blob: d1865f13a799991537d7550628bf6cbe48dc8bdc [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
Owen Anderson60f87572009-06-16 17:40:28 +00005 <meta http-equiv="Content-type" content="text/html;charset=UTF-8">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006 <title>LLVM Programmer's Manual</title>
7 <link rel="stylesheet" href="llvm.css" type="text/css">
8</head>
9<body>
10
11<div class="doc_title">
12 LLVM Programmer's Manual
13</div>
14
15<ol>
16 <li><a href="#introduction">Introduction</a></li>
17 <li><a href="#general">General Information</a>
18 <ul>
19 <li><a href="#stl">The C++ Standard Template Library</a></li>
20<!--
21 <li>The <tt>-time-passes</tt> option</li>
22 <li>How to use the LLVM Makefile system</li>
23 <li>How to write a regression test</li>
24
25-->
26 </ul>
27 </li>
28 <li><a href="#apis">Important and useful LLVM APIs</a>
29 <ul>
30 <li><a href="#isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt>
31and <tt>dyn_cast&lt;&gt;</tt> templates</a> </li>
Daniel Dunbare3572ba2009-07-25 04:41:11 +000032 <li><a href="#string_apis">Passing strings (the <tt>StringRef</tt>
Benjamin Kramer7b2136d2009-08-05 15:42:44 +000033and <tt>Twine</tt> classes)</a>
Daniel Dunbare3572ba2009-07-25 04:41:11 +000034 <ul>
35 <li><a href="#StringRef">The <tt>StringRef</tt> class</a> </li>
36 <li><a href="#Twine">The <tt>Twine</tt> class</a> </li>
37 </ul>
Benjamin Kramer7b2136d2009-08-05 15:42:44 +000038 </li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000039 <li><a href="#DEBUG">The <tt>DEBUG()</tt> macro and <tt>-debug</tt>
40option</a>
41 <ul>
42 <li><a href="#DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt>
43and the <tt>-debug-only</tt> option</a> </li>
44 </ul>
45 </li>
46 <li><a href="#Statistic">The <tt>Statistic</tt> class &amp; <tt>-stats</tt>
47option</a></li>
48<!--
49 <li>The <tt>InstVisitor</tt> template
50 <li>The general graph API
51-->
52 <li><a href="#ViewGraph">Viewing graphs while debugging code</a></li>
53 </ul>
54 </li>
55 <li><a href="#datastructure">Picking the Right Data Structure for a Task</a>
56 <ul>
57 <li><a href="#ds_sequential">Sequential Containers (std::vector, std::list, etc)</a>
58 <ul>
59 <li><a href="#dss_fixedarrays">Fixed Size Arrays</a></li>
60 <li><a href="#dss_heaparrays">Heap Allocated Arrays</a></li>
61 <li><a href="#dss_smallvector">"llvm/ADT/SmallVector.h"</a></li>
62 <li><a href="#dss_vector">&lt;vector&gt;</a></li>
63 <li><a href="#dss_deque">&lt;deque&gt;</a></li>
64 <li><a href="#dss_list">&lt;list&gt;</a></li>
Gabor Greifbb17f652009-02-27 11:37:41 +000065 <li><a href="#dss_ilist">llvm/ADT/ilist.h</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000066 <li><a href="#dss_other">Other Sequential Container Options</a></li>
67 </ul></li>
68 <li><a href="#ds_set">Set-Like Containers (std::set, SmallSet, SetVector, etc)</a>
69 <ul>
70 <li><a href="#dss_sortedvectorset">A sorted 'vector'</a></li>
71 <li><a href="#dss_smallset">"llvm/ADT/SmallSet.h"</a></li>
72 <li><a href="#dss_smallptrset">"llvm/ADT/SmallPtrSet.h"</a></li>
Chris Lattner77ab46d2007-09-30 00:58:59 +000073 <li><a href="#dss_denseset">"llvm/ADT/DenseSet.h"</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000074 <li><a href="#dss_FoldingSet">"llvm/ADT/FoldingSet.h"</a></li>
75 <li><a href="#dss_set">&lt;set&gt;</a></li>
76 <li><a href="#dss_setvector">"llvm/ADT/SetVector.h"</a></li>
77 <li><a href="#dss_uniquevector">"llvm/ADT/UniqueVector.h"</a></li>
78 <li><a href="#dss_otherset">Other Set-Like ContainerOptions</a></li>
79 </ul></li>
80 <li><a href="#ds_map">Map-Like Containers (std::map, DenseMap, etc)</a>
81 <ul>
82 <li><a href="#dss_sortedvectormap">A sorted 'vector'</a></li>
83 <li><a href="#dss_stringmap">"llvm/ADT/StringMap.h"</a></li>
84 <li><a href="#dss_indexedmap">"llvm/ADT/IndexedMap.h"</a></li>
85 <li><a href="#dss_densemap">"llvm/ADT/DenseMap.h"</a></li>
Jeffrey Yasskin50e846d2009-10-22 22:11:22 +000086 <li><a href="#dss_valuemap">"llvm/ADT/ValueMap.h"</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000087 <li><a href="#dss_map">&lt;map&gt;</a></li>
88 <li><a href="#dss_othermap">Other Map-Like Container Options</a></li>
89 </ul></li>
Chris Lattnerd8b95b72009-07-25 07:22:20 +000090 <li><a href="#ds_string">String-like containers</a>
Benjamin Kramer7b2136d2009-08-05 15:42:44 +000091 <!--<ul>
92 todo
93 </ul>--></li>
Daniel Berlin7ea44dc2007-09-24 17:52:25 +000094 <li><a href="#ds_bit">BitVector-like containers</a>
95 <ul>
96 <li><a href="#dss_bitvector">A dense bitvector</a></li>
Dan Gohmanc83a2b42010-01-05 18:24:00 +000097 <li><a href="#dss_smallbitvector">A "small" dense bitvector</a></li>
Daniel Berlin7ea44dc2007-09-24 17:52:25 +000098 <li><a href="#dss_sparsebitvector">A sparse bitvector</a></li>
99 </ul></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000100 </ul>
101 </li>
102 <li><a href="#common">Helpful Hints for Common Operations</a>
103 <ul>
104 <li><a href="#inspection">Basic Inspection and Traversal Routines</a>
105 <ul>
106 <li><a href="#iterate_function">Iterating over the <tt>BasicBlock</tt>s
107in a <tt>Function</tt></a> </li>
108 <li><a href="#iterate_basicblock">Iterating over the <tt>Instruction</tt>s
109in a <tt>BasicBlock</tt></a> </li>
110 <li><a href="#iterate_institer">Iterating over the <tt>Instruction</tt>s
111in a <tt>Function</tt></a> </li>
112 <li><a href="#iterate_convert">Turning an iterator into a
113class pointer</a> </li>
114 <li><a href="#iterate_complex">Finding call sites: a more
115complex example</a> </li>
116 <li><a href="#calls_and_invokes">Treating calls and invokes
117the same way</a> </li>
118 <li><a href="#iterate_chains">Iterating over def-use &amp;
119use-def chains</a> </li>
Chris Lattner0665e1f2008-01-03 16:56:04 +0000120 <li><a href="#iterate_preds">Iterating over predecessors &amp;
121successors of blocks</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000122 </ul>
123 </li>
124 <li><a href="#simplechanges">Making simple changes</a>
125 <ul>
126 <li><a href="#schanges_creating">Creating and inserting new
127 <tt>Instruction</tt>s</a> </li>
128 <li><a href="#schanges_deleting">Deleting <tt>Instruction</tt>s</a> </li>
129 <li><a href="#schanges_replacing">Replacing an <tt>Instruction</tt>
130with another <tt>Value</tt></a> </li>
131 <li><a href="#schanges_deletingGV">Deleting <tt>GlobalVariable</tt>s</a> </li>
132 </ul>
133 </li>
Jeffrey Yasskin7ebb6ac2009-04-30 22:33:41 +0000134 <li><a href="#create_types">How to Create Types</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000135<!--
136 <li>Working with the Control Flow Graph
137 <ul>
138 <li>Accessing predecessors and successors of a <tt>BasicBlock</tt>
139 <li>
140 <li>
141 </ul>
142-->
143 </ul>
144 </li>
145
Owen Andersone8370c02009-06-16 01:17:16 +0000146 <li><a href="#threading">Threads and LLVM</a>
147 <ul>
Owen Andersonb4186902009-06-16 18:04:19 +0000148 <li><a href="#startmultithreaded">Entering and Exiting Multithreaded Mode
149 </a></li>
Owen Andersone8370c02009-06-16 01:17:16 +0000150 <li><a href="#shutdown">Ending execution with <tt>llvm_shutdown()</tt></a></li>
151 <li><a href="#managedstatic">Lazy initialization with <tt>ManagedStatic</tt></a></li>
Owen Anderson3f2da0e2009-08-19 17:58:52 +0000152 <li><a href="#llvmcontext">Achieving Isolation with <tt>LLVMContext</tt></a></li>
Jeffrey Yasskin40715142010-01-29 19:10:38 +0000153 <li><a href="#jitthreading">Threads and the JIT</a></li>
Owen Andersone8370c02009-06-16 01:17:16 +0000154 </ul>
155 </li>
156
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000157 <li><a href="#advanced">Advanced Topics</a>
158 <ul>
159 <li><a href="#TypeResolve">LLVM Type Resolution</a>
160 <ul>
161 <li><a href="#BuildRecType">Basic Recursive Type Construction</a></li>
162 <li><a href="#refineAbstractTypeTo">The <tt>refineAbstractTypeTo</tt> method</a></li>
163 <li><a href="#PATypeHolder">The PATypeHolder Class</a></li>
164 <li><a href="#AbstractTypeUser">The AbstractTypeUser Class</a></li>
165 </ul></li>
166
Gabor Greif92e87762008-06-16 21:06:12 +0000167 <li><a href="#SymbolTable">The <tt>ValueSymbolTable</tt> and <tt>TypeSymbolTable</tt> classes</a></li>
168 <li><a href="#UserLayout">The <tt>User</tt> and owned <tt>Use</tt> classes' memory layout</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000169 </ul></li>
170
171 <li><a href="#coreclasses">The Core LLVM Class Hierarchy Reference</a>
172 <ul>
173 <li><a href="#Type">The <tt>Type</tt> class</a> </li>
174 <li><a href="#Module">The <tt>Module</tt> class</a></li>
175 <li><a href="#Value">The <tt>Value</tt> class</a>
176 <ul>
177 <li><a href="#User">The <tt>User</tt> class</a>
178 <ul>
179 <li><a href="#Instruction">The <tt>Instruction</tt> class</a></li>
180 <li><a href="#Constant">The <tt>Constant</tt> class</a>
181 <ul>
182 <li><a href="#GlobalValue">The <tt>GlobalValue</tt> class</a>
183 <ul>
184 <li><a href="#Function">The <tt>Function</tt> class</a></li>
185 <li><a href="#GlobalVariable">The <tt>GlobalVariable</tt> class</a></li>
186 </ul>
187 </li>
188 </ul>
189 </li>
190 </ul>
191 </li>
192 <li><a href="#BasicBlock">The <tt>BasicBlock</tt> class</a></li>
193 <li><a href="#Argument">The <tt>Argument</tt> class</a></li>
194 </ul>
195 </li>
196 </ul>
197 </li>
198</ol>
199
200<div class="doc_author">
201 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>,
202 <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a>,
Gabor Greif92e87762008-06-16 21:06:12 +0000203 <a href="mailto:ggreif@gmail.com">Gabor Greif</a>,
Owen Andersone8370c02009-06-16 01:17:16 +0000204 <a href="mailto:jstanley@cs.uiuc.edu">Joel Stanley</a>,
205 <a href="mailto:rspencer@x10sys.com">Reid Spencer</a> and
206 <a href="mailto:owen@apple.com">Owen Anderson</a></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000207</div>
208
209<!-- *********************************************************************** -->
210<div class="doc_section">
211 <a name="introduction">Introduction </a>
212</div>
213<!-- *********************************************************************** -->
214
215<div class="doc_text">
216
217<p>This document is meant to highlight some of the important classes and
218interfaces available in the LLVM source-base. This manual is not
219intended to explain what LLVM is, how it works, and what LLVM code looks
220like. It assumes that you know the basics of LLVM and are interested
221in writing transformations or otherwise analyzing or manipulating the
222code.</p>
223
224<p>This document should get you oriented so that you can find your
225way in the continuously growing source code that makes up the LLVM
226infrastructure. Note that this manual is not intended to serve as a
227replacement for reading the source code, so if you think there should be
228a method in one of these classes to do something, but it's not listed,
229check the source. Links to the <a href="/doxygen/">doxygen</a> sources
230are provided to make this as easy as possible.</p>
231
232<p>The first section of this document describes general information that is
233useful to know when working in the LLVM infrastructure, and the second describes
234the Core LLVM classes. In the future this manual will be extended with
235information describing how to use extension libraries, such as dominator
236information, CFG traversal routines, and useful utilities like the <tt><a
237href="/doxygen/InstVisitor_8h-source.html">InstVisitor</a></tt> template.</p>
238
239</div>
240
241<!-- *********************************************************************** -->
242<div class="doc_section">
243 <a name="general">General Information</a>
244</div>
245<!-- *********************************************************************** -->
246
247<div class="doc_text">
248
249<p>This section contains general information that is useful if you are working
250in the LLVM source-base, but that isn't specific to any particular API.</p>
251
252</div>
253
254<!-- ======================================================================= -->
255<div class="doc_subsection">
256 <a name="stl">The C++ Standard Template Library</a>
257</div>
258
259<div class="doc_text">
260
261<p>LLVM makes heavy use of the C++ Standard Template Library (STL),
262perhaps much more than you are used to, or have seen before. Because of
263this, you might want to do a little background reading in the
264techniques used and capabilities of the library. There are many good
265pages that discuss the STL, and several books on the subject that you
266can get, so it will not be discussed in this document.</p>
267
268<p>Here are some useful links:</p>
269
270<ol>
271
272<li><a href="http://www.dinkumware.com/refxcpp.html">Dinkumware C++ Library
273reference</a> - an excellent reference for the STL and other parts of the
274standard C++ library.</li>
275
276<li><a href="http://www.tempest-sw.com/cpp/">C++ In a Nutshell</a> - This is an
Gabor Greife39f0e72009-03-12 09:47:03 +0000277O'Reilly book in the making. It has a decent Standard Library
278Reference that rivals Dinkumware's, and is unfortunately no longer free since the
279book has been published.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000280
281<li><a href="http://www.parashift.com/c++-faq-lite/">C++ Frequently Asked
282Questions</a></li>
283
284<li><a href="http://www.sgi.com/tech/stl/">SGI's STL Programmer's Guide</a> -
285Contains a useful <a
286href="http://www.sgi.com/tech/stl/stl_introduction.html">Introduction to the
287STL</a>.</li>
288
289<li><a href="http://www.research.att.com/%7Ebs/C++.html">Bjarne Stroustrup's C++
290Page</a></li>
291
292<li><a href="http://64.78.49.204/">
293Bruce Eckel's Thinking in C++, 2nd ed. Volume 2 Revision 4.0 (even better, get
294the book).</a></li>
295
296</ol>
297
298<p>You are also encouraged to take a look at the <a
299href="CodingStandards.html">LLVM Coding Standards</a> guide which focuses on how
300to write maintainable code more than where to put your curly braces.</p>
301
302</div>
303
304<!-- ======================================================================= -->
305<div class="doc_subsection">
306 <a name="stl">Other useful references</a>
307</div>
308
309<div class="doc_text">
310
311<ol>
312<li><a href="http://www.psc.edu/%7Esemke/cvs_branches.html">CVS
313Branch and Tag Primer</a></li>
314<li><a href="http://www.fortran-2000.com/ArnaudRecipes/sharedlib.html">Using
315static and shared libraries across platforms</a></li>
316</ol>
317
318</div>
319
320<!-- *********************************************************************** -->
321<div class="doc_section">
322 <a name="apis">Important and useful LLVM APIs</a>
323</div>
324<!-- *********************************************************************** -->
325
326<div class="doc_text">
327
328<p>Here we highlight some LLVM APIs that are generally useful and good to
329know about when writing transformations.</p>
330
331</div>
332
333<!-- ======================================================================= -->
334<div class="doc_subsection">
335 <a name="isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt> and
336 <tt>dyn_cast&lt;&gt;</tt> templates</a>
337</div>
338
339<div class="doc_text">
340
341<p>The LLVM source-base makes extensive use of a custom form of RTTI.
342These templates have many similarities to the C++ <tt>dynamic_cast&lt;&gt;</tt>
343operator, but they don't have some drawbacks (primarily stemming from
344the fact that <tt>dynamic_cast&lt;&gt;</tt> only works on classes that
345have a v-table). Because they are used so often, you must know what they
346do and how they work. All of these templates are defined in the <a
347 href="/doxygen/Casting_8h-source.html"><tt>llvm/Support/Casting.h</tt></a>
348file (note that you very rarely have to include this file directly).</p>
349
350<dl>
351 <dt><tt>isa&lt;&gt;</tt>: </dt>
352
353 <dd><p>The <tt>isa&lt;&gt;</tt> operator works exactly like the Java
354 "<tt>instanceof</tt>" operator. It returns true or false depending on whether
355 a reference or pointer points to an instance of the specified class. This can
356 be very useful for constraint checking of various sorts (example below).</p>
357 </dd>
358
359 <dt><tt>cast&lt;&gt;</tt>: </dt>
360
361 <dd><p>The <tt>cast&lt;&gt;</tt> operator is a "checked cast" operation. It
Chris Lattner1d5610a2008-06-20 05:03:17 +0000362 converts a pointer or reference from a base class to a derived class, causing
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000363 an assertion failure if it is not really an instance of the right type. This
364 should be used in cases where you have some information that makes you believe
365 that something is of the right type. An example of the <tt>isa&lt;&gt;</tt>
366 and <tt>cast&lt;&gt;</tt> template is:</p>
367
368<div class="doc_code">
369<pre>
370static bool isLoopInvariant(const <a href="#Value">Value</a> *V, const Loop *L) {
371 if (isa&lt;<a href="#Constant">Constant</a>&gt;(V) || isa&lt;<a href="#Argument">Argument</a>&gt;(V) || isa&lt;<a href="#GlobalValue">GlobalValue</a>&gt;(V))
372 return true;
373
374 // <i>Otherwise, it must be an instruction...</i>
375 return !L-&gt;contains(cast&lt;<a href="#Instruction">Instruction</a>&gt;(V)-&gt;getParent());
376}
377</pre>
378</div>
379
380 <p>Note that you should <b>not</b> use an <tt>isa&lt;&gt;</tt> test followed
381 by a <tt>cast&lt;&gt;</tt>, for that use the <tt>dyn_cast&lt;&gt;</tt>
382 operator.</p>
383
384 </dd>
385
386 <dt><tt>dyn_cast&lt;&gt;</tt>:</dt>
387
388 <dd><p>The <tt>dyn_cast&lt;&gt;</tt> operator is a "checking cast" operation.
389 It checks to see if the operand is of the specified type, and if so, returns a
390 pointer to it (this operator does not work with references). If the operand is
391 not of the correct type, a null pointer is returned. Thus, this works very
392 much like the <tt>dynamic_cast&lt;&gt;</tt> operator in C++, and should be
393 used in the same circumstances. Typically, the <tt>dyn_cast&lt;&gt;</tt>
394 operator is used in an <tt>if</tt> statement or some other flow control
395 statement like this:</p>
396
397<div class="doc_code">
398<pre>
399if (<a href="#AllocationInst">AllocationInst</a> *AI = dyn_cast&lt;<a href="#AllocationInst">AllocationInst</a>&gt;(Val)) {
400 // <i>...</i>
401}
402</pre>
403</div>
404
405 <p>This form of the <tt>if</tt> statement effectively combines together a call
406 to <tt>isa&lt;&gt;</tt> and a call to <tt>cast&lt;&gt;</tt> into one
407 statement, which is very convenient.</p>
408
409 <p>Note that the <tt>dyn_cast&lt;&gt;</tt> operator, like C++'s
410 <tt>dynamic_cast&lt;&gt;</tt> or Java's <tt>instanceof</tt> operator, can be
411 abused. In particular, you should not use big chained <tt>if/then/else</tt>
412 blocks to check for lots of different variants of classes. If you find
413 yourself wanting to do this, it is much cleaner and more efficient to use the
414 <tt>InstVisitor</tt> class to dispatch over the instruction type directly.</p>
415
416 </dd>
417
418 <dt><tt>cast_or_null&lt;&gt;</tt>: </dt>
419
420 <dd><p>The <tt>cast_or_null&lt;&gt;</tt> operator works just like the
421 <tt>cast&lt;&gt;</tt> operator, except that it allows for a null pointer as an
422 argument (which it then propagates). This can sometimes be useful, allowing
423 you to combine several null checks into one.</p></dd>
424
425 <dt><tt>dyn_cast_or_null&lt;&gt;</tt>: </dt>
426
427 <dd><p>The <tt>dyn_cast_or_null&lt;&gt;</tt> operator works just like the
428 <tt>dyn_cast&lt;&gt;</tt> operator, except that it allows for a null pointer
429 as an argument (which it then propagates). This can sometimes be useful,
430 allowing you to combine several null checks into one.</p></dd>
431
432</dl>
433
434<p>These five templates can be used with any classes, whether they have a
435v-table or not. To add support for these templates, you simply need to add
436<tt>classof</tt> static methods to the class you are interested casting
437to. Describing this is currently outside the scope of this document, but there
438are lots of examples in the LLVM source base.</p>
439
440</div>
441
Daniel Dunbare3572ba2009-07-25 04:41:11 +0000442
443<!-- ======================================================================= -->
444<div class="doc_subsection">
445 <a name="string_apis">Passing strings (the <tt>StringRef</tt>
446and <tt>Twine</tt> classes)</a>
447</div>
448
449<div class="doc_text">
450
451<p>Although LLVM generally does not do much string manipulation, we do have
Chris Lattnerc00114f2009-07-25 07:16:59 +0000452several important APIs which take strings. Two important examples are the
Daniel Dunbare3572ba2009-07-25 04:41:11 +0000453Value class -- which has names for instructions, functions, etc. -- and the
454StringMap class which is used extensively in LLVM and Clang.</p>
455
456<p>These are generic classes, and they need to be able to accept strings which
457may have embedded null characters. Therefore, they cannot simply take
Chris Lattnerc00114f2009-07-25 07:16:59 +0000458a <tt>const char *</tt>, and taking a <tt>const std::string&amp;</tt> requires
Daniel Dunbare3572ba2009-07-25 04:41:11 +0000459clients to perform a heap allocation which is usually unnecessary. Instead,
Chris Lattnerc00114f2009-07-25 07:16:59 +0000460many LLVM APIs use a <tt>const StringRef&amp;</tt> or a <tt>const
461Twine&amp;</tt> for passing strings efficiently.</p>
Daniel Dunbare3572ba2009-07-25 04:41:11 +0000462
463</div>
464
465<!-- _______________________________________________________________________ -->
466<div class="doc_subsubsection">
467 <a name="StringRef">The <tt>StringRef</tt> class</a>
468</div>
469
470<div class="doc_text">
471
472<p>The <tt>StringRef</tt> data type represents a reference to a constant string
473(a character array and a length) and supports the common operations available
474on <tt>std:string</tt>, but does not require heap allocation.</p>
475
Chris Lattnerc00114f2009-07-25 07:16:59 +0000476<p>It can be implicitly constructed using a C style null-terminated string,
477an <tt>std::string</tt>, or explicitly with a character pointer and length.
