Evan Cheng | a9c2091 | 2006-01-21 02:32:06 +0000 | [diff] [blame] | 1 | //===-- ScheduleDAGSimple.cpp - Implement a trivial DAG scheduler ---------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file was developed by James M. Laskey and is distributed under the |
| 6 | // University of Illinois Open Source License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This implements a simple two pass scheduler. The first pass attempts to push |
| 11 | // backward any lengthy instructions and critical paths. The second pass packs |
| 12 | // instructions into semi-optimal time slots. |
| 13 | // |
| 14 | //===----------------------------------------------------------------------===// |
| 15 | |
| 16 | #define DEBUG_TYPE "sched" |
| 17 | #include "llvm/CodeGen/ScheduleDAG.h" |
| 18 | #include "llvm/CodeGen/SelectionDAG.h" |
| 19 | #include "llvm/Target/TargetMachine.h" |
| 20 | #include "llvm/Target/TargetInstrInfo.h" |
Evan Cheng | a9c2091 | 2006-01-21 02:32:06 +0000 | [diff] [blame] | 21 | #include "llvm/Support/Debug.h" |
Jeff Cohen | 2aa750a | 2006-01-24 04:43:17 +0000 | [diff] [blame] | 22 | #include <algorithm> |
Chris Lattner | e76074a | 2006-03-10 07:35:21 +0000 | [diff] [blame] | 23 | #include <iostream> |
Evan Cheng | a9c2091 | 2006-01-21 02:32:06 +0000 | [diff] [blame] | 24 | using namespace llvm; |
| 25 | |
| 26 | namespace { |
Evan Cheng | a9c2091 | 2006-01-21 02:32:06 +0000 | [diff] [blame] | 27 | //===----------------------------------------------------------------------===// |
| 28 | /// |
| 29 | /// BitsIterator - Provides iteration through individual bits in a bit vector. |
| 30 | /// |
| 31 | template<class T> |
| 32 | class BitsIterator { |
| 33 | private: |
| 34 | T Bits; // Bits left to iterate through |
| 35 | |
| 36 | public: |
| 37 | /// Ctor. |
| 38 | BitsIterator(T Initial) : Bits(Initial) {} |
| 39 | |
| 40 | /// Next - Returns the next bit set or zero if exhausted. |
| 41 | inline T Next() { |
| 42 | // Get the rightmost bit set |
| 43 | T Result = Bits & -Bits; |
| 44 | // Remove from rest |
| 45 | Bits &= ~Result; |
| 46 | // Return single bit or zero |
| 47 | return Result; |
| 48 | } |
| 49 | }; |
| 50 | |
| 51 | //===----------------------------------------------------------------------===// |
| 52 | |
| 53 | |
| 54 | //===----------------------------------------------------------------------===// |
| 55 | /// |
| 56 | /// ResourceTally - Manages the use of resources over time intervals. Each |
| 57 | /// item (slot) in the tally vector represents the resources used at a given |
| 58 | /// moment. A bit set to 1 indicates that a resource is in use, otherwise |
| 59 | /// available. An assumption is made that the tally is large enough to schedule |
| 60 | /// all current instructions (asserts otherwise.) |
| 61 | /// |
| 62 | template<class T> |
| 63 | class ResourceTally { |
| 64 | private: |
| 65 | std::vector<T> Tally; // Resources used per slot |
| 66 | typedef typename std::vector<T>::iterator Iter; |
| 67 | // Tally iterator |
| 68 | |
| 69 | /// SlotsAvailable - Returns true if all units are available. |
| 70 | /// |
| 71 | bool SlotsAvailable(Iter Begin, unsigned N, unsigned ResourceSet, |
| 72 | unsigned &Resource) { |
| 73 | assert(N && "Must check availability with N != 0"); |
| 74 | // Determine end of interval |
| 75 | Iter End = Begin + N; |
| 76 | assert(End <= Tally.end() && "Tally is not large enough for schedule"); |
| 77 | |
| 78 | // Iterate thru each resource |
| 79 | BitsIterator<T> Resources(ResourceSet & ~*Begin); |
| 80 | while (unsigned Res = Resources.Next()) { |
| 81 | // Check if resource is available for next N slots |
| 82 | Iter Interval = End; |
| 83 | do { |
| 84 | Interval--; |
| 85 | if (*Interval & Res) break; |
| 86 | } while (Interval != Begin); |
| 87 | |
| 88 | // If available for N |
| 89 | if (Interval == Begin) { |
| 90 | // Success |
| 91 | Resource = Res; |
| 92 | return true; |
| 93 | } |
| 94 | } |
| 95 | |
| 96 | // No luck |
| 97 | Resource = 0; |
| 98 | return false; |
| 99 | } |
| 100 | |
| 101 | /// RetrySlot - Finds a good candidate slot to retry search. |
| 102 | Iter RetrySlot(Iter Begin, unsigned N, unsigned ResourceSet) { |
| 103 | assert(N && "Must check availability with N != 0"); |
| 104 | // Determine end of interval |
| 105 | Iter End = Begin + N; |
| 106 | assert(End <= Tally.end() && "Tally is not large enough for schedule"); |
| 107 | |
| 108 | while (Begin != End--) { |
| 109 | // Clear units in use |
| 110 | ResourceSet &= ~*End; |
| 111 | // If no units left then we should go no further |
