blob: 6ebbb2930774b9a75fce956acd11d6f31dcf4b34 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
6 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
10 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
12
13<body>
14
15<div class="doc_title"> LLVM Language Reference Manual </div>
16<ol>
17 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
20 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
23 <li><a href="#linkage">Linkage Types</a></li>
24 <li><a href="#callingconv">Calling Conventions</a></li>
25 <li><a href="#globalvars">Global Variables</a></li>
26 <li><a href="#functionstructure">Functions</a></li>
27 <li><a href="#aliasstructure">Aliases</a>
28 <li><a href="#paramattrs">Parameter Attributes</a></li>
29 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
30 <li><a href="#datalayout">Data Layout</a></li>
31 </ol>
32 </li>
33 <li><a href="#typesystem">Type System</a>
34 <ol>
35 <li><a href="#t_primitive">Primitive Types</a>
36 <ol>
37 <li><a href="#t_classifications">Type Classifications</a></li>
38 </ol>
39 </li>
40 <li><a href="#t_derived">Derived Types</a>
41 <ol>
42 <li><a href="#t_array">Array Type</a></li>
43 <li><a href="#t_function">Function Type</a></li>
44 <li><a href="#t_pointer">Pointer Type</a></li>
45 <li><a href="#t_struct">Structure Type</a></li>
46 <li><a href="#t_pstruct">Packed Structure Type</a></li>
47 <li><a href="#t_vector">Vector Type</a></li>
48 <li><a href="#t_opaque">Opaque Type</a></li>
49 </ol>
50 </li>
51 </ol>
52 </li>
53 <li><a href="#constants">Constants</a>
54 <ol>
55 <li><a href="#simpleconstants">Simple Constants</a>
56 <li><a href="#aggregateconstants">Aggregate Constants</a>
57 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
58 <li><a href="#undefvalues">Undefined Values</a>
59 <li><a href="#constantexprs">Constant Expressions</a>
60 </ol>
61 </li>
62 <li><a href="#othervalues">Other Values</a>
63 <ol>
64 <li><a href="#inlineasm">Inline Assembler Expressions</a>
65 </ol>
66 </li>
67 <li><a href="#instref">Instruction Reference</a>
68 <ol>
69 <li><a href="#terminators">Terminator Instructions</a>
70 <ol>
71 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
72 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
73 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
74 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
75 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
76 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
77 </ol>
78 </li>
79 <li><a href="#binaryops">Binary Operations</a>
80 <ol>
81 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
82 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
83 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
84 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
85 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
86 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
87 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
88 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
89 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
90 </ol>
91 </li>
92 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
93 <ol>
94 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
95 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
96 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
97 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
98 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
99 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
100 </ol>
101 </li>
102 <li><a href="#vectorops">Vector Operations</a>
103 <ol>
104 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
105 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
106 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
107 </ol>
108 </li>
109 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
110 <ol>
111 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
112 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
113 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
114 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
115 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
116 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
117 </ol>
118 </li>
119 <li><a href="#convertops">Conversion Operations</a>
120 <ol>
121 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
122 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
123 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
124 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
125 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
126 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
127 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
128 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
129 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
130 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
131 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
132 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
133 </ol>
134 <li><a href="#otherops">Other Operations</a>
135 <ol>
136 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
137 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
138 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
139 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
140 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
141 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
142 </ol>
143 </li>
144 </ol>
145 </li>
146 <li><a href="#intrinsics">Intrinsic Functions</a>
147 <ol>
148 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
149 <ol>
150 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
151 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
152 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
153 </ol>
154 </li>
155 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
156 <ol>
157 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
158 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
159 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
160 </ol>
161 </li>
162 <li><a href="#int_codegen">Code Generator Intrinsics</a>
163 <ol>
164 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
165 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
166 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
167 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
168 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
169 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
170 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
171 </ol>
172 </li>
173 <li><a href="#int_libc">Standard C Library Intrinsics</a>
174 <ol>
175 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
176 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
177 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
178 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
179 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
180 </ol>
181 </li>
182 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
183 <ol>
184 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
185 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
186 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
187 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
188 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
189 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
190 </ol>
191 </li>
192 <li><a href="#int_debugger">Debugger intrinsics</a></li>
193 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Chandler Carruthc0470a82007-07-20 19:34:37 +0000194 <li><a href="#int_atomics">Atomic Operations and Synchronization Intrinsics</a>
195 <ol>
196 <li><a href="#int_lcs">'<tt>llvm.atomic.lcs.*</tt>' Intrinsic</a></li>
197 <li><a href="#int_ls">'<tt>llvm.atomic.ls.*</tt>' Intrinsic</a></li>
198 <li><a href="#int_las">'<tt>llvm.atomic.las.*</tt>' Intrinsic</a></li>
199 <li><a href="#int_lss">'<tt>llvm.atomic.lss.*</tt>' Intrinsic</a></li>
200 <li><a href="#int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a></li>
201 </ol>
202 </li>
Reid Spencerb043f672007-07-20 19:59:11 +0000203 <li><a href="#int_general">General intrinsics</a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000204 <ol>
Reid Spencerb043f672007-07-20 19:59:11 +0000205 <li><a href="#int_var_annotation">
206 <tt>llvm.var.annotation</tt>' Intrinsic</a></li>
207 </ol>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000208 </li>
209 </ol>
210 </li>
211</ol>
212
213<div class="doc_author">
214 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
215 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
216</div>
217
218<!-- *********************************************************************** -->
219<div class="doc_section"> <a name="abstract">Abstract </a></div>
220<!-- *********************************************************************** -->
221
222<div class="doc_text">
223<p>This document is a reference manual for the LLVM assembly language.