Daniel Dunbare3572ba2009-07-25 04:41:11 +0000478For example, the <tt>StringRef</tt> find function is declared as:</p>
Chris Lattnerc00114f2009-07-25 07:16:59 +0000479
Daniel Dunbare3572ba2009-07-25 04:41:11 +0000480<div class="doc_code">
Chris Lattnerc00114f2009-07-25 07:16:59 +0000481 iterator find(const StringRef &amp;Key);
Daniel Dunbare3572ba2009-07-25 04:41:11 +0000482</div>
483
484<p>and clients can call it using any one of:</p>
485
486<div class="doc_code">
487<pre>
488 Map.find("foo"); <i>// Lookup "foo"</i>
489 Map.find(std::string("bar")); <i>// Lookup "bar"</i>
490 Map.find(StringRef("\0baz", 4)); <i>// Lookup "\0baz"</i>
491</pre>
492</div>
493
494<p>Similarly, APIs which need to return a string may return a <tt>StringRef</tt>
495instance, which can be used directly or converted to an <tt>std::string</tt>
496using the <tt>str</tt> member function. See
497"<tt><a href="/doxygen/classllvm_1_1StringRef_8h-source.html">llvm/ADT/StringRef.h</a></tt>"
498for more information.</p>
499
500<p>You should rarely use the <tt>StringRef</tt> class directly, because it contains
501pointers to external memory it is not generally safe to store an instance of the
Chris Lattnerc00114f2009-07-25 07:16:59 +0000502class (unless you know that the external storage will not be freed).</p>
Daniel Dunbare3572ba2009-07-25 04:41:11 +0000503
504</div>
505
506<!-- _______________________________________________________________________ -->
507<div class="doc_subsubsection">
508 <a name="Twine">The <tt>Twine</tt> class</a>
509</div>
510
511<div class="doc_text">
512
513<p>The <tt>Twine</tt> class is an efficient way for APIs to accept concatenated
514strings. For example, a common LLVM paradigm is to name one instruction based on
515the name of another instruction with a suffix, for example:</p>
516
517<div class="doc_code">
518<pre>
519 New = CmpInst::Create(<i>...</i>, SO->getName() + ".cmp");
520</pre>
521</div>
522
523<p>The <tt>Twine</tt> class is effectively a
524lightweight <a href="http://en.wikipedia.org/wiki/Rope_(computer_science)">rope</a>
525which points to temporary (stack allocated) objects. Twines can be implicitly
526constructed as the result of the plus operator applied to strings (i.e., a C
527strings, an <tt>std::string</tt>, or a <tt>StringRef</tt>). The twine delays the
Dan Gohmanb1d8d902010-02-25 23:51:27 +0000528actual concatenation of strings until it is actually required, at which point
Daniel Dunbare3572ba2009-07-25 04:41:11 +0000529it can be efficiently rendered directly into a character array. This avoids
530unnecessary heap allocation involved in constructing the temporary results of
531string concatenation. See
532"<tt><a href="/doxygen/classllvm_1_1Twine_8h-source.html">llvm/ADT/Twine.h</a></tt>"
Benjamin Kramer7b2136d2009-08-05 15:42:44 +0000533for more information.</p>
Daniel Dunbare3572ba2009-07-25 04:41:11 +0000534
535<p>As with a <tt>StringRef</tt>, <tt>Twine</tt> objects point to external memory
536and should almost never be stored or mentioned directly. They are intended
537solely for use when defining a function which should be able to efficiently
538accept concatenated strings.</p>
539
540</div>
541
542
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000543<!-- ======================================================================= -->
544<div class="doc_subsection">
545 <a name="DEBUG">The <tt>DEBUG()</tt> macro and <tt>-debug</tt> option</a>
546</div>
547
548<div class="doc_text">
549
550<p>Often when working on your pass you will put a bunch of debugging printouts
551and other code into your pass. After you get it working, you want to remove
552it, but you may need it again in the future (to work out new bugs that you run
553across).</p>
554
555<p> Naturally, because of this, you don't want to delete the debug printouts,
556but you don't want them to always be noisy. A standard compromise is to comment
557them out, allowing you to enable them if you need them in the future.</p>
558
559<p>The "<tt><a href="/doxygen/Debug_8h-source.html">llvm/Support/Debug.h</a></tt>"
560file provides a macro named <tt>DEBUG()</tt> that is a much nicer solution to
561this problem. Basically, you can put arbitrary code into the argument of the
562<tt>DEBUG</tt> macro, and it is only executed if '<tt>opt</tt>' (or any other
563tool) is run with the '<tt>-debug</tt>' command line argument:</p>
564
565<div class="doc_code">
566<pre>
Daniel Dunbare32f9b22009-07-25 01:55:32 +0000567DEBUG(errs() &lt;&lt; "I am here!\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000568</pre>
569</div>
570
571<p>Then you can run your pass like this:</p>
572
573<div class="doc_code">
574<pre>
575$ opt &lt; a.bc &gt; /dev/null -mypass
576<i>&lt;no output&gt;</i>
577$ opt &lt; a.bc &gt; /dev/null -mypass -debug
578I am here!
579</pre>
580</div>
581
582<p>Using the <tt>DEBUG()</tt> macro instead of a home-brewed solution allows you
583to not have to create "yet another" command line option for the debug output for
584your pass. Note that <tt>DEBUG()</tt> macros are disabled for optimized builds,
585so they do not cause a performance impact at all (for the same reason, they
586should also not contain side-effects!).</p>
587
588<p>One additional nice thing about the <tt>DEBUG()</tt> macro is that you can
589enable or disable it directly in gdb. Just use "<tt>set DebugFlag=0</tt>" or
590"<tt>set DebugFlag=1</tt>" from the gdb if the program is running. If the
591program hasn't been started yet, you can always just run it with
592<tt>-debug</tt>.</p>
593
594</div>
595
596<!-- _______________________________________________________________________ -->
597<div class="doc_subsubsection">
598 <a name="DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt> and
599 the <tt>-debug-only</tt> option</a>
600</div>
601
602<div class="doc_text">
603
604<p>Sometimes you may find yourself in a situation where enabling <tt>-debug</tt>
605just turns on <b>too much</b> information (such as when working on the code
606generator). If you want to enable debug information with more fine-grained
607control, you define the <tt>DEBUG_TYPE</tt> macro and the <tt>-debug</tt> only
608option as follows:</p>
609
610<div class="doc_code">
611<pre>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000612#undef DEBUG_TYPE
Daniel Dunbare32f9b22009-07-25 01:55:32 +0000613DEBUG(errs() &lt;&lt; "No debug type\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000614#define DEBUG_TYPE "foo"
Daniel Dunbare32f9b22009-07-25 01:55:32 +0000615DEBUG(errs() &lt;&lt; "'foo' debug type\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000616#undef DEBUG_TYPE
617#define DEBUG_TYPE "bar"
Daniel Dunbare32f9b22009-07-25 01:55:32 +0000618DEBUG(errs() &lt;&lt; "'bar' debug type\n"));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000619#undef DEBUG_TYPE
620#define DEBUG_TYPE ""
Daniel Dunbare32f9b22009-07-25 01:55:32 +0000621DEBUG(errs() &lt;&lt; "No debug type (2)\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000622</pre>
623</div>
624
625<p>Then you can run your pass like this:</p>
626
627<div class="doc_code">
628<pre>
629$ opt &lt; a.bc &gt; /dev/null -mypass
630<i>&lt;no output&gt;</i>
631$ opt &lt; a.bc &gt; /dev/null -mypass -debug
632No debug type
633'foo' debug type
634'bar' debug type
635No debug type (2)
636$ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=foo
637'foo' debug type
638$ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=bar
639'bar' debug type
640</pre>
641</div>
642
643<p>Of course, in practice, you should only set <tt>DEBUG_TYPE</tt> at the top of
644a file, to specify the debug type for the entire module (if you do this before
645you <tt>#include "llvm/Support/Debug.h"</tt>, you don't have to insert the ugly
646<tt>#undef</tt>'s). Also, you should use names more meaningful than "foo" and
647"bar", because there is no system in place to ensure that names do not
648conflict. If two different modules use the same string, they will all be turned
649on when the name is specified. This allows, for example, all debug information
650for instruction scheduling to be enabled with <tt>-debug-type=InstrSched</tt>,
651even if the source lives in multiple files.</p>
652
Daniel Dunbar83504192009-08-07 23:48:59 +0000653<p>The <tt>DEBUG_WITH_TYPE</tt> macro is also available for situations where you
654would like to set <tt>DEBUG_TYPE</tt>, but only for one specific <tt>DEBUG</tt>
655statement. It takes an additional first parameter, which is the type to use. For
Benjamin Kramer5fb9d7e2009-10-12 14:46:08 +0000656example, the preceding example could be written as:</p>
Daniel Dunbar83504192009-08-07 23:48:59 +0000657
658
659<div class="doc_code">
660<pre>
661DEBUG_WITH_TYPE("", errs() &lt;&lt; "No debug type\n");
662DEBUG_WITH_TYPE("foo", errs() &lt;&lt; "'foo' debug type\n");
663DEBUG_WITH_TYPE("bar", errs() &lt;&lt; "'bar' debug type\n"));
664DEBUG_WITH_TYPE("", errs() &lt;&lt; "No debug type (2)\n");
665</pre>
666</div>
667
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000668</div>
669
670<!-- ======================================================================= -->
671<div class="doc_subsection">
672 <a name="Statistic">The <tt>Statistic</tt> class &amp; <tt>-stats</tt>
673 option</a>
674</div>
675
676<div class="doc_text">
677
678<p>The "<tt><a
679href="/doxygen/Statistic_8h-source.html">llvm/ADT/Statistic.h</a></tt>" file
680provides a class named <tt>Statistic</tt> that is used as a unified way to
681keep track of what the LLVM compiler is doing and how effective various
682optimizations are. It is useful to see what optimizations are contributing to
683making a particular program run faster.</p>
684
685<p>Often you may run your pass on some big program, and you're interested to see
686how many times it makes a certain transformation. Although you can do this with
687hand inspection, or some ad-hoc method, this is a real pain and not very useful
688for big programs. Using the <tt>Statistic</tt> class makes it very easy to
689keep track of this information, and the calculated information is presented in a
690uniform manner with the rest of the passes being executed.</p>
691
692<p>There are many examples of <tt>Statistic</tt> uses, but the basics of using
693it are as follows:</p>
694
695<ol>
696 <li><p>Define your statistic like this:</p>
697
698<div class="doc_code">
699<pre>
700#define <a href="#DEBUG_TYPE">DEBUG_TYPE</a> "mypassname" <i>// This goes before any #includes.</i>
701STATISTIC(NumXForms, "The # of times I did stuff");
702</pre>
703</div>
704
705 <p>The <tt>STATISTIC</tt> macro defines a static variable, whose name is
706 specified by the first argument. The pass name is taken from the DEBUG_TYPE
707 macro, and the description is taken from the second argument. The variable
708 defined ("NumXForms" in this case) acts like an unsigned integer.</p></li>
709
710 <li><p>Whenever you make a transformation, bump the counter:</p>
711
712<div class="doc_code">
713<pre>
714++NumXForms; // <i>I did stuff!</i>
715</pre>
716</div>
717
718 </li>
719 </ol>
720
721 <p>That's all you have to do. To get '<tt>opt</tt>' to print out the
722 statistics gathered, use the '<tt>-stats</tt>' option:</p>
723
724<div class="doc_code">
725<pre>
726$ opt -stats -mypassname &lt; program.bc &gt; /dev/null
727<i>... statistics output ...</i>
728</pre>
729</div>
730
731 <p> When running <tt>opt</tt> on a C file from the SPEC benchmark
732suite, it gives a report that looks like this:</p>
733
734<div class="doc_code">
735<pre>
736 7646 bitcodewriter - Number of normal instructions
737 725 bitcodewriter - Number of oversized instructions
738 129996 bitcodewriter - Number of bitcode bytes written
739 2817 raise - Number of insts DCEd or constprop'd
740 3213 raise - Number of cast-of-self removed
741 5046 raise - Number of expression trees converted
742 75 raise - Number of other getelementptr's formed
743 138 raise - Number of load/store peepholes
744 42 deadtypeelim - Number of unused typenames removed from symtab
745 392 funcresolve - Number of varargs functions resolved
746 27 globaldce - Number of global variables removed
747 2 adce - Number of basic blocks removed
748 134 cee - Number of branches revectored
749 49 cee - Number of setcc instruction eliminated
750 532 gcse - Number of loads removed
751 2919 gcse - Number of instructions removed
752 86 indvars - Number of canonical indvars added
753 87 indvars - Number of aux indvars removed
754 25 instcombine - Number of dead inst eliminate
755 434 instcombine - Number of insts combined
756 248 licm - Number of load insts hoisted
757 1298 licm - Number of insts hoisted to a loop pre-header
758 3 licm - Number of insts hoisted to multiple loop preds (bad, no loop pre-header)
759 75 mem2reg - Number of alloca's promoted
760 1444 cfgsimplify - Number of blocks simplified
761</pre>
762</div>
763
764<p>Obviously, with so many optimizations, having a unified framework for this
765stuff is very nice. Making your pass fit well into the framework makes it more
766maintainable and useful.</p>
767
768</div>
769
770<!-- ======================================================================= -->
771<div class="doc_subsection">
772 <a name="ViewGraph">Viewing graphs while debugging code</a>
773</div>
774
775<div class="doc_text">
776
777<p>Several of the important data structures in LLVM are graphs: for example
778CFGs made out of LLVM <a href="#BasicBlock">BasicBlock</a>s, CFGs made out of
779LLVM <a href="CodeGenerator.html#machinebasicblock">MachineBasicBlock</a>s, and
780<a href="CodeGenerator.html#selectiondag_intro">Instruction Selection
781DAGs</a>. In many cases, while debugging various parts of the compiler, it is
782nice to instantly visualize these graphs.</p>
783
784<p>LLVM provides several callbacks that are available in a debug build to do
785exactly that. If you call the <tt>Function::viewCFG()</tt> method, for example,
786the current LLVM tool will pop up a window containing the CFG for the function
787where each basic block is a node in the graph, and each node contains the
788instructions in the block. Similarly, there also exists
789<tt>Function::viewCFGOnly()</tt> (does not include the instructions), the
790<tt>MachineFunction::viewCFG()</tt> and <tt>MachineFunction::viewCFGOnly()</tt>,
791and the <tt>SelectionDAG::viewGraph()</tt> methods. Within GDB, for example,
792you can usually use something like <tt>call DAG.viewGraph()</tt> to pop
793up a window. Alternatively, you can sprinkle calls to these functions in your
794code in places you want to debug.</p>
795
796<p>Getting this to work requires a small amount of configuration. On Unix
797systems with X11, install the <a href="http://www.graphviz.org">graphviz</a>
798toolkit, and make sure 'dot' and 'gv' are in your path. If you are running on
799Mac OS/X, download and install the Mac OS/X <a
800href="http://www.pixelglow.com/graphviz/">Graphviz program</a>, and add
801<tt>/Applications/Graphviz.app/Contents/MacOS/</tt> (or wherever you install
802it) to your path. Once in your system and path are set up, rerun the LLVM
803configure script and rebuild LLVM to enable this functionality.</p>
804
805<p><tt>SelectionDAG</tt> has been extended to make it easier to locate
806<i>interesting</i> nodes in large complex graphs. From gdb, if you
807<tt>call DAG.setGraphColor(<i>node</i>, "<i>color</i>")</tt>, then the
808next <tt>call DAG.viewGraph()</tt> would highlight the node in the
809specified color (choices of colors can be found at <a
810href="http://www.graphviz.org/doc/info/colors.html">colors</a>.) More
811complex node attributes can be provided with <tt>call
812DAG.setGraphAttrs(<i>node</i>, "<i>attributes</i>")</tt> (choices can be
813found at <a href="http://www.graphviz.org/doc/info/attrs.html">Graph
814Attributes</a>.) If you want to restart and clear all the current graph
815attributes, then you can <tt>call DAG.clearGraphAttrs()</tt>. </p>
816
817</div>
818
819<!-- *********************************************************************** -->
820<div class="doc_section">
821 <a name="datastructure">Picking the Right Data Structure for a Task</a>
822</div>
823<!-- *********************************************************************** -->
824
825<div class="doc_text">
826
827<p>LLVM has a plethora of data structures in the <tt>llvm/ADT/</tt> directory,
828 and we commonly use STL data structures. This section describes the trade-offs
829 you should consider when you pick one.</p>
830
831<p>
832The first step is a choose your own adventure: do you want a sequential
833container, a set-like container, or a map-like container? The most important
834thing when choosing a container is the algorithmic properties of how you plan to
835access the container. Based on that, you should use:</p>
836
837<ul>
838<li>a <a href="#ds_map">map-like</a> container if you need efficient look-up
839 of an value based on another value. Map-like containers also support
840 efficient queries for containment (whether a key is in the map). Map-like
841 containers generally do not support efficient reverse mapping (values to
842 keys). If you need that, use two maps. Some map-like containers also
843 support efficient iteration through the keys in sorted order. Map-like
844 containers are the most expensive sort, only use them if you need one of
845 these capabilities.</li>
846
847<li>a <a href="#ds_set">set-like</a> container if you need to put a bunch of
848 stuff into a container that automatically eliminates duplicates. Some
849 set-like containers support efficient iteration through the elements in
850 sorted order. Set-like containers are more expensive than sequential
851 containers.
852</li>
853
854<li>a <a href="#ds_sequential">sequential</a> container provides
855 the most efficient way to add elements and keeps track of the order they are
856 added to the collection. They permit duplicates and support efficient
857 iteration, but do not support efficient look-up based on a key.
858</li>
859
Chris Lattnerd8b95b72009-07-25 07:22:20 +0000860<li>a <a href="#ds_string">string</a> container is a specialized sequential
861 container or reference structure that is used for character or byte
862 arrays.</li>
863
Daniel Berlin7ea44dc2007-09-24 17:52:25 +0000864<li>a <a href="#ds_bit">bit</a> container provides an efficient way to store and
865 perform set operations on sets of numeric id's, while automatically
866 eliminating duplicates. Bit containers require a maximum of 1 bit for each
867 identifier you want to store.
868</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000869</ul>
870
871<p>
872Once the proper category of container is determined, you can fine tune the
873memory use, constant factors, and cache behaviors of access by intelligently
874picking a member of the category. Note that constant factors and cache behavior
875can be a big deal. If you have a vector that usually only contains a few
876elements (but could contain many), for example, it's much better to use
877<a href="#dss_smallvector">SmallVector</a> than <a href="#dss_vector">vector</a>
878. Doing so avoids (relatively) expensive malloc/free calls, which dwarf the
879cost of adding the elements to the container. </p>
880
881</div>
882
883<!-- ======================================================================= -->
884<div class="doc_subsection">
885 <a name="ds_sequential">Sequential Containers (std::vector, std::list, etc)</a>
886</div>
887
888<div class="doc_text">
889There are a variety of sequential containers available for you, based on your
890needs. Pick the first in this section that will do what you want.
891</div>
892
893<!-- _______________________________________________________________________ -->
894<div class="doc_subsubsection">
895 <a name="dss_fixedarrays">Fixed Size Arrays</a>
896</div>
897
898<div class="doc_text">
899<p>Fixed size arrays are very simple and very fast. They are good if you know
900exactly how many elements you have, or you have a (low) upper bound on how many
901you have.</p>
902</div>
903
904<!-- _______________________________________________________________________ -->
905<div class="doc_subsubsection">
906 <a name="dss_heaparrays">Heap Allocated Arrays</a>
907</div>
908
909<div class="doc_text">
910<p>Heap allocated arrays (new[] + delete[]) are also simple. They are good if
911the number of elements is variable, if you know how many elements you will need
912before the array is allocated, and if the array is usually large (if not,
913consider a <a href="#dss_smallvector">SmallVector</a>). The cost of a heap
914allocated array is the cost of the new/delete (aka malloc/free). Also note that
915if you are allocating an array of a type with a constructor, the constructor and
916destructors will be run for every element in the array (re-sizable vectors only
917construct those elements actually used).</p>
918</div>
919
920<!-- _______________________________________________________________________ -->
921<div class="doc_subsubsection">
922 <a name="dss_smallvector">"llvm/ADT/SmallVector.h"</a>
923</div>
924
925<div class="doc_text">
926<p><tt>SmallVector&lt;Type, N&gt;</tt> is a simple class that looks and smells
927just like <tt>vector&lt;Type&gt;</tt>:
928it supports efficient iteration, lays out elements in memory order (so you can
929do pointer arithmetic between elements), supports efficient push_back/pop_back
930operations, supports efficient random access to its elements, etc.</p>
931
932<p>The advantage of SmallVector is that it allocates space for
933some number of elements (N) <b>in the object itself</b>. Because of this, if
934the SmallVector is dynamically smaller than N, no malloc is performed. This can
935be a big win in cases where the malloc/free call is far more expensive than the
936code that fiddles around with the elements.</p>
937
938<p>This is good for vectors that are "usually small" (e.g. the number of
939predecessors/successors of a block is usually less than 8). On the other hand,
940this makes the size of the SmallVector itself large, so you don't want to
941allocate lots of them (doing so will waste a lot of space). As such,
942SmallVectors are most useful when on the stack.</p>
943
944<p>SmallVector also provides a nice portable and efficient replacement for
945<tt>alloca</tt>.</p>
946
947</div>
948
949<!-- _______________________________________________________________________ -->
950<div class="doc_subsubsection">
951 <a name="dss_vector">&lt;vector&gt;</a>
952</div>
953
954<div class="doc_text">
955<p>
956std::vector is well loved and respected. It is useful when SmallVector isn't:
957when the size of the vector is often large (thus the small optimization will
958rarely be a benefit) or if you will be allocating many instances of the vector
959itself (which would waste space for elements that aren't in the container).
960vector is also useful when interfacing with code that expects vectors :).
961</p>
962
963<p>One worthwhile note about std::vector: avoid code like this:</p>
964
965<div class="doc_code">
966<pre>
967for ( ... ) {
968 std::vector&lt;foo&gt; V;
969 use V;
970}
971</pre>
972</div>
973
974<p>Instead, write this as:</p>
975
976<div class="doc_code">
977<pre>
978std::vector&lt;foo&gt; V;
979for ( ... ) {
980 use V;
981 V.clear();
982}
983</pre>
984</div>
985
986<p>Doing so will save (at least) one heap allocation and free per iteration of
987the loop.</p>
988
989</div>
990
991<!-- _______________________________________________________________________ -->
992<div class="doc_subsubsection">
993 <a name="dss_deque">&lt;deque&gt;</a>
994</div>
995
996<div class="doc_text">
997<p>std::deque is, in some senses, a generalized version of std::vector. Like
998std::vector, it provides constant time random access and other similar
999properties, but it also provides efficient access to the front of the list. It
1000does not guarantee continuity of elements within memory.</p>
1001
1002<p>In exchange for this extra flexibility, std::deque has significantly higher
1003constant factor costs than std::vector. If possible, use std::vector or
1004something cheaper.</p>
1005</div>
1006
1007<!-- _______________________________________________________________________ -->
1008<div class="doc_subsubsection">
1009 <a name="dss_list">&lt;list&gt;</a>
1010</div>
1011
1012<div class="doc_text">
1013<p>std::list is an extremely inefficient class that is rarely useful.