| 112 | if (!ResourceSet) return End + 1; |
| 113 | } |
| 114 | // Made it all the way through |
| 115 | return Begin; |
| 116 | } |
| 117 | |
| 118 | /// FindAndReserveStages - Return true if the stages can be completed. If |
| 119 | /// so mark as busy. |
| 120 | bool FindAndReserveStages(Iter Begin, |
| 121 | InstrStage *Stage, InstrStage *StageEnd) { |
| 122 | // If at last stage then we're done |
| 123 | if (Stage == StageEnd) return true; |
| 124 | // Get number of cycles for current stage |
| 125 | unsigned N = Stage->Cycles; |
| 126 | // Check to see if N slots are available, if not fail |
| 127 | unsigned Resource; |
| 128 | if (!SlotsAvailable(Begin, N, Stage->Units, Resource)) return false; |
| 129 | // Check to see if remaining stages are available, if not fail |
| 130 | if (!FindAndReserveStages(Begin + N, Stage + 1, StageEnd)) return false; |
| 131 | // Reserve resource |
| 132 | Reserve(Begin, N, Resource); |
| 133 | // Success |
| 134 | return true; |
| 135 | } |
| 136 | |
| 137 | /// Reserve - Mark busy (set) the specified N slots. |
| 138 | void Reserve(Iter Begin, unsigned N, unsigned Resource) { |
| 139 | // Determine end of interval |
| 140 | Iter End = Begin + N; |
| 141 | assert(End <= Tally.end() && "Tally is not large enough for schedule"); |
| 142 | |
| 143 | // Set resource bit in each slot |
| 144 | for (; Begin < End; Begin++) |
| 145 | *Begin |= Resource; |
| 146 | } |
| 147 | |
| 148 | /// FindSlots - Starting from Begin, locate consecutive slots where all stages |
| 149 | /// can be completed. Returns the address of first slot. |
| 150 | Iter FindSlots(Iter Begin, InstrStage *StageBegin, InstrStage *StageEnd) { |
| 151 | // Track position |
| 152 | Iter Cursor = Begin; |
| 153 | |
| 154 | // Try all possible slots forward |
| 155 | while (true) { |
| 156 | // Try at cursor, if successful return position. |
| 157 | if (FindAndReserveStages(Cursor, StageBegin, StageEnd)) return Cursor; |
| 158 | // Locate a better position |
| 159 | Cursor = RetrySlot(Cursor + 1, StageBegin->Cycles, StageBegin->Units); |
| 160 | } |
| 161 | } |
| 162 | |
| 163 | public: |
| 164 | /// Initialize - Resize and zero the tally to the specified number of time |
| 165 | /// slots. |
| 166 | inline void Initialize(unsigned N) { |
| 167 | Tally.assign(N, 0); // Initialize tally to all zeros. |
| 168 | } |
| 169 | |
| 170 | // FindAndReserve - Locate an ideal slot for the specified stages and mark |
| 171 | // as busy. |
| 172 | unsigned FindAndReserve(unsigned Slot, InstrStage *StageBegin, |
| 173 | InstrStage *StageEnd) { |
| 174 | // Where to begin |
| 175 | Iter Begin = Tally.begin() + Slot; |
| 176 | // Find a free slot |
| 177 | Iter Where = FindSlots(Begin, StageBegin, StageEnd); |
| 178 | // Distance is slot number |
| 179 | unsigned Final = Where - Tally.begin(); |
| 180 | return Final; |
| 181 | } |
| 182 | |
| 183 | }; |
| 184 | |
| 185 | //===----------------------------------------------------------------------===// |
| 186 | /// |
| 187 | /// ScheduleDAGSimple - Simple two pass scheduler. |
| 188 | /// |
| 189 | class ScheduleDAGSimple : public ScheduleDAG { |
| 190 | private: |
Chris Lattner | 2f5806c | 2006-03-10 07:42:02 +0000 | [diff] [blame^] | 191 | SchedHeuristics Heuristic; // Scheduling heuristic |
| 192 | |
Evan Cheng | a9c2091 | 2006-01-21 02:32:06 +0000 | [diff] [blame] | 193 | ResourceTally<unsigned> Tally; // Resource usage tally |
| 194 | unsigned NSlots; // Total latency |
| 195 | static const unsigned NotFound = ~0U; // Search marker |
Chris Lattner | 2f5806c | 2006-03-10 07:42:02 +0000 | [diff] [blame^] | 196 | |
| 197 | unsigned NodeCount; // Number of nodes in DAG |
| 198 | std::map<SDNode *, NodeInfo *> Map; // Map nodes to info |
| 199 | bool HasGroups; // True if there are any groups |
| 200 | NodeInfo *Info; // Info for nodes being scheduled |
| 201 | NIVector Ordering; // Emit ordering of nodes |
| 202 | NodeGroup *HeadNG, *TailNG; // Keep track of allocated NodeGroups |
Evan Cheng | a9c2091 | 2006-01-21 02:32:06 +0000 | [diff] [blame] | 203 | |
| 204 | public: |
| 205 | |
| 206 | // Ctor. |
Evan Cheng | 4ef1086 | 2006-01-23 07:01:07 +0000 | [diff] [blame] | 207 | ScheduleDAGSimple(SchedHeuristics hstc, SelectionDAG &dag, |
| 208 | MachineBasicBlock *bb, const TargetMachine &tm) |
Chris Lattner | 2f5806c | 2006-03-10 07:42:02 +0000 | [diff] [blame^] | 209 | : ScheduleDAG(dag, bb, tm), Heuristic(hstc), Tally(), NSlots(0), |
| 210 | NodeCount(0), HasGroups(false), Info(NULL), HeadNG(NULL), TailNG(NULL) { |
