is omitted, it defaults to 1.0. While the loop is true, |
| 429 | it executes its body expression. Because we don't have anything better |
| 430 | to return, we'll just define the loop as always returning 0.0. In the |
| 431 | future when we have mutable variables, it will get more useful. |
| 432 | |
| 433 | As before, lets talk about the changes that we need to Kaleidoscope to |
| 434 | support this. |
| 435 | |
| 436 | Lexer Extensions for the 'for' Loop |
| 437 | ----------------------------------- |
| 438 | |
| 439 | The lexer extensions are the same sort of thing as for if/then/else: |
| 440 | |
| 441 | .. code-block:: c++ |
| 442 | |
| 443 | ... in enum Token ... |
| 444 | // control |
| 445 | tok_if = -6, tok_then = -7, tok_else = -8, |
| 446 | tok_for = -9, tok_in = -10 |
| 447 | |
| 448 | ... in gettok ... |
| 449 | if (IdentifierStr == "def") return tok_def; |
| 450 | if (IdentifierStr == "extern") return tok_extern; |
| 451 | if (IdentifierStr == "if") return tok_if; |
| 452 | if (IdentifierStr == "then") return tok_then; |
| 453 | if (IdentifierStr == "else") return tok_else; |
| 454 | if (IdentifierStr == "for") return tok_for; |
| 455 | if (IdentifierStr == "in") return tok_in; |
| 456 | return tok_identifier; |
| 457 | |
| 458 | AST Extensions for the 'for' Loop |
| 459 | --------------------------------- |
| 460 | |
| 461 | The AST node is just as simple. It basically boils down to capturing the |
| 462 | variable name and the constituent expressions in the node. |
| 463 | |
| 464 | .. code-block:: c++ |
| 465 | |
| 466 | /// ForExprAST - Expression class for for/in. |
| 467 | class ForExprAST : public ExprAST { |
| 468 | std::string VarName; |
| 469 | ExprAST *Start, *End, *Step, *Body; |
| 470 | public: |
| 471 | ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end, |
| 472 | ExprAST *step, ExprAST *body) |
| 473 | : VarName(varname), Start(start), End(end), Step(step), Body(body) {} |
| 474 | virtual Value *Codegen(); |
| 475 | }; |
| 476 | |
| 477 | Parser Extensions for the 'for' Loop |
| 478 | ------------------------------------ |
| 479 | |
| 480 | The parser code is also fairly standard. The only interesting thing here |
| 481 | is handling of the optional step value. The parser code handles it by |
| 482 | checking to see if the second comma is present. If not, it sets the step |
| 483 | value to null in the AST node: |
| 484 | |
| 485 | .. code-block:: c++ |
| 486 | |
| 487 | /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression |
| 488 | static ExprAST *ParseForExpr() { |
| 489 | getNextToken(); // eat the for. |
| 490 | |
| 491 | if (CurTok != tok_identifier) |
| 492 | return Error("expected identifier after for"); |
| 493 | |
| 494 | std::string IdName = IdentifierStr; |
| 495 | getNextToken(); // eat identifier. |
| 496 | |
| 497 | if (CurTok != '=') |
| 498 | return Error("expected '=' after for"); |
| 499 | getNextToken(); // eat '='. |
| 500 | |
| 501 | |
| 502 | ExprAST *Start = ParseExpression(); |
| 503 | if (Start == 0) return 0; |
| 504 | if (CurTok != ',') |
| 505 | return Error("expected ',' after for start value"); |
| 506 | getNextToken(); |
| 507 | |
| 508 | ExprAST *End = ParseExpression(); |
| 509 | if (End == 0) return 0; |
| 510 | |
| 511 | // The step value is optional. |
| 512 | ExprAST *Step = 0; |
| 513 | if (CurTok == ',') { |
| 514 | getNextToken(); |
| 515 | Step = ParseExpression(); |
| 516 | if (Step == 0) return 0; |
| 517 | } |
| 518 | |
| 519 | if (CurTok != tok_in) |
| 520 | return Error("expected 'in' after for"); |
| 521 | getNextToken(); // eat 'in'. |
| 522 | |
| 523 | ExprAST *Body = ParseExpression(); |
| 524 | if (Body == 0) return 0; |
| 525 | |
| 526 | return new ForExprAST(IdName, Start, End, Step, Body); |
| 527 | } |
| 528 | |
| 529 | LLVM IR for the 'for' Loop |
| 530 | -------------------------- |
| 531 | |
| 532 | Now we get to the good part: the LLVM IR we want to generate for this |
| 533 | thing. With the simple example above, we get this LLVM IR (note that |
| 534 | this dump is generated with optimizations disabled for clarity): |
| 535 | |
| 536 | .. code-block:: llvm |
| 537 | |
| 538 | declare double @putchard(double) |
| 539 | |
| 540 | define double @printstar(double %n) { |
| 541 | entry: |
| 542 | ; initial value = 1.0 (inlined into phi) |
| 543 | br label %loop |
| 544 | |
| 545 | loop: ; preds = %loop, %entry |
| 546 | %i = phi double [ 1.000000e+00, %entry ], [ %nextvar, %loop ] |
| 547 | ; body |
| 548 | %calltmp = call double @putchard(double 4.200000e+01) |
| 549 | ; increment |
| 550 | %nextvar = fadd double %i, 1.000000e+00 |
| 551 | |
| 552 | ; termination test |
| 553 | %cmptmp = fcmp ult double %i, %n |
| 554 | %booltmp = uitofp i1 %cmptmp to double |
| 555 | %loopcond = fcmp one double %booltmp, 0.000000e+00 |
| 556 | br i1 %loopcond, label %loop, label %afterloop |
| 557 | |
| 558 | afterloop: ; preds = %loop |
| 559 | ; loop always returns 0.0 |
| 560 | ret double 0.000000e+00 |
| 561 | } |
| 562 | |
| 563 | This loop contains all the same constructs we saw before: a phi node, |
| 564 | several expressions, and some basic blocks. Lets see how this fits |
| 565 | together. |
| 566 | |
| 567 | Code Generation for the 'for' Loop |
| 568 | ---------------------------------- |
| 569 | |
| 570 | The first part of Codegen is very simple: we just output the start |
| 571 | expression for the loop value: |
| 572 | |
| 573 | .. code-block:: c++ |
| 574 | |
| 575 | Value *ForExprAST::Codegen() { |
| 576 | // Emit the start code first, without 'variable' in scope. |
| 577 | Value *StartVal = Start->Codegen(); |