1014It performs a heap allocation for every element inserted into it, thus having an
1015extremely high constant factor, particularly for small data types. std::list
1016also only supports bidirectional iteration, not random access iteration.</p>
1017
1018<p>In exchange for this high cost, std::list supports efficient access to both
1019ends of the list (like std::deque, but unlike std::vector or SmallVector). In
1020addition, the iterator invalidation characteristics of std::list are stronger
1021than that of a vector class: inserting or removing an element into the list does
1022not invalidate iterator or pointers to other elements in the list.</p>
1023</div>
1024
1025<!-- _______________________________________________________________________ -->
1026<div class="doc_subsubsection">
Gabor Greifbb17f652009-02-27 11:37:41 +00001027 <a name="dss_ilist">llvm/ADT/ilist.h</a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001028</div>
1029
1030<div class="doc_text">
1031<p><tt>ilist&lt;T&gt;</tt> implements an 'intrusive' doubly-linked list. It is
1032intrusive, because it requires the element to store and provide access to the
1033prev/next pointers for the list.</p>
1034
Gabor Greifb6b21ec2009-02-27 12:02:19 +00001035<p><tt>ilist</tt> has the same drawbacks as <tt>std::list</tt>, and additionally
1036requires an <tt>ilist_traits</tt> implementation for the element type, but it
1037provides some novel characteristics. In particular, it can efficiently store
1038polymorphic objects, the traits class is informed when an element is inserted or
Gabor Greife39f0e72009-03-12 09:47:03 +00001039removed from the list, and <tt>ilist</tt>s are guaranteed to support a
1040constant-time splice operation.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001041
Gabor Greife39f0e72009-03-12 09:47:03 +00001042<p>These properties are exactly what we want for things like
1043<tt>Instruction</tt>s and basic blocks, which is why these are implemented with
1044<tt>ilist</tt>s.</p>
Gabor Greifbb17f652009-02-27 11:37:41 +00001045
1046Related classes of interest are explained in the following subsections:
1047 <ul>
Gabor Greifa17abe12009-02-27 13:28:07 +00001048 <li><a href="#dss_ilist_traits">ilist_traits</a></li>
Gabor Greifb6b21ec2009-02-27 12:02:19 +00001049 <li><a href="#dss_iplist">iplist</a></li>
Gabor Greifbb17f652009-02-27 11:37:41 +00001050 <li><a href="#dss_ilist_node">llvm/ADT/ilist_node.h</a></li>
Gabor Greifd970d692009-03-12 10:30:31 +00001051 <li><a href="#dss_ilist_sentinel">Sentinels</a></li>
Gabor Greifbb17f652009-02-27 11:37:41 +00001052 </ul>
1053</div>
1054
1055<!-- _______________________________________________________________________ -->
1056<div class="doc_subsubsection">
Gabor Greifa17abe12009-02-27 13:28:07 +00001057 <a name="dss_ilist_traits">ilist_traits</a>
1058</div>
1059
1060<div class="doc_text">
1061<p><tt>ilist_traits&lt;T&gt;</tt> is <tt>ilist&lt;T&gt;</tt>'s customization
1062mechanism. <tt>iplist&lt;T&gt;</tt> (and consequently <tt>ilist&lt;T&gt;</tt>)
1063publicly derive from this traits class.</p>
1064</div>
1065
1066<!-- _______________________________________________________________________ -->
1067<div class="doc_subsubsection">
Gabor Greifb6b21ec2009-02-27 12:02:19 +00001068 <a name="dss_iplist">iplist</a>
1069</div>
1070
1071<div class="doc_text">
1072<p><tt>iplist&lt;T&gt;</tt> is <tt>ilist&lt;T&gt;</tt>'s base and as such
Gabor Greife39f0e72009-03-12 09:47:03 +00001073supports a slightly narrower interface. Notably, inserters from
1074<tt>T&amp;</tt> are absent.</p>
Gabor Greifa17abe12009-02-27 13:28:07 +00001075
1076<p><tt>ilist_traits&lt;T&gt;</tt> is a public base of this class and can be
1077used for a wide variety of customizations.</p>
Gabor Greifb6b21ec2009-02-27 12:02:19 +00001078</div>
1079
1080<!-- _______________________________________________________________________ -->
1081<div class="doc_subsubsection">
Gabor Greifbb17f652009-02-27 11:37:41 +00001082 <a name="dss_ilist_node">llvm/ADT/ilist_node.h</a>
1083</div>
1084
1085<div class="doc_text">
1086<p><tt>ilist_node&lt;T&gt;</tt> implements a the forward and backward links
1087that are expected by the <tt>ilist&lt;T&gt;</tt> (and analogous containers)
1088in the default manner.</p>
1089
1090<p><tt>ilist_node&lt;T&gt;</tt>s are meant to be embedded in the node type
Gabor Greife39f0e72009-03-12 09:47:03 +00001091<tt>T</tt>, usually <tt>T</tt> publicly derives from
1092<tt>ilist_node&lt;T&gt;</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001093</div>
1094
1095<!-- _______________________________________________________________________ -->
1096<div class="doc_subsubsection">
Gabor Greifd970d692009-03-12 10:30:31 +00001097 <a name="dss_ilist_sentinel">Sentinels</a>
1098</div>
1099
1100<div class="doc_text">
Dan Gohmanb1d8d902010-02-25 23:51:27 +00001101<p><tt>ilist</tt>s have another specialty that must be considered. To be a good
Gabor Greifd970d692009-03-12 10:30:31 +00001102citizen in the C++ ecosystem, it needs to support the standard container
1103operations, such as <tt>begin</tt> and <tt>end</tt> iterators, etc. Also, the
1104<tt>operator--</tt> must work correctly on the <tt>end</tt> iterator in the
1105case of non-empty <tt>ilist</tt>s.</p>
1106
1107<p>The only sensible solution to this problem is to allocate a so-called
1108<i>sentinel</i> along with the intrusive list, which serves as the <tt>end</tt>
1109iterator, providing the back-link to the last element. However conforming to the
1110C++ convention it is illegal to <tt>operator++</tt> beyond the sentinel and it
1111also must not be dereferenced.</p>
1112
1113<p>These constraints allow for some implementation freedom to the <tt>ilist</tt>
1114how to allocate and store the sentinel. The corresponding policy is dictated
1115by <tt>ilist_traits&lt;T&gt;</tt>. By default a <tt>T</tt> gets heap-allocated
1116whenever the need for a sentinel arises.</p>
1117
1118<p>While the default policy is sufficient in most cases, it may break down when
1119<tt>T</tt> does not provide a default constructor. Also, in the case of many
1120instances of <tt>ilist</tt>s, the memory overhead of the associated sentinels
1121is wasted. To alleviate the situation with numerous and voluminous
1122<tt>T</tt>-sentinels, sometimes a trick is employed, leading to <i>ghostly
1123sentinels</i>.</p>
1124
1125<p>Ghostly sentinels are obtained by specially-crafted <tt>ilist_traits&lt;T&gt;</tt>
1126which superpose the sentinel with the <tt>ilist</tt> instance in memory. Pointer
1127arithmetic is used to obtain the sentinel, which is relative to the
1128<tt>ilist</tt>'s <tt>this</tt> pointer. The <tt>ilist</tt> is augmented by an
1129extra pointer, which serves as the back-link of the sentinel. This is the only
1130field in the ghostly sentinel which can be legally accessed.</p>
1131</div>
1132
1133<!-- _______________________________________________________________________ -->
1134<div class="doc_subsubsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001135 <a name="dss_other">Other Sequential Container options</a>
1136</div>
1137
1138<div class="doc_text">
1139<p>Other STL containers are available, such as std::string.</p>
1140
1141<p>There are also various STL adapter classes such as std::queue,
1142std::priority_queue, std::stack, etc. These provide simplified access to an
1143underlying container but don't affect the cost of the container itself.</p>
1144
1145</div>
1146
1147
1148<!-- ======================================================================= -->
1149<div class="doc_subsection">
1150 <a name="ds_set">Set-Like Containers (std::set, SmallSet, SetVector, etc)</a>
1151</div>
1152
1153<div class="doc_text">
1154
1155<p>Set-like containers are useful when you need to canonicalize multiple values
1156into a single representation. There are several different choices for how to do
1157this, providing various trade-offs.</p>
1158
1159</div>
1160
1161
1162<!-- _______________________________________________________________________ -->
1163<div class="doc_subsubsection">
1164 <a name="dss_sortedvectorset">A sorted 'vector'</a>
1165</div>
1166
1167<div class="doc_text">
1168
1169<p>If you intend to insert a lot of elements, then do a lot of queries, a
1170great approach is to use a vector (or other sequential container) with
1171std::sort+std::unique to remove duplicates. This approach works really well if
1172your usage pattern has these two distinct phases (insert then query), and can be
1173coupled with a good choice of <a href="#ds_sequential">sequential container</a>.
1174</p>
1175
1176<p>
1177This combination provides the several nice properties: the result data is
1178contiguous in memory (good for cache locality), has few allocations, is easy to
1179address (iterators in the final vector are just indices or pointers), and can be
1180efficiently queried with a standard binary or radix search.</p>
1181
1182</div>
1183
1184<!-- _______________________________________________________________________ -->
1185<div class="doc_subsubsection">
1186 <a name="dss_smallset">"llvm/ADT/SmallSet.h"</a>
1187</div>
1188
1189<div class="doc_text">
1190
1191<p>If you have a set-like data structure that is usually small and whose elements
1192are reasonably small, a <tt>SmallSet&lt;Type, N&gt;</tt> is a good choice. This set
1193has space for N elements in place (thus, if the set is dynamically smaller than
1194N, no malloc traffic is required) and accesses them with a simple linear search.
1195When the set grows beyond 'N' elements, it allocates a more expensive representation that
1196guarantees efficient access (for most types, it falls back to std::set, but for
1197pointers it uses something far better, <a
1198href="#dss_smallptrset">SmallPtrSet</a>).</p>
1199
1200<p>The magic of this class is that it handles small sets extremely efficiently,
1201but gracefully handles extremely large sets without loss of efficiency. The
1202drawback is that the interface is quite small: it supports insertion, queries
1203and erasing, but does not support iteration.</p>
1204
1205</div>
1206
1207<!-- _______________________________________________________________________ -->
1208<div class="doc_subsubsection">
1209 <a name="dss_smallptrset">"llvm/ADT/SmallPtrSet.h"</a>
1210</div>
1211
1212<div class="doc_text">
1213
Gabor Greif00299852010-03-26 19:30:47 +00001214<p>SmallPtrSet has all the advantages of <tt>SmallSet</tt> (and a <tt>SmallSet</tt> of pointers is
1215transparently implemented with a <tt>SmallPtrSet</tt>), but also supports iterators. If
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001216more than 'N' insertions are performed, a single quadratically
1217probed hash table is allocated and grows as needed, providing extremely
1218efficient access (constant time insertion/deleting/queries with low constant
1219factors) and is very stingy with malloc traffic.</p>
1220
Gabor Greif00299852010-03-26 19:30:47 +00001221<p>Note that, unlike <tt>std::set</tt>, the iterators of <tt>SmallPtrSet</tt> are invalidated
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001222whenever an insertion occurs. Also, the values visited by the iterators are not
1223visited in sorted order.</p>
1224
1225</div>
1226
1227<!-- _______________________________________________________________________ -->
1228<div class="doc_subsubsection">
Chris Lattner77ab46d2007-09-30 00:58:59 +00001229 <a name="dss_denseset">"llvm/ADT/DenseSet.h"</a>
1230</div>
1231
1232<div class="doc_text">
1233
1234<p>
1235DenseSet is a simple quadratically probed hash table. It excels at supporting
1236small values: it uses a single allocation to hold all of the pairs that
1237are currently inserted in the set. DenseSet is a great way to unique small
1238values that are not simple pointers (use <a
1239href="#dss_smallptrset">SmallPtrSet</a> for pointers). Note that DenseSet has
1240the same requirements for the value type that <a
1241href="#dss_densemap">DenseMap</a> has.
1242</p>
1243
1244</div>
1245
1246<!-- _______________________________________________________________________ -->
1247<div class="doc_subsubsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001248 <a name="dss_FoldingSet">"llvm/ADT/FoldingSet.h"</a>
1249</div>
1250
1251<div class="doc_text">
1252
1253<p>
1254FoldingSet is an aggregate class that is really good at uniquing
1255expensive-to-create or polymorphic objects. It is a combination of a chained
1256hash table with intrusive links (uniqued objects are required to inherit from
1257FoldingSetNode) that uses <a href="#dss_smallvector">SmallVector</a> as part of
1258its ID process.</p>
1259
1260<p>Consider a case where you want to implement a "getOrCreateFoo" method for
1261a complex object (for example, a node in the code generator). The client has a
1262description of *what* it wants to generate (it knows the opcode and all the
1263operands), but we don't want to 'new' a node, then try inserting it into a set
1264only to find out it already exists, at which point we would have to delete it
1265and return the node that already exists.
1266</p>
1267
1268<p>To support this style of client, FoldingSet perform a query with a
1269FoldingSetNodeID (which wraps SmallVector) that can be used to describe the
1270element that we want to query for. The query either returns the element
1271matching the ID or it returns an opaque ID that indicates where insertion should
1272take place. Construction of the ID usually does not require heap traffic.</p>
1273
1274<p>Because FoldingSet uses intrusive links, it can support polymorphic objects
1275in the set (for example, you can have SDNode instances mixed with LoadSDNodes).
1276Because the elements are individually allocated, pointers to the elements are
1277stable: inserting or removing elements does not invalidate any pointers to other
1278elements.
1279</p>
1280
1281</div>
1282
1283<!-- _______________________________________________________________________ -->
1284<div class="doc_subsubsection">
1285 <a name="dss_set">&lt;set&gt;</a>
1286</div>
1287
1288<div class="doc_text">
1289
1290<p><tt>std::set</tt> is a reasonable all-around set class, which is decent at
1291many things but great at nothing. std::set allocates memory for each element
1292inserted (thus it is very malloc intensive) and typically stores three pointers
1293per element in the set (thus adding a large amount of per-element space
1294overhead). It offers guaranteed log(n) performance, which is not particularly
1295fast from a complexity standpoint (particularly if the elements of the set are
1296expensive to compare, like strings), and has extremely high constant factors for
1297lookup, insertion and removal.</p>
1298
1299<p>The advantages of std::set are that its iterators are stable (deleting or
1300inserting an element from the set does not affect iterators or pointers to other
1301elements) and that iteration over the set is guaranteed to be in sorted order.
1302If the elements in the set are large, then the relative overhead of the pointers
1303and malloc traffic is not a big deal, but if the elements of the set are small,
1304std::set is almost never a good choice.</p>
1305
1306</div>
1307
1308<!-- _______________________________________________________________________ -->
1309<div class="doc_subsubsection">
1310 <a name="dss_setvector">"llvm/ADT/SetVector.h"</a>
1311</div>
1312
1313<div class="doc_text">
1314<p>LLVM's SetVector&lt;Type&gt; is an adapter class that combines your choice of
1315a set-like container along with a <a href="#ds_sequential">Sequential
1316Container</a>. The important property
1317that this provides is efficient insertion with uniquing (duplicate elements are
1318ignored) with iteration support. It implements this by inserting elements into
1319both a set-like container and the sequential container, using the set-like
1320container for uniquing and the sequential container for iteration.
1321</p>
1322
1323<p>The difference between SetVector and other sets is that the order of
1324iteration is guaranteed to match the order of insertion into the SetVector.
1325This property is really important for things like sets of pointers. Because
1326pointer values are non-deterministic (e.g. vary across runs of the program on
1327different machines), iterating over the pointers in the set will
1328not be in a well-defined order.</p>
1329
1330<p>
1331The drawback of SetVector is that it requires twice as much space as a normal
1332set and has the sum of constant factors from the set-like container and the
1333sequential container that it uses. Use it *only* if you need to iterate over
1334the elements in a deterministic order. SetVector is also expensive to delete
1335elements out of (linear time), unless you use it's "pop_back" method, which is
1336faster.
1337</p>
1338
1339<p>SetVector is an adapter class that defaults to using std::vector and std::set
1340for the underlying containers, so it is quite expensive. However,
1341<tt>"llvm/ADT/SetVector.h"</tt> also provides a SmallSetVector class, which
1342defaults to using a SmallVector and SmallSet of a specified size. If you use
1343this, and if your sets are dynamically smaller than N, you will save a lot of
1344heap traffic.</p>
1345
1346</div>
1347
1348<!-- _______________________________________________________________________ -->
1349<div class="doc_subsubsection">
1350 <a name="dss_uniquevector">"llvm/ADT/UniqueVector.h"</a>
1351</div>
1352
1353<div class="doc_text">
1354
1355<p>
1356UniqueVector is similar to <a href="#dss_setvector">SetVector</a>, but it
1357retains a unique ID for each element inserted into the set. It internally
1358contains a map and a vector, and it assigns a unique ID for each value inserted
1359into the set.</p>
1360
1361<p>UniqueVector is very expensive: its cost is the sum of the cost of
1362maintaining both the map and vector, it has high complexity, high constant
1363factors, and produces a lot of malloc traffic. It should be avoided.</p>
1364
1365</div>
1366
1367
1368<!-- _______________________________________________________________________ -->
1369<div class="doc_subsubsection">
1370 <a name="dss_otherset">Other Set-Like Container Options</a>
1371</div>
1372
1373<div class="doc_text">
1374
1375<p>
1376The STL provides several other options, such as std::multiset and the various
Chris Lattner86a63d02009-03-09 05:20:45 +00001377"hash_set" like containers (whether from C++ TR1 or from the SGI library). We
1378never use hash_set and unordered_set because they are generally very expensive
1379(each insertion requires a malloc) and very non-portable.
1380</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001381
1382<p>std::multiset is useful if you're not interested in elimination of
1383duplicates, but has all the drawbacks of std::set. A sorted vector (where you
1384don't delete duplicate entries) or some other approach is almost always
1385better.</p>
1386
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001387</div>
1388
1389<!-- ======================================================================= -->
1390<div class="doc_subsection">
1391 <a name="ds_map">Map-Like Containers (std::map, DenseMap, etc)</a>
1392</div>
1393
1394<div class="doc_text">
1395Map-like containers are useful when you want to associate data to a key. As
1396usual, there are a lot of different ways to do this. :)
1397</div>
1398
1399<!-- _______________________________________________________________________ -->
1400<div class="doc_subsubsection">
1401 <a name="dss_sortedvectormap">A sorted 'vector'</a>
1402</div>
1403
1404<div class="doc_text">
1405
1406<p>
1407If your usage pattern follows a strict insert-then-query approach, you can
1408trivially use the same approach as <a href="#dss_sortedvectorset">sorted vectors
1409for set-like containers</a>. The only difference is that your query function
1410(which uses std::lower_bound to get efficient log(n) lookup) should only compare
1411the key, not both the key and value. This yields the same advantages as sorted
1412vectors for sets.
1413</p>
1414</div>
1415
1416<!-- _______________________________________________________________________ -->
1417<div class="doc_subsubsection">
1418 <a name="dss_stringmap">"llvm/ADT/StringMap.h"</a>
1419</div>
1420
1421<div class="doc_text">
1422
1423<p>
1424Strings are commonly used as keys in maps, and they are difficult to support
1425efficiently: they are variable length, inefficient to hash and compare when
1426long, expensive to copy, etc. StringMap is a specialized container designed to
1427cope with these issues. It supports mapping an arbitrary range of bytes to an
1428arbitrary other object.</p>
1429
1430<p>The StringMap implementation uses a quadratically-probed hash table, where
1431the buckets store a pointer to the heap allocated entries (and some other
1432stuff). The entries in the map must be heap allocated because the strings are
1433variable length. The string data (key) and the element object (value) are
1434stored in the same allocation with the string data immediately after the element
1435object. This container guarantees the "<tt>(char*)(&amp;Value+1)</tt>" points
1436to the key string for a value.</p>
1437
1438<p>The StringMap is very fast for several reasons: quadratic probing is very
1439cache efficient for lookups, the hash value of strings in buckets is not
1440recomputed when lookup up an element, StringMap rarely has to touch the
1441memory for unrelated objects when looking up a value (even when hash collisions
1442happen), hash table growth does not recompute the hash values for strings
1443already in the table, and each pair in the map is store in a single allocation
1444(the string data is stored in the same allocation as the Value of a pair).</p>
1445
1446<p>StringMap also provides query methods that take byte ranges, so it only ever
1447copies a string if a value is inserted into the table.</p>
1448</div>
1449
1450<!-- _______________________________________________________________________ -->
1451<div class="doc_subsubsection">
1452 <a name="dss_indexedmap">"llvm/ADT/IndexedMap.h"</a>
1453</div>
1454
1455<div class="doc_text">
1456<p>
1457IndexedMap is a specialized container for mapping small dense integers (or
1458values that can be mapped to small dense integers) to some other type. It is
1459internally implemented as a vector with a mapping function that maps the keys to
1460the dense integer range.
1461</p>
1462
1463<p>
1464This is useful for cases like virtual registers in the LLVM code generator: they
1465have a dense mapping that is offset by a compile-time constant (the first
1466virtual register ID).</p>
1467
1468</div>
1469
1470<!-- _______________________________________________________________________ -->
1471<div class="doc_subsubsection">
1472 <a name="dss_densemap">"llvm/ADT/DenseMap.h"</a>
1473</div>
1474
1475<div class="doc_text">
1476
1477<p>
1478DenseMap is a simple quadratically probed hash table. It excels at supporting
1479small keys and values: it uses a single allocation to hold all of the pairs that
1480are currently inserted in the map. DenseMap is a great way to map pointers to
1481pointers, or map other small types to each other.