224LLVM is an SSA based representation that provides type safety,
225low-level operations, flexibility, and the capability of representing
226'all' high-level languages cleanly. It is the common code
227representation used throughout all phases of the LLVM compilation
228strategy.</p>
229</div>
230
231<!-- *********************************************************************** -->
232<div class="doc_section"> <a name="introduction">Introduction</a> </div>
233<!-- *********************************************************************** -->
234
235<div class="doc_text">
236
237<p>The LLVM code representation is designed to be used in three
238different forms: as an in-memory compiler IR, as an on-disk bitcode
239representation (suitable for fast loading by a Just-In-Time compiler),
240and as a human readable assembly language representation. This allows
241LLVM to provide a powerful intermediate representation for efficient
242compiler transformations and analysis, while providing a natural means
243to debug and visualize the transformations. The three different forms
244of LLVM are all equivalent. This document describes the human readable
245representation and notation.</p>
246
247<p>The LLVM representation aims to be light-weight and low-level
248while being expressive, typed, and extensible at the same time. It
249aims to be a "universal IR" of sorts, by being at a low enough level
250that high-level ideas may be cleanly mapped to it (similar to how
251microprocessors are "universal IR's", allowing many source languages to
252be mapped to them). By providing type information, LLVM can be used as
253the target of optimizations: for example, through pointer analysis, it
254can be proven that a C automatic variable is never accessed outside of
255the current function... allowing it to be promoted to a simple SSA
256value instead of a memory location.</p>
257
258</div>
259
260<!-- _______________________________________________________________________ -->
261<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
262
263<div class="doc_text">
264
265<p>It is important to note that this document describes 'well formed'
266LLVM assembly language. There is a difference between what the parser
267accepts and what is considered 'well formed'. For example, the
268following instruction is syntactically okay, but not well formed:</p>
269
270<div class="doc_code">
271<pre>
272%x = <a href="#i_add">add</a> i32 1, %x
273</pre>
274</div>
275
276<p>...because the definition of <tt>%x</tt> does not dominate all of
277its uses. The LLVM infrastructure provides a verification pass that may
278be used to verify that an LLVM module is well formed. This pass is
279automatically run by the parser after parsing input assembly and by
280the optimizer before it outputs bitcode. The violations pointed out
281by the verifier pass indicate bugs in transformation passes or input to
282the parser.</p>
283</div>
284
Reid Spencerb043f672007-07-20 19:59:11 +0000285<!-- Describe the typesetting conventions here. -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000286
287<!-- *********************************************************************** -->
288<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
289<!-- *********************************************************************** -->
290
291<div class="doc_text">
292
293<p>LLVM uses three different forms of identifiers, for different
294purposes:</p>
295
296<ol>
297 <li>Named values are represented as a string of characters with a '%' prefix.