| 578 | if (StartVal == 0) return 0; |
| 579 | |
| 580 | With this out of the way, the next step is to set up the LLVM basic |
| 581 | block for the start of the loop body. In the case above, the whole loop |
| 582 | body is one block, but remember that the body code itself could consist |
| 583 | of multiple blocks (e.g. if it contains an if/then/else or a for/in |
| 584 | expression). |
| 585 | |
| 586 | .. code-block:: c++ |
| 587 | |
| 588 | // Make the new basic block for the loop header, inserting after current |
| 589 | // block. |
| 590 | Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| 591 | BasicBlock *PreheaderBB = Builder.GetInsertBlock(); |
| 592 | BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction); |
| 593 | |
| 594 | // Insert an explicit fall through from the current block to the LoopBB. |
| 595 | Builder.CreateBr(LoopBB); |
| 596 | |
| 597 | This code is similar to what we saw for if/then/else. Because we will |
| 598 | need it to create the Phi node, we remember the block that falls through |
| 599 | into the loop. Once we have that, we create the actual block that starts |
| 600 | the loop and create an unconditional branch for the fall-through between |
| 601 | the two blocks. |
| 602 | |
| 603 | .. code-block:: c++ |
| 604 | |
| 605 | // Start insertion in LoopBB. |
| 606 | Builder.SetInsertPoint(LoopBB); |
| 607 | |
| 608 | // Start the PHI node with an entry for Start. |
| 609 | PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, VarName.c_str()); |
| 610 | Variable->addIncoming(StartVal, PreheaderBB); |
| 611 | |
| 612 | Now that the "preheader" for the loop is set up, we switch to emitting |
| 613 | code for the loop body. To begin with, we move the insertion point and |
| 614 | create the PHI node for the loop induction variable. Since we already |
| 615 | know the incoming value for the starting value, we add it to the Phi |
| 616 | node. Note that the Phi will eventually get a second value for the |
| 617 | backedge, but we can't set it up yet (because it doesn't exist!). |
| 618 | |
| 619 | .. code-block:: c++ |
| 620 | |
| 621 | // Within the loop, the variable is defined equal to the PHI node. If it |
| 622 | // shadows an existing variable, we have to restore it, so save it now. |
| 623 | Value *OldVal = NamedValues[VarName]; |
| 624 | NamedValues[VarName] = Variable; |
| 625 | |
| 626 | // Emit the body of the loop. This, like any other expr, can change the |
| 627 | // current BB. Note that we ignore the value computed by the body, but don't |
| 628 | // allow an error. |
| 629 | if (Body->Codegen() == 0) |
| 630 | return 0; |
| 631 | |
| 632 | Now the code starts to get more interesting. Our 'for' loop introduces a |
| 633 | new variable to the symbol table. This means that our symbol table can |
| 634 | now contain either function arguments or loop variables. To handle this, |
| 635 | before we codegen the body of the loop, we add the loop variable as the |
| 636 | current value for its name. Note that it is possible that there is a |
| 637 | variable of the same name in the outer scope. It would be easy to make |
| 638 | this an error (emit an error and return null if there is already an |
| 639 | entry for VarName) but we choose to allow shadowing of variables. In |
| 640 | order to handle this correctly, we remember the Value that we are |
| 641 | potentially shadowing in ``OldVal`` (which will be null if there is no |
| 642 | shadowed variable). |
| 643 | |
| 644 | Once the loop variable is set into the symbol table, the code |
| 645 | recursively codegen's the body. This allows the body to use the loop |
| 646 | variable: any references to it will naturally find it in the symbol |
| 647 | table. |
| 648 | |
| 649 | .. code-block:: c++ |
| 650 | |
| 651 | // Emit the step value. |
| 652 | Value *StepVal; |
| 653 | if (Step) { |
| 654 | StepVal = Step->Codegen(); |
| 655 | if (StepVal == 0) return 0; |
| 656 | } else { |
| 657 | // If not specified, use 1.0. |
| 658 | StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0)); |
| 659 | } |
| 660 | |
| 661 | Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar"); |
| 662 | |
| 663 | Now that the body is emitted, we compute the next value of the iteration |
| 664 | variable by adding the step value, or 1.0 if it isn't present. |
| 665 | '``NextVar``' will be the value of the loop variable on the next |
| 666 | iteration of the loop. |
| 667 | |
| 668 | .. code-block:: c++ |
| 669 | |
| 670 | // Compute the end condition. |
| 671 | Value *EndCond = End->Codegen(); |
| 672 | if (EndCond == 0) return EndCond; |
| 673 | |
| 674 | // Convert condition to a bool by comparing equal to 0.0. |
| 675 | EndCond = Builder.CreateFCmpONE(EndCond, |
| 676 | ConstantFP::get(getGlobalContext(), APFloat(0.0)), |
| 677 | "loopcond"); |
| 678 | |
| 679 | Finally, we evaluate the exit value of the loop, to determine whether |
| 680 | the loop should exit. This mirrors the condition evaluation for the |
| 681 | if/then/else statement. |
| 682 | |
| 683 | .. code-block:: c++ |
| 684 | |
| 685 | // Create the "after loop" block and insert it. |
| 686 | BasicBlock *LoopEndBB = Builder.GetInsertBlock(); |
| 687 | BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction); |
| 688 | |
| 689 | // Insert the conditional branch into the end of LoopEndBB. |
| 690 | Builder.CreateCondBr(EndCond, LoopBB, AfterBB); |
| 691 | |
| 692 | // Any new code will be inserted in AfterBB. |
| 693 | Builder.SetInsertPoint(AfterBB); |
| 694 | |
| 695 | With the code for the body of the loop complete, we just need to finish |