1482</p>
1483
1484<p>
1485There are several aspects of DenseMap that you should be aware of, however. The
1486iterators in a densemap are invalidated whenever an insertion occurs, unlike
1487map. Also, because DenseMap allocates space for a large number of key/value
1488pairs (it starts with 64 by default), it will waste a lot of space if your keys
1489or values are large. Finally, you must implement a partial specialization of
Chris Lattner92eea072007-09-17 18:34:04 +00001490DenseMapInfo for the key that you want, if it isn't already supported. This
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001491is required to tell DenseMap about two special marker values (which can never be
1492inserted into the map) that it needs internally.</p>
1493
1494</div>
1495
1496<!-- _______________________________________________________________________ -->
1497<div class="doc_subsubsection">
Jeffrey Yasskin50e846d2009-10-22 22:11:22 +00001498 <a name="dss_valuemap">"llvm/ADT/ValueMap.h"</a>
1499</div>
1500
1501<div class="doc_text">
1502
1503<p>
1504ValueMap is a wrapper around a <a href="#dss_densemap">DenseMap</a> mapping
1505Value*s (or subclasses) to another type. When a Value is deleted or RAUW'ed,
1506ValueMap will update itself so the new version of the key is mapped to the same
1507value, just as if the key were a WeakVH. You can configure exactly how this
1508happens, and what else happens on these two events, by passing
1509a <code>Config</code> parameter to the ValueMap template.</p>
1510
1511</div>
1512
1513<!-- _______________________________________________________________________ -->
1514<div class="doc_subsubsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001515 <a name="dss_map">&lt;map&gt;</a>
1516</div>
1517
1518<div class="doc_text">
1519
1520<p>
1521std::map has similar characteristics to <a href="#dss_set">std::set</a>: it uses
1522a single allocation per pair inserted into the map, it offers log(n) lookup with
1523an extremely large constant factor, imposes a space penalty of 3 pointers per
1524pair in the map, etc.</p>
1525
1526<p>std::map is most useful when your keys or values are very large, if you need
1527to iterate over the collection in sorted order, or if you need stable iterators
1528into the map (i.e. they don't get invalidated if an insertion or deletion of
1529another element takes place).</p>
1530
1531</div>
1532
1533<!-- _______________________________________________________________________ -->
1534<div class="doc_subsubsection">
1535 <a name="dss_othermap">Other Map-Like Container Options</a>
1536</div>
1537
1538<div class="doc_text">
1539
1540<p>
1541The STL provides several other options, such as std::multimap and the various
Chris Lattner86a63d02009-03-09 05:20:45 +00001542"hash_map" like containers (whether from C++ TR1 or from the SGI library). We
1543never use hash_set and unordered_set because they are generally very expensive
1544(each insertion requires a malloc) and very non-portable.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001545
1546<p>std::multimap is useful if you want to map a key to multiple values, but has
1547all the drawbacks of std::map. A sorted vector or some other approach is almost
1548always better.</p>
1549
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001550</div>
1551
Daniel Berlin7ea44dc2007-09-24 17:52:25 +00001552<!-- ======================================================================= -->
1553<div class="doc_subsection">
Chris Lattnerd8b95b72009-07-25 07:22:20 +00001554 <a name="ds_string">String-like containers</a>
1555</div>
1556
1557<div class="doc_text">
1558
1559<p>
1560TODO: const char* vs stringref vs smallstring vs std::string. Describe twine,
1561xref to #string_apis.
1562</p>
1563
1564</div>
1565
1566<!-- ======================================================================= -->
1567<div class="doc_subsection">
Daniel Berlin7ea44dc2007-09-24 17:52:25 +00001568 <a name="ds_bit">Bit storage containers (BitVector, SparseBitVector)</a>
1569</div>
1570
1571<div class="doc_text">
Chris Lattner62a4eae2007-09-25 22:37:50 +00001572<p>Unlike the other containers, there are only two bit storage containers, and
1573choosing when to use each is relatively straightforward.</p>
1574
1575<p>One additional option is
1576<tt>std::vector&lt;bool&gt;</tt>: we discourage its use for two reasons 1) the
1577implementation in many common compilers (e.g. commonly available versions of
1578GCC) is extremely inefficient and 2) the C++ standards committee is likely to
1579deprecate this container and/or change it significantly somehow. In any case,
1580please don't use it.</p>
Daniel Berlin7ea44dc2007-09-24 17:52:25 +00001581</div>
1582
1583<!-- _______________________________________________________________________ -->
1584<div class="doc_subsubsection">
1585 <a name="dss_bitvector">BitVector</a>
1586</div>
1587
1588<div class="doc_text">
Dan Gohmanc83a2b42010-01-05 18:24:00 +00001589<p> The BitVector container provides a dynamic size set of bits for manipulation.
Daniel Berlin7ea44dc2007-09-24 17:52:25 +00001590It supports individual bit setting/testing, as well as set operations. The set
1591operations take time O(size of bitvector), but operations are performed one word
1592at a time, instead of one bit at a time. This makes the BitVector very fast for
1593set operations compared to other containers. Use the BitVector when you expect
1594the number of set bits to be high (IE a dense set).
1595</p>
1596</div>
1597
1598<!-- _______________________________________________________________________ -->
1599<div class="doc_subsubsection">
Dan Gohmanc83a2b42010-01-05 18:24:00 +00001600 <a name="dss_smallbitvector">SmallBitVector</a>
1601</div>
1602
1603<div class="doc_text">
1604<p> The SmallBitVector container provides the same interface as BitVector, but
1605it is optimized for the case where only a small number of bits, less than
160625 or so, are needed. It also transparently supports larger bit counts, but
1607slightly less efficiently than a plain BitVector, so SmallBitVector should
1608only be used when larger counts are rare.
1609</p>
1610
1611<p>
1612At this time, SmallBitVector does not support set operations (and, or, xor),
1613and its operator[] does not provide an assignable lvalue.
1614</p>
1615</div>
1616
1617<!-- _______________________________________________________________________ -->
1618<div class="doc_subsubsection">
Daniel Berlin7ea44dc2007-09-24 17:52:25 +00001619 <a name="dss_sparsebitvector">SparseBitVector</a>
1620</div>
1621
1622<div class="doc_text">
1623<p> The SparseBitVector container is much like BitVector, with one major
1624difference: Only the bits that are set, are stored. This makes the
1625SparseBitVector much more space efficient than BitVector when the set is sparse,
1626as well as making set operations O(number of set bits) instead of O(size of
1627universe). The downside to the SparseBitVector is that setting and testing of random bits is O(N), and on large SparseBitVectors, this can be slower than BitVector. In our implementation, setting or testing bits in sorted order
1628(either forwards or reverse) is O(1) worst case. Testing and setting bits within 128 bits (depends on size) of the current bit is also O(1). As a general statement, testing/setting bits in a SparseBitVector is O(distance away from last set bit).
1629</p>
1630</div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001631
1632<!-- *********************************************************************** -->
1633<div class="doc_section">
1634 <a name="common">Helpful Hints for Common Operations</a>
1635</div>
1636<!-- *********************************************************************** -->
1637
1638<div class="doc_text">
1639
1640<p>This section describes how to perform some very simple transformations of
1641LLVM code. This is meant to give examples of common idioms used, showing the
1642practical side of LLVM transformations. <p> Because this is a "how-to" section,
1643you should also read about the main classes that you will be working with. The
1644<a href="#coreclasses">Core LLVM Class Hierarchy Reference</a> contains details
1645and descriptions of the main classes that you should know about.</p>
1646
1647</div>
1648
1649<!-- NOTE: this section should be heavy on example code -->
1650<!-- ======================================================================= -->
1651<div class="doc_subsection">
1652 <a name="inspection">Basic Inspection and Traversal Routines</a>
1653</div>
1654
1655<div class="doc_text">
1656
1657<p>The LLVM compiler infrastructure have many different data structures that may
1658be traversed. Following the example of the C++ standard template library, the
1659techniques used to traverse these various data structures are all basically the
1660same. For a enumerable sequence of values, the <tt>XXXbegin()</tt> function (or
1661method) returns an iterator to the start of the sequence, the <tt>XXXend()</tt>
1662function returns an iterator pointing to one past the last valid element of the
1663sequence, and there is some <tt>XXXiterator</tt> data type that is common
1664between the two operations.</p>
1665
1666<p>Because the pattern for iteration is common across many different aspects of
1667the program representation, the standard template library algorithms may be used
1668on them, and it is easier to remember how to iterate. First we show a few common
1669examples of the data structures that need to be traversed. Other data
1670structures are traversed in very similar ways.</p>
1671
1672</div>
1673
1674<!-- _______________________________________________________________________ -->
1675<div class="doc_subsubsection">
1676 <a name="iterate_function">Iterating over the </a><a
1677 href="#BasicBlock"><tt>BasicBlock</tt></a>s in a <a
1678 href="#Function"><tt>Function</tt></a>
1679</div>
1680
1681<div class="doc_text">
1682
1683<p>It's quite common to have a <tt>Function</tt> instance that you'd like to
1684transform in some way; in particular, you'd like to manipulate its
1685<tt>BasicBlock</tt>s. To facilitate this, you'll need to iterate over all of
1686the <tt>BasicBlock</tt>s that constitute the <tt>Function</tt>. The following is
1687an example that prints the name of a <tt>BasicBlock</tt> and the number of
1688<tt>Instruction</tt>s it contains:</p>
1689
1690<div class="doc_code">
1691<pre>
1692// <i>func is a pointer to a Function instance</i>
1693for (Function::iterator i = func-&gt;begin(), e = func-&gt;end(); i != e; ++i)
1694 // <i>Print out the name of the basic block if it has one, and then the</i>
1695 // <i>number of instructions that it contains</i>
Chris Lattner599c3922009-09-08 05:15:50 +00001696 errs() &lt;&lt; "Basic block (name=" &lt;&lt; i-&gt;getName() &lt;&lt; ") has "
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001697 &lt;&lt; i-&gt;size() &lt;&lt; " instructions.\n";
1698</pre>
1699</div>
1700
1701<p>Note that i can be used as if it were a pointer for the purposes of
1702invoking member functions of the <tt>Instruction</tt> class. This is
1703because the indirection operator is overloaded for the iterator
1704classes. In the above code, the expression <tt>i-&gt;size()</tt> is
1705exactly equivalent to <tt>(*i).size()</tt> just like you'd expect.</p>
1706
1707</div>
1708
1709<!-- _______________________________________________________________________ -->
1710<div class="doc_subsubsection">
1711 <a name="iterate_basicblock">Iterating over the </a><a
1712 href="#Instruction"><tt>Instruction</tt></a>s in a <a
1713 href="#BasicBlock"><tt>BasicBlock</tt></a>
1714</div>
1715
1716<div class="doc_text">
1717
1718<p>Just like when dealing with <tt>BasicBlock</tt>s in <tt>Function</tt>s, it's
1719easy to iterate over the individual instructions that make up
1720<tt>BasicBlock</tt>s. Here's a code snippet that prints out each instruction in
1721a <tt>BasicBlock</tt>:</p>
1722
1723<div class="doc_code">
1724<pre>
1725// <i>blk is a pointer to a BasicBlock instance</i>
1726for (BasicBlock::iterator i = blk-&gt;begin(), e = blk-&gt;end(); i != e; ++i)
1727 // <i>The next statement works since operator&lt;&lt;(ostream&amp;,...)</i>
1728 // <i>is overloaded for Instruction&amp;</i>
Chris Lattner599c3922009-09-08 05:15:50 +00001729 errs() &lt;&lt; *i &lt;&lt; "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001730</pre>
1731</div>
1732
1733<p>However, this isn't really the best way to print out the contents of a
1734<tt>BasicBlock</tt>! Since the ostream operators are overloaded for virtually
1735anything you'll care about, you could have just invoked the print routine on the
Chris Lattner599c3922009-09-08 05:15:50 +00001736basic block itself: <tt>errs() &lt;&lt; *blk &lt;&lt; "\n";</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001737
1738</div>
1739
1740<!-- _______________________________________________________________________ -->
1741<div class="doc_subsubsection">
1742 <a name="iterate_institer">Iterating over the </a><a
1743 href="#Instruction"><tt>Instruction</tt></a>s in a <a
1744 href="#Function"><tt>Function</tt></a>
1745</div>
1746
1747<div class="doc_text">
1748
1749<p>If you're finding that you commonly iterate over a <tt>Function</tt>'s
1750<tt>BasicBlock</tt>s and then that <tt>BasicBlock</tt>'s <tt>Instruction</tt>s,
1751<tt>InstIterator</tt> should be used instead. You'll need to include <a
1752href="/doxygen/InstIterator_8h-source.html"><tt>llvm/Support/InstIterator.h</tt></a>,
1753and then instantiate <tt>InstIterator</tt>s explicitly in your code. Here's a
1754small example that shows how to dump all instructions in a function to the standard error stream:<p>
1755
1756<div class="doc_code">
1757<pre>
1758#include "<a href="/doxygen/InstIterator_8h-source.html">llvm/Support/InstIterator.h</a>"
1759
1760// <i>F is a pointer to a Function instance</i>
Chris Lattnerfd62ee72008-06-04 18:20:42 +00001761for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Chris Lattner599c3922009-09-08 05:15:50 +00001762 errs() &lt;&lt; *I &lt;&lt; "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001763</pre>
1764</div>
1765
1766<p>Easy, isn't it? You can also use <tt>InstIterator</tt>s to fill a
1767work list with its initial contents. For example, if you wanted to
1768initialize a work list to contain all instructions in a <tt>Function</tt>
1769F, all you would need to do is something like:</p>
1770
1771<div class="doc_code">
1772<pre>
1773std::set&lt;Instruction*&gt; worklist;
Chris Lattnerfd62ee72008-06-04 18:20:42 +00001774// or better yet, SmallPtrSet&lt;Instruction*, 64&gt; worklist;
1775
1776for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
1777 worklist.insert(&amp;*I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001778</pre>
1779</div>
1780
1781<p>The STL set <tt>worklist</tt> would now contain all instructions in the
1782<tt>Function</tt> pointed to by F.</p>
1783
1784</div>
1785
1786<!-- _______________________________________________________________________ -->
1787<div class="doc_subsubsection">
1788 <a name="iterate_convert">Turning an iterator into a class pointer (and
1789 vice-versa)</a>
1790</div>
1791
1792<div class="doc_text">
1793
1794<p>Sometimes, it'll be useful to grab a reference (or pointer) to a class
1795instance when all you've got at hand is an iterator. Well, extracting
1796a reference or a pointer from an iterator is very straight-forward.
1797Assuming that <tt>i</tt> is a <tt>BasicBlock::iterator</tt> and <tt>j</tt>
1798is a <tt>BasicBlock::const_iterator</tt>:</p>
1799
1800<div class="doc_code">
1801<pre>
1802Instruction&amp; inst = *i; // <i>Grab reference to instruction reference</i>
1803Instruction* pinst = &amp;*i; // <i>Grab pointer to instruction reference</i>
1804const Instruction&amp; inst = *j;
1805</pre>
1806</div>
1807
1808<p>However, the iterators you'll be working with in the LLVM framework are
1809special: they will automatically convert to a ptr-to-instance type whenever they
1810need to. Instead of dereferencing the iterator and then taking the address of
1811the result, you can simply assign the iterator to the proper pointer type and
1812you get the dereference and address-of operation as a result of the assignment
1813(behind the scenes, this is a result of overloading casting mechanisms). Thus
1814the last line of the last example,</p>
1815
1816<div class="doc_code">
1817<pre>
Chris Lattner0665e1f2008-01-03 16:56:04 +00001818Instruction *pinst = &amp;*i;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001819</pre>
1820</div>
1821
1822<p>is semantically equivalent to</p>
1823
1824<div class="doc_code">
1825<pre>
Chris Lattner0665e1f2008-01-03 16:56:04 +00001826Instruction *pinst = i;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001827</pre>
1828</div>
1829
1830<p>It's also possible to turn a class pointer into the corresponding iterator,
1831and this is a constant time operation (very efficient). The following code
1832snippet illustrates use of the conversion constructors provided by LLVM
1833iterators. By using these, you can explicitly grab the iterator of something
1834without actually obtaining it via iteration over some structure:</p>
1835
1836<div class="doc_code">
1837<pre>
1838void printNextInstruction(Instruction* inst) {
1839 BasicBlock::iterator it(inst);
1840 ++it; // <i>After this line, it refers to the instruction after *inst</i>
Chris Lattner599c3922009-09-08 05:15:50 +00001841 if (it != inst-&gt;getParent()-&gt;end()) errs() &lt;&lt; *it &lt;&lt; "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001842}
1843</pre>
1844</div>
1845
Dan Gohman2ece7fb2010-03-26 19:39:05 +00001846<p>Unfortunately, these implicit conversions come at a cost; they prevent
1847these iterators from conforming to standard iterator conventions, and thus
1848from being usable with standard algorithms and containers. For example, it
1849prevents the following code, where <tt>B</tt> is a <tt>BasicBlock</tt>,
1850from compiling:</p>
1851
1852<div class="doc_code">
1853<pre>
1854 llvm::SmallVector&lt;llvm::Instruction *, 16&gt;(B-&gt;begin(), B-&gt;end());
1855</pre>
1856</div>
1857
1858<p>Because of this, these implicit conversions may be removed some day,
1859and <tt>operator*</tt> changed to return a pointer instead of a reference.
1860
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001861</div>
1862
1863<!--_______________________________________________________________________-->
1864<div class="doc_subsubsection">
1865 <a name="iterate_complex">Finding call sites: a slightly more complex
1866 example</a>
1867</div>
1868
1869<div class="doc_text">
1870
1871<p>Say that you're writing a FunctionPass and would like to count all the
1872locations in the entire module (that is, across every <tt>Function</tt>) where a
1873certain function (i.e., some <tt>Function</tt>*) is already in scope. As you'll
1874learn later, you may want to use an <tt>InstVisitor</tt> to accomplish this in a
1875much more straight-forward manner, but this example will allow us to explore how
1876you'd do it if you didn't have <tt>InstVisitor</tt> around. In pseudo-code, this
1877is what we want to do:</p>
1878
1879<div class="doc_code">
1880<pre>
1881initialize callCounter to zero
1882for each Function f in the Module
1883 for each BasicBlock b in f
1884 for each Instruction i in b
1885 if (i is a CallInst and calls the given function)
1886 increment callCounter
1887</pre>
1888</div>
1889
1890<p>And the actual code is (remember, because we're writing a
1891<tt>FunctionPass</tt>, our <tt>FunctionPass</tt>-derived class simply has to
1892override the <tt>runOnFunction</tt> method):</p>
1893
1894<div class="doc_code">
1895<pre>
1896Function* targetFunc = ...;
1897
1898class OurFunctionPass : public FunctionPass {
1899 public:
1900 OurFunctionPass(): callCounter(0) { }
1901
1902 virtual runOnFunction(Function&amp; F) {
1903 for (Function::iterator b = F.begin(), be = F.end(); b != be; ++b) {
Eric Christopher5fbecf72008-11-08 08:20:49 +00001904 for (BasicBlock::iterator i = b-&gt;begin(), ie = b-&gt;end(); i != ie; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001905 if (<a href="#CallInst">CallInst</a>* callInst = <a href="#isa">dyn_cast</a>&lt;<a
1906 href="#CallInst">CallInst</a>&gt;(&amp;*i)) {
1907 // <i>We know we've encountered a call instruction, so we</i>
1908 // <i>need to determine if it's a call to the</i>
Chris Lattner0665e1f2008-01-03 16:56:04 +00001909 // <i>function pointed to by m_func or not.</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001910 if (callInst-&gt;getCalledFunction() == targetFunc)
1911 ++callCounter;
1912 }
1913 }
1914 }
1915 }
1916
1917 private:
Chris Lattner0665e1f2008-01-03 16:56:04 +00001918 unsigned callCounter;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001919};
1920</pre>
1921</div>
1922
1923</div>
1924
1925<!--_______________________________________________________________________-->
1926<div class="doc_subsubsection">
1927 <a name="calls_and_invokes">Treating calls and invokes the same way</a>
1928</div>
1929
1930<div class="doc_text">
1931
1932<p>You may have noticed that the previous example was a bit oversimplified in
1933that it did not deal with call sites generated by 'invoke' instructions. In
1934this, and in other situations, you may find that you want to treat
1935<tt>CallInst</tt>s and <tt>InvokeInst</tt>s the same way, even though their
1936most-specific common base class is <tt>Instruction</tt>, which includes lots of
1937less closely-related things. For these cases, LLVM provides a handy wrapper
1938class called <a
1939href="http://llvm.org/doxygen/classllvm_1_1CallSite.html"><tt>CallSite</tt></a>.
1940It is essentially a wrapper around an <tt>Instruction</tt> pointer, with some
1941methods that provide functionality common to <tt>CallInst</tt>s and
1942<tt>InvokeInst</tt>s.</p>
1943
1944<p>This class has "value semantics": it should be passed by value, not by
1945reference and it should not be dynamically allocated or deallocated using
1946<tt>operator new</tt> or <tt>operator delete</tt>. It is efficiently copyable,
1947assignable and constructable, with costs equivalents to that of a bare pointer.
1948If you look at its definition, it has only a single pointer member.</p>
1949
1950</div>
1951
1952<!--_______________________________________________________________________-->
1953<div class="doc_subsubsection">
1954 <a name="iterate_chains">Iterating over def-use &amp; use-def chains</a>
1955</div>
1956
1957<div class="doc_text">
1958
1959<p>Frequently, we might have an instance of the <a
1960href="/doxygen/classllvm_1_1Value.html">Value Class</a> and we want to
1961determine which <tt>User</tt>s use the <tt>Value</tt>. The list of all
1962<tt>User</tt>s of a particular <tt>Value</tt> is called a <i>def-use</i> chain.
1963For example, let's say we have a <tt>Function*</tt> named <tt>F</tt> to a
1964particular function <tt>foo</tt>. Finding all of the instructions that
1965<i>use</i> <tt>foo</tt> is as simple as iterating over the <i>def-use</i> chain
1966of <tt>F</tt>:</p>
1967
1968<div class="doc_code">
1969<pre>
Chris Lattner0665e1f2008-01-03 16:56:04 +00001970Function *F = ...;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001971
1972for (Value::use_iterator i = F-&gt;use_begin(), e = F-&gt;use_end(); i != e; ++i)
1973 if (Instruction *Inst = dyn_cast&lt;Instruction&gt;(*i)) {
Chris Lattner599c3922009-09-08 05:15:50 +00001974 errs() &lt;&lt; "F is used in instruction:\n";
1975 errs() &lt;&lt; *Inst &lt;&lt; "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001976 }
1977</pre>
Gabor Greifb114a802010-03-26 19:35:48 +00001978</div>
1979
1980Note that dereferencing a <tt>Value::use_iterator</tt> is not a very cheap
Gabor Greif00299852010-03-26 19:30:47 +00001981operation. Instead of performing <tt>*i</tt> above several times, consider
1982doing it only once in the loop body and reusing its result.