298 For example, %foo, %DivisionByZero, %a.really.long.identifier. The actual
299 regular expression used is '<tt>%[a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
300 Identifiers which require other characters in their names can be surrounded
301 with quotes. In this way, anything except a <tt>&quot;</tt> character can be used
302 in a name.</li>
303
304 <li>Unnamed values are represented as an unsigned numeric value with a '%'
305 prefix. For example, %12, %2, %44.</li>
306
307 <li>Constants, which are described in a <a href="#constants">section about
308 constants</a>, below.</li>
309</ol>
310
311<p>LLVM requires that values start with a '%' sign for two reasons: Compilers
312don't need to worry about name clashes with reserved words, and the set of
313reserved words may be expanded in the future without penalty. Additionally,
314unnamed identifiers allow a compiler to quickly come up with a temporary
315variable without having to avoid symbol table conflicts.</p>
316
317<p>Reserved words in LLVM are very similar to reserved words in other
318languages. There are keywords for different opcodes
319('<tt><a href="#i_add">add</a></tt>',
320 '<tt><a href="#i_bitcast">bitcast</a></tt>',
321 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
322href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
323and others. These reserved words cannot conflict with variable names, because
324none of them start with a '%' character.</p>
325
326<p>Here is an example of LLVM code to multiply the integer variable
327'<tt>%X</tt>' by 8:</p>
328
329<p>The easy way:</p>
330
331<div class="doc_code">
332<pre>
333%result = <a href="#i_mul">mul</a> i32 %X, 8
334</pre>
335</div>
336
337<p>After strength reduction:</p>
338
339<div class="doc_code">
340<pre>
341%result = <a href="#i_shl">shl</a> i32 %X, i8 3
342</pre>
343</div>
344
345<p>And the hard way:</p>
346
347<div class="doc_code">
348<pre>
349<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
350<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
351%result = <a href="#i_add">add</a> i32 %1, %1
352</pre>
353</div>
354
355<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
356important lexical features of LLVM:</p>
357
358<ol>
359
360 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
361 line.</li>
362
363 <li>Unnamed temporaries are created when the result of a computation is not
364 assigned to a named value.</li>
365
366 <li>Unnamed temporaries are numbered sequentially</li>
367
368</ol>
369
370<p>...and it also shows a convention that we follow in this document. When
371demonstrating instructions, we will follow an instruction with a comment that
372defines the type and name of value produced. Comments are shown in italic
373text.</p>
374
375</div>
376
377<!-- *********************************************************************** -->
378<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
379<!-- *********************************************************************** -->
380
381<!-- ======================================================================= -->
382<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
383</div>
384
385<div class="doc_text">
386
387<p>LLVM programs are composed of "Module"s, each of which is a
388translation unit of the input programs. Each module consists of
389functions, global variables, and symbol table entries. Modules may be
390combined together with the LLVM linker, which merges function (and
391global variable) definitions, resolves forward declarations, and merges
392symbol table entries. Here is an example of the "hello world" module:</p>
393
394<div class="doc_code">
395<pre><i>; Declare the string constant as a global constant...</i>
396<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
397 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
398
399<i>; External declaration of the puts function</i>
400<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
401
402<i>; Definition of main function</i>
403define i32 @main() { <i>; i32()* </i>
404 <i>; Convert [13x i8 ]* to i8 *...</i>
405 %cast210 = <a
406 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
407
408 <i>; Call puts function to write out the string to stdout...</i>
409 <a
410 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
411 <a
412 href="#i_ret">ret</a> i32 0<br>}<br>
413</pre>
414</div>
415
416<p>This example is made up of a <a href="#globalvars">global variable</a>
417named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
418function, and a <a href="#functionstructure">function definition</a>
419for "<tt>main</tt>".</p>
420
421<p>In general, a module is made up of a list of global values,
422where both functions and global variables are global values. Global values are
423represented by a pointer to a memory location (in this case, a pointer to an
424array of char, and a pointer to a function), and have one of the following <a
425href="#linkage">linkage types</a>.</p>
426
427</div>
428
429<!-- ======================================================================= -->
430<div class="doc_subsection">
431 <a name="linkage">Linkage Types</a>
432</div>
433
434<div class="doc_text">
435
436<p>
437All Global Variables and Functions have one of the following types of linkage:
438</p>
439
440<dl>
441
442 <dt><tt><b><a name="linkage_internal">internal</a></b></tt> </dt>
443
444 <dd>Global values with internal linkage are only directly accessible by
445 objects in the current module. In particular, linking code into a module with
446 an internal global value may cause the internal to be renamed as necessary to
447 avoid collisions. Because the symbol is internal to the module, all
448 references can be updated. This corresponds to the notion of the
449 '<tt>static</tt>' keyword in C.
450 </dd>
451
452 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
453
454 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
455 the same name when linkage occurs. This is typically used to implement
456 inline functions, templates, or other code which must be generated in each
457 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
458 allowed to be discarded.
459 </dd>
460
461 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
462
463 <dd>"<tt>weak</tt>" linkage is exactly the same as <tt>linkonce</tt> linkage,
464 except that unreferenced <tt>weak</tt> globals may not be discarded. This is
465 used for globals that may be emitted in multiple translation units, but that
466 are not guaranteed to be emitted into every translation unit that uses them.
467 One example of this are common globals in C, such as "<tt>int X;</tt>" at
468 global scope.