Evan Cheng | a9c2091 | 2006-01-21 02:32:06 +0000 | [diff] [blame] | 211 | assert(&TII && "Target doesn't provide instr info?"); |
| 212 | assert(&MRI && "Target doesn't provide register info?"); |
| 213 | } |
| 214 | |
Chris Lattner | 2f5806c | 2006-03-10 07:42:02 +0000 | [diff] [blame^] | 215 | virtual ~ScheduleDAGSimple() { |
| 216 | if (Info) |
| 217 | delete[] Info; |
| 218 | |
| 219 | NodeGroup *NG = HeadNG; |
| 220 | while (NG) { |
| 221 | NodeGroup *NextSU = NG->Next; |
| 222 | delete NG; |
| 223 | NG = NextSU; |
| 224 | } |
| 225 | } |
Evan Cheng | a9c2091 | 2006-01-21 02:32:06 +0000 | [diff] [blame] | 226 | |
Evan Cheng | 4148429 | 2006-01-23 08:25:34 +0000 | [diff] [blame] | 227 | void Schedule(); |
| 228 | |
Chris Lattner | 2f5806c | 2006-03-10 07:42:02 +0000 | [diff] [blame^] | 229 | /// getNI - Returns the node info for the specified node. |
| 230 | /// |
| 231 | NodeInfo *getNI(SDNode *Node) { return Map[Node]; } |
| 232 | |
Evan Cheng | a9c2091 | 2006-01-21 02:32:06 +0000 | [diff] [blame] | 233 | private: |
Evan Cheng | a9c2091 | 2006-01-21 02:32:06 +0000 | [diff] [blame] | 234 | static bool isDefiner(NodeInfo *A, NodeInfo *B); |
Evan Cheng | a9c2091 | 2006-01-21 02:32:06 +0000 | [diff] [blame] | 235 | void IncludeNode(NodeInfo *NI); |
| 236 | void VisitAll(); |
Evan Cheng | a9c2091 | 2006-01-21 02:32:06 +0000 | [diff] [blame] | 237 | void GatherSchedulingInfo(); |
| 238 | void FakeGroupDominators(); |
Evan Cheng | a9c2091 | 2006-01-21 02:32:06 +0000 | [diff] [blame] | 239 | bool isStrongDependency(NodeInfo *A, NodeInfo *B); |
| 240 | bool isWeakDependency(NodeInfo *A, NodeInfo *B); |
| 241 | void ScheduleBackward(); |
| 242 | void ScheduleForward(); |
Chris Lattner | e76074a | 2006-03-10 07:35:21 +0000 | [diff] [blame] | 243 | |
| 244 | void AddToGroup(NodeInfo *D, NodeInfo *U); |
| 245 | /// PrepareNodeInfo - Set up the basic minimum node info for scheduling. |
| 246 | /// |
| 247 | void PrepareNodeInfo(); |
| 248 | |
| 249 | /// IdentifyGroups - Put flagged nodes into groups. |
| 250 | /// |
| 251 | void IdentifyGroups(); |
| 252 | |
| 253 | /// print - Print ordering to specified output stream. |
| 254 | /// |
| 255 | void print(std::ostream &O) const; |
| 256 | |
| 257 | void dump(const char *tag) const; |
| 258 | |
| 259 | virtual void dump() const; |
| 260 | |
| 261 | /// EmitAll - Emit all nodes in schedule sorted order. |
| 262 | /// |
| 263 | void EmitAll(); |
| 264 | |
| 265 | /// printNI - Print node info. |
| 266 | /// |
| 267 | void printNI(std::ostream &O, NodeInfo *NI) const; |
| 268 | |
| 269 | /// printChanges - Hilight changes in order caused by scheduling. |
| 270 | /// |
| 271 | void printChanges(unsigned Index) const; |
Evan Cheng | a9c2091 | 2006-01-21 02:32:06 +0000 | [diff] [blame] | 272 | }; |
| 273 | |
Evan Cheng | a9c2091 | 2006-01-21 02:32:06 +0000 | [diff] [blame] | 274 | //===----------------------------------------------------------------------===// |
| 275 | /// Special case itineraries. |
| 276 | /// |
| 277 | enum { |
| 278 | CallLatency = 40, // To push calls back in time |
| 279 | |
| 280 | RSInteger = 0xC0000000, // Two integer units |
| 281 | RSFloat = 0x30000000, // Two float units |
| 282 | RSLoadStore = 0x0C000000, // Two load store units |
| 283 | RSBranch = 0x02000000 // One branch unit |
| 284 | }; |
| 285 | static InstrStage CallStage = { CallLatency, RSBranch }; |
| 286 | static InstrStage LoadStage = { 5, RSLoadStore }; |
| 287 | static InstrStage StoreStage = { 2, RSLoadStore }; |
| 288 | static InstrStage IntStage = { 2, RSInteger }; |
| 289 | static InstrStage FloatStage = { 3, RSFloat }; |
| 290 | //===----------------------------------------------------------------------===// |
| 291 | |
Evan Cheng | a9c2091 | 2006-01-21 02:32:06 +0000 | [diff] [blame] | 292 | } // namespace |
| 293 | |
| 294 | //===----------------------------------------------------------------------===// |
| 295 | |
Chris Lattner | e76074a | 2006-03-10 07:35:21 +0000 | [diff] [blame] | 296 | /// PrepareNodeInfo - Set up the basic minimum node info for scheduling. |
| 297 | /// |
| 298 | void ScheduleDAGSimple::PrepareNodeInfo() { |
| 299 | // Allocate node information |
| 300 | Info = new NodeInfo[NodeCount]; |
| 301 | |
| 302 | unsigned i = 0; |
| 303 | for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), |
| 304 | E = DAG.allnodes_end(); I != E; ++I, ++i) { |
| 305 | // Fast reference to node schedule info |
| 306 | NodeInfo* NI = &Info[i]; |
| 307 | // Set up map |
| 308 | Map[I] = NI; |
| 309 | // Set node |
| 310 | NI->Node = I; |
| 311 | // Set pending visit count |
| 312 | NI->setPending(I->use_size()); |