1983
Gabor Greifd5553502010-03-26 19:04:42 +00001984<p>Alternatively, it's common to have an instance of the <a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001985href="/doxygen/classllvm_1_1User.html">User Class</a> and need to know what
1986<tt>Value</tt>s are used by it. The list of all <tt>Value</tt>s used by a
1987<tt>User</tt> is known as a <i>use-def</i> chain. Instances of class
1988<tt>Instruction</tt> are common <tt>User</tt>s, so we might want to iterate over
1989all of the values that a particular instruction uses (that is, the operands of
1990the particular <tt>Instruction</tt>):</p>
1991
1992<div class="doc_code">
1993<pre>
Chris Lattner0665e1f2008-01-03 16:56:04 +00001994Instruction *pi = ...;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001995
1996for (User::op_iterator i = pi-&gt;op_begin(), e = pi-&gt;op_end(); i != e; ++i) {
Chris Lattner0665e1f2008-01-03 16:56:04 +00001997 Value *v = *i;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001998 // <i>...</i>
1999}
2000</pre>
2001</div>
2002
Gabor Greif00299852010-03-26 19:30:47 +00002003<p>Declaring objects as <tt>const</tt> is an important tool of enforcing
2004mutation free algorithms (such as analyses etc.). For this purpose above
2005iterators come in constant flavors as <tt>Value::const_use_iterator</tt>
2006and <tt>Value::const_op_iterator</tt>. They automatically arise when
2007calling <tt>use/op_begin()</tt> on <tt>const Value*</tt>s or
2008<tt>const User*</tt>s respectively. Upon dereferencing, they return
2009<tt>const Use*</tt>s. Otherwise the above patterns remain unchanged.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002010</div>
2011
Chris Lattner0665e1f2008-01-03 16:56:04 +00002012<!--_______________________________________________________________________-->
2013<div class="doc_subsubsection">
2014 <a name="iterate_preds">Iterating over predecessors &amp;
2015successors of blocks</a>
2016</div>
2017
2018<div class="doc_text">
2019
2020<p>Iterating over the predecessors and successors of a block is quite easy
2021with the routines defined in <tt>"llvm/Support/CFG.h"</tt>. Just use code like
2022this to iterate over all predecessors of BB:</p>
2023
2024<div class="doc_code">
2025<pre>
2026#include "llvm/Support/CFG.h"
2027BasicBlock *BB = ...;
2028
2029for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2030 BasicBlock *Pred = *PI;
2031 // <i>...</i>
2032}
2033</pre>
2034</div>
2035
2036<p>Similarly, to iterate over successors use
2037succ_iterator/succ_begin/succ_end.</p>
2038
2039</div>
2040
2041
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002042<!-- ======================================================================= -->
2043<div class="doc_subsection">
2044 <a name="simplechanges">Making simple changes</a>
2045</div>
2046
2047<div class="doc_text">
2048
2049<p>There are some primitive transformation operations present in the LLVM
2050infrastructure that are worth knowing about. When performing
2051transformations, it's fairly common to manipulate the contents of basic
2052blocks. This section describes some of the common methods for doing so
2053and gives example code.</p>
2054
2055</div>
2056
2057<!--_______________________________________________________________________-->
2058<div class="doc_subsubsection">
2059 <a name="schanges_creating">Creating and inserting new
2060 <tt>Instruction</tt>s</a>
2061</div>
2062
2063<div class="doc_text">
2064
2065<p><i>Instantiating Instructions</i></p>
2066
2067<p>Creation of <tt>Instruction</tt>s is straight-forward: simply call the
2068constructor for the kind of instruction to instantiate and provide the necessary
2069parameters. For example, an <tt>AllocaInst</tt> only <i>requires</i> a
2070(const-ptr-to) <tt>Type</tt>. Thus:</p>
2071
2072<div class="doc_code">
2073<pre>
Nick Lewyckyc004e5b2007-12-03 01:52:52 +00002074AllocaInst* ai = new AllocaInst(Type::Int32Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002075</pre>
2076</div>
2077
2078<p>will create an <tt>AllocaInst</tt> instance that represents the allocation of
2079one integer in the current stack frame, at run time. Each <tt>Instruction</tt>
2080subclass is likely to have varying default parameters which change the semantics
2081of the instruction, so refer to the <a
2082href="/doxygen/classllvm_1_1Instruction.html">doxygen documentation for the subclass of
2083Instruction</a> that you're interested in instantiating.</p>
2084
2085<p><i>Naming values</i></p>
2086
2087<p>It is very useful to name the values of instructions when you're able to, as
2088this facilitates the debugging of your transformations. If you end up looking
2089at generated LLVM machine code, you definitely want to have logical names
2090associated with the results of instructions! By supplying a value for the
2091<tt>Name</tt> (default) parameter of the <tt>Instruction</tt> constructor, you
2092associate a logical name with the result of the instruction's execution at
2093run time. For example, say that I'm writing a transformation that dynamically
2094allocates space for an integer on the stack, and that integer is going to be
2095used as some kind of index by some other code. To accomplish this, I place an
2096<tt>AllocaInst</tt> at the first point in the first <tt>BasicBlock</tt> of some
2097<tt>Function</tt>, and I'm intending to use it within the same
2098<tt>Function</tt>. I might do:</p>
2099
2100<div class="doc_code">
2101<pre>
Nick Lewyckyc004e5b2007-12-03 01:52:52 +00002102AllocaInst* pa = new AllocaInst(Type::Int32Ty, 0, "indexLoc");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002103</pre>
2104</div>
2105
2106<p>where <tt>indexLoc</tt> is now the logical name of the instruction's
2107execution value, which is a pointer to an integer on the run time stack.</p>
2108
2109<p><i>Inserting instructions</i></p>
2110
2111<p>There are essentially two ways to insert an <tt>Instruction</tt>
2112into an existing sequence of instructions that form a <tt>BasicBlock</tt>:</p>
2113
2114<ul>
2115 <li>Insertion into an explicit instruction list
2116
2117 <p>Given a <tt>BasicBlock* pb</tt>, an <tt>Instruction* pi</tt> within that
2118 <tt>BasicBlock</tt>, and a newly-created instruction we wish to insert
2119 before <tt>*pi</tt>, we do the following: </p>
2120
2121<div class="doc_code">
2122<pre>
2123BasicBlock *pb = ...;
2124Instruction *pi = ...;
2125Instruction *newInst = new Instruction(...);
2126
2127pb-&gt;getInstList().insert(pi, newInst); // <i>Inserts newInst before pi in pb</i>
2128</pre>
2129</div>
2130
2131 <p>Appending to the end of a <tt>BasicBlock</tt> is so common that
2132 the <tt>Instruction</tt> class and <tt>Instruction</tt>-derived
2133 classes provide constructors which take a pointer to a
2134 <tt>BasicBlock</tt> to be appended to. For example code that
2135 looked like: </p>
2136
2137<div class="doc_code">
2138<pre>
2139BasicBlock *pb = ...;
2140Instruction *newInst = new Instruction(...);
2141
2142pb-&gt;getInstList().push_back(newInst); // <i>Appends newInst to pb</i>
2143</pre>
2144</div>
2145
2146 <p>becomes: </p>
2147
2148<div class="doc_code">
2149<pre>
2150BasicBlock *pb = ...;
2151Instruction *newInst = new Instruction(..., pb);
2152</pre>
2153</div>
2154
2155 <p>which is much cleaner, especially if you are creating
2156 long instruction streams.</p></li>
2157
2158 <li>Insertion into an implicit instruction list
2159
2160 <p><tt>Instruction</tt> instances that are already in <tt>BasicBlock</tt>s
2161 are implicitly associated with an existing instruction list: the instruction
2162 list of the enclosing basic block. Thus, we could have accomplished the same
2163 thing as the above code without being given a <tt>BasicBlock</tt> by doing:
2164 </p>
2165
2166<div class="doc_code">
2167<pre>
2168Instruction *pi = ...;
2169Instruction *newInst = new Instruction(...);
2170
2171pi-&gt;getParent()-&gt;getInstList().insert(pi, newInst);
2172</pre>
2173</div>
2174
2175 <p>In fact, this sequence of steps occurs so frequently that the
2176 <tt>Instruction</tt> class and <tt>Instruction</tt>-derived classes provide
2177 constructors which take (as a default parameter) a pointer to an
2178 <tt>Instruction</tt> which the newly-created <tt>Instruction</tt> should
2179 precede. That is, <tt>Instruction</tt> constructors are capable of
2180 inserting the newly-created instance into the <tt>BasicBlock</tt> of a
2181 provided instruction, immediately before that instruction. Using an
2182 <tt>Instruction</tt> constructor with a <tt>insertBefore</tt> (default)
2183 parameter, the above code becomes:</p>
2184
2185<div class="doc_code">
2186<pre>
2187Instruction* pi = ...;
2188Instruction* newInst = new Instruction(..., pi);
2189</pre>
2190</div>
2191
2192 <p>which is much cleaner, especially if you're creating a lot of
2193 instructions and adding them to <tt>BasicBlock</tt>s.</p></li>
2194</ul>
2195
2196</div>
2197
2198<!--_______________________________________________________________________-->
2199<div class="doc_subsubsection">
2200 <a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a>
2201</div>
2202
2203<div class="doc_text">
2204
2205<p>Deleting an instruction from an existing sequence of instructions that form a
2206<a href="#BasicBlock"><tt>BasicBlock</tt></a> is very straight-forward. First,
2207you must have a pointer to the instruction that you wish to delete. Second, you
2208need to obtain the pointer to that instruction's basic block. You use the
2209pointer to the basic block to get its list of instructions and then use the
2210erase function to remove your instruction. For example:</p>
2211
2212<div class="doc_code">
2213<pre>
2214<a href="#Instruction">Instruction</a> *I = .. ;
Chris Lattner3db8f772008-02-15 22:57:17 +00002215I-&gt;eraseFromParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002216</pre>
2217</div>
2218
2219</div>
2220
2221<!--_______________________________________________________________________-->
2222<div class="doc_subsubsection">
2223 <a name="schanges_replacing">Replacing an <tt>Instruction</tt> with another
2224 <tt>Value</tt></a>
2225</div>
2226
2227<div class="doc_text">
2228
2229<p><i>Replacing individual instructions</i></p>
2230
2231<p>Including "<a href="/doxygen/BasicBlockUtils_8h-source.html">llvm/Transforms/Utils/BasicBlockUtils.h</a>"
2232permits use of two very useful replace functions: <tt>ReplaceInstWithValue</tt>
2233and <tt>ReplaceInstWithInst</tt>.</p>
2234
2235<h4><a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a></h4>
2236
2237<ul>
2238 <li><tt>ReplaceInstWithValue</tt>
2239
Nick Lewycky48d4b032008-09-15 06:31:52 +00002240 <p>This function replaces all uses of a given instruction with a value,
2241 and then removes the original instruction. The following example
2242 illustrates the replacement of the result of a particular
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002243 <tt>AllocaInst</tt> that allocates memory for a single integer with a null
2244 pointer to an integer.</p>
2245
2246<div class="doc_code">
2247<pre>
2248AllocaInst* instToReplace = ...;
2249BasicBlock::iterator ii(instToReplace);
2250
2251ReplaceInstWithValue(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
Daniel Dunbar8ce79622008-10-03 22:17:25 +00002252 Constant::getNullValue(PointerType::getUnqual(Type::Int32Ty)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002253</pre></div></li>
2254
2255 <li><tt>ReplaceInstWithInst</tt>
2256
2257 <p>This function replaces a particular instruction with another
Nick Lewycky48d4b032008-09-15 06:31:52 +00002258 instruction, inserting the new instruction into the basic block at the
2259 location where the old instruction was, and replacing any uses of the old
2260 instruction with the new instruction. The following example illustrates
2261 the replacement of one <tt>AllocaInst</tt> with another.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002262
2263<div class="doc_code">
2264<pre>
2265AllocaInst* instToReplace = ...;
2266BasicBlock::iterator ii(instToReplace);
2267
2268ReplaceInstWithInst(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
Nick Lewyckyc004e5b2007-12-03 01:52:52 +00002269 new AllocaInst(Type::Int32Ty, 0, "ptrToReplacedInt"));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002270</pre></div></li>
2271</ul>
2272
2273<p><i>Replacing multiple uses of <tt>User</tt>s and <tt>Value</tt>s</i></p>
2274
2275<p>You can use <tt>Value::replaceAllUsesWith</tt> and
2276<tt>User::replaceUsesOfWith</tt> to change more than one use at a time. See the
2277doxygen documentation for the <a href="/doxygen/classllvm_1_1Value.html">Value Class</a>
2278and <a href="/doxygen/classllvm_1_1User.html">User Class</a>, respectively, for more
2279information.</p>
2280
2281<!-- Value::replaceAllUsesWith User::replaceUsesOfWith Point out:
2282include/llvm/Transforms/Utils/ especially BasicBlockUtils.h with:
2283ReplaceInstWithValue, ReplaceInstWithInst -->
2284
2285</div>
2286
2287<!--_______________________________________________________________________-->
2288<div class="doc_subsubsection">
2289 <a name="schanges_deletingGV">Deleting <tt>GlobalVariable</tt>s</a>
2290</div>
2291
2292<div class="doc_text">
2293
2294<p>Deleting a global variable from a module is just as easy as deleting an
2295Instruction. First, you must have a pointer to the global variable that you wish
2296 to delete. You use this pointer to erase it from its parent, the module.
2297 For example:</p>
2298
2299<div class="doc_code">
2300<pre>
2301<a href="#GlobalVariable">GlobalVariable</a> *GV = .. ;
2302
2303GV-&gt;eraseFromParent();
2304</pre>
2305</div>
2306
2307</div>
2308
Jeffrey Yasskin7ebb6ac2009-04-30 22:33:41 +00002309<!-- ======================================================================= -->
2310<div class="doc_subsection">
2311 <a name="create_types">How to Create Types</a>
2312</div>
2313
2314<div class="doc_text">
2315
2316<p>In generating IR, you may need some complex types. If you know these types
Misha Brukman06725132009-05-01 20:40:51 +00002317statically, you can use <tt>TypeBuilder&lt;...&gt;::get()</tt>, defined
Jeffrey Yasskin7ebb6ac2009-04-30 22:33:41 +00002318in <tt>llvm/Support/TypeBuilder.h</tt>, to retrieve them. <tt>TypeBuilder</tt>
2319has two forms depending on whether you're building types for cross-compilation
Misha Brukman06725132009-05-01 20:40:51 +00002320or native library use. <tt>TypeBuilder&lt;T, true&gt;</tt> requires
Jeffrey Yasskin7ebb6ac2009-04-30 22:33:41 +00002321that <tt>T</tt> be independent of the host environment, meaning that it's built
2322out of types from
2323the <a href="/doxygen/namespacellvm_1_1types.html"><tt>llvm::types</tt></a>
2324namespace and pointers, functions, arrays, etc. built of
Misha Brukman06725132009-05-01 20:40:51 +00002325those. <tt>TypeBuilder&lt;T, false&gt;</tt> additionally allows native C types
Jeffrey Yasskin7ebb6ac2009-04-30 22:33:41 +00002326whose size may depend on the host compiler. For example,</p>
2327
2328<div class="doc_code">
2329<pre>
Misha Brukman06725132009-05-01 20:40:51 +00002330FunctionType *ft = TypeBuilder&lt;types::i&lt;8&gt;(types::i&lt;32&gt;*), true&gt;::get();
Jeffrey Yasskin7ebb6ac2009-04-30 22:33:41 +00002331</pre>
2332</div>
2333
2334<p>is easier to read and write than the equivalent</p>
2335
2336<div class="doc_code">
2337<pre>
Owen Anderson60f87572009-06-16 17:40:28 +00002338std::vector&lt;const Type*&gt; params;
Jeffrey Yasskin7ebb6ac2009-04-30 22:33:41 +00002339params.push_back(PointerType::getUnqual(Type::Int32Ty));
2340FunctionType *ft = FunctionType::get(Type::Int8Ty, params, false);
2341</pre>
2342</div>
2343
2344<p>See the <a href="/doxygen/TypeBuilder_8h-source.html#l00001">class
2345comment</a> for more details.</p>
2346
2347</div>
2348
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002349<!-- *********************************************************************** -->
2350<div class="doc_section">
Owen Andersone8370c02009-06-16 01:17:16 +00002351 <a name="threading">Threads and LLVM</a>
2352</div>
2353<!-- *********************************************************************** -->
2354
2355<div class="doc_text">
2356<p>
2357This section describes the interaction of the LLVM APIs with multithreading,
2358both on the part of client applications, and in the JIT, in the hosted
2359application.
2360</p>
2361
2362<p>
2363Note that LLVM's support for multithreading is still relatively young. Up
2364through version 2.5, the execution of threaded hosted applications was
2365supported, but not threaded client access to the APIs. While this use case is
2366now supported, clients <em>must</em> adhere to the guidelines specified below to
2367ensure proper operation in multithreaded mode.
2368</p>
2369
2370<p>
2371Note that, on Unix-like platforms, LLVM requires the presence of GCC's atomic
2372intrinsics in order to support threaded operation. If you need a
2373multhreading-capable LLVM on a platform without a suitably modern system
2374compiler, consider compiling LLVM and LLVM-GCC in single-threaded mode, and
2375using the resultant compiler to build a copy of LLVM with multithreading
2376support.
2377</p>
2378</div>
2379
2380<!-- ======================================================================= -->
2381<div class="doc_subsection">
Owen Andersonb4186902009-06-16 18:04:19 +00002382 <a name="startmultithreaded">Entering and Exiting Multithreaded Mode</a>
Owen Andersone8370c02009-06-16 01:17:16 +00002383</div>
2384
2385<div class="doc_text">
2386
2387<p>
2388In order to properly protect its internal data structures while avoiding
Owen Andersonb4186902009-06-16 18:04:19 +00002389excessive locking overhead in the single-threaded case, the LLVM must intialize
2390certain data structures necessary to provide guards around its internals. To do
2391so, the client program must invoke <tt>llvm_start_multithreaded()</tt> before
2392making any concurrent LLVM API calls. To subsequently tear down these
2393structures, use the <tt>llvm_stop_multithreaded()</tt> call. You can also use
2394the <tt>llvm_is_multithreaded()</tt> call to check the status of multithreaded
2395mode.
Owen Andersone8370c02009-06-16 01:17:16 +00002396</p>
2397
2398<p>
Owen Andersonb4186902009-06-16 18:04:19 +00002399Note that both of these calls must be made <em>in isolation</em>. That is to
2400say that no other LLVM API calls may be executing at any time during the
2401execution of <tt>llvm_start_multithreaded()</tt> or <tt>llvm_stop_multithreaded
2402</tt>. It's is the client's responsibility to enforce this isolation.
2403</p>
2404
2405<p>
2406The return value of <tt>llvm_start_multithreaded()</tt> indicates the success or
2407failure of the initialization. Failure typically indicates that your copy of
2408LLVM was built without multithreading support, typically because GCC atomic
2409intrinsics were not found in your system compiler. In this case, the LLVM API
2410will not be safe for concurrent calls. However, it <em>will</em> be safe for
Jeffrey Yasskin40715142010-01-29 19:10:38 +00002411hosting threaded applications in the JIT, though <a href="#jitthreading">care
2412must be taken</a> to ensure that side exits and the like do not accidentally
2413result in concurrent LLVM API calls.
Owen Andersone8370c02009-06-16 01:17:16 +00002414</p>
2415</div>
2416
2417<!-- ======================================================================= -->
2418<div class="doc_subsection">
2419 <a name="shutdown">Ending Execution with <tt>llvm_shutdown()</tt></a>
2420</div>
2421
2422<div class="doc_text">
2423<p>
2424When you are done using the LLVM APIs, you should call <tt>llvm_shutdown()</tt>
Owen Andersonb4186902009-06-16 18:04:19 +00002425to deallocate memory used for internal structures. This will also invoke
2426<tt>llvm_stop_multithreaded()</tt> if LLVM is operating in multithreaded mode.
2427As such, <tt>llvm_shutdown()</tt> requires the same isolation guarantees as
2428<tt>llvm_stop_multithreaded()</tt>.
Owen Andersone8370c02009-06-16 01:17:16 +00002429</p>
2430
2431<p>
2432Note that, if you use scope-based shutdown, you can use the
2433<tt>llvm_shutdown_obj</tt> class, which calls <tt>llvm_shutdown()</tt> in its
2434destructor.
2435</div>
2436
2437<!-- ======================================================================= -->
2438<div class="doc_subsection">
2439 <a name="managedstatic">Lazy Initialization with <tt>ManagedStatic</tt></a>
2440</div>
2441
2442<div class="doc_text">
2443<p>
2444<tt>ManagedStatic</tt> is a utility class in LLVM used to implement static
2445initialization of static resources, such as the global type tables. Before the
2446invocation of <tt>llvm_shutdown()</tt>, it implements a simple lazy
2447initialization scheme. Once <tt>llvm_start_multithreaded()</tt> returns,
2448however, it uses double-checked locking to implement thread-safe lazy
2449initialization.
2450</p>
2451
2452<p>
2453Note that, because no other threads are allowed to issue LLVM API calls before
2454<tt>llvm_start_multithreaded()</tt> returns, it is possible to have
2455<tt>ManagedStatic</tt>s of <tt>llvm::sys::Mutex</tt>s.
2456</p>
Owen Andersonb4186902009-06-16 18:04:19 +00002457
2458<p>
2459The <tt>llvm_acquire_global_lock()</tt> and <tt>llvm_release_global_lock</tt>
2460APIs provide access to the global lock used to implement the double-checked
2461locking for lazy initialization. These should only be used internally to LLVM,
2462and only if you know what you're doing!
2463</p>
Owen Andersone8370c02009-06-16 01:17:16 +00002464</div>
2465
Owen Anderson3f2da0e2009-08-19 17:58:52 +00002466<!-- ======================================================================= -->
2467<div class="doc_subsection">
2468 <a name="llvmcontext">Achieving Isolation with <tt>LLVMContext</tt></a>
2469</div>
2470
2471<div class="doc_text">
2472<p>
2473<tt>LLVMContext</tt> is an opaque class in the LLVM API which clients can use
2474to operate multiple, isolated instances of LLVM concurrently within the same
2475address space. For instance, in a hypothetical compile-server, the compilation
2476of an individual translation unit is conceptually independent from all the
2477others, and it would be desirable to be able to compile incoming translation
2478units concurrently on independent server threads. Fortunately,
2479<tt>LLVMContext</tt> exists to enable just this kind of scenario!
2480</p>
2481
2482<p>
2483Conceptually, <tt>LLVMContext</tt> provides isolation. Every LLVM entity
2484(<tt>Module</tt>s, <tt>Value</tt>s, <tt>Type</tt>s, <tt>Constant</tt>s, etc.)
Chris Lattner9ca98ce2009-08-20 03:10:14 +00002485in LLVM's in-memory IR belongs to an <tt>LLVMContext</tt>. Entities in
Owen Anderson3f2da0e2009-08-19 17:58:52 +00002486different contexts <em>cannot</em> interact with each other: <tt>Module</tt>s in
2487different contexts cannot be linked together, <tt>Function</tt>s cannot be added
2488to <tt>Module</tt>s in different contexts, etc. What this means is that is is
2489safe to compile on multiple threads simultaneously, as long as no two threads
2490operate on entities within the same context.
2491</p>
2492
2493<p>
2494In practice, very few places in the API require the explicit specification of a
2495<tt>LLVMContext</tt>, other than the <tt>Type</tt> creation/lookup APIs.
2496Because every <tt>Type</tt> carries a reference to its owning context, most
2497other entities can determine what context they belong to by looking at their
2498own <tt>Type</tt>. If you are adding new entities to LLVM IR, please try to
2499maintain this interface design.
2500</p>
2501
2502<p>
2503For clients that do <em>not</em> require the benefits of isolation, LLVM
2504provides a convenience API <tt>getGlobalContext()</tt>. This returns a global,
2505lazily initialized <tt>LLVMContext</tt> that may be used in situations where
2506isolation is not a concern.
2507</p>
2508</div>
2509
Jeffrey Yasskin40715142010-01-29 19:10:38 +00002510<!-- ======================================================================= -->
2511<div class="doc_subsection">
2512 <a name="jitthreading">Threads and the JIT</a>
2513</div>
2514
2515<div class="doc_text">
2516<p>
2517LLVM's "eager" JIT compiler is safe to use in threaded programs. Multiple
2518threads can call <tt>ExecutionEngine::getPointerToFunction()</tt> or
2519<tt>ExecutionEngine::runFunction()</tt> concurrently, and multiple threads can
2520run code output by the JIT concurrently. The user must still ensure that only
2521one thread accesses IR in a given <tt>LLVMContext</tt> while another thread
2522might be modifying it. One way to do that is to always hold the JIT lock while
2523accessing IR outside the JIT (the JIT <em>modifies</em> the IR by adding
2524<tt>CallbackVH</tt>s). Another way is to only
2525call <tt>getPointerToFunction()</tt> from the <tt>LLVMContext</tt>'s thread.