469 </dd>
470
471 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
472
473 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
474 pointer to array type. When two global variables with appending linkage are
475 linked together, the two global arrays are appended together. This is the
476 LLVM, typesafe, equivalent of having the system linker append together
477 "sections" with identical names when .o files are linked.
478 </dd>
479
480 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
481 <dd>The semantics of this linkage follow the ELF model: the symbol is weak
482 until linked, if not linked, the symbol becomes null instead of being an
483 undefined reference.
484 </dd>
485
486 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
487
488 <dd>If none of the above identifiers are used, the global is externally
489 visible, meaning that it participates in linkage and can be used to resolve
490 external symbol references.
491 </dd>
492</dl>
493
494 <p>
495 The next two types of linkage are targeted for Microsoft Windows platform
496 only. They are designed to support importing (exporting) symbols from (to)
497 DLLs.
498 </p>
499
500 <dl>
501 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
502
503 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
504 or variable via a global pointer to a pointer that is set up by the DLL
505 exporting the symbol. On Microsoft Windows targets, the pointer name is
506 formed by combining <code>_imp__</code> and the function or variable name.
507 </dd>
508
509 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
510
511 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
512 pointer to a pointer in a DLL, so that it can be referenced with the
513 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
514 name is formed by combining <code>_imp__</code> and the function or variable
515 name.
516 </dd>
517
518</dl>
519
520<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
521variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
522variable and was linked with this one, one of the two would be renamed,
523preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
524external (i.e., lacking any linkage declarations), they are accessible
525outside of the current module.</p>
526<p>It is illegal for a function <i>declaration</i>
527to have any linkage type other than "externally visible", <tt>dllimport</tt>,
528or <tt>extern_weak</tt>.</p>
529<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
530linkages.
531</div>
532
533<!-- ======================================================================= -->
534<div class="doc_subsection">
535 <a name="callingconv">Calling Conventions</a>
536</div>
537
538<div class="doc_text">
539
540<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
541and <a href="#i_invoke">invokes</a> can all have an optional calling convention
542specified for the call. The calling convention of any pair of dynamic
543caller/callee must match, or the behavior of the program is undefined. The
544following calling conventions are supported by LLVM, and more may be added in
545the future:</p>
546
547<dl>
548 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
549
550 <dd>This calling convention (the default if no other calling convention is
551 specified) matches the target C calling conventions. This calling convention
552 supports varargs function calls and tolerates some mismatch in the declared
553 prototype and implemented declaration of the function (as does normal C).
554 </dd>
555
556 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
557
558 <dd>This calling convention attempts to make calls as fast as possible
559 (e.g. by passing things in registers). This calling convention allows the
560 target to use whatever tricks it wants to produce fast code for the target,
561 without having to conform to an externally specified ABI. Implementations of
562 this convention should allow arbitrary tail call optimization to be supported.
563 This calling convention does not support varargs and requires the prototype of
564 all callees to exactly match the prototype of the function definition.
565 </dd>
566
567 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
568
569 <dd>This calling convention attempts to make code in the caller as efficient
570 as possible under the assumption that the call is not commonly executed. As
571 such, these calls often preserve all registers so that the call does not break
572 any live ranges in the caller side. This calling convention does not support
573 varargs and requires the prototype of all callees to exactly match the
574 prototype of the function definition.
575 </dd>
576
577 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
578
579 <dd>Any calling convention may be specified by number, allowing
580 target-specific calling conventions to be used. Target specific calling
581 conventions start at 64.
582 </dd>
583</dl>
584
585<p>More calling conventions can be added/defined on an as-needed basis, to
586support pascal conventions or any other well-known target-independent
587convention.</p>
588
589</div>
590
591<!-- ======================================================================= -->
592<div class="doc_subsection">
593 <a name="visibility">Visibility Styles</a>
594</div>
595
596<div class="doc_text">
597
598<p>
599All Global Variables and Functions have one of the following visibility styles:
600</p>
601
602<dl>
603 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
604
605 <dd>On ELF, default visibility means that the declaration is visible to other
606 modules and, in shared libraries, means that the declared entity may be
607 overridden. On Darwin, default visibility means that the declaration is
608 visible to other modules. Default visibility corresponds to "external
609 linkage" in the language.
610 </dd>
611
612 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
613
614 <dd>Two declarations of an object with hidden visibility refer to the same
615 object if they are in the same shared object. Usually, hidden visibility
616 indicates that the symbol will not be placed into the dynamic symbol table,
617 so no other module (executable or shared library) can reference it
618 directly.