| 313 | } |
| 314 | } |
| 315 | |
| 316 | /// IdentifyGroups - Put flagged nodes into groups. |
| 317 | /// |
| 318 | void ScheduleDAGSimple::IdentifyGroups() { |
| 319 | for (unsigned i = 0, N = NodeCount; i < N; i++) { |
| 320 | NodeInfo* NI = &Info[i]; |
| 321 | SDNode *Node = NI->Node; |
| 322 | |
| 323 | // For each operand (in reverse to only look at flags) |
| 324 | for (unsigned N = Node->getNumOperands(); 0 < N--;) { |
| 325 | // Get operand |
| 326 | SDOperand Op = Node->getOperand(N); |
| 327 | // No more flags to walk |
| 328 | if (Op.getValueType() != MVT::Flag) break; |
| 329 | // Add to node group |
| 330 | AddToGroup(getNI(Op.Val), NI); |
| 331 | // Let everyone else know |
| 332 | HasGroups = true; |
| 333 | } |
| 334 | } |
| 335 | } |
| 336 | |
| 337 | /// CountInternalUses - Returns the number of edges between the two nodes. |
| 338 | /// |
| 339 | static unsigned CountInternalUses(NodeInfo *D, NodeInfo *U) { |
| 340 | unsigned N = 0; |
| 341 | for (unsigned M = U->Node->getNumOperands(); 0 < M--;) { |
| 342 | SDOperand Op = U->Node->getOperand(M); |
| 343 | if (Op.Val == D->Node) N++; |
| 344 | } |
| 345 | |
| 346 | return N; |
| 347 | } |
| 348 | |
| 349 | //===----------------------------------------------------------------------===// |
| 350 | /// Add - Adds a definer and user pair to a node group. |
| 351 | /// |
| 352 | void ScheduleDAGSimple::AddToGroup(NodeInfo *D, NodeInfo *U) { |
| 353 | // Get current groups |
| 354 | NodeGroup *DGroup = D->Group; |
| 355 | NodeGroup *UGroup = U->Group; |
| 356 | // If both are members of groups |
| 357 | if (DGroup && UGroup) { |
| 358 | // There may have been another edge connecting |
| 359 | if (DGroup == UGroup) return; |
| 360 | // Add the pending users count |
| 361 | DGroup->addPending(UGroup->getPending()); |
| 362 | // For each member of the users group |
| 363 | NodeGroupIterator UNGI(U); |
| 364 | while (NodeInfo *UNI = UNGI.next() ) { |
| 365 | // Change the group |
| 366 | UNI->Group = DGroup; |
| 367 | // For each member of the definers group |
| 368 | NodeGroupIterator DNGI(D); |
| 369 | while (NodeInfo *DNI = DNGI.next() ) { |
| 370 | // Remove internal edges |
| 371 | DGroup->addPending(-CountInternalUses(DNI, UNI)); |
| 372 | } |
| 373 | } |
| 374 | // Merge the two lists |
| 375 | DGroup->group_insert(DGroup->group_end(), |
| 376 | UGroup->group_begin(), UGroup->group_end()); |
| 377 | } else if (DGroup) { |
| 378 | // Make user member of definers group |
| 379 | U->Group = DGroup; |
| 380 | // Add users uses to definers group pending |
| 381 | DGroup->addPending(U->Node->use_size()); |
| 382 | // For each member of the definers group |
| 383 | NodeGroupIterator DNGI(D); |
| 384 | while (NodeInfo *DNI = DNGI.next() ) { |
| 385 | // Remove internal edges |
| 386 | DGroup->addPending(-CountInternalUses(DNI, U)); |
| 387 | } |
| 388 | DGroup->group_push_back(U); |
| 389 | } else if (UGroup) { |
| 390 | // Make definer member of users group |
| 391 | D->Group = UGroup; |
| 392 | // Add definers uses to users group pending |
| 393 | UGroup->addPending(D->Node->use_size()); |
| 394 | // For each member of the users group |
| 395 | NodeGroupIterator UNGI(U); |
| 396 | while (NodeInfo *UNI = UNGI.next() ) { |
| 397 | // Remove internal edges |
| 398 | UGroup->addPending(-CountInternalUses(D, UNI)); |
| 399 | } |
| 400 | UGroup->group_insert(UGroup->group_begin(), D); |
| 401 | } else { |
| 402 | D->Group = U->Group = DGroup = new NodeGroup(); |
| 403 | DGroup->addPending(D->Node->use_size() + U->Node->use_size() - |
| 404 | CountInternalUses(D, U)); |
| 405 | DGroup->group_push_back(D); |
| 406 | DGroup->group_push_back(U); |
| 407 | |
| 408 | if (HeadNG == NULL) |
| 409 | HeadNG = DGroup; |
| 410 | if (TailNG != NULL) |
| 411 | TailNG->Next = DGroup; |
| 412 | TailNG = DGroup; |
| 413 | } |
| 414 | } |
| 415 | |
| 416 | |
| 417 | /// print - Print ordering to specified output stream. |
| 418 | /// |
| 419 | void ScheduleDAGSimple::print(std::ostream &O) const { |
| 420 | #ifndef NDEBUG |
| 421 | O << "Ordering\n"; |
| 422 | for (unsigned i = 0, N = Ordering.size(); i < N; i++) { |
| 423 | NodeInfo *NI = Ordering[i]; |
| 424 | printNI(O, NI); |
| 425 | O << "\n"; |
| 426 | if (NI->isGroupDominator()) { |
| 427 | NodeGroup *Group = NI->Group; |
| 428 | for (NIIterator NII = Group->group_begin(), E = Group->group_end(); |
| 429 | NII != E; NII++) { |
| 430 | O << " "; |
| 431 | printNI(O, *NII); |
| 432 | O << "\n"; |
| 433 | } |
| 434 | } |
| 435 | } |
| 436 | #endif |
| 437 | } |
| 438 | |