| 696 | up the control flow for it. This code remembers the end block (for the |
| 697 | phi node), then creates the block for the loop exit ("afterloop"). Based |
| 698 | on the value of the exit condition, it creates a conditional branch that |
| 699 | chooses between executing the loop again and exiting the loop. Any |
| 700 | future code is emitted in the "afterloop" block, so it sets the |
| 701 | insertion position to it. |
| 702 | |
| 703 | .. code-block:: c++ |
| 704 | |
| 705 | // Add a new entry to the PHI node for the backedge. |
| 706 | Variable->addIncoming(NextVar, LoopEndBB); |
| 707 | |
| 708 | // Restore the unshadowed variable. |
| 709 | if (OldVal) |
| 710 | NamedValues[VarName] = OldVal; |
| 711 | else |
| 712 | NamedValues.erase(VarName); |
| 713 | |
| 714 | // for expr always returns 0.0. |
| 715 | return Constant::getNullValue(Type::getDoubleTy(getGlobalContext())); |
| 716 | } |
| 717 | |
| 718 | The final code handles various cleanups: now that we have the "NextVar" |
| 719 | value, we can add the incoming value to the loop PHI node. After that, |
| 720 | we remove the loop variable from the symbol table, so that it isn't in |
| 721 | scope after the for loop. Finally, code generation of the for loop |
| 722 | always returns 0.0, so that is what we return from |
| 723 | ``ForExprAST::Codegen``. |
| 724 | |
| 725 | With this, we conclude the "adding control flow to Kaleidoscope" chapter |
| 726 | of the tutorial. In this chapter we added two control flow constructs, |
| 727 | and used them to motivate a couple of aspects of the LLVM IR that are |
| 728 | important for front-end implementors to know. In the next chapter of our |
| 729 | saga, we will get a bit crazier and add `user-defined |
| 730 | operators <LangImpl6.html>`_ to our poor innocent language. |
| 731 | |
| 732 | Full Code Listing |
| 733 | ================= |
| 734 | |
| 735 | Here is the complete code listing for our running example, enhanced with |
| 736 | the if/then/else and for expressions.. To build this example, use: |
| 737 | |
| 738 | .. code-block:: bash |
| 739 | |
| 740 | # Compile |
| 741 | clang++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy |
| 742 | # Run |
| 743 | ./toy |
| 744 | |
| 745 | Here is the code: |
| 746 | |
| 747 | .. code-block:: c++ |
| 748 | |
| 749 | #include "llvm/DerivedTypes.h" |
| 750 | #include "llvm/ExecutionEngine/ExecutionEngine.h" |
| 751 | #include "llvm/ExecutionEngine/JIT.h" |
| 752 | #include "llvm/IRBuilder.h" |
| 753 | #include "llvm/LLVMContext.h" |
| 754 | #include "llvm/Module.h" |
| 755 | #include "llvm/PassManager.h" |
| 756 | #include "llvm/Analysis/Verifier.h" |
| 757 | #include "llvm/Analysis/Passes.h" |
| 758 | #include "llvm/DataLayout.h" |
| 759 | #include "llvm/Transforms/Scalar.h" |
| 760 | #include "llvm/Support/TargetSelect.h" |
| 761 | #include <cstdio> |
| 762 | #include <string> |
| 763 | #include <map> |
| 764 | #include <vector> |
| 765 | using namespace llvm; |
| 766 | |
| 767 | //===----------------------------------------------------------------------===// |
| 768 | // Lexer |
| 769 | //===----------------------------------------------------------------------===// |
| 770 | |
| 771 | // The lexer returns tokens [0-255] if it is an unknown character, otherwise one |
| 772 | // of these for known things. |
| 773 | enum Token { |
| 774 | tok_eof = -1, |
| 775 | |
| 776 | // commands |
| 777 | tok_def = -2, tok_extern = -3, |
| 778 | |
| 779 | // primary |
| 780 | tok_identifier = -4, tok_number = -5, |
| 781 | |
| 782 | // control |
| 783 | tok_if = -6, tok_then = -7, tok_else = -8, |
| 784 | tok_for = -9, tok_in = -10 |
| 785 | }; |
| 786 | |
| 787 | static std::string IdentifierStr; // Filled in if tok_identifier |
| 788 | static double NumVal; // Filled in if tok_number |
| 789 | |
| 790 | /// gettok - Return the next token from standard input. |
| 791 | static int gettok() { |
| 792 | static int LastChar = ' '; |
| 793 | |
| 794 | // Skip any whitespace. |
| 795 | while (isspace(LastChar)) |
| 796 | LastChar = getchar(); |
| 797 | |
| 798 | if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* |
| 799 | IdentifierStr = LastChar; |
| 800 | while (isalnum((LastChar = getchar()))) |
| 801 | IdentifierStr += LastChar; |
| 802 | |
| 803 | if (IdentifierStr == "def") return tok_def; |
| 804 | if (IdentifierStr == "extern") return tok_extern; |
| 805 | if (IdentifierStr == "if") return tok_if; |
| 806 | if (IdentifierStr == "then") return tok_then; |
| 807 | if (IdentifierStr == "else") return tok_else; |
| 808 | if (IdentifierStr == "for") return tok_for; |
| 809 | if (IdentifierStr == "in") return tok_in; |
| 810 | return tok_identifier; |
| 811 | } |
| 812 | |
| 813 | if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ |
| 814 | std::string NumStr; |
| 815 | do { |
| 816 | NumStr += LastChar; |
| 817 | LastChar = getchar(); |
| 818 | } while (isdigit(LastChar) || LastChar == '.'); |
| 819 | |
| 820 | NumVal = strtod(NumStr.c_str(), 0); |
| 821 | return tok_number; |
| 822 | } |
| 823 | |
| 824 | if (LastChar == '#') { |
| 825 | // Comment until end of line. |
| 826 | do LastChar = getchar(); |
| 827 | while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); |
| 828 | |
| 829 | if (LastChar != EOF) |
| 830 | return gettok(); |
| 831 | } |
| 832 | |
| 833 | // Check for end of file. Don't eat the EOF. |
| 834 | if (LastChar == EOF) |
| 835 | return tok_eof; |
| 836 | |
| 837 | // Otherwise, just return the character as its ascii value. |
| 838 | int ThisChar = LastChar; |
| 839 | LastChar = getchar(); |
| 840 | return ThisChar; |
| 841 | } |
| 842 | |