619 </dd>
620
621 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
622
623 <dd>On ELF, protected visibility indicates that the symbol will be placed in
624 the dynamic symbol table, but that references within the defining module will
625 bind to the local symbol. That is, the symbol cannot be overridden by another
626 module.
627 </dd>
628</dl>
629
630</div>
631
632<!-- ======================================================================= -->
633<div class="doc_subsection">
634 <a name="globalvars">Global Variables</a>
635</div>
636
637<div class="doc_text">
638
639<p>Global variables define regions of memory allocated at compilation time
640instead of run-time. Global variables may optionally be initialized, may have
641an explicit section to be placed in, and may have an optional explicit alignment
642specified. A variable may be defined as "thread_local", which means that it
643will not be shared by threads (each thread will have a separated copy of the
644variable). A variable may be defined as a global "constant," which indicates
645that the contents of the variable will <b>never</b> be modified (enabling better
646optimization, allowing the global data to be placed in the read-only section of
647an executable, etc). Note that variables that need runtime initialization
648cannot be marked "constant" as there is a store to the variable.</p>
649
650<p>
651LLVM explicitly allows <em>declarations</em> of global variables to be marked
652constant, even if the final definition of the global is not. This capability
653can be used to enable slightly better optimization of the program, but requires
654the language definition to guarantee that optimizations based on the
655'constantness' are valid for the translation units that do not include the
656definition.
657</p>
658
659<p>As SSA values, global variables define pointer values that are in
660scope (i.e. they dominate) all basic blocks in the program. Global
661variables always define a pointer to their "content" type because they
662describe a region of memory, and all memory objects in LLVM are
663accessed through pointers.</p>
664
665<p>LLVM allows an explicit section to be specified for globals. If the target
666supports it, it will emit globals to the section specified.</p>
667
668<p>An explicit alignment may be specified for a global. If not present, or if
669the alignment is set to zero, the alignment of the global is set by the target
670to whatever it feels convenient. If an explicit alignment is specified, the
671global is forced to have at least that much alignment. All alignments must be
672a power of 2.</p>
673
674<p>For example, the following defines a global with an initializer, section,
675 and alignment:</p>
676
677<div class="doc_code">
678<pre>
679@G = constant float 1.0, section "foo", align 4
680</pre>
681</div>
682
683</div>
684
685
686<!-- ======================================================================= -->
687<div class="doc_subsection">
688 <a name="functionstructure">Functions</a>
689</div>
690
691<div class="doc_text">
692
693<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
694an optional <a href="#linkage">linkage type</a>, an optional
695<a href="#visibility">visibility style</a>, an optional
696<a href="#callingconv">calling convention</a>, a return type, an optional
697<a href="#paramattrs">parameter attribute</a> for the return type, a function
698name, a (possibly empty) argument list (each with optional
699<a href="#paramattrs">parameter attributes</a>), an optional section, an
700optional alignment, an opening curly brace, a list of basic blocks, and a
701closing curly brace.
702
703LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
704optional <a href="#linkage">linkage type</a>, an optional
705<a href="#visibility">visibility style</a>, an optional
706<a href="#callingconv">calling convention</a>, a return type, an optional
707<a href="#paramattrs">parameter attribute</a> for the return type, a function
708name, a possibly empty list of arguments, and an optional alignment.</p>
709
710<p>A function definition contains a list of basic blocks, forming the CFG for
711the function. Each basic block may optionally start with a label (giving the
712basic block a symbol table entry), contains a list of instructions, and ends
713with a <a href="#terminators">terminator</a> instruction (such as a branch or
714function return).</p>
715
716<p>The first basic block in a function is special in two ways: it is immediately
717executed on entrance to the function, and it is not allowed to have predecessor
718basic blocks (i.e. there can not be any branches to the entry block of a
719function). Because the block can have no predecessors, it also cannot have any
720<a href="#i_phi">PHI nodes</a>.</p>
721
722<p>LLVM allows an explicit section to be specified for functions. If the target
723supports it, it will emit functions to the section specified.</p>
724
725<p>An explicit alignment may be specified for a function. If not present, or if