| 439 | void ScheduleDAGSimple::dump(const char *tag) const { |
| 440 | std::cerr << tag; dump(); |
| 441 | } |
| 442 | |
| 443 | void ScheduleDAGSimple::dump() const { |
| 444 | print(std::cerr); |
| 445 | } |
| 446 | |
| 447 | |
| 448 | /// EmitAll - Emit all nodes in schedule sorted order. |
| 449 | /// |
| 450 | void ScheduleDAGSimple::EmitAll() { |
| 451 | std::map<SDNode*, unsigned> VRBaseMap; |
| 452 | |
| 453 | // For each node in the ordering |
| 454 | for (unsigned i = 0, N = Ordering.size(); i < N; i++) { |
| 455 | // Get the scheduling info |
| 456 | NodeInfo *NI = Ordering[i]; |
| 457 | if (NI->isInGroup()) { |
| 458 | NodeGroupIterator NGI(Ordering[i]); |
| 459 | while (NodeInfo *NI = NGI.next()) EmitNode(NI->Node, VRBaseMap); |
| 460 | } else { |
| 461 | EmitNode(NI->Node, VRBaseMap); |
| 462 | } |
| 463 | } |
| 464 | } |
| 465 | |
| 466 | /// isFlagDefiner - Returns true if the node defines a flag result. |
| 467 | static bool isFlagDefiner(SDNode *A) { |
| 468 | unsigned N = A->getNumValues(); |
| 469 | return N && A->getValueType(N - 1) == MVT::Flag; |
| 470 | } |
| 471 | |
| 472 | /// isFlagUser - Returns true if the node uses a flag result. |
| 473 | /// |
| 474 | static bool isFlagUser(SDNode *A) { |
| 475 | unsigned N = A->getNumOperands(); |
| 476 | return N && A->getOperand(N - 1).getValueType() == MVT::Flag; |
| 477 | } |
| 478 | |
| 479 | /// printNI - Print node info. |
| 480 | /// |
| 481 | void ScheduleDAGSimple::printNI(std::ostream &O, NodeInfo *NI) const { |
| 482 | #ifndef NDEBUG |
| 483 | SDNode *Node = NI->Node; |
| 484 | O << " " |
| 485 | << std::hex << Node << std::dec |
| 486 | << ", Lat=" << NI->Latency |
| 487 | << ", Slot=" << NI->Slot |
| 488 | << ", ARITY=(" << Node->getNumOperands() << "," |
| 489 | << Node->getNumValues() << ")" |
| 490 | << " " << Node->getOperationName(&DAG); |
| 491 | if (isFlagDefiner(Node)) O << "<#"; |
| 492 | if (isFlagUser(Node)) O << ">#"; |
| 493 | #endif |
| 494 | } |
| 495 | |
| 496 | /// printChanges - Hilight changes in order caused by scheduling. |
| 497 | /// |
| 498 | void ScheduleDAGSimple::printChanges(unsigned Index) const { |
| 499 | #ifndef NDEBUG |
| 500 | // Get the ordered node count |
| 501 | unsigned N = Ordering.size(); |
| 502 | // Determine if any changes |
| 503 | unsigned i = 0; |
| 504 | for (; i < N; i++) { |
| 505 | NodeInfo *NI = Ordering[i]; |
| 506 | if (NI->Preorder != i) break; |
| 507 | } |
| 508 | |
| 509 | if (i < N) { |
| 510 | std::cerr << Index << ". New Ordering\n"; |
| 511 | |
| 512 | for (i = 0; i < N; i++) { |
| 513 | NodeInfo *NI = Ordering[i]; |
| 514 | std::cerr << " " << NI->Preorder << ". "; |
| 515 | printNI(std::cerr, NI); |
| 516 | std::cerr << "\n"; |
| 517 | if (NI->isGroupDominator()) { |
| 518 | NodeGroup *Group = NI->Group; |
| 519 | for (NIIterator NII = Group->group_begin(), E = Group->group_end(); |
| 520 | NII != E; NII++) { |
| 521 | std::cerr << " "; |
| 522 | printNI(std::cerr, *NII); |
| 523 | std::cerr << "\n"; |
| 524 | } |
| 525 | } |
| 526 | } |
| 527 | } else { |
| 528 | std::cerr << Index << ". No Changes\n"; |
| 529 | } |
| 530 | #endif |
| 531 | } |
Evan Cheng | a9c2091 | 2006-01-21 02:32:06 +0000 | [diff] [blame] | 532 | |
| 533 | //===----------------------------------------------------------------------===// |
Evan Cheng | a9c2091 | 2006-01-21 02:32:06 +0000 | [diff] [blame] | 534 | /// isDefiner - Return true if node A is a definer for B. |
| 535 | /// |
| 536 | bool ScheduleDAGSimple::isDefiner(NodeInfo *A, NodeInfo *B) { |
| 537 | // While there are A nodes |
| 538 | NodeGroupIterator NII(A); |
| 539 | while (NodeInfo *NI = NII.next()) { |
| 540 | // Extract node |
| 541 | SDNode *Node = NI->Node; |
| 542 | // While there operands in nodes of B |
| 543 | NodeGroupOpIterator NGOI(B); |
| 544 | while (!NGOI.isEnd()) { |
| 545 | SDOperand Op = NGOI.next(); |
| 546 | // If node from A defines a node in B |
| 547 | if (Node == Op.Val) return true; |
| 548 | } |
| 549 | } |
| 550 | return false; |
| 551 | } |
| 552 | |
Evan Cheng | a9c2091 | 2006-01-21 02:32:06 +0000 | [diff] [blame] | 553 | /// IncludeNode - Add node to NodeInfo vector. |
| 554 | /// |
| 555 | void ScheduleDAGSimple::IncludeNode(NodeInfo *NI) { |
| 556 | // Get node |
| 557 | SDNode *Node = NI->Node; |
| 558 | // Ignore entry node |
| 559 | if (Node->getOpcode() == ISD::EntryToken) return; |
| 560 | // Check current count for node |
| 561 | int Count = NI->getPending(); |
| 562 | // If the node is already in list |
| 563 | if (Count < 0) return; |
| 564 | // Decrement count to indicate a visit |
| 565 | Count--; |