| 843 | //===----------------------------------------------------------------------===// |
| 844 | // Abstract Syntax Tree (aka Parse Tree) |
| 845 | //===----------------------------------------------------------------------===// |
| 846 | |
| 847 | /// ExprAST - Base class for all expression nodes. |
| 848 | class ExprAST { |
| 849 | public: |
| 850 | virtual ~ExprAST() {} |
| 851 | virtual Value *Codegen() = 0; |
| 852 | }; |
| 853 | |
| 854 | /// NumberExprAST - Expression class for numeric literals like "1.0". |
| 855 | class NumberExprAST : public ExprAST { |
| 856 | double Val; |
| 857 | public: |
| 858 | NumberExprAST(double val) : Val(val) {} |
| 859 | virtual Value *Codegen(); |
| 860 | }; |
| 861 | |
| 862 | /// VariableExprAST - Expression class for referencing a variable, like "a". |
| 863 | class VariableExprAST : public ExprAST { |
| 864 | std::string Name; |
| 865 | public: |
| 866 | VariableExprAST(const std::string &name) : Name(name) {} |
| 867 | virtual Value *Codegen(); |
| 868 | }; |
| 869 | |
| 870 | /// BinaryExprAST - Expression class for a binary operator. |
| 871 | class BinaryExprAST : public ExprAST { |
| 872 | char Op; |
| 873 | ExprAST *LHS, *RHS; |
| 874 | public: |
| 875 | BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) |
| 876 | : Op(op), LHS(lhs), RHS(rhs) {} |
| 877 | virtual Value *Codegen(); |
| 878 | }; |
| 879 | |
| 880 | /// CallExprAST - Expression class for function calls. |
| 881 | class CallExprAST : public ExprAST { |
| 882 | std::string Callee; |
| 883 | std::vector<ExprAST*> Args; |
| 884 | public: |
| 885 | CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) |
| 886 | : Callee(callee), Args(args) {} |
| 887 | virtual Value *Codegen(); |
| 888 | }; |
| 889 | |
| 890 | /// IfExprAST - Expression class for if/then/else. |
| 891 | class IfExprAST : public ExprAST { |
| 892 | ExprAST *Cond, *Then, *Else; |
| 893 | public: |
| 894 | IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else) |
| 895 | : Cond(cond), Then(then), Else(_else) {} |
| 896 | virtual Value *Codegen(); |
| 897 | }; |
| 898 | |
| 899 | /// ForExprAST - Expression class for for/in. |
| 900 | class ForExprAST : public ExprAST { |
| 901 | std::string VarName; |
| 902 | ExprAST *Start, *End, *Step, *Body; |
| 903 | public: |
| 904 | ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end, |
| 905 | ExprAST *step, ExprAST *body) |
| 906 | : VarName(varname), Start(start), End(end), Step(step), Body(body) {} |
| 907 | virtual Value *Codegen(); |
| 908 | }; |
| 909 | |
| 910 | /// PrototypeAST - This class represents the "prototype" for a function, |
| 911 | /// which captures its name, and its argument names (thus implicitly the number |
| 912 | /// of arguments the function takes). |
| 913 | class PrototypeAST { |
| 914 | std::string Name; |
| 915 | std::vector<std::string> Args; |
| 916 | public: |
| 917 | PrototypeAST(const std::string &name, const std::vector<std::string> &args) |
| 918 | : Name(name), Args(args) {} |
| 919 | |
| 920 | Function *Codegen(); |
| 921 | }; |
| 922 | |
| 923 | /// FunctionAST - This class represents a function definition itself. |
| 924 | class FunctionAST { |
| 925 | PrototypeAST *Proto; |
| 926 | ExprAST *Body; |
| 927 | public: |
| 928 | FunctionAST(PrototypeAST *proto, ExprAST *body) |
| 929 | : Proto(proto), Body(body) {} |
| 930 | |
| 931 | Function *Codegen(); |
| 932 | }; |
| 933 | |
| 934 | //===----------------------------------------------------------------------===// |
| 935 | // Parser |
| 936 | //===----------------------------------------------------------------------===// |
| 937 | |
| 938 | /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current |
| 939 | /// token the parser is looking at. getNextToken reads another token from the |
| 940 | /// lexer and updates CurTok with its results. |
| 941 | static int CurTok; |
| 942 | static int getNextToken() { |
| 943 | return CurTok = gettok(); |
| 944 | } |
| 945 | |
| 946 | /// BinopPrecedence - This holds the precedence for each binary operator that is |
| 947 | /// defined. |
| 948 | static std::map<char, int> BinopPrecedence; |
| 949 | |
| 950 | /// GetTokPrecedence - Get the precedence of the pending binary operator token. |
| 951 | static int GetTokPrecedence() { |
| 952 | if (!isascii(CurTok)) |
| 953 | return -1; |
| 954 | |
| 955 | // Make sure it's a declared binop. |
| 956 | int TokPrec = BinopPrecedence[CurTok]; |
| 957 | if (TokPrec <= 0) return -1; |
| 958 | return TokPrec; |
| 959 | } |
| 960 | |
| 961 | /// Error* - These are little helper functions for error handling. |
| 962 | ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} |
| 963 | PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } |
| 964 | FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } |
| 965 | |
| 966 | static ExprAST *ParseExpression(); |
| 967 | |
| 968 | /// identifierexpr |
| 969 | /// ::= identifier |
| 970 | /// ::= identifier '(' expression* ')' |
| 971 | static ExprAST *ParseIdentifierExpr() { |
| 972 | std::string IdName = IdentifierStr; |
| 973 | |
| 974 | getNextToken(); // eat identifier. |
| 975 | |
| 976 | if (CurTok != '(') // Simple variable ref. |
| 977 | return new VariableExprAST(IdName); |
| 978 | |
| 979 | // Call. |
| 980 | getNextToken(); // eat ( |
| 981 | std::vector<ExprAST*> Args; |
| 982 | if (CurTok != ')') { |
| 983 | while (1) { |
| 984 | ExprAST *Arg = ParseExpression(); |
| 985 | if (!Arg) return 0; |
| 986 | Args.push_back(Arg); |
| 987 | |
| 988 | if (CurTok == ')') break; |
| 989 | |
| 990 | if (CurTok != ',') |
| 991 | return Error("Expected ')' or ',' in argument list"); |