726the alignment is set to zero, the alignment of the function is set by the target
727to whatever it feels convenient. If an explicit alignment is specified, the
728function is forced to have at least that much alignment. All alignments must be
729a power of 2.</p>
730
731</div>
732
733
734<!-- ======================================================================= -->
735<div class="doc_subsection">
736 <a name="aliasstructure">Aliases</a>
737</div>
738<div class="doc_text">
739 <p>Aliases act as "second name" for the aliasee value (which can be either
740 function or global variable or bitcast of global value). Aliases may have an
741 optional <a href="#linkage">linkage type</a>, and an
742 optional <a href="#visibility">visibility style</a>.</p>
743
744 <h5>Syntax:</h5>
745
746<div class="doc_code">
747<pre>
748@&lt;Name&gt; = [Linkage] [Visibility] alias &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
749</pre>
750</div>
751
752</div>
753
754
755
756<!-- ======================================================================= -->
757<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
758<div class="doc_text">
759 <p>The return type and each parameter of a function type may have a set of
760 <i>parameter attributes</i> associated with them. Parameter attributes are
761 used to communicate additional information about the result or parameters of
762 a function. Parameter attributes are considered to be part of the function
763 type so two functions types that differ only by the parameter attributes
764 are different function types.</p>
765
766 <p>Parameter attributes are simple keywords that follow the type specified. If
767 multiple parameter attributes are needed, they are space separated. For
768 example:</p>
769
770<div class="doc_code">
771<pre>
Reid Spencerf234bed2007-07-19 23:13:04 +0000772%someFunc = i16 (i8 signext %someParam) zeroext
773%someFunc = i16 (i8 zeroext %someParam) zeroext
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000774</pre>
775</div>
776
777 <p>Note that the two function types above are unique because the parameter has
Reid Spencerf234bed2007-07-19 23:13:04 +0000778 a different attribute (<tt>signext</tt> in the first one, <tt>zeroext</tt> in
779 the second). Also note that the attribute for the function result
780 (<tt>zeroext</tt>) comes immediately after the argument list.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000781
782 <p>Currently, only the following parameter attributes are defined:</p>
783 <dl>
Reid Spencerf234bed2007-07-19 23:13:04 +0000784 <dt><tt>zeroext</tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000785 <dd>This indicates that the parameter should be zero extended just before
786 a call to this function.</dd>
Reid Spencerf234bed2007-07-19 23:13:04 +0000787 <dt><tt>signext</tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000788 <dd>This indicates that the parameter should be sign extended just before
789 a call to this function.</dd>
790 <dt><tt>inreg</tt></dt>
791 <dd>This indicates that the parameter should be placed in register (if
792 possible) during assembling function call. Support for this attribute is
793 target-specific</dd>
794 <dt><tt>sret</tt></dt>
795 <dd>This indicates that the parameter specifies the address of a structure
796 that is the return value of the function in the source program.</dd>
797 <dt><tt>noalias</tt></dt>
798 <dd>This indicates that the parameter not alias any other object or any
799 other "noalias" objects during the function call.
800 <dt><tt>noreturn</tt></dt>
801 <dd>This function attribute indicates that the function never returns. This
802 indicates to LLVM that every call to this function should be treated as if
803 an <tt>unreachable</tt> instruction immediately followed the call.</dd>
804 <dt><tt>nounwind</tt></dt>
805 <dd>This function attribute indicates that the function type does not use
806 the unwind instruction and does not allow stack unwinding to propagate
807 through it.</dd>
808 </dl>
809
810</div>
811
812<!-- ======================================================================= -->
813<div class="doc_subsection">
814 <a name="moduleasm">Module-Level Inline Assembly</a>
815</div>
816
817<div class="doc_text">
818<p>
819Modules may contain "module-level inline asm" blocks, which corresponds to the
820GCC "file scope inline asm" blocks. These blocks are internally concatenated by
821LLVM and treated as a single unit, but may be separated in the .ll file if
822desired. The syntax is very simple:
823</p>
824
825<div class="doc_code">
826<pre>
827module asm "inline asm code goes here"
828module asm "more can go here"
829</pre>
830</div>
831
832<p>The strings can contain any character by escaping non-printable characters.
833 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
834 for the number.
835</p>
836
837<p>
838 The inline asm code is simply printed to the machine code .s file when
839 assembly code is generated.