2526</p>
2527
2528<p>When the JIT is configured to compile lazily (using
2529<tt>ExecutionEngine::DisableLazyCompilation(false)</tt>), there is currently a
2530<a href="http://llvm.org/bugs/show_bug.cgi?id=5184">race condition</a> in
2531updating call sites after a function is lazily-jitted. It's still possible to
2532use the lazy JIT in a threaded program if you ensure that only one thread at a
2533time can call any particular lazy stub and that the JIT lock guards any IR
2534access, but we suggest using only the eager JIT in threaded programs.
2535</p>
2536</div>
2537
Owen Andersone8370c02009-06-16 01:17:16 +00002538<!-- *********************************************************************** -->
2539<div class="doc_section">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002540 <a name="advanced">Advanced Topics</a>
2541</div>
2542<!-- *********************************************************************** -->
2543
2544<div class="doc_text">
2545<p>
2546This section describes some of the advanced or obscure API's that most clients
2547do not need to be aware of. These API's tend manage the inner workings of the
2548LLVM system, and only need to be accessed in unusual circumstances.
2549</p>
2550</div>
2551
2552<!-- ======================================================================= -->
2553<div class="doc_subsection">
2554 <a name="TypeResolve">LLVM Type Resolution</a>
2555</div>
2556
2557<div class="doc_text">
2558
2559<p>
2560The LLVM type system has a very simple goal: allow clients to compare types for
2561structural equality with a simple pointer comparison (aka a shallow compare).
2562This goal makes clients much simpler and faster, and is used throughout the LLVM
2563system.
2564</p>
2565
2566<p>
2567Unfortunately achieving this goal is not a simple matter. In particular,
2568recursive types and late resolution of opaque types makes the situation very
2569difficult to handle. Fortunately, for the most part, our implementation makes
2570most clients able to be completely unaware of the nasty internal details. The
2571primary case where clients are exposed to the inner workings of it are when
2572building a recursive type. In addition to this case, the LLVM bitcode reader,
2573assembly parser, and linker also have to be aware of the inner workings of this
2574system.
2575</p>
2576
2577<p>
2578For our purposes below, we need three concepts. First, an "Opaque Type" is
2579exactly as defined in the <a href="LangRef.html#t_opaque">language
2580reference</a>. Second an "Abstract Type" is any type which includes an
2581opaque type as part of its type graph (for example "<tt>{ opaque, i32 }</tt>").
2582Third, a concrete type is a type that is not an abstract type (e.g. "<tt>{ i32,
2583float }</tt>").
2584</p>
2585
2586</div>
2587
2588<!-- ______________________________________________________________________ -->
2589<div class="doc_subsubsection">
2590 <a name="BuildRecType">Basic Recursive Type Construction</a>
2591</div>
2592
2593<div class="doc_text">
2594
2595<p>
2596Because the most common question is "how do I build a recursive type with LLVM",
2597we answer it now and explain it as we go. Here we include enough to cause this
2598to be emitted to an output .ll file:
2599</p>
2600
2601<div class="doc_code">
2602<pre>
2603%mylist = type { %mylist*, i32 }
2604</pre>
2605</div>
2606
2607<p>
2608To build this, use the following LLVM APIs:
2609</p>
2610
2611<div class="doc_code">
2612<pre>
2613// <i>Create the initial outer struct</i>
2614<a href="#PATypeHolder">PATypeHolder</a> StructTy = OpaqueType::get();
2615std::vector&lt;const Type*&gt; Elts;
Daniel Dunbar8ce79622008-10-03 22:17:25 +00002616Elts.push_back(PointerType::getUnqual(StructTy));
Nick Lewyckyc004e5b2007-12-03 01:52:52 +00002617Elts.push_back(Type::Int32Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002618StructType *NewSTy = StructType::get(Elts);
2619
2620// <i>At this point, NewSTy = "{ opaque*, i32 }". Tell VMCore that</i>
2621// <i>the struct and the opaque type are actually the same.</i>
2622cast&lt;OpaqueType&gt;(StructTy.get())-&gt;<a href="#refineAbstractTypeTo">refineAbstractTypeTo</a>(NewSTy);
2623
2624// <i>NewSTy is potentially invalidated, but StructTy (a <a href="#PATypeHolder">PATypeHolder</a>) is</i>
2625// <i>kept up-to-date</i>
2626NewSTy = cast&lt;StructType&gt;(StructTy.get());
2627
2628// <i>Add a name for the type to the module symbol table (optional)</i>
2629MyModule-&gt;addTypeName("mylist", NewSTy);
2630</pre>
2631</div>
2632
2633<p>
2634This code shows the basic approach used to build recursive types: build a
2635non-recursive type using 'opaque', then use type unification to close the cycle.
2636The type unification step is performed by the <tt><a
2637href="#refineAbstractTypeTo">refineAbstractTypeTo</a></tt> method, which is
2638described next. After that, we describe the <a
2639href="#PATypeHolder">PATypeHolder class</a>.
2640</p>
2641
2642</div>
2643
2644<!-- ______________________________________________________________________ -->
2645<div class="doc_subsubsection">
2646 <a name="refineAbstractTypeTo">The <tt>refineAbstractTypeTo</tt> method</a>
2647</div>
2648
2649<div class="doc_text">
2650<p>
2651The <tt>refineAbstractTypeTo</tt> method starts the type unification process.
2652While this method is actually a member of the DerivedType class, it is most
2653often used on OpaqueType instances. Type unification is actually a recursive
2654process. After unification, types can become structurally isomorphic to
2655existing types, and all duplicates are deleted (to preserve pointer equality).
2656</p>
2657
2658<p>
2659In the example above, the OpaqueType object is definitely deleted.
2660Additionally, if there is an "{ \2*, i32}" type already created in the system,
2661the pointer and struct type created are <b>also</b> deleted. Obviously whenever
2662a type is deleted, any "Type*" pointers in the program are invalidated. As
2663such, it is safest to avoid having <i>any</i> "Type*" pointers to abstract types
2664live across a call to <tt>refineAbstractTypeTo</tt> (note that non-abstract
2665types can never move or be deleted). To deal with this, the <a
2666href="#PATypeHolder">PATypeHolder</a> class is used to maintain a stable
2667reference to a possibly refined type, and the <a
2668href="#AbstractTypeUser">AbstractTypeUser</a> class is used to update more
2669complex datastructures.
2670</p>
2671
2672</div>
2673
2674<!-- ______________________________________________________________________ -->
2675<div class="doc_subsubsection">
2676 <a name="PATypeHolder">The PATypeHolder Class</a>
2677</div>
2678
2679<div class="doc_text">
2680<p>
2681PATypeHolder is a form of a "smart pointer" for Type objects. When VMCore
2682happily goes about nuking types that become isomorphic to existing types, it
2683automatically updates all PATypeHolder objects to point to the new type. In the
2684example above, this allows the code to maintain a pointer to the resultant
2685resolved recursive type, even though the Type*'s are potentially invalidated.
2686</p>
2687
2688<p>
2689PATypeHolder is an extremely light-weight object that uses a lazy union-find
2690implementation to update pointers. For example the pointer from a Value to its
2691Type is maintained by PATypeHolder objects.
2692</p>
2693
2694</div>
2695
2696<!-- ______________________________________________________________________ -->
2697<div class="doc_subsubsection">
2698 <a name="AbstractTypeUser">The AbstractTypeUser Class</a>
2699</div>
2700
2701<div class="doc_text">
2702
2703<p>
2704Some data structures need more to perform more complex updates when types get
2705resolved. To support this, a class can derive from the AbstractTypeUser class.
2706This class
2707allows it to get callbacks when certain types are resolved. To register to get
2708callbacks for a particular type, the DerivedType::{add/remove}AbstractTypeUser
2709methods can be called on a type. Note that these methods only work for <i>
2710 abstract</i> types. Concrete types (those that do not include any opaque
2711objects) can never be refined.
2712</p>
2713</div>
2714
2715
2716<!-- ======================================================================= -->
2717<div class="doc_subsection">
2718 <a name="SymbolTable">The <tt>ValueSymbolTable</tt> and
2719 <tt>TypeSymbolTable</tt> classes</a>
2720</div>
2721
2722<div class="doc_text">
2723<p>The <tt><a href="http://llvm.org/doxygen/classllvm_1_1ValueSymbolTable.html">
2724ValueSymbolTable</a></tt> class provides a symbol table that the <a
2725href="#Function"><tt>Function</tt></a> and <a href="#Module">
2726<tt>Module</tt></a> classes use for naming value definitions. The symbol table
2727can provide a name for any <a href="#Value"><tt>Value</tt></a>.
2728The <tt><a href="http://llvm.org/doxygen/classllvm_1_1TypeSymbolTable.html">
2729TypeSymbolTable</a></tt> class is used by the <tt>Module</tt> class to store
2730names for types.</p>
2731
2732<p>Note that the <tt>SymbolTable</tt> class should not be directly accessed
2733by most clients. It should only be used when iteration over the symbol table
2734names themselves are required, which is very special purpose. Note that not
2735all LLVM
Gabor Greif92e87762008-06-16 21:06:12 +00002736<tt><a href="#Value">Value</a></tt>s have names, and those without names (i.e. they have
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002737an empty name) do not exist in the symbol table.
2738</p>
2739
2740<p>These symbol tables support iteration over the values/types in the symbol
2741table with <tt>begin/end/iterator</tt> and supports querying to see if a
2742specific name is in the symbol table (with <tt>lookup</tt>). The
2743<tt>ValueSymbolTable</tt> class exposes no public mutator methods, instead,
2744simply call <tt>setName</tt> on a value, which will autoinsert it into the
2745appropriate symbol table. For types, use the Module::addTypeName method to
2746insert entries into the symbol table.</p>
2747
2748</div>
2749
2750
2751
Gabor Greif92e87762008-06-16 21:06:12 +00002752<!-- ======================================================================= -->
2753<div class="doc_subsection">
2754 <a name="UserLayout">The <tt>User</tt> and owned <tt>Use</tt> classes' memory layout</a>
2755</div>
2756
2757<div class="doc_text">
2758<p>The <tt><a href="http://llvm.org/doxygen/classllvm_1_1User.html">
Gabor Greif50626fc2009-01-05 16:05:32 +00002759User</a></tt> class provides a basis for expressing the ownership of <tt>User</tt>
Gabor Greif92e87762008-06-16 21:06:12 +00002760towards other <tt><a href="http://llvm.org/doxygen/classllvm_1_1Value.html">
2761Value</a></tt>s. The <tt><a href="http://llvm.org/doxygen/classllvm_1_1Use.html">
Gabor Greif93b462b2008-06-18 13:44:57 +00002762Use</a></tt> helper class is employed to do the bookkeeping and to facilitate <i>O(1)</i>
Gabor Greif92e87762008-06-16 21:06:12 +00002763addition and removal.</p>
2764
Gabor Greif93b462b2008-06-18 13:44:57 +00002765<!-- ______________________________________________________________________ -->
2766<div class="doc_subsubsection">
Gabor Greif50626fc2009-01-05 16:05:32 +00002767 <a name="Use2User">Interaction and relationship between <tt>User</tt> and <tt>Use</tt> objects</a>
Gabor Greif93b462b2008-06-18 13:44:57 +00002768</div>
Gabor Greif92e87762008-06-16 21:06:12 +00002769
Gabor Greif93b462b2008-06-18 13:44:57 +00002770<div class="doc_text">
2771<p>
2772A subclass of <tt>User</tt> can choose between incorporating its <tt>Use</tt> objects
Gabor Greif92e87762008-06-16 21:06:12 +00002773or refer to them out-of-line by means of a pointer. A mixed variant
Gabor Greif93b462b2008-06-18 13:44:57 +00002774(some <tt>Use</tt>s inline others hung off) is impractical and breaks the invariant
2775that the <tt>Use</tt> objects belonging to the same <tt>User</tt> form a contiguous array.
2776</p>
2777</div>
Gabor Greif92e87762008-06-16 21:06:12 +00002778
Gabor Greif93b462b2008-06-18 13:44:57 +00002779<p>
2780We have 2 different layouts in the <tt>User</tt> (sub)classes:
2781<ul>
2782<li><p>Layout a)
2783The <tt>Use</tt> object(s) are inside (resp. at fixed offset) of the <tt>User</tt>
2784object and there are a fixed number of them.</p>
Gabor Greif92e87762008-06-16 21:06:12 +00002785
Gabor Greif93b462b2008-06-18 13:44:57 +00002786<li><p>Layout b)
2787The <tt>Use</tt> object(s) are referenced by a pointer to an
2788array from the <tt>User</tt> object and there may be a variable
2789number of them.</p>
2790</ul>
2791<p>
Gabor Greife247e362008-06-25 00:10:22 +00002792As of v2.4 each layout still possesses a direct pointer to the
Gabor Greif93b462b2008-06-18 13:44:57 +00002793start of the array of <tt>Use</tt>s. Though not mandatory for layout a),
Gabor Greif92e87762008-06-16 21:06:12 +00002794we stick to this redundancy for the sake of simplicity.
Gabor Greife247e362008-06-25 00:10:22 +00002795The <tt>User</tt> object also stores the number of <tt>Use</tt> objects it
Gabor Greif92e87762008-06-16 21:06:12 +00002796has. (Theoretically this information can also be calculated
Gabor Greif93b462b2008-06-18 13:44:57 +00002797given the scheme presented below.)</p>
2798<p>
2799Special forms of allocation operators (<tt>operator new</tt>)
Gabor Greife247e362008-06-25 00:10:22 +00002800enforce the following memory layouts:</p>
Gabor Greif92e87762008-06-16 21:06:12 +00002801
Gabor Greif93b462b2008-06-18 13:44:57 +00002802<ul>
Gabor Greife247e362008-06-25 00:10:22 +00002803<li><p>Layout a) is modelled by prepending the <tt>User</tt> object by the <tt>Use[]</tt> array.</p>
Gabor Greif92e87762008-06-16 21:06:12 +00002804
Gabor Greif93b462b2008-06-18 13:44:57 +00002805<pre>
2806...---.---.---.---.-------...
2807 | P | P | P | P | User
2808'''---'---'---'---'-------'''
2809</pre>
Gabor Greif92e87762008-06-16 21:06:12 +00002810
Gabor Greife247e362008-06-25 00:10:22 +00002811<li><p>Layout b) is modelled by pointing at the <tt>Use[]</tt> array.</p>
Gabor Greif93b462b2008-06-18 13:44:57 +00002812<pre>
2813.-------...
2814| User
2815'-------'''
2816 |
2817 v
2818 .---.---.---.---...
2819 | P | P | P | P |
2820 '---'---'---'---'''
2821</pre>
2822</ul>
2823<i>(In the above figures '<tt>P</tt>' stands for the <tt>Use**</tt> that
2824 is stored in each <tt>Use</tt> object in the member <tt>Use::Prev</tt>)</i>
Gabor Greif92e87762008-06-16 21:06:12 +00002825
Gabor Greif93b462b2008-06-18 13:44:57 +00002826<!-- ______________________________________________________________________ -->
2827<div class="doc_subsubsection">
Gabor Greif50626fc2009-01-05 16:05:32 +00002828 <a name="Waymarking">The waymarking algorithm</a>
Gabor Greif93b462b2008-06-18 13:44:57 +00002829</div>
Gabor Greif92e87762008-06-16 21:06:12 +00002830
Gabor Greif93b462b2008-06-18 13:44:57 +00002831<div class="doc_text">
2832<p>
Gabor Greife247e362008-06-25 00:10:22 +00002833Since the <tt>Use</tt> objects are deprived of the direct (back)pointer to
Gabor Greif93b462b2008-06-18 13:44:57 +00002834their <tt>User</tt> objects, there must be a fast and exact method to
2835recover it. This is accomplished by the following scheme:</p>
2836</div>
Gabor Greif92e87762008-06-16 21:06:12 +00002837
Gabor Greife247e362008-06-25 00:10:22 +00002838A bit-encoding in the 2 LSBits (least significant bits) of the <tt>Use::Prev</tt> allows to find the
Gabor Greif93b462b2008-06-18 13:44:57 +00002839start of the <tt>User</tt> object:
2840<ul>
2841<li><tt>00</tt> &mdash;&gt; binary digit 0</li>
2842<li><tt>01</tt> &mdash;&gt; binary digit 1</li>
2843<li><tt>10</tt> &mdash;&gt; stop and calculate (<tt>s</tt>)</li>
2844<li><tt>11</tt> &mdash;&gt; full stop (<tt>S</tt>)</li>
2845</ul>
2846<p>
2847Given a <tt>Use*</tt>, all we have to do is to walk till we get
2848a stop and we either have a <tt>User</tt> immediately behind or
Gabor Greif92e87762008-06-16 21:06:12 +00002849we have to walk to the next stop picking up digits
Gabor Greif93b462b2008-06-18 13:44:57 +00002850and calculating the offset:</p>
2851<pre>
Gabor Greif92e87762008-06-16 21:06:12 +00002852.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.----------------
2853| 1 | s | 1 | 0 | 1 | 0 | s | 1 | 1 | 0 | s | 1 | 1 | s | 1 | S | User (or User*)
2854'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'----------------
2855 |+15 |+10 |+6 |+3 |+1
2856 | | | | |__>
2857 | | | |__________>
2858 | | |______________________>
2859 | |______________________________________>
2860 |__________________________________________________________>
Gabor Greif93b462b2008-06-18 13:44:57 +00002861</pre>
2862<p>
Gabor Greif92e87762008-06-16 21:06:12 +00002863Only the significant number of bits need to be stored between the
Gabor Greif93b462b2008-06-18 13:44:57 +00002864stops, so that the <i>worst case is 20 memory accesses</i> when there are
28651000 <tt>Use</tt> objects associated with a <tt>User</tt>.</p>
Gabor Greif92e87762008-06-16 21:06:12 +00002866
Gabor Greif93b462b2008-06-18 13:44:57 +00002867<!-- ______________________________________________________________________ -->
2868<div class="doc_subsubsection">
Gabor Greif50626fc2009-01-05 16:05:32 +00002869 <a name="ReferenceImpl">Reference implementation</a>
Gabor Greif93b462b2008-06-18 13:44:57 +00002870</div>
Gabor Greif92e87762008-06-16 21:06:12 +00002871
Gabor Greif93b462b2008-06-18 13:44:57 +00002872<div class="doc_text">
2873<p>
2874The following literate Haskell fragment demonstrates the concept:</p>
2875</div>
2876
2877<div class="doc_code">
2878<pre>
Gabor Greif92e87762008-06-16 21:06:12 +00002879> import Test.QuickCheck
2880>
2881> digits :: Int -> [Char] -> [Char]
2882> digits 0 acc = '0' : acc
2883> digits 1 acc = '1' : acc
2884> digits n acc = digits (n `div` 2) $ digits (n `mod` 2) acc
2885>
2886> dist :: Int -> [Char] -> [Char]
2887> dist 0 [] = ['S']
2888> dist 0 acc = acc
2889> dist 1 acc = let r = dist 0 acc in 's' : digits (length r) r
2890> dist n acc = dist (n - 1) $ dist 1 acc
2891>
2892> takeLast n ss = reverse $ take n $ reverse ss
2893>
2894> test = takeLast 40 $ dist 20 []
2895>
Gabor Greif93b462b2008-06-18 13:44:57 +00002896</pre>
2897</div>
2898<p>
2899Printing &lt;test&gt; gives: <tt>"1s100000s11010s10100s1111s1010s110s11s1S"</tt></p>
2900<p>
2901The reverse algorithm computes the length of the string just by examining
2902a certain prefix:</p>
Gabor Greif92e87762008-06-16 21:06:12 +00002903
Gabor Greif93b462b2008-06-18 13:44:57 +00002904<div class="doc_code">
2905<pre>
Gabor Greif92e87762008-06-16 21:06:12 +00002906> pref :: [Char] -> Int
2907> pref "S" = 1
2908> pref ('s':'1':rest) = decode 2 1 rest
2909> pref (_:rest) = 1 + pref rest
2910>
2911> decode walk acc ('0':rest) = decode (walk + 1) (acc * 2) rest
2912> decode walk acc ('1':rest) = decode (walk + 1) (acc * 2 + 1) rest
2913> decode walk acc _ = walk + acc
2914>
Gabor Greif93b462b2008-06-18 13:44:57 +00002915</pre>
2916</div>
2917<p>
2918Now, as expected, printing &lt;pref test&gt; gives <tt>40</tt>.</p>
2919<p>
2920We can <i>quickCheck</i> this with following property:</p>
Gabor Greif92e87762008-06-16 21:06:12 +00002921
Gabor Greif93b462b2008-06-18 13:44:57 +00002922<div class="doc_code">
2923<pre>
Gabor Greif92e87762008-06-16 21:06:12 +00002924> testcase = dist 2000 []
2925> testcaseLength = length testcase
2926>
2927> identityProp n = n > 0 && n <= testcaseLength ==> length arr == pref arr
2928> where arr = takeLast n testcase
Gabor Greif93b462b2008-06-18 13:44:57 +00002929>
2930</pre>
2931</div>
2932<p>
2933As expected &lt;quickCheck identityProp&gt; gives:</p>
Gabor Greif92e87762008-06-16 21:06:12 +00002934
Gabor Greif93b462b2008-06-18 13:44:57 +00002935<pre>
Gabor Greif92e87762008-06-16 21:06:12 +00002936*Main> quickCheck identityProp
2937OK, passed 100 tests.
Gabor Greif93b462b2008-06-18 13:44:57 +00002938</pre>
2939<p>
2940Let's be a bit more exhaustive:</p>
Gabor Greif92e87762008-06-16 21:06:12 +00002941
Gabor Greif93b462b2008-06-18 13:44:57 +00002942<div class="doc_code">
2943<pre>
Gabor Greif92e87762008-06-16 21:06:12 +00002944>
2945> deepCheck p = check (defaultConfig { configMaxTest = 500 }) p
2946>
Gabor Greif93b462b2008-06-18 13:44:57 +00002947</pre>
2948</div>
2949<p>
2950And here is the result of &lt;deepCheck identityProp&gt;:</p>
Gabor Greif92e87762008-06-16 21:06:12 +00002951
Gabor Greif93b462b2008-06-18 13:44:57 +00002952<pre>
Gabor Greif92e87762008-06-16 21:06:12 +00002953*Main> deepCheck identityProp
2954OK, passed 500 tests.
Gabor Greif92e87762008-06-16 21:06:12 +00002955</pre>
2956
Gabor Greif93b462b2008-06-18 13:44:57 +00002957<!-- ______________________________________________________________________ -->
2958<div class="doc_subsubsection">
Gabor Greif50626fc2009-01-05 16:05:32 +00002959 <a name="Tagging">Tagging considerations</a>
Gabor Greif93b462b2008-06-18 13:44:57 +00002960</div>
2961
2962<p>
2963To maintain the invariant that the 2 LSBits of each <tt>Use**</tt> in <tt>Use</tt>
2964never change after being set up, setters of <tt>Use::Prev</tt> must re-tag the
2965new <tt>Use**</tt> on every modification. Accordingly getters must strip the
2966tag bits.</p>
2967<p>
Gabor Greife247e362008-06-25 00:10:22 +00002968For layout b) instead of the <tt>User</tt> we find a pointer (<tt>User*</tt> with LSBit set).