| 992 | getNextToken(); |
| 993 | } |
| 994 | } |
| 995 | |
| 996 | // Eat the ')'. |
| 997 | getNextToken(); |
| 998 | |
| 999 | return new CallExprAST(IdName, Args); |
| 1000 | } |
| 1001 | |
| 1002 | /// numberexpr ::= number |
| 1003 | static ExprAST *ParseNumberExpr() { |
| 1004 | ExprAST *Result = new NumberExprAST(NumVal); |
| 1005 | getNextToken(); // consume the number |
| 1006 | return Result; |
| 1007 | } |
| 1008 | |
| 1009 | /// parenexpr ::= '(' expression ')' |
| 1010 | static ExprAST *ParseParenExpr() { |
| 1011 | getNextToken(); // eat (. |
| 1012 | ExprAST *V = ParseExpression(); |
| 1013 | if (!V) return 0; |
| 1014 | |
| 1015 | if (CurTok != ')') |
| 1016 | return Error("expected ')'"); |
| 1017 | getNextToken(); // eat ). |
| 1018 | return V; |
| 1019 | } |
| 1020 | |
| 1021 | /// ifexpr ::= 'if' expression 'then' expression 'else' expression |
| 1022 | static ExprAST *ParseIfExpr() { |
| 1023 | getNextToken(); // eat the if. |
| 1024 | |
| 1025 | // condition. |
| 1026 | ExprAST *Cond = ParseExpression(); |
| 1027 | if (!Cond) return 0; |
| 1028 | |
| 1029 | if (CurTok != tok_then) |
| 1030 | return Error("expected then"); |
| 1031 | getNextToken(); // eat the then |
| 1032 | |
| 1033 | ExprAST *Then = ParseExpression(); |
| 1034 | if (Then == 0) return 0; |
| 1035 | |
| 1036 | if (CurTok != tok_else) |
| 1037 | return Error("expected else"); |
| 1038 | |
| 1039 | getNextToken(); |
| 1040 | |
| 1041 | ExprAST *Else = ParseExpression(); |
| 1042 | if (!Else) return 0; |
| 1043 | |
| 1044 | return new IfExprAST(Cond, Then, Else); |
| 1045 | } |
| 1046 | |
| 1047 | /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression |
| 1048 | static ExprAST *ParseForExpr() { |
| 1049 | getNextToken(); // eat the for. |
| 1050 | |
| 1051 | if (CurTok != tok_identifier) |
| 1052 | return Error("expected identifier after for"); |
| 1053 | |
| 1054 | std::string IdName = IdentifierStr; |
| 1055 | getNextToken(); // eat identifier. |
| 1056 | |
| 1057 | if (CurTok != '=') |
| 1058 | return Error("expected '=' after for"); |
| 1059 | getNextToken(); // eat '='. |
| 1060 | |
| 1061 | |
| 1062 | ExprAST *Start = ParseExpression(); |
| 1063 | if (Start == 0) return 0; |
| 1064 | if (CurTok != ',') |
| 1065 | return Error("expected ',' after for start value"); |
| 1066 | getNextToken(); |
| 1067 | |
| 1068 | ExprAST *End = ParseExpression(); |
| 1069 | if (End == 0) return 0; |
| 1070 | |
| 1071 | // The step value is optional. |
| 1072 | ExprAST *Step = 0; |
| 1073 | if (CurTok == ',') { |
| 1074 | getNextToken(); |
| 1075 | Step = ParseExpression(); |
| 1076 | if (Step == 0) return 0; |
| 1077 | } |
| 1078 | |
| 1079 | if (CurTok != tok_in) |
| 1080 | return Error("expected 'in' after for"); |
| 1081 | getNextToken(); // eat 'in'. |
| 1082 | |
| 1083 | ExprAST *Body = ParseExpression(); |
| 1084 | if (Body == 0) return 0; |
| 1085 | |
| 1086 | return new ForExprAST(IdName, Start, End, Step, Body); |
| 1087 | } |
| 1088 | |
| 1089 | /// primary |
| 1090 | /// ::= identifierexpr |
| 1091 | /// ::= numberexpr |
| 1092 | /// ::= parenexpr |
| 1093 | /// ::= ifexpr |
| 1094 | /// ::= forexpr |
| 1095 | static ExprAST *ParsePrimary() { |
| 1096 | switch (CurTok) { |
| 1097 | default: return Error("unknown token when expecting an expression"); |
| 1098 | case tok_identifier: return ParseIdentifierExpr(); |
| 1099 | case tok_number: return ParseNumberExpr(); |
| 1100 | case '(': return ParseParenExpr(); |
| 1101 | case tok_if: return ParseIfExpr(); |
| 1102 | case tok_for: return ParseForExpr(); |
| 1103 | } |
| 1104 | } |
| 1105 | |
| 1106 | /// binoprhs |
| 1107 | /// ::= ('+' primary)* |
| 1108 | static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { |
| 1109 | // If this is a binop, find its precedence. |
| 1110 | while (1) { |
| 1111 | int TokPrec = GetTokPrecedence(); |
| 1112 | |
| 1113 | // If this is a binop that binds at least as tightly as the current binop, |
| 1114 | // consume it, otherwise we are done. |
| 1115 | if (TokPrec < ExprPrec) |
| 1116 | return LHS; |
| 1117 | |
| 1118 | // Okay, we know this is a binop. |
| 1119 | int BinOp = CurTok; |
| 1120 | getNextToken(); // eat binop |
| 1121 | |
| 1122 | // Parse the primary expression after the binary operator. |
| 1123 | ExprAST *RHS = ParsePrimary(); |
| 1124 | if (!RHS) return 0; |
| 1125 | |
| 1126 | // If BinOp binds less tightly with RHS than the operator after RHS, let |
| 1127 | // the pending operator take RHS as its LHS. |
| 1128 | int NextPrec = GetTokPrecedence(); |
| 1129 | if (TokPrec < NextPrec) { |
| 1130 | RHS = ParseBinOpRHS(TokPrec+1, RHS); |
| 1131 | if (RHS == 0) return 0; |
| 1132 | } |
| 1133 | |
| 1134 | // Merge LHS/RHS. |
| 1135 | LHS = new BinaryExprAST(BinOp, LHS, RHS); |
| 1136 | } |
| 1137 | } |
| 1138 | |
| 1139 | /// expression |
| 1140 | /// ::= primary binoprhs |
| 1141 | /// |
| 1142 | static ExprAST *ParseExpression() { |
| 1143 | ExprAST *LHS = ParsePrimary(); |
| 1144 | if (!LHS) return 0; |
| 1145 | |
| 1146 | return ParseBinOpRHS(0, LHS); |
| 1147 | } |
| 1148 | |
| 1149 | /// prototype |
| 1150 | /// ::= id '(' id* ')' |
| 1151 | static PrototypeAST *ParsePrototype() { |
| 1152 | if (CurTok != tok_identifier) |
| 1153 | return ErrorP("Expected function name in prototype"); |
| 1154 | |
| 1155 | std::string FnName = IdentifierStr; |
| 1156 | getNextToken(); |
| 1157 | |
| 1158 | if (CurTok != '(') |
| 1159 | return ErrorP("Expected '(' in prototype"); |
| 1160 | |
| 1161 | std::vector<std::string> ArgNames; |
| 1162 | while (getNextToken() == tok_identifier) |
| 1163 | ArgNames.push_back(IdentifierStr); |