840</p>
841</div>
842
843<!-- ======================================================================= -->
844<div class="doc_subsection">
845 <a name="datalayout">Data Layout</a>
846</div>
847
848<div class="doc_text">
849<p>A module may specify a target specific data layout string that specifies how
850data is to be laid out in memory. The syntax for the data layout is simply:</p>
851<pre> target datalayout = "<i>layout specification</i>"</pre>
852<p>The <i>layout specification</i> consists of a list of specifications
853separated by the minus sign character ('-'). Each specification starts with a
854letter and may include other information after the letter to define some
855aspect of the data layout. The specifications accepted are as follows: </p>
856<dl>
857 <dt><tt>E</tt></dt>
858 <dd>Specifies that the target lays out data in big-endian form. That is, the
859 bits with the most significance have the lowest address location.</dd>
860 <dt><tt>e</tt></dt>
861 <dd>Specifies that hte target lays out data in little-endian form. That is,
862 the bits with the least significance have the lowest address location.</dd>
863 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
864 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
865 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
866 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
867 too.</dd>
868 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
869 <dd>This specifies the alignment for an integer type of a given bit
870 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
871 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
872 <dd>This specifies the alignment for a vector type of a given bit
873 <i>size</i>.</dd>
874 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
875 <dd>This specifies the alignment for a floating point type of a given bit
876 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
877 (double).</dd>
878 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
879 <dd>This specifies the alignment for an aggregate type of a given bit
880 <i>size</i>.</dd>
881</dl>
882<p>When constructing the data layout for a given target, LLVM starts with a
883default set of specifications which are then (possibly) overriden by the
884specifications in the <tt>datalayout</tt> keyword. The default specifications
885are given in this list:</p>
886<ul>
887 <li><tt>E</tt> - big endian</li>
888 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
889 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
890 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
891 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
892 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
893 <li><tt>i64:32:64</tt> - i64 has abi alignment of 32-bits but preferred
894 alignment of 64-bits</li>
895 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
896 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
897 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
898 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
899 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
900</ul>
901<p>When llvm is determining the alignment for a given type, it uses the
902following rules:
903<ol>
904 <li>If the type sought is an exact match for one of the specifications, that
905 specification is used.</li>
906 <li>If no match is found, and the type sought is an integer type, then the
907 smallest integer type that is larger than the bitwidth of the sought type is
908 used. If none of the specifications are larger than the bitwidth then the the
909 largest integer type is used. For example, given the default specifications
910 above, the i7 type will use the alignment of i8 (next largest) while both
911 i65 and i256 will use the alignment of i64 (largest specified).</li>
912 <li>If no match is found, and the type sought is a vector type, then the
913 largest vector type that is smaller than the sought vector type will be used
914 as a fall back. This happens because <128 x double> can be implemented in
915 terms of 64 <2 x double>, for example.</li>
916</ol>
917</div>
918
919<!-- *********************************************************************** -->
920<div class="doc_section"> <a name="typesystem">Type System</a> </div>
921<!-- *********************************************************************** -->
922
923<div class="doc_text">
924
925<p>The LLVM type system is one of the most important features of the
926intermediate representation. Being typed enables a number of
927optimizations to be performed on the IR directly, without having to do
928extra analyses on the side before the transformation. A strong type
929system makes it easier to read the generated code and enables novel
930analyses and transformations that are not feasible to perform on normal
931three address code representations.</p>
932
933</div>
934
935<!-- ======================================================================= -->
936<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
937<div class="doc_text">
938<p>The primitive types are the fundamental building blocks of the LLVM
939system. The current set of primitive types is as follows:</p>
940
941<table class="layout">
942 <tr class="layout">
943 <td class="left">
944 <table>
945 <tbody>
946 <tr><th>Type</th><th>Description</th></tr>
947 <tr><td><tt><a name="t_void">void</a></tt></td><td>No value</td></tr>
948 <tr><td><tt>label</tt></td><td>Branch destination</td></tr>
949 </tbody>
950 </table>
951 </td>
952 <td class="right">
953 <table>
954 <tbody>
955 <tr><th>Type</th><th>Description</th></tr>
956 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
957 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
958 </tbody>
959 </table>
960 </td>
961 </tr>
962</table>
963</div>
964
965<!-- _______________________________________________________________________ -->
966<div class="doc_subsubsection"> <a name="t_classifications">Type
967Classifications</a> </div>
968<div class="doc_text">
969<p>These different primitive types fall into a few useful
970classifications:</p>
971
972<table border="1" cellspacing="0" cellpadding="4">
973 <tbody>
974 <tr><th>Classification</th><th>Types</th></tr>
975 <tr>
976 <td><a name="t_integer">integer</a></td>
977 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
978 </tr>
979 <tr>
980 <td><a name="t_floating">floating point</a></td>
981 <td><tt>float, double</tt></td>
982 </tr>
983 <tr>
984 <td><a name="t_firstclass">first class</a></td>
985 <td><tt>i1, ..., float, double, <br/>
986 <a href="#t_pointer">pointer</a>,<a href="#t_vector">vector</a></tt>
987 </td>
988 </tr>
989 </tbody>
990</table>
991
992<p>The <a href="#t_firstclass">first class</a> types are perhaps the
993most important. Values of these types are the only ones which can be
994produced by instructions, passed as arguments, or used as operands to
995instructions. This means that all structures and arrays must be
996manipulated either by pointer or by component.</p>
997</div>
998
999<!-- ======================================================================= -->
1000<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
1001
1002<div class="doc_text">
1003
1004<p>The real power in LLVM comes from the derived types in the system.