| 566 | // If count has gone to zero then add node to list |
| 567 | if (!Count) { |
| 568 | // Add node |
| 569 | if (NI->isInGroup()) { |
| 570 | Ordering.push_back(NI->Group->getDominator()); |
| 571 | } else { |
| 572 | Ordering.push_back(NI); |
| 573 | } |
| 574 | // indicate node has been added |
| 575 | Count--; |
| 576 | } |
| 577 | // Mark as visited with new count |
| 578 | NI->setPending(Count); |
| 579 | } |
| 580 | |
Evan Cheng | a9c2091 | 2006-01-21 02:32:06 +0000 | [diff] [blame] | 581 | /// GatherSchedulingInfo - Get latency and resource information about each node. |
| 582 | /// |
| 583 | void ScheduleDAGSimple::GatherSchedulingInfo() { |
| 584 | // Get instruction itineraries for the target |
Chris Lattner | e70f671 | 2006-03-09 07:13:00 +0000 | [diff] [blame] | 585 | const InstrItineraryData &InstrItins = TM.getInstrItineraryData(); |
Evan Cheng | a9c2091 | 2006-01-21 02:32:06 +0000 | [diff] [blame] | 586 | |
| 587 | // For each node |
| 588 | for (unsigned i = 0, N = NodeCount; i < N; i++) { |
| 589 | // Get node info |
| 590 | NodeInfo* NI = &Info[i]; |
| 591 | SDNode *Node = NI->Node; |
| 592 | |
| 593 | // If there are itineraries and it is a machine instruction |
Evan Cheng | 4ef1086 | 2006-01-23 07:01:07 +0000 | [diff] [blame] | 594 | if (InstrItins.isEmpty() || Heuristic == simpleNoItinScheduling) { |
Evan Cheng | a9c2091 | 2006-01-21 02:32:06 +0000 | [diff] [blame] | 595 | // If machine opcode |
| 596 | if (Node->isTargetOpcode()) { |
| 597 | // Get return type to guess which processing unit |
| 598 | MVT::ValueType VT = Node->getValueType(0); |
| 599 | // Get machine opcode |
| 600 | MachineOpCode TOpc = Node->getTargetOpcode(); |
| 601 | NI->IsCall = TII->isCall(TOpc); |
| 602 | NI->IsLoad = TII->isLoad(TOpc); |
| 603 | NI->IsStore = TII->isStore(TOpc); |
| 604 | |
| 605 | if (TII->isLoad(TOpc)) NI->StageBegin = &LoadStage; |
| 606 | else if (TII->isStore(TOpc)) NI->StageBegin = &StoreStage; |
| 607 | else if (MVT::isInteger(VT)) NI->StageBegin = &IntStage; |
| 608 | else if (MVT::isFloatingPoint(VT)) NI->StageBegin = &FloatStage; |
| 609 | if (NI->StageBegin) NI->StageEnd = NI->StageBegin + 1; |
| 610 | } |
| 611 | } else if (Node->isTargetOpcode()) { |
| 612 | // get machine opcode |
| 613 | MachineOpCode TOpc = Node->getTargetOpcode(); |
| 614 | // Check to see if it is a call |
| 615 | NI->IsCall = TII->isCall(TOpc); |
| 616 | // Get itinerary stages for instruction |
| 617 | unsigned II = TII->getSchedClass(TOpc); |
| 618 | NI->StageBegin = InstrItins.begin(II); |
| 619 | NI->StageEnd = InstrItins.end(II); |
| 620 | } |
| 621 | |
| 622 | // One slot for the instruction itself |
| 623 | NI->Latency = 1; |
| 624 | |
| 625 | // Add long latency for a call to push it back in time |
| 626 | if (NI->IsCall) NI->Latency += CallLatency; |
| 627 | |
| 628 | // Sum up all the latencies |
| 629 | for (InstrStage *Stage = NI->StageBegin, *E = NI->StageEnd; |
| 630 | Stage != E; Stage++) { |
| 631 | NI->Latency += Stage->Cycles; |
| 632 | } |
| 633 | |
| 634 | // Sum up all the latencies for max tally size |
| 635 | NSlots += NI->Latency; |
| 636 | } |
| 637 | |
| 638 | // Unify metrics if in a group |
| 639 | if (HasGroups) { |
| 640 | for (unsigned i = 0, N = NodeCount; i < N; i++) { |
| 641 | NodeInfo* NI = &Info[i]; |
| 642 | |
| 643 | if (NI->isInGroup()) { |
| 644 | NodeGroup *Group = NI->Group; |
| 645 | |
| 646 | if (!Group->getDominator()) { |
| 647 | NIIterator NGI = Group->group_begin(), NGE = Group->group_end(); |
| 648 | NodeInfo *Dominator = *NGI; |
| 649 | unsigned Latency = 0; |
| 650 | |
| 651 | for (NGI++; NGI != NGE; NGI++) { |
| 652 | NodeInfo* NGNI = *NGI; |
| 653 | Latency += NGNI->Latency; |
| 654 | if (Dominator->Latency < NGNI->Latency) Dominator = NGNI; |
| 655 | } |
| 656 | |
| 657 | Dominator->Latency = Latency; |
| 658 | Group->setDominator(Dominator); |
| 659 | } |
| 660 | } |
| 661 | } |
| 662 | } |
| 663 | } |
| 664 | |
Evan Cheng | 4ef1086 | 2006-01-23 07:01:07 +0000 | [diff] [blame] | 665 | /// VisitAll - Visit each node breadth-wise to produce an initial ordering. |
| 666 | /// Note that the ordering in the Nodes vector is reversed. |
| 667 | void ScheduleDAGSimple::VisitAll() { |
| 668 | // Add first element to list |
| 669 | NodeInfo *NI = getNI(DAG.getRoot().Val); |
| 670 | if (NI->isInGroup()) { |
| 671 | Ordering.push_back(NI->Group->getDominator()); |
| 672 | } else { |
| 673 | Ordering.push_back(NI); |
| 674 | } |
| 675 | |
| 676 | // Iterate through all nodes that have been added |
| 677 | for (unsigned i = 0; i < Ordering.size(); i++) { // note: size() varies |