| 1164 | if (CurTok != ')') |
| 1165 | return ErrorP("Expected ')' in prototype"); |
| 1166 | |
| 1167 | // success. |
| 1168 | getNextToken(); // eat ')'. |
| 1169 | |
| 1170 | return new PrototypeAST(FnName, ArgNames); |
| 1171 | } |
| 1172 | |
| 1173 | /// definition ::= 'def' prototype expression |
| 1174 | static FunctionAST *ParseDefinition() { |
| 1175 | getNextToken(); // eat def. |
| 1176 | PrototypeAST *Proto = ParsePrototype(); |
| 1177 | if (Proto == 0) return 0; |
| 1178 | |
| 1179 | if (ExprAST *E = ParseExpression()) |
| 1180 | return new FunctionAST(Proto, E); |
| 1181 | return 0; |
| 1182 | } |
| 1183 | |
| 1184 | /// toplevelexpr ::= expression |
| 1185 | static FunctionAST *ParseTopLevelExpr() { |
| 1186 | if (ExprAST *E = ParseExpression()) { |
| 1187 | // Make an anonymous proto. |
| 1188 | PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); |
| 1189 | return new FunctionAST(Proto, E); |
| 1190 | } |
| 1191 | return 0; |
| 1192 | } |
| 1193 | |
| 1194 | /// external ::= 'extern' prototype |
| 1195 | static PrototypeAST *ParseExtern() { |
| 1196 | getNextToken(); // eat extern. |
| 1197 | return ParsePrototype(); |
| 1198 | } |
| 1199 | |
| 1200 | //===----------------------------------------------------------------------===// |
| 1201 | // Code Generation |
| 1202 | //===----------------------------------------------------------------------===// |
| 1203 | |
| 1204 | static Module *TheModule; |
| 1205 | static IRBuilder<> Builder(getGlobalContext()); |
| 1206 | static std::map<std::string, Value*> NamedValues; |
| 1207 | static FunctionPassManager *TheFPM; |
| 1208 | |
| 1209 | Value *ErrorV(const char *Str) { Error(Str); return 0; } |
| 1210 | |
| 1211 | Value *NumberExprAST::Codegen() { |
| 1212 | return ConstantFP::get(getGlobalContext(), APFloat(Val)); |
| 1213 | } |
| 1214 | |
| 1215 | Value *VariableExprAST::Codegen() { |
| 1216 | // Look this variable up in the function. |
| 1217 | Value *V = NamedValues[Name]; |
| 1218 | return V ? V : ErrorV("Unknown variable name"); |
| 1219 | } |
| 1220 | |
| 1221 | Value *BinaryExprAST::Codegen() { |
| 1222 | Value *L = LHS->Codegen(); |
| 1223 | Value *R = RHS->Codegen(); |
| 1224 | if (L == 0 || R == 0) return 0; |
| 1225 | |
| 1226 | switch (Op) { |
| 1227 | case '+': return Builder.CreateFAdd(L, R, "addtmp"); |
| 1228 | case '-': return Builder.CreateFSub(L, R, "subtmp"); |
| 1229 | case '*': return Builder.CreateFMul(L, R, "multmp"); |
| 1230 | case '<': |
| 1231 | L = Builder.CreateFCmpULT(L, R, "cmptmp"); |
| 1232 | // Convert bool 0/1 to double 0.0 or 1.0 |
| 1233 | return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), |
| 1234 | "booltmp"); |
| 1235 | default: return ErrorV("invalid binary operator"); |
| 1236 | } |
| 1237 | } |
| 1238 | |
| 1239 | Value *CallExprAST::Codegen() { |
| 1240 | // Look up the name in the global module table. |
| 1241 | Function *CalleeF = TheModule->getFunction(Callee); |
| 1242 | if (CalleeF == 0) |
| 1243 | return ErrorV("Unknown function referenced"); |
| 1244 | |
| 1245 | // If argument mismatch error. |
| 1246 | if (CalleeF->arg_size() != Args.size()) |
| 1247 | return ErrorV("Incorrect # arguments passed"); |
| 1248 | |
| 1249 | std::vector<Value*> ArgsV; |
| 1250 | for (unsigned i = 0, e = Args.size(); i != e; ++i) { |
| 1251 | ArgsV.push_back(Args[i]->Codegen()); |
| 1252 | if (ArgsV.back() == 0) return 0; |
| 1253 | } |
| 1254 | |
| 1255 | return Builder.CreateCall(CalleeF, ArgsV, "calltmp"); |
| 1256 | } |
| 1257 | |
| 1258 | Value *IfExprAST::Codegen() { |
| 1259 | Value *CondV = Cond->Codegen(); |
| 1260 | if (CondV == 0) return 0; |
| 1261 | |
| 1262 | // Convert condition to a bool by comparing equal to 0.0. |
| 1263 | CondV = Builder.CreateFCmpONE(CondV, |
| 1264 | ConstantFP::get(getGlobalContext(), APFloat(0.0)), |
| 1265 | "ifcond"); |
| 1266 | |
| 1267 | Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| 1268 | |
| 1269 | // Create blocks for the then and else cases. Insert the 'then' block at the |
| 1270 | // end of the function. |
| 1271 | BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction); |
| 1272 | BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else"); |
| 1273 | BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont"); |
| 1274 | |
| 1275 | Builder.CreateCondBr(CondV, ThenBB, ElseBB); |
| 1276 | |
| 1277 | // Emit then value. |
| 1278 | Builder.SetInsertPoint(ThenBB); |
| 1279 | |
| 1280 | Value *ThenV = Then->Codegen(); |
| 1281 | if (ThenV == 0) return 0; |
| 1282 | |
| 1283 | Builder.CreateBr(MergeBB); |
| 1284 | // Codegen of 'Then' can change the current block, update ThenBB for the PHI. |
| 1285 | ThenBB = Builder.GetInsertBlock(); |
| 1286 | |
| 1287 | // Emit else block. |
| 1288 | TheFunction->getBasicBlockList().push_back(ElseBB); |
| 1289 | Builder.SetInsertPoint(ElseBB); |
| 1290 | |
| 1291 | Value *ElseV = Else->Codegen(); |
| 1292 | if (ElseV == 0) return 0; |
| 1293 | |
| 1294 | Builder.CreateBr(MergeBB); |
| 1295 | // Codegen of 'Else' can change the current block, update ElseBB for the PHI. |
| 1296 | ElseBB = Builder.GetInsertBlock(); |
| 1297 | |
| 1298 | // Emit merge block. |
| 1299 | TheFunction->getBasicBlockList().push_back(MergeBB); |
| 1300 | Builder.SetInsertPoint(MergeBB); |
| 1301 | PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, |
| 1302 | "iftmp"); |
| 1303 | |
| 1304 | PN->addIncoming(ThenV, ThenBB); |
| 1305 | PN->addIncoming(ElseV, ElseBB); |
| 1306 | return PN; |
| 1307 | } |
| 1308 | |
| 1309 | Value *ForExprAST::Codegen() { |
| 1310 | // Output this as: |
| 1311 | // ... |
| 1312 | // start = startexpr |