2969Following this pointer brings us to the <tt>User</tt>. A portable trick ensures
2970that the first bytes of <tt>User</tt> (if interpreted as a pointer) never has
Gabor Greif50626fc2009-01-05 16:05:32 +00002971the LSBit set. (Portability is relying on the fact that all known compilers place the
2972<tt>vptr</tt> in the first word of the instances.)</p>
Gabor Greif93b462b2008-06-18 13:44:57 +00002973
Gabor Greif92e87762008-06-16 21:06:12 +00002974</div>
2975
2976 <!-- *********************************************************************** -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002977<div class="doc_section">
2978 <a name="coreclasses">The Core LLVM Class Hierarchy Reference </a>
2979</div>
2980<!-- *********************************************************************** -->
2981
2982<div class="doc_text">
2983<p><tt>#include "<a href="/doxygen/Type_8h-source.html">llvm/Type.h</a>"</tt>
2984<br>doxygen info: <a href="/doxygen/classllvm_1_1Type.html">Type Class</a></p>
2985
2986<p>The Core LLVM classes are the primary means of representing the program
2987being inspected or transformed. The core LLVM classes are defined in
2988header files in the <tt>include/llvm/</tt> directory, and implemented in
2989the <tt>lib/VMCore</tt> directory.</p>
2990
2991</div>
2992
2993<!-- ======================================================================= -->
2994<div class="doc_subsection">
2995 <a name="Type">The <tt>Type</tt> class and Derived Types</a>
2996</div>
2997
2998<div class="doc_text">
2999
3000 <p><tt>Type</tt> is a superclass of all type classes. Every <tt>Value</tt> has
3001 a <tt>Type</tt>. <tt>Type</tt> cannot be instantiated directly but only
3002 through its subclasses. Certain primitive types (<tt>VoidType</tt>,
3003 <tt>LabelType</tt>, <tt>FloatType</tt> and <tt>DoubleType</tt>) have hidden
3004 subclasses. They are hidden because they offer no useful functionality beyond
3005 what the <tt>Type</tt> class offers except to distinguish themselves from
3006 other subclasses of <tt>Type</tt>.</p>
3007 <p>All other types are subclasses of <tt>DerivedType</tt>. Types can be
3008 named, but this is not a requirement. There exists exactly
3009 one instance of a given shape at any one time. This allows type equality to
3010 be performed with address equality of the Type Instance. That is, given two
3011 <tt>Type*</tt> values, the types are identical if the pointers are identical.
3012 </p>
3013</div>
3014
3015<!-- _______________________________________________________________________ -->
3016<div class="doc_subsubsection">
Gabor Greif50626fc2009-01-05 16:05:32 +00003017 <a name="m_Type">Important Public Methods</a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003018</div>
3019
3020<div class="doc_text">
3021
3022<ul>
Duncan Sandse92dee12010-02-15 16:12:20 +00003023 <li><tt>bool isIntegerTy() const</tt>: Returns true for any integer type.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003024
Duncan Sandse92dee12010-02-15 16:12:20 +00003025 <li><tt>bool isFloatingPointTy()</tt>: Return true if this is one of the five
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003026 floating point types.</li>
3027
3028 <li><tt>bool isAbstract()</tt>: Return true if the type is abstract (contains
3029 an OpaqueType anywhere in its definition).</li>
3030
3031 <li><tt>bool isSized()</tt>: Return true if the type has known size. Things
3032 that don't have a size are abstract types, labels and void.</li>
3033
3034</ul>
3035</div>
3036
3037<!-- _______________________________________________________________________ -->
3038<div class="doc_subsubsection">
Gabor Greif50626fc2009-01-05 16:05:32 +00003039 <a name="derivedtypes">Important Derived Types</a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003040</div>
3041<div class="doc_text">
3042<dl>
3043 <dt><tt>IntegerType</tt></dt>
3044 <dd>Subclass of DerivedType that represents integer types of any bit width.
3045 Any bit width between <tt>IntegerType::MIN_INT_BITS</tt> (1) and
3046 <tt>IntegerType::MAX_INT_BITS</tt> (~8 million) can be represented.
3047 <ul>
3048 <li><tt>static const IntegerType* get(unsigned NumBits)</tt>: get an integer
3049 type of a specific bit width.</li>
3050 <li><tt>unsigned getBitWidth() const</tt>: Get the bit width of an integer
3051 type.</li>
3052 </ul>
3053 </dd>
3054 <dt><tt>SequentialType</tt></dt>
3055 <dd>This is subclassed by ArrayType and PointerType
3056 <ul>
3057 <li><tt>const Type * getElementType() const</tt>: Returns the type of each
3058 of the elements in the sequential type. </li>
3059 </ul>
3060 </dd>
3061 <dt><tt>ArrayType</tt></dt>
3062 <dd>This is a subclass of SequentialType and defines the interface for array
3063 types.
3064 <ul>
3065 <li><tt>unsigned getNumElements() const</tt>: Returns the number of
3066 elements in the array. </li>
3067 </ul>
3068 </dd>
3069 <dt><tt>PointerType</tt></dt>
3070 <dd>Subclass of SequentialType for pointer types.</dd>
3071 <dt><tt>VectorType</tt></dt>
3072 <dd>Subclass of SequentialType for vector types. A
3073 vector type is similar to an ArrayType but is distinguished because it is
Benjamin Kramer5fb9d7e2009-10-12 14:46:08 +00003074 a first class type whereas ArrayType is not. Vector types are used for
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003075 vector operations and are usually small vectors of of an integer or floating
3076 point type.</dd>
3077 <dt><tt>StructType</tt></dt>
3078 <dd>Subclass of DerivedTypes for struct types.</dd>
3079 <dt><tt><a name="FunctionType">FunctionType</a></tt></dt>
3080 <dd>Subclass of DerivedTypes for function types.
3081 <ul>
3082 <li><tt>bool isVarArg() const</tt>: Returns true if its a vararg
3083 function</li>
3084 <li><tt> const Type * getReturnType() const</tt>: Returns the
3085 return type of the function.</li>
3086 <li><tt>const Type * getParamType (unsigned i)</tt>: Returns
3087 the type of the ith parameter.</li>
3088 <li><tt> const unsigned getNumParams() const</tt>: Returns the
3089 number of formal parameters.</li>
3090 </ul>
3091 </dd>
3092 <dt><tt>OpaqueType</tt></dt>
3093 <dd>Sublcass of DerivedType for abstract types. This class
3094 defines no content and is used as a placeholder for some other type. Note
3095 that OpaqueType is used (temporarily) during type resolution for forward
3096 references of types. Once the referenced type is resolved, the OpaqueType
3097 is replaced with the actual type. OpaqueType can also be used for data
3098 abstraction. At link time opaque types can be resolved to actual types
3099 of the same name.</dd>
3100</dl>
3101</div>
3102
3103
3104
3105<!-- ======================================================================= -->
3106<div class="doc_subsection">
3107 <a name="Module">The <tt>Module</tt> class</a>
3108</div>
3109
3110<div class="doc_text">
3111
3112<p><tt>#include "<a
3113href="/doxygen/Module_8h-source.html">llvm/Module.h</a>"</tt><br> doxygen info:
3114<a href="/doxygen/classllvm_1_1Module.html">Module Class</a></p>
3115
3116<p>The <tt>Module</tt> class represents the top level structure present in LLVM
3117programs. An LLVM module is effectively either a translation unit of the
3118original program or a combination of several translation units merged by the
3119linker. The <tt>Module</tt> class keeps track of a list of <a
3120href="#Function"><tt>Function</tt></a>s, a list of <a
3121href="#GlobalVariable"><tt>GlobalVariable</tt></a>s, and a <a
3122href="#SymbolTable"><tt>SymbolTable</tt></a>. Additionally, it contains a few
3123helpful member functions that try to make common operations easy.</p>
3124
3125</div>
3126
3127<!-- _______________________________________________________________________ -->
3128<div class="doc_subsubsection">
3129 <a name="m_Module">Important Public Members of the <tt>Module</tt> class</a>
3130</div>
3131
3132<div class="doc_text">
3133
3134<ul>
3135 <li><tt>Module::Module(std::string name = "")</tt></li>
3136</ul>
3137
3138<p>Constructing a <a href="#Module">Module</a> is easy. You can optionally
3139provide a name for it (probably based on the name of the translation unit).</p>
3140
3141<ul>
3142 <li><tt>Module::iterator</tt> - Typedef for function list iterator<br>
3143 <tt>Module::const_iterator</tt> - Typedef for const_iterator.<br>
3144
3145 <tt>begin()</tt>, <tt>end()</tt>
3146 <tt>size()</tt>, <tt>empty()</tt>
3147
3148 <p>These are forwarding methods that make it easy to access the contents of
3149 a <tt>Module</tt> object's <a href="#Function"><tt>Function</tt></a>
3150 list.</p></li>
3151
3152 <li><tt>Module::FunctionListType &amp;getFunctionList()</tt>
3153
3154 <p> Returns the list of <a href="#Function"><tt>Function</tt></a>s. This is
3155 necessary to use when you need to update the list or perform a complex
3156 action that doesn't have a forwarding method.</p>
3157
3158 <p><!-- Global Variable --></p></li>
3159</ul>
3160
3161<hr>
3162
3163<ul>
3164 <li><tt>Module::global_iterator</tt> - Typedef for global variable list iterator<br>
3165
3166 <tt>Module::const_global_iterator</tt> - Typedef for const_iterator.<br>
3167
3168 <tt>global_begin()</tt>, <tt>global_end()</tt>
3169 <tt>global_size()</tt>, <tt>global_empty()</tt>
3170
3171 <p> These are forwarding methods that make it easy to access the contents of
3172 a <tt>Module</tt> object's <a
3173 href="#GlobalVariable"><tt>GlobalVariable</tt></a> list.</p></li>
3174
3175 <li><tt>Module::GlobalListType &amp;getGlobalList()</tt>
3176
3177 <p>Returns the list of <a
3178 href="#GlobalVariable"><tt>GlobalVariable</tt></a>s. This is necessary to
3179 use when you need to update the list or perform a complex action that
3180 doesn't have a forwarding method.</p>
3181
3182 <p><!-- Symbol table stuff --> </p></li>
3183</ul>
3184
3185<hr>
3186
3187<ul>
3188 <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
3189
3190 <p>Return a reference to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
3191 for this <tt>Module</tt>.</p>
3192
3193 <p><!-- Convenience methods --></p></li>
3194</ul>
3195
3196<hr>
3197
3198<ul>
3199 <li><tt><a href="#Function">Function</a> *getFunction(const std::string
3200 &amp;Name, const <a href="#FunctionType">FunctionType</a> *Ty)</tt>
3201
3202 <p>Look up the specified function in the <tt>Module</tt> <a
3203 href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, return
3204 <tt>null</tt>.</p></li>
3205
3206 <li><tt><a href="#Function">Function</a> *getOrInsertFunction(const
3207 std::string &amp;Name, const <a href="#FunctionType">FunctionType</a> *T)</tt>
3208
3209 <p>Look up the specified function in the <tt>Module</tt> <a
3210 href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, add an
3211 external declaration for the function and return it.</p></li>
3212
3213 <li><tt>std::string getTypeName(const <a href="#Type">Type</a> *Ty)</tt>
3214
3215 <p>If there is at least one entry in the <a
3216 href="#SymbolTable"><tt>SymbolTable</tt></a> for the specified <a
3217 href="#Type"><tt>Type</tt></a>, return it. Otherwise return the empty
3218 string.</p></li>
3219
3220 <li><tt>bool addTypeName(const std::string &amp;Name, const <a
3221 href="#Type">Type</a> *Ty)</tt>
3222
3223 <p>Insert an entry in the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
3224 mapping <tt>Name</tt> to <tt>Ty</tt>. If there is already an entry for this
3225 name, true is returned and the <a
3226 href="#SymbolTable"><tt>SymbolTable</tt></a> is not modified.</p></li>
3227</ul>
3228
3229</div>
3230
3231
3232<!-- ======================================================================= -->
3233<div class="doc_subsection">
3234 <a name="Value">The <tt>Value</tt> class</a>
3235</div>
3236
3237<div class="doc_text">
3238
3239<p><tt>#include "<a href="/doxygen/Value_8h-source.html">llvm/Value.h</a>"</tt>
3240<br>
3241doxygen info: <a href="/doxygen/classllvm_1_1Value.html">Value Class</a></p>
3242
3243<p>The <tt>Value</tt> class is the most important class in the LLVM Source
3244base. It represents a typed value that may be used (among other things) as an
3245operand to an instruction. There are many different types of <tt>Value</tt>s,
3246such as <a href="#Constant"><tt>Constant</tt></a>s,<a
3247href="#Argument"><tt>Argument</tt></a>s. Even <a
3248href="#Instruction"><tt>Instruction</tt></a>s and <a
3249href="#Function"><tt>Function</tt></a>s are <tt>Value</tt>s.</p>
3250
3251<p>A particular <tt>Value</tt> may be used many times in the LLVM representation
3252for a program. For example, an incoming argument to a function (represented
3253with an instance of the <a href="#Argument">Argument</a> class) is "used" by
3254every instruction in the function that references the argument. To keep track
3255of this relationship, the <tt>Value</tt> class keeps a list of all of the <a
3256href="#User"><tt>User</tt></a>s that is using it (the <a
3257href="#User"><tt>User</tt></a> class is a base class for all nodes in the LLVM
3258graph that can refer to <tt>Value</tt>s). This use list is how LLVM represents
3259def-use information in the program, and is accessible through the <tt>use_</tt>*
3260methods, shown below.</p>
3261
3262<p>Because LLVM is a typed representation, every LLVM <tt>Value</tt> is typed,
3263and this <a href="#Type">Type</a> is available through the <tt>getType()</tt>
3264method. In addition, all LLVM values can be named. The "name" of the
3265<tt>Value</tt> is a symbolic string printed in the LLVM code:</p>
3266
3267<div class="doc_code">
3268<pre>
3269%<b>foo</b> = add i32 1, 2
3270</pre>
3271</div>
3272
3273<p><a name="nameWarning">The name of this instruction is "foo".</a> <b>NOTE</b>
3274that the name of any value may be missing (an empty string), so names should
3275<b>ONLY</b> be used for debugging (making the source code easier to read,
3276debugging printouts), they should not be used to keep track of values or map
3277between them. For this purpose, use a <tt>std::map</tt> of pointers to the
3278<tt>Value</tt> itself instead.</p>
3279
3280<p>One important aspect of LLVM is that there is no distinction between an SSA
3281variable and the operation that produces it. Because of this, any reference to
3282the value produced by an instruction (or the value available as an incoming
3283argument, for example) is represented as a direct pointer to the instance of
3284the class that
3285represents this value. Although this may take some getting used to, it
3286simplifies the representation and makes it easier to manipulate.</p>
3287
3288</div>
3289
3290<!-- _______________________________________________________________________ -->
3291<div class="doc_subsubsection">
3292 <a name="m_Value">Important Public Members of the <tt>Value</tt> class</a>
3293</div>
3294
3295<div class="doc_text">
3296
3297<ul>
3298 <li><tt>Value::use_iterator</tt> - Typedef for iterator over the
3299use-list<br>
3300 <tt>Value::use_const_iterator</tt> - Typedef for const_iterator over
3301the use-list<br>
3302 <tt>unsigned use_size()</tt> - Returns the number of users of the
3303value.<br>
3304 <tt>bool use_empty()</tt> - Returns true if there are no users.<br>
3305 <tt>use_iterator use_begin()</tt> - Get an iterator to the start of
3306the use-list.<br>
3307 <tt>use_iterator use_end()</tt> - Get an iterator to the end of the
3308use-list.<br>
3309 <tt><a href="#User">User</a> *use_back()</tt> - Returns the last
3310element in the list.
3311 <p> These methods are the interface to access the def-use
3312information in LLVM. As with all other iterators in LLVM, the naming
3313conventions follow the conventions defined by the <a href="#stl">STL</a>.</p>
3314 </li>
3315 <li><tt><a href="#Type">Type</a> *getType() const</tt>
3316 <p>This method returns the Type of the Value.</p>
3317 </li>
3318 <li><tt>bool hasName() const</tt><br>
3319 <tt>std::string getName() const</tt><br>
3320 <tt>void setName(const std::string &amp;Name)</tt>
3321 <p> This family of methods is used to access and assign a name to a <tt>Value</tt>,
3322be aware of the <a href="#nameWarning">precaution above</a>.</p>
3323 </li>
3324 <li><tt>void replaceAllUsesWith(Value *V)</tt>
3325
3326 <p>This method traverses the use list of a <tt>Value</tt> changing all <a
3327 href="#User"><tt>User</tt>s</a> of the current value to refer to
3328 "<tt>V</tt>" instead. For example, if you detect that an instruction always
3329 produces a constant value (for example through constant folding), you can
3330 replace all uses of the instruction with the constant like this:</p>
3331
3332<div class="doc_code">
3333<pre>
3334Inst-&gt;replaceAllUsesWith(ConstVal);
3335</pre>
3336</div>
3337
3338</ul>
3339
3340</div>
3341
3342<!-- ======================================================================= -->
3343<div class="doc_subsection">
3344 <a name="User">The <tt>User</tt> class</a>
3345</div>
3346
3347<div class="doc_text">
3348
3349<p>
3350<tt>#include "<a href="/doxygen/User_8h-source.html">llvm/User.h</a>"</tt><br>
3351doxygen info: <a href="/doxygen/classllvm_1_1User.html">User Class</a><br>
3352Superclass: <a href="#Value"><tt>Value</tt></a></p>
3353
3354<p>The <tt>User</tt> class is the common base class of all LLVM nodes that may
3355refer to <a href="#Value"><tt>Value</tt></a>s. It exposes a list of "Operands"
3356that are all of the <a href="#Value"><tt>Value</tt></a>s that the User is
3357referring to. The <tt>User</tt> class itself is a subclass of
3358<tt>Value</tt>.</p>
3359
3360<p>The operands of a <tt>User</tt> point directly to the LLVM <a
3361href="#Value"><tt>Value</tt></a> that it refers to. Because LLVM uses Static
3362Single Assignment (SSA) form, there can only be one definition referred to,
3363allowing this direct connection. This connection provides the use-def
3364information in LLVM.</p>
3365
3366</div>
3367
3368<!-- _______________________________________________________________________ -->
3369<div class="doc_subsubsection">
3370 <a name="m_User">Important Public Members of the <tt>User</tt> class</a>
3371</div>
3372
3373<div class="doc_text">
3374
3375<p>The <tt>User</tt> class exposes the operand list in two ways: through
3376an index access interface and through an iterator based interface.</p>
3377
3378<ul>
3379 <li><tt>Value *getOperand(unsigned i)</tt><br>
3380 <tt>unsigned getNumOperands()</tt>
3381 <p> These two methods expose the operands of the <tt>User</tt> in a
3382convenient form for direct access.</p></li>
3383
3384 <li><tt>User::op_iterator</tt> - Typedef for iterator over the operand
3385list<br>
3386 <tt>op_iterator op_begin()</tt> - Get an iterator to the start of
3387the operand list.<br>
3388 <tt>op_iterator op_end()</tt> - Get an iterator to the end of the
3389operand list.
3390 <p> Together, these methods make up the iterator based interface to
3391the operands of a <tt>User</tt>.</p></li>
3392</ul>
3393
3394</div>
3395
3396<!-- ======================================================================= -->
3397<div class="doc_subsection">
3398 <a name="Instruction">The <tt>Instruction</tt> class</a>
3399</div>
3400
3401<div class="doc_text">
3402
3403<p><tt>#include "</tt><tt><a
3404href="/doxygen/Instruction_8h-source.html">llvm/Instruction.h</a>"</tt><br>
3405doxygen info: <a href="/doxygen/classllvm_1_1Instruction.html">Instruction Class</a><br>
3406Superclasses: <a href="#User"><tt>User</tt></a>, <a
3407href="#Value"><tt>Value</tt></a></p>
3408
3409<p>The <tt>Instruction</tt> class is the common base class for all LLVM
3410instructions. It provides only a few methods, but is a very commonly used
3411class. The primary data tracked by the <tt>Instruction</tt> class itself is the
3412opcode (instruction type) and the parent <a
3413href="#BasicBlock"><tt>BasicBlock</tt></a> the <tt>Instruction</tt> is embedded
3414into. To represent a specific type of instruction, one of many subclasses of
3415<tt>Instruction</tt> are used.</p>
3416
3417<p> Because the <tt>Instruction</tt> class subclasses the <a
3418href="#User"><tt>User</tt></a> class, its operands can be accessed in the same
3419way as for other <a href="#User"><tt>User</tt></a>s (with the
3420<tt>getOperand()</tt>/<tt>getNumOperands()</tt> and
3421<tt>op_begin()</tt>/<tt>op_end()</tt> methods).</p> <p> An important file for
3422the <tt>Instruction</tt> class is the <tt>llvm/Instruction.def</tt> file. This
3423file contains some meta-data about the various different types of instructions
3424in LLVM. It describes the enum values that are used as opcodes (for example
3425<tt>Instruction::Add</tt> and <tt>Instruction::ICmp</tt>), as well as the
3426concrete sub-classes of <tt>Instruction</tt> that implement the instruction (for
3427example <tt><a href="#BinaryOperator">BinaryOperator</a></tt> and <tt><a
3428href="#CmpInst">CmpInst</a></tt>). Unfortunately, the use of macros in
3429this file confuses doxygen, so these enum values don't show up correctly in the
3430<a href="/doxygen/classllvm_1_1Instruction.html">doxygen output</a>.</p>
3431
3432</div>
3433
3434<!-- _______________________________________________________________________ -->
3435<div class="doc_subsubsection">
3436 <a name="s_Instruction">Important Subclasses of the <tt>Instruction</tt>
3437 class</a>
3438</div>
3439<div class="doc_text">
3440 <ul>
3441 <li><tt><a name="BinaryOperator">BinaryOperator</a></tt>
3442 <p>This subclasses represents all two operand instructions whose operands
3443 must be the same type, except for the comparison instructions.</p></li>
3444 <li><tt><a name="CastInst">CastInst</a></tt>
3445 <p>This subclass is the parent of the 12 casting instructions. It provides
3446 common operations on cast instructions.</p>
3447 <li><tt><a name="CmpInst">CmpInst</a></tt>
3448 <p>This subclass respresents the two comparison instructions,
3449 <a href="LangRef.html#i_icmp">ICmpInst</a> (integer opreands), and
3450 <a href="LangRef.html#i_fcmp">FCmpInst</a> (floating point operands).</p>
3451 <li><tt><a name="TerminatorInst">TerminatorInst</a></tt>
3452 <p>This subclass is the parent of all terminator instructions (those which
3453 can terminate a block).</p>
3454 </ul>
3455 </div>
3456
3457<!-- _______________________________________________________________________ -->
3458<div class="doc_subsubsection">
3459 <a name="m_Instruction">Important Public Members of the <tt>Instruction</tt>
3460 class</a>
3461</div>
3462
3463<div class="doc_text">
3464
3465<ul>
3466 <li><tt><a href="#BasicBlock">BasicBlock</a> *getParent()</tt>
3467 <p>Returns the <a href="#BasicBlock"><tt>BasicBlock</tt></a> that
3468this <tt>Instruction</tt> is embedded into.</p></li>
3469 <li><tt>bool mayWriteToMemory()</tt>
3470 <p>Returns true if the instruction writes to memory, i.e. it is a
3471 <tt>call</tt>,<tt>free</tt>,<tt>invoke</tt>, or <tt>store</tt>.</p></li>
3472 <li><tt>unsigned getOpcode()</tt>
3473 <p>Returns the opcode for the <tt>Instruction</tt>.</p></li>
3474 <li><tt><a href="#Instruction">Instruction</a> *clone() const</tt>
3475 <p>Returns another instance of the specified instruction, identical
3476in all ways to the original except that the instruction has no parent
3477(ie it's not embedded into a <a href="#BasicBlock"><tt>BasicBlock</tt></a>),
3478and it has no name</p></li>
3479</ul>
3480
3481</div>
3482
3483<!-- ======================================================================= -->
3484<div class="doc_subsection">
3485 <a name="Constant">The <tt>Constant</tt> class and subclasses</a>
3486</div>
3487
3488<div class="doc_text">
3489
3490<p>Constant represents a base class for different types of constants. It
3491is subclassed by ConstantInt, ConstantArray, etc. for representing
3492the various types of Constants. <a href="#GlobalValue">GlobalValue</a> is also
3493a subclass, which represents the address of a global variable or function.