| 678 | // Visit all operands |
| 679 | NodeGroupOpIterator NGI(Ordering[i]); |
| 680 | while (!NGI.isEnd()) { |
| 681 | // Get next operand |
| 682 | SDOperand Op = NGI.next(); |
| 683 | // Get node |
| 684 | SDNode *Node = Op.Val; |
| 685 | // Ignore passive nodes |
| 686 | if (isPassiveNode(Node)) continue; |
| 687 | // Check out node |
| 688 | IncludeNode(getNI(Node)); |
| 689 | } |
| 690 | } |
| 691 | |
| 692 | // Add entry node last (IncludeNode filters entry nodes) |
| 693 | if (DAG.getEntryNode().Val != DAG.getRoot().Val) |
| 694 | Ordering.push_back(getNI(DAG.getEntryNode().Val)); |
| 695 | |
| 696 | // Reverse the order |
| 697 | std::reverse(Ordering.begin(), Ordering.end()); |
| 698 | } |
| 699 | |
Evan Cheng | a9c2091 | 2006-01-21 02:32:06 +0000 | [diff] [blame] | 700 | /// FakeGroupDominators - Set dominators for non-scheduling. |
| 701 | /// |
| 702 | void ScheduleDAGSimple::FakeGroupDominators() { |
| 703 | for (unsigned i = 0, N = NodeCount; i < N; i++) { |
| 704 | NodeInfo* NI = &Info[i]; |
| 705 | |
| 706 | if (NI->isInGroup()) { |
| 707 | NodeGroup *Group = NI->Group; |
| 708 | |
| 709 | if (!Group->getDominator()) { |
| 710 | Group->setDominator(NI); |
| 711 | } |
| 712 | } |
| 713 | } |
| 714 | } |
| 715 | |
Evan Cheng | a9c2091 | 2006-01-21 02:32:06 +0000 | [diff] [blame] | 716 | /// isStrongDependency - Return true if node A has results used by node B. |
| 717 | /// I.E., B must wait for latency of A. |
| 718 | bool ScheduleDAGSimple::isStrongDependency(NodeInfo *A, NodeInfo *B) { |
| 719 | // If A defines for B then it's a strong dependency or |
| 720 | // if a load follows a store (may be dependent but why take a chance.) |
| 721 | return isDefiner(A, B) || (A->IsStore && B->IsLoad); |
| 722 | } |
| 723 | |
| 724 | /// isWeakDependency Return true if node A produces a result that will |
| 725 | /// conflict with operands of B. It is assumed that we have called |
| 726 | /// isStrongDependency prior. |
| 727 | bool ScheduleDAGSimple::isWeakDependency(NodeInfo *A, NodeInfo *B) { |
| 728 | // TODO check for conflicting real registers and aliases |
| 729 | #if 0 // FIXME - Since we are in SSA form and not checking register aliasing |
| 730 | return A->Node->getOpcode() == ISD::EntryToken || isStrongDependency(B, A); |
| 731 | #else |
| 732 | return A->Node->getOpcode() == ISD::EntryToken; |
| 733 | #endif |
| 734 | } |
| 735 | |
| 736 | /// ScheduleBackward - Schedule instructions so that any long latency |
| 737 | /// instructions and the critical path get pushed back in time. Time is run in |
| 738 | /// reverse to allow code reuse of the Tally and eliminate the overhead of |
| 739 | /// biasing every slot indices against NSlots. |
| 740 | void ScheduleDAGSimple::ScheduleBackward() { |
| 741 | // Size and clear the resource tally |
| 742 | Tally.Initialize(NSlots); |
| 743 | // Get number of nodes to schedule |
| 744 | unsigned N = Ordering.size(); |
| 745 | |
| 746 | // For each node being scheduled |
| 747 | for (unsigned i = N; 0 < i--;) { |
| 748 | NodeInfo *NI = Ordering[i]; |
| 749 | // Track insertion |
| 750 | unsigned Slot = NotFound; |
| 751 | |
| 752 | // Compare against those previously scheduled nodes |
| 753 | unsigned j = i + 1; |
| 754 | for (; j < N; j++) { |
| 755 | // Get following instruction |
| 756 | NodeInfo *Other = Ordering[j]; |
| 757 | |
| 758 | // Check dependency against previously inserted nodes |
| 759 | if (isStrongDependency(NI, Other)) { |
| 760 | Slot = Other->Slot + Other->Latency; |
| 761 | break; |
| 762 | } else if (isWeakDependency(NI, Other)) { |
| 763 | Slot = Other->Slot; |
| 764 | break; |
| 765 | } |
| 766 | } |
| 767 | |
| 768 | // If independent of others (or first entry) |
| 769 | if (Slot == NotFound) Slot = 0; |
| 770 | |
| 771 | #if 0 // FIXME - measure later |
| 772 | // Find a slot where the needed resources are available |
| 773 | if (NI->StageBegin != NI->StageEnd) |
| 774 | Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd); |
| 775 | #endif |
| 776 | |
| 777 | // Set node slot |
| 778 | NI->Slot = Slot; |
| 779 | |
| 780 | // Insert sort based on slot |
| 781 | j = i + 1; |
| 782 | for (; j < N; j++) { |
| 783 | // Get following instruction |
| 784 | NodeInfo *Other = Ordering[j]; |
| 785 | // Should we look further (remember slots are in reverse time) |
| 786 | if (Slot >= Other->Slot) break; |
| 787 | // Shuffle other into ordering |
| 788 | Ordering[j - 1] = Other; |
| 789 | } |
| 790 | // Insert node in proper slot |
| 791 | if (j != i + 1) Ordering[j - 1] = NI; |
| 792 | } |