| 1313 | // goto loop |
| 1314 | // loop: |
| 1315 | // variable = phi [start, loopheader], [nextvariable, loopend] |
| 1316 | // ... |
| 1317 | // bodyexpr |
| 1318 | // ... |
| 1319 | // loopend: |
| 1320 | // step = stepexpr |
| 1321 | // nextvariable = variable + step |
| 1322 | // endcond = endexpr |
| 1323 | // br endcond, loop, endloop |
| 1324 | // outloop: |
| 1325 | |
| 1326 | // Emit the start code first, without 'variable' in scope. |
| 1327 | Value *StartVal = Start->Codegen(); |
| 1328 | if (StartVal == 0) return 0; |
| 1329 | |
| 1330 | // Make the new basic block for the loop header, inserting after current |
| 1331 | // block. |
| 1332 | Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| 1333 | BasicBlock *PreheaderBB = Builder.GetInsertBlock(); |
| 1334 | BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction); |
| 1335 | |
| 1336 | // Insert an explicit fall through from the current block to the LoopBB. |
| 1337 | Builder.CreateBr(LoopBB); |
| 1338 | |
| 1339 | // Start insertion in LoopBB. |
| 1340 | Builder.SetInsertPoint(LoopBB); |
| 1341 | |
| 1342 | // Start the PHI node with an entry for Start. |
| 1343 | PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, VarName.c_str()); |
| 1344 | Variable->addIncoming(StartVal, PreheaderBB); |
| 1345 | |
| 1346 | // Within the loop, the variable is defined equal to the PHI node. If it |
| 1347 | // shadows an existing variable, we have to restore it, so save it now. |
| 1348 | Value *OldVal = NamedValues[VarName]; |
| 1349 | NamedValues[VarName] = Variable; |
| 1350 | |
| 1351 | // Emit the body of the loop. This, like any other expr, can change the |
| 1352 | // current BB. Note that we ignore the value computed by the body, but don't |
| 1353 | // allow an error. |
| 1354 | if (Body->Codegen() == 0) |
| 1355 | return 0; |
| 1356 | |
| 1357 | // Emit the step value. |
| 1358 | Value *StepVal; |
| 1359 | if (Step) { |
| 1360 | StepVal = Step->Codegen(); |
| 1361 | if (StepVal == 0) return 0; |
| 1362 | } else { |
| 1363 | // If not specified, use 1.0. |
| 1364 | StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0)); |
| 1365 | } |
| 1366 | |
| 1367 | Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar"); |
| 1368 | |
| 1369 | // Compute the end condition. |
| 1370 | Value *EndCond = End->Codegen(); |
| 1371 | if (EndCond == 0) return EndCond; |
| 1372 | |
| 1373 | // Convert condition to a bool by comparing equal to 0.0. |
| 1374 | EndCond = Builder.CreateFCmpONE(EndCond, |
| 1375 | ConstantFP::get(getGlobalContext(), APFloat(0.0)), |
| 1376 | "loopcond"); |
| 1377 | |
| 1378 | // Create the "after loop" block and insert it. |
| 1379 | BasicBlock *LoopEndBB = Builder.GetInsertBlock(); |
| 1380 | BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction); |
| 1381 | |
| 1382 | // Insert the conditional branch into the end of LoopEndBB. |
| 1383 | Builder.CreateCondBr(EndCond, LoopBB, AfterBB); |
| 1384 | |
| 1385 | // Any new code will be inserted in AfterBB. |
| 1386 | Builder.SetInsertPoint(AfterBB); |
| 1387 | |
| 1388 | // Add a new entry to the PHI node for the backedge. |
| 1389 | Variable->addIncoming(NextVar, LoopEndBB); |
| 1390 | |
| 1391 | // Restore the unshadowed variable. |
| 1392 | if (OldVal) |
| 1393 | NamedValues[VarName] = OldVal; |
| 1394 | else |
| 1395 | NamedValues.erase(VarName); |
| 1396 | |
| 1397 | |
| 1398 | // for expr always returns 0.0. |
| 1399 | return Constant::getNullValue(Type::getDoubleTy(getGlobalContext())); |
| 1400 | } |
| 1401 | |
| 1402 | Function *PrototypeAST::Codegen() { |
| 1403 | // Make the function type: double(double,double) etc. |
| 1404 | std::vector<Type*> Doubles(Args.size(), |
| 1405 | Type::getDoubleTy(getGlobalContext())); |
| 1406 | FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()), |
| 1407 | Doubles, false); |
| 1408 | |
| 1409 | Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule); |
| 1410 | |
| 1411 | // If F conflicted, there was already something named 'Name'. If it has a |
| 1412 | // body, don't allow redefinition or reextern. |
| 1413 | if (F->getName() != Name) { |
| 1414 | // Delete the one we just made and get the existing one. |
| 1415 | F->eraseFromParent(); |
| 1416 | F = TheModule->getFunction(Name); |
| 1417 | |
| 1418 | // If F already has a body, reject this. |
| 1419 | if (!F->empty()) { |
| 1420 | ErrorF("redefinition of function"); |
| 1421 | return 0; |
| 1422 | } |
| 1423 | |
| 1424 | // If F took a different number of args, reject. |
| 1425 | if (F->arg_size() != Args.size()) { |
| 1426 | ErrorF("redefinition of function with different # args"); |
| 1427 | return 0; |
| 1428 | } |
| 1429 | } |
| 1430 | |
| 1431 | // Set names for all arguments. |
| 1432 | unsigned Idx = 0; |
| 1433 | for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); |
| 1434 | ++AI, ++Idx) { |
| 1435 | AI->setName(Args[Idx]); |
| 1436 | |
| 1437 | // Add arguments to variable symbol table. |
| 1438 | NamedValues[Args[Idx]] = AI; |
| 1439 | } |
| 1440 | |
| 1441 | return F; |
| 1442 | } |
| 1443 | |
| 1444 | Function *FunctionAST::Codegen() { |
| 1445 | NamedValues.clear(); |
| 1446 | |
| 1447 | Function *TheFunction = Proto->Codegen(); |
| 1448 | if (TheFunction == 0) |
| 1449 | return 0; |
| 1450 | |
| 1451 | // Create a new basic block to start insertion into. |
| 1452 | BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction); |
| 1453 | Builder.SetInsertPoint(BB); |
| 1454 | |
| 1455 | if (Value *RetVal = Body->Codegen()) { |
| 1456 | // Finish off the function. |
| 1457 | Builder.CreateRet(RetVal); |
| 1458 | |
| 1459 | // Validate the generated code, checking for consistency. |