3494</p>
3495
3496</div>
3497
3498<!-- _______________________________________________________________________ -->
3499<div class="doc_subsubsection">Important Subclasses of Constant </div>
3500<div class="doc_text">
3501<ul>
3502 <li>ConstantInt : This subclass of Constant represents an integer constant of
3503 any width.
3504 <ul>
3505 <li><tt>const APInt&amp; getValue() const</tt>: Returns the underlying
3506 value of this constant, an APInt value.</li>
3507 <li><tt>int64_t getSExtValue() const</tt>: Converts the underlying APInt
3508 value to an int64_t via sign extension. If the value (not the bit width)
3509 of the APInt is too large to fit in an int64_t, an assertion will result.
3510 For this reason, use of this method is discouraged.</li>
3511 <li><tt>uint64_t getZExtValue() const</tt>: Converts the underlying APInt
3512 value to a uint64_t via zero extension. IF the value (not the bit width)
3513 of the APInt is too large to fit in a uint64_t, an assertion will result.
3514 For this reason, use of this method is discouraged.</li>
3515 <li><tt>static ConstantInt* get(const APInt&amp; Val)</tt>: Returns the
3516 ConstantInt object that represents the value provided by <tt>Val</tt>.
3517 The type is implied as the IntegerType that corresponds to the bit width
3518 of <tt>Val</tt>.</li>
3519 <li><tt>static ConstantInt* get(const Type *Ty, uint64_t Val)</tt>:
3520 Returns the ConstantInt object that represents the value provided by
3521 <tt>Val</tt> for integer type <tt>Ty</tt>.</li>
3522 </ul>
3523 </li>
3524 <li>ConstantFP : This class represents a floating point constant.
3525 <ul>
3526 <li><tt>double getValue() const</tt>: Returns the underlying value of
3527 this constant. </li>
3528 </ul>
3529 </li>
3530 <li>ConstantArray : This represents a constant array.
3531 <ul>
3532 <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns
3533 a vector of component constants that makeup this array. </li>
3534 </ul>
3535 </li>
3536 <li>ConstantStruct : This represents a constant struct.
3537 <ul>
3538 <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns
3539 a vector of component constants that makeup this array. </li>
3540 </ul>
3541 </li>
3542 <li>GlobalValue : This represents either a global variable or a function. In
3543 either case, the value is a constant fixed address (after linking).
3544 </li>
3545</ul>
3546</div>
3547
3548
3549<!-- ======================================================================= -->
3550<div class="doc_subsection">
3551 <a name="GlobalValue">The <tt>GlobalValue</tt> class</a>
3552</div>
3553
3554<div class="doc_text">
3555
3556<p><tt>#include "<a
3557href="/doxygen/GlobalValue_8h-source.html">llvm/GlobalValue.h</a>"</tt><br>
3558doxygen info: <a href="/doxygen/classllvm_1_1GlobalValue.html">GlobalValue
3559Class</a><br>
3560Superclasses: <a href="#Constant"><tt>Constant</tt></a>,
3561<a href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a></p>
3562
3563<p>Global values (<a href="#GlobalVariable"><tt>GlobalVariable</tt></a>s or <a
3564href="#Function"><tt>Function</tt></a>s) are the only LLVM values that are
3565visible in the bodies of all <a href="#Function"><tt>Function</tt></a>s.
3566Because they are visible at global scope, they are also subject to linking with
3567other globals defined in different translation units. To control the linking
3568process, <tt>GlobalValue</tt>s know their linkage rules. Specifically,
3569<tt>GlobalValue</tt>s know whether they have internal or external linkage, as
3570defined by the <tt>LinkageTypes</tt> enumeration.</p>
3571
3572<p>If a <tt>GlobalValue</tt> has internal linkage (equivalent to being
3573<tt>static</tt> in C), it is not visible to code outside the current translation
3574unit, and does not participate in linking. If it has external linkage, it is
3575visible to external code, and does participate in linking. In addition to
3576linkage information, <tt>GlobalValue</tt>s keep track of which <a
3577href="#Module"><tt>Module</tt></a> they are currently part of.</p>
3578
3579<p>Because <tt>GlobalValue</tt>s are memory objects, they are always referred to
3580by their <b>address</b>. As such, the <a href="#Type"><tt>Type</tt></a> of a
3581global is always a pointer to its contents. It is important to remember this
3582when using the <tt>GetElementPtrInst</tt> instruction because this pointer must
3583be dereferenced first. For example, if you have a <tt>GlobalVariable</tt> (a
3584subclass of <tt>GlobalValue)</tt> that is an array of 24 ints, type <tt>[24 x
3585i32]</tt>, then the <tt>GlobalVariable</tt> is a pointer to that array. Although
3586the address of the first element of this array and the value of the
3587<tt>GlobalVariable</tt> are the same, they have different types. The
3588<tt>GlobalVariable</tt>'s type is <tt>[24 x i32]</tt>. The first element's type
3589is <tt>i32.</tt> Because of this, accessing a global value requires you to
3590dereference the pointer with <tt>GetElementPtrInst</tt> first, then its elements
3591can be accessed. This is explained in the <a href="LangRef.html#globalvars">LLVM
3592Language Reference Manual</a>.</p>
3593
3594</div>
3595
3596<!-- _______________________________________________________________________ -->
3597<div class="doc_subsubsection">
3598 <a name="m_GlobalValue">Important Public Members of the <tt>GlobalValue</tt>
3599 class</a>
3600</div>
3601
3602<div class="doc_text">
3603
3604<ul>
3605 <li><tt>bool hasInternalLinkage() const</tt><br>
3606 <tt>bool hasExternalLinkage() const</tt><br>
3607 <tt>void setInternalLinkage(bool HasInternalLinkage)</tt>
3608 <p> These methods manipulate the linkage characteristics of the <tt>GlobalValue</tt>.</p>
3609 <p> </p>
3610 </li>
3611 <li><tt><a href="#Module">Module</a> *getParent()</tt>
3612 <p> This returns the <a href="#Module"><tt>Module</tt></a> that the
3613GlobalValue is currently embedded into.</p></li>
3614</ul>
3615
3616</div>
3617
3618<!-- ======================================================================= -->
3619<div class="doc_subsection">
3620 <a name="Function">The <tt>Function</tt> class</a>
3621</div>
3622
3623<div class="doc_text">
3624
3625<p><tt>#include "<a
3626href="/doxygen/Function_8h-source.html">llvm/Function.h</a>"</tt><br> doxygen
3627info: <a href="/doxygen/classllvm_1_1Function.html">Function Class</a><br>
3628Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>,
3629<a href="#Constant"><tt>Constant</tt></a>,
3630<a href="#User"><tt>User</tt></a>,
3631<a href="#Value"><tt>Value</tt></a></p>
3632
3633<p>The <tt>Function</tt> class represents a single procedure in LLVM. It is
Edwin Törökb26e2792009-10-12 13:37:29 +00003634actually one of the more complex classes in the LLVM hierarchy because it must
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003635keep track of a large amount of data. The <tt>Function</tt> class keeps track
3636of a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, a list of formal
3637<a href="#Argument"><tt>Argument</tt></a>s, and a
3638<a href="#SymbolTable"><tt>SymbolTable</tt></a>.</p>
3639
3640<p>The list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s is the most
3641commonly used part of <tt>Function</tt> objects. The list imposes an implicit
3642ordering of the blocks in the function, which indicate how the code will be
Benjamin Kramer5fb9d7e2009-10-12 14:46:08 +00003643laid out by the backend. Additionally, the first <a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003644href="#BasicBlock"><tt>BasicBlock</tt></a> is the implicit entry node for the
3645<tt>Function</tt>. It is not legal in LLVM to explicitly branch to this initial
3646block. There are no implicit exit nodes, and in fact there may be multiple exit
3647nodes from a single <tt>Function</tt>. If the <a
3648href="#BasicBlock"><tt>BasicBlock</tt></a> list is empty, this indicates that
3649the <tt>Function</tt> is actually a function declaration: the actual body of the
3650function hasn't been linked in yet.</p>
3651
3652<p>In addition to a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, the
3653<tt>Function</tt> class also keeps track of the list of formal <a
3654href="#Argument"><tt>Argument</tt></a>s that the function receives. This
3655container manages the lifetime of the <a href="#Argument"><tt>Argument</tt></a>
3656nodes, just like the <a href="#BasicBlock"><tt>BasicBlock</tt></a> list does for
3657the <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.</p>
3658
3659<p>The <a href="#SymbolTable"><tt>SymbolTable</tt></a> is a very rarely used
3660LLVM feature that is only used when you have to look up a value by name. Aside
3661from that, the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is used
3662internally to make sure that there are not conflicts between the names of <a
3663href="#Instruction"><tt>Instruction</tt></a>s, <a
3664href="#BasicBlock"><tt>BasicBlock</tt></a>s, or <a
3665href="#Argument"><tt>Argument</tt></a>s in the function body.</p>
3666
3667<p>Note that <tt>Function</tt> is a <a href="#GlobalValue">GlobalValue</a>
3668and therefore also a <a href="#Constant">Constant</a>. The value of the function
3669is its address (after linking) which is guaranteed to be constant.</p>
3670</div>
3671
3672<!-- _______________________________________________________________________ -->
3673<div class="doc_subsubsection">
3674 <a name="m_Function">Important Public Members of the <tt>Function</tt>
3675 class</a>
3676</div>
3677
3678<div class="doc_text">
3679
3680<ul>
3681 <li><tt>Function(const </tt><tt><a href="#FunctionType">FunctionType</a>
3682 *Ty, LinkageTypes Linkage, const std::string &amp;N = "", Module* Parent = 0)</tt>
3683
3684 <p>Constructor used when you need to create new <tt>Function</tt>s to add
3685 the the program. The constructor must specify the type of the function to
3686 create and what type of linkage the function should have. The <a
3687 href="#FunctionType"><tt>FunctionType</tt></a> argument
3688 specifies the formal arguments and return value for the function. The same
3689 <a href="#FunctionType"><tt>FunctionType</tt></a> value can be used to
3690 create multiple functions. The <tt>Parent</tt> argument specifies the Module
3691 in which the function is defined. If this argument is provided, the function
3692 will automatically be inserted into that module's list of
3693 functions.</p></li>
3694
Chris Lattner5e709572008-11-25 18:34:50 +00003695 <li><tt>bool isDeclaration()</tt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003696
3697 <p>Return whether or not the <tt>Function</tt> has a body defined. If the
3698 function is "external", it does not have a body, and thus must be resolved
3699 by linking with a function defined in a different translation unit.</p></li>
3700
3701 <li><tt>Function::iterator</tt> - Typedef for basic block list iterator<br>
3702 <tt>Function::const_iterator</tt> - Typedef for const_iterator.<br>
3703
3704 <tt>begin()</tt>, <tt>end()</tt>
3705 <tt>size()</tt>, <tt>empty()</tt>
3706
3707 <p>These are forwarding methods that make it easy to access the contents of
3708 a <tt>Function</tt> object's <a href="#BasicBlock"><tt>BasicBlock</tt></a>
3709 list.</p></li>
3710
3711 <li><tt>Function::BasicBlockListType &amp;getBasicBlockList()</tt>
3712
3713 <p>Returns the list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s. This
3714 is necessary to use when you need to update the list or perform a complex
3715 action that doesn't have a forwarding method.</p></li>
3716
3717 <li><tt>Function::arg_iterator</tt> - Typedef for the argument list
3718iterator<br>
3719 <tt>Function::const_arg_iterator</tt> - Typedef for const_iterator.<br>
3720
3721 <tt>arg_begin()</tt>, <tt>arg_end()</tt>
3722 <tt>arg_size()</tt>, <tt>arg_empty()</tt>
3723
3724 <p>These are forwarding methods that make it easy to access the contents of
3725 a <tt>Function</tt> object's <a href="#Argument"><tt>Argument</tt></a>
3726 list.</p></li>
3727
3728 <li><tt>Function::ArgumentListType &amp;getArgumentList()</tt>
3729
3730 <p>Returns the list of <a href="#Argument"><tt>Argument</tt></a>s. This is
3731 necessary to use when you need to update the list or perform a complex
3732 action that doesn't have a forwarding method.</p></li>
3733
3734 <li><tt><a href="#BasicBlock">BasicBlock</a> &amp;getEntryBlock()</tt>
3735
3736 <p>Returns the entry <a href="#BasicBlock"><tt>BasicBlock</tt></a> for the
3737 function. Because the entry block for the function is always the first
3738 block, this returns the first block of the <tt>Function</tt>.</p></li>
3739
3740 <li><tt><a href="#Type">Type</a> *getReturnType()</tt><br>
3741 <tt><a href="#FunctionType">FunctionType</a> *getFunctionType()</tt>
3742
3743 <p>This traverses the <a href="#Type"><tt>Type</tt></a> of the
3744 <tt>Function</tt> and returns the return type of the function, or the <a
3745 href="#FunctionType"><tt>FunctionType</tt></a> of the actual
3746 function.</p></li>
3747
3748 <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
3749
3750 <p> Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
3751 for this <tt>Function</tt>.</p></li>
3752</ul>
3753
3754</div>
3755
3756<!-- ======================================================================= -->
3757<div class="doc_subsection">
3758 <a name="GlobalVariable">The <tt>GlobalVariable</tt> class</a>
3759</div>
3760
3761<div class="doc_text">
3762
3763<p><tt>#include "<a
3764href="/doxygen/GlobalVariable_8h-source.html">llvm/GlobalVariable.h</a>"</tt>
3765<br>
3766doxygen info: <a href="/doxygen/classllvm_1_1GlobalVariable.html">GlobalVariable
3767 Class</a><br>
3768Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>,
3769<a href="#Constant"><tt>Constant</tt></a>,
3770<a href="#User"><tt>User</tt></a>,
3771<a href="#Value"><tt>Value</tt></a></p>
3772
Benjamin Kramer5fb9d7e2009-10-12 14:46:08 +00003773<p>Global variables are represented with the (surprise surprise)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003774<tt>GlobalVariable</tt> class. Like functions, <tt>GlobalVariable</tt>s are also
3775subclasses of <a href="#GlobalValue"><tt>GlobalValue</tt></a>, and as such are
3776always referenced by their address (global values must live in memory, so their
3777"name" refers to their constant address). See
3778<a href="#GlobalValue"><tt>GlobalValue</tt></a> for more on this. Global
3779variables may have an initial value (which must be a
3780<a href="#Constant"><tt>Constant</tt></a>), and if they have an initializer,
3781they may be marked as "constant" themselves (indicating that their contents
3782never change at runtime).</p>
3783</div>
3784
3785<!-- _______________________________________________________________________ -->
3786<div class="doc_subsubsection">
3787 <a name="m_GlobalVariable">Important Public Members of the
3788 <tt>GlobalVariable</tt> class</a>
3789</div>
3790
3791<div class="doc_text">
3792
3793<ul>
3794 <li><tt>GlobalVariable(const </tt><tt><a href="#Type">Type</a> *Ty, bool
3795 isConstant, LinkageTypes&amp; Linkage, <a href="#Constant">Constant</a>
3796 *Initializer = 0, const std::string &amp;Name = "", Module* Parent = 0)</tt>
3797
3798 <p>Create a new global variable of the specified type. If
3799 <tt>isConstant</tt> is true then the global variable will be marked as
3800 unchanging for the program. The Linkage parameter specifies the type of
Duncan Sands19d161f2009-03-07 15:45:40 +00003801 linkage (internal, external, weak, linkonce, appending) for the variable.
3802 If the linkage is InternalLinkage, WeakAnyLinkage, WeakODRLinkage,
3803 LinkOnceAnyLinkage or LinkOnceODRLinkage,&nbsp; then the resultant
3804 global variable will have internal linkage. AppendingLinkage concatenates
3805 together all instances (in different translation units) of the variable
3806 into a single variable but is only applicable to arrays. &nbsp;See
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003807 the <a href="LangRef.html#modulestructure">LLVM Language Reference</a> for
3808 further details on linkage types. Optionally an initializer, a name, and the
3809 module to put the variable into may be specified for the global variable as
3810 well.</p></li>
3811
3812 <li><tt>bool isConstant() const</tt>
3813
3814 <p>Returns true if this is a global variable that is known not to
3815 be modified at runtime.</p></li>
3816
3817 <li><tt>bool hasInitializer()</tt>
3818
3819 <p>Returns true if this <tt>GlobalVariable</tt> has an intializer.</p></li>
3820
3821 <li><tt><a href="#Constant">Constant</a> *getInitializer()</tt>
3822
Benjamin Kramer5fb9d7e2009-10-12 14:46:08 +00003823 <p>Returns the initial value for a <tt>GlobalVariable</tt>. It is not legal
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003824 to call this method if there is no initializer.</p></li>
3825</ul>
3826
3827</div>
3828
3829
3830<!-- ======================================================================= -->
3831<div class="doc_subsection">
3832 <a name="BasicBlock">The <tt>BasicBlock</tt> class</a>
3833</div>
3834
3835<div class="doc_text">
3836
3837<p><tt>#include "<a
3838href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt><br>
Stefanus Du Toitf017c852009-06-17 21:12:26 +00003839doxygen info: <a href="/doxygen/classllvm_1_1BasicBlock.html">BasicBlock
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003840Class</a><br>
3841Superclass: <a href="#Value"><tt>Value</tt></a></p>
3842
3843<p>This class represents a single entry multiple exit section of the code,
3844commonly known as a basic block by the compiler community. The
3845<tt>BasicBlock</tt> class maintains a list of <a
3846href="#Instruction"><tt>Instruction</tt></a>s, which form the body of the block.
3847Matching the language definition, the last element of this list of instructions
3848is always a terminator instruction (a subclass of the <a
3849href="#TerminatorInst"><tt>TerminatorInst</tt></a> class).</p>
3850
3851<p>In addition to tracking the list of instructions that make up the block, the
3852<tt>BasicBlock</tt> class also keeps track of the <a
3853href="#Function"><tt>Function</tt></a> that it is embedded into.</p>
3854
3855<p>Note that <tt>BasicBlock</tt>s themselves are <a
3856href="#Value"><tt>Value</tt></a>s, because they are referenced by instructions
3857like branches and can go in the switch tables. <tt>BasicBlock</tt>s have type
3858<tt>label</tt>.</p>
3859
3860</div>
3861
3862<!-- _______________________________________________________________________ -->
3863<div class="doc_subsubsection">
3864 <a name="m_BasicBlock">Important Public Members of the <tt>BasicBlock</tt>
3865 class</a>
3866</div>
3867
3868<div class="doc_text">
3869<ul>
3870
3871<li><tt>BasicBlock(const std::string &amp;Name = "", </tt><tt><a
3872 href="#Function">Function</a> *Parent = 0)</tt>
3873
3874<p>The <tt>BasicBlock</tt> constructor is used to create new basic blocks for
3875insertion into a function. The constructor optionally takes a name for the new
3876block, and a <a href="#Function"><tt>Function</tt></a> to insert it into. If
3877the <tt>Parent</tt> parameter is specified, the new <tt>BasicBlock</tt> is
3878automatically inserted at the end of the specified <a
3879href="#Function"><tt>Function</tt></a>, if not specified, the BasicBlock must be
3880manually inserted into the <a href="#Function"><tt>Function</tt></a>.</p></li>
3881
3882<li><tt>BasicBlock::iterator</tt> - Typedef for instruction list iterator<br>
3883<tt>BasicBlock::const_iterator</tt> - Typedef for const_iterator.<br>
3884<tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
3885<tt>size()</tt>, <tt>empty()</tt>
3886STL-style functions for accessing the instruction list.
3887
3888<p>These methods and typedefs are forwarding functions that have the same
3889semantics as the standard library methods of the same names. These methods
3890expose the underlying instruction list of a basic block in a way that is easy to
3891manipulate. To get the full complement of container operations (including
3892operations to update the list), you must use the <tt>getInstList()</tt>
3893method.</p></li>
3894
3895<li><tt>BasicBlock::InstListType &amp;getInstList()</tt>
3896
3897<p>This method is used to get access to the underlying container that actually
3898holds the Instructions. This method must be used when there isn't a forwarding
3899function in the <tt>BasicBlock</tt> class for the operation that you would like
3900to perform. Because there are no forwarding functions for "updating"
3901operations, you need to use this if you want to update the contents of a
3902<tt>BasicBlock</tt>.</p></li>
3903
3904<li><tt><a href="#Function">Function</a> *getParent()</tt>
3905
3906<p> Returns a pointer to <a href="#Function"><tt>Function</tt></a> the block is
3907embedded into, or a null pointer if it is homeless.</p></li>
3908
3909<li><tt><a href="#TerminatorInst">TerminatorInst</a> *getTerminator()</tt>
3910
3911<p> Returns a pointer to the terminator instruction that appears at the end of
3912the <tt>BasicBlock</tt>. If there is no terminator instruction, or if the last
3913instruction in the block is not a terminator, then a null pointer is
3914returned.</p></li>
3915
3916</ul>
3917
3918</div>
3919
3920
3921<!-- ======================================================================= -->
3922<div class="doc_subsection">
3923 <a name="Argument">The <tt>Argument</tt> class</a>
3924</div>
3925
3926<div class="doc_text">
3927
3928<p>This subclass of Value defines the interface for incoming formal
3929arguments to a function. A Function maintains a list of its formal
3930arguments. An argument has a pointer to the parent Function.</p>
3931
3932</div>
3933
3934<!-- *********************************************************************** -->
3935<hr>
3936<address>
3937 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman947321d2008-12-11 17:34:48 +00003938 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003939 <a href="http://validator.w3.org/check/referer"><img
Gabor Greif7dabe382008-06-18 14:05:31 +00003940 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01 Strict"></a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003941
3942 <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a> and
3943 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
3944 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
3945 Last modified: $Date$
3946</address>
3947
3948</body>
3949</html>