| 793 | } |
| 794 | |
| 795 | /// ScheduleForward - Schedule instructions to maximize packing. |
| 796 | /// |
| 797 | void ScheduleDAGSimple::ScheduleForward() { |
| 798 | // Size and clear the resource tally |
| 799 | Tally.Initialize(NSlots); |
| 800 | // Get number of nodes to schedule |
| 801 | unsigned N = Ordering.size(); |
| 802 | |
| 803 | // For each node being scheduled |
| 804 | for (unsigned i = 0; i < N; i++) { |
| 805 | NodeInfo *NI = Ordering[i]; |
| 806 | // Track insertion |
| 807 | unsigned Slot = NotFound; |
| 808 | |
| 809 | // Compare against those previously scheduled nodes |
| 810 | unsigned j = i; |
| 811 | for (; 0 < j--;) { |
| 812 | // Get following instruction |
| 813 | NodeInfo *Other = Ordering[j]; |
| 814 | |
| 815 | // Check dependency against previously inserted nodes |
| 816 | if (isStrongDependency(Other, NI)) { |
| 817 | Slot = Other->Slot + Other->Latency; |
| 818 | break; |
| 819 | } else if (Other->IsCall || isWeakDependency(Other, NI)) { |
| 820 | Slot = Other->Slot; |
| 821 | break; |
| 822 | } |
| 823 | } |
| 824 | |
| 825 | // If independent of others (or first entry) |
| 826 | if (Slot == NotFound) Slot = 0; |
| 827 | |
| 828 | // Find a slot where the needed resources are available |
| 829 | if (NI->StageBegin != NI->StageEnd) |
| 830 | Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd); |
| 831 | |
| 832 | // Set node slot |
| 833 | NI->Slot = Slot; |
| 834 | |
| 835 | // Insert sort based on slot |
| 836 | j = i; |
| 837 | for (; 0 < j--;) { |
| 838 | // Get prior instruction |
| 839 | NodeInfo *Other = Ordering[j]; |
| 840 | // Should we look further |
| 841 | if (Slot >= Other->Slot) break; |
| 842 | // Shuffle other into ordering |
| 843 | Ordering[j + 1] = Other; |
| 844 | } |
| 845 | // Insert node in proper slot |
| 846 | if (j != i) Ordering[j + 1] = NI; |
| 847 | } |
| 848 | } |
| 849 | |
Evan Cheng | a9c2091 | 2006-01-21 02:32:06 +0000 | [diff] [blame] | 850 | /// Schedule - Order nodes according to selected style. |
| 851 | /// |
| 852 | void ScheduleDAGSimple::Schedule() { |
Chris Lattner | 2f5806c | 2006-03-10 07:42:02 +0000 | [diff] [blame^] | 853 | // Number the nodes |
| 854 | NodeCount = std::distance(DAG.allnodes_begin(), DAG.allnodes_end()); |
| 855 | |
Chris Lattner | be24e59 | 2006-03-10 06:34:51 +0000 | [diff] [blame] | 856 | // Set up minimum info for scheduling |
| 857 | PrepareNodeInfo(); |
| 858 | // Construct node groups for flagged nodes |
| 859 | IdentifyGroups(); |
| 860 | |
Evan Cheng | a9c2091 | 2006-01-21 02:32:06 +0000 | [diff] [blame] | 861 | // Test to see if scheduling should occur |
Evan Cheng | 4ef1086 | 2006-01-23 07:01:07 +0000 | [diff] [blame] | 862 | bool ShouldSchedule = NodeCount > 3 && Heuristic != noScheduling; |
Evan Cheng | a9c2091 | 2006-01-21 02:32:06 +0000 | [diff] [blame] | 863 | // Don't waste time if is only entry and return |
| 864 | if (ShouldSchedule) { |
| 865 | // Get latency and resource requirements |
| 866 | GatherSchedulingInfo(); |
| 867 | } else if (HasGroups) { |
| 868 | // Make sure all the groups have dominators |
| 869 | FakeGroupDominators(); |
| 870 | } |
| 871 | |
| 872 | // Breadth first walk of DAG |
| 873 | VisitAll(); |
| 874 | |
| 875 | #ifndef NDEBUG |
| 876 | static unsigned Count = 0; |
| 877 | Count++; |
| 878 | for (unsigned i = 0, N = Ordering.size(); i < N; i++) { |
| 879 | NodeInfo *NI = Ordering[i]; |
| 880 | NI->Preorder = i; |
| 881 | } |
| 882 | #endif |
| 883 | |
| 884 | // Don't waste time if is only entry and return |
| 885 | if (ShouldSchedule) { |
| 886 | // Push back long instructions and critical path |
| 887 | ScheduleBackward(); |
| 888 | |
| 889 | // Pack instructions to maximize resource utilization |
| 890 | ScheduleForward(); |
| 891 | } |
| 892 | |
| 893 | DEBUG(printChanges(Count)); |
| 894 | |
| 895 | // Emit in scheduled order |
| 896 | EmitAll(); |
| 897 | } |
| 898 | |
Evan Cheng | a9c2091 | 2006-01-21 02:32:06 +0000 | [diff] [blame] | 899 | |
| 900 | /// createSimpleDAGScheduler - This creates a simple two pass instruction |
| 901 | /// scheduler. |
Evan Cheng | 4ef1086 | 2006-01-23 07:01:07 +0000 | [diff] [blame] | 902 | llvm::ScheduleDAG* llvm::createSimpleDAGScheduler(SchedHeuristics Heuristic, |
| 903 | SelectionDAG &DAG, |
Evan Cheng | a9c2091 | 2006-01-21 02:32:06 +0000 | [diff] [blame] | 904 | MachineBasicBlock *BB) { |
Evan Cheng | 4ef1086 | 2006-01-23 07:01:07 +0000 | [diff] [blame] | 905 | return new ScheduleDAGSimple(Heuristic, DAG, BB, DAG.getTarget()); |
Evan Cheng | a9c2091 | 2006-01-21 02:32:06 +0000 | [diff] [blame] | 906 | } |