| 1460 | verifyFunction(*TheFunction); |
| 1461 | |
| 1462 | // Optimize the function. |
| 1463 | TheFPM->run(*TheFunction); |
| 1464 | |
| 1465 | return TheFunction; |
| 1466 | } |
| 1467 | |
| 1468 | // Error reading body, remove function. |
| 1469 | TheFunction->eraseFromParent(); |
| 1470 | return 0; |
| 1471 | } |
| 1472 | |
| 1473 | //===----------------------------------------------------------------------===// |
| 1474 | // Top-Level parsing and JIT Driver |
| 1475 | //===----------------------------------------------------------------------===// |
| 1476 | |
| 1477 | static ExecutionEngine *TheExecutionEngine; |
| 1478 | |
| 1479 | static void HandleDefinition() { |
| 1480 | if (FunctionAST *F = ParseDefinition()) { |
| 1481 | if (Function *LF = F->Codegen()) { |
| 1482 | fprintf(stderr, "Read function definition:"); |
| 1483 | LF->dump(); |
| 1484 | } |
| 1485 | } else { |
| 1486 | // Skip token for error recovery. |
| 1487 | getNextToken(); |
| 1488 | } |
| 1489 | } |
| 1490 | |
| 1491 | static void HandleExtern() { |
| 1492 | if (PrototypeAST *P = ParseExtern()) { |
| 1493 | if (Function *F = P->Codegen()) { |
| 1494 | fprintf(stderr, "Read extern: "); |
| 1495 | F->dump(); |
| 1496 | } |
| 1497 | } else { |
| 1498 | // Skip token for error recovery. |
| 1499 | getNextToken(); |
| 1500 | } |
| 1501 | } |
| 1502 | |
| 1503 | static void HandleTopLevelExpression() { |
| 1504 | // Evaluate a top-level expression into an anonymous function. |
| 1505 | if (FunctionAST *F = ParseTopLevelExpr()) { |
| 1506 | if (Function *LF = F->Codegen()) { |
| 1507 | // JIT the function, returning a function pointer. |
| 1508 | void *FPtr = TheExecutionEngine->getPointerToFunction(LF); |
| 1509 | |
| 1510 | // Cast it to the right type (takes no arguments, returns a double) so we |
| 1511 | // can call it as a native function. |
| 1512 | double (*FP)() = (double (*)())(intptr_t)FPtr; |
| 1513 | fprintf(stderr, "Evaluated to %f\n", FP()); |
| 1514 | } |
| 1515 | } else { |
| 1516 | // Skip token for error recovery. |
| 1517 | getNextToken(); |
| 1518 | } |
| 1519 | } |
| 1520 | |
| 1521 | /// top ::= definition | external | expression | ';' |
| 1522 | static void MainLoop() { |
| 1523 | while (1) { |
| 1524 | fprintf(stderr, "ready> "); |
| 1525 | switch (CurTok) { |
| 1526 | case tok_eof: return; |
| 1527 | case ';': getNextToken(); break; // ignore top-level semicolons. |
| 1528 | case tok_def: HandleDefinition(); break; |
| 1529 | case tok_extern: HandleExtern(); break; |
| 1530 | default: HandleTopLevelExpression(); break; |
| 1531 | } |
| 1532 | } |
| 1533 | } |
| 1534 | |
| 1535 | //===----------------------------------------------------------------------===// |
| 1536 | // "Library" functions that can be "extern'd" from user code. |
| 1537 | //===----------------------------------------------------------------------===// |
| 1538 | |
| 1539 | /// putchard - putchar that takes a double and returns 0. |
| 1540 | extern "C" |
| 1541 | double putchard(double X) { |
| 1542 | putchar((char)X); |
| 1543 | return 0; |
| 1544 | } |
| 1545 | |
| 1546 | //===----------------------------------------------------------------------===// |
| 1547 | // Main driver code. |
| 1548 | //===----------------------------------------------------------------------===// |
| 1549 | |
| 1550 | int main() { |
| 1551 | InitializeNativeTarget(); |
| 1552 | LLVMContext &Context = getGlobalContext(); |
| 1553 | |
| 1554 | // Install standard binary operators. |
| 1555 | // 1 is lowest precedence. |
| 1556 | BinopPrecedence['<'] = 10; |
| 1557 | BinopPrecedence['+'] = 20; |
| 1558 | BinopPrecedence['-'] = 20; |
| 1559 | BinopPrecedence['*'] = 40; // highest. |
| 1560 | |
| 1561 | // Prime the first token. |
| 1562 | fprintf(stderr, "ready> "); |
| 1563 | getNextToken(); |
| 1564 | |
| 1565 | // Make the module, which holds all the code. |
| 1566 | TheModule = new Module("my cool jit", Context); |
| 1567 | |
| 1568 | // Create the JIT. This takes ownership of the module. |
| 1569 | std::string ErrStr; |
| 1570 | TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create(); |
| 1571 | if (!TheExecutionEngine) { |
| 1572 | fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str()); |
| 1573 | exit(1); |
| 1574 | } |
| 1575 | |
| 1576 | FunctionPassManager OurFPM(TheModule); |
| 1577 | |
| 1578 | // Set up the optimizer pipeline. Start with registering info about how the |
| 1579 | // target lays out data structures. |
| 1580 | OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout())); |
| 1581 | // Provide basic AliasAnalysis support for GVN. |
| 1582 | OurFPM.add(createBasicAliasAnalysisPass()); |
| 1583 | // Do simple "peephole" optimizations and bit-twiddling optzns. |
| 1584 | OurFPM.add(createInstructionCombiningPass()); |
| 1585 | // Reassociate expressions. |
| 1586 | OurFPM.add(createReassociatePass()); |
| 1587 | // Eliminate Common SubExpressions. |
| 1588 | OurFPM.add(createGVNPass()); |
| 1589 | // Simplify the control flow graph (deleting unreachable blocks, etc). |
| 1590 | OurFPM.add(createCFGSimplificationPass()); |
| 1591 | |
| 1592 | OurFPM.doInitialization(); |
| 1593 | |
| 1594 | // Set the global so the code gen can use this. |
| 1595 | TheFPM = &OurFPM; |
| 1596 | |
| 1597 | // Run the main "interpreter loop" now. |
| 1598 | MainLoop(); |
| 1599 | |
| 1600 | TheFPM = 0; |
| 1601 | |
| 1602 | // Print out all of the generated code. |
| 1603 | TheModule->dump(); |
| 1604 | |
| 1605 | return 0; |
| 1606 | } |
| 1607 | |
| 1608 | `Next: Extending the language: user-defined operators <LangImpl6.html>`_ |
| 1609 | |