1005This is what allows a programmer to represent arrays, functions,
1006pointers, and other useful types. Note that these derived types may be
1007recursive: For example, it is possible to have a two dimensional array.</p>
1008
1009</div>
1010
1011<!-- _______________________________________________________________________ -->
1012<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1013
1014<div class="doc_text">
1015
1016<h5>Overview:</h5>
1017<p>The integer type is a very simple derived type that simply specifies an
1018arbitrary bit width for the integer type desired. Any bit width from 1 bit to
10192^23-1 (about 8 million) can be specified.</p>
1020
1021<h5>Syntax:</h5>
1022
1023<pre>
1024 iN
1025</pre>
1026
1027<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1028value.</p>
1029
1030<h5>Examples:</h5>
1031<table class="layout">
1032 <tr class="layout">
1033 <td class="left">
1034 <tt>i1</tt><br/>
1035 <tt>i4</tt><br/>
1036 <tt>i8</tt><br/>
1037 <tt>i16</tt><br/>
1038 <tt>i32</tt><br/>
1039 <tt>i42</tt><br/>
1040 <tt>i64</tt><br/>
1041 <tt>i1942652</tt><br/>
1042 </td>
1043 <td class="left">
1044 A boolean integer of 1 bit<br/>
1045 A nibble sized integer of 4 bits.<br/>
1046 A byte sized integer of 8 bits.<br/>
1047 A half word sized integer of 16 bits.<br/>
1048 A word sized integer of 32 bits.<br/>
1049 An integer whose bit width is the answer. <br/>
1050 A double word sized integer of 64 bits.<br/>
1051 A really big integer of over 1 million bits.<br/>
1052 </td>
1053 </tr>
1054</table>
1055</div>
1056
1057<!-- _______________________________________________________________________ -->
1058<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
1059
1060<div class="doc_text">
1061
1062<h5>Overview:</h5>
1063
1064<p>The array type is a very simple derived type that arranges elements
1065sequentially in memory. The array type requires a size (number of
1066elements) and an underlying data type.</p>
1067
1068<h5>Syntax:</h5>
1069
1070<pre>
1071 [&lt;# elements&gt; x &lt;elementtype&gt;]
1072</pre>
1073
1074<p>The number of elements is a constant integer value; elementtype may
1075be any type with a size.</p>
1076
1077<h5>Examples:</h5>
1078<table class="layout">
1079 <tr class="layout">
1080 <td class="left">
1081 <tt>[40 x i32 ]</tt><br/>
1082 <tt>[41 x i32 ]</tt><br/>
1083 <tt>[40 x i8]</tt><br/>
1084 </td>
1085 <td class="left">
1086 Array of 40 32-bit integer values.<br/>
1087 Array of 41 32-bit integer values.<br/>
1088 Array of 40 8-bit integer values.<br/>
1089 </td>
1090 </tr>
1091</table>
1092<p>Here are some examples of multidimensional arrays:</p>
1093<table class="layout">
1094 <tr class="layout">
1095 <td class="left">
1096 <tt>[3 x [4 x i32]]</tt><br/>
1097 <tt>[12 x [10 x float]]</tt><br/>
1098 <tt>[2 x [3 x [4 x i16]]]</tt><br/>
1099 </td>
1100 <td class="left">
1101 3x4 array of 32-bit integer values.<br/>
1102 12x10 array of single precision floating point values.<br/>
1103 2x3x4 array of 16-bit integer values.<br/>
1104 </td>
1105 </tr>
1106</table>
1107
1108<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1109length array. Normally, accesses past the end of an array are undefined in
1110LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1111As a special case, however, zero length arrays are recognized to be variable
1112length. This allows implementation of 'pascal style arrays' with the LLVM
1113type "{ i32, [0 x float]}", for example.</p>
1114
1115</div>
1116
1117<!-- _______________________________________________________________________ -->
1118<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
1119<div class="doc_text">
1120<h5>Overview:</h5>
1121<p>The function type can be thought of as a function signature. It
1122consists of a return type and a list of formal parameter types.
1123Function types are usually used to build virtual function tables
1124(which are structures of pointers to functions), for indirect function
1125calls, and when defining a function.</p>
1126<p>
1127The return type of a function type cannot be an aggregate type.
1128</p>
1129<h5>Syntax:</h5>
1130<pre> &lt;returntype&gt; (&lt;parameter list&gt;)<br></pre>
1131<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
1132specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1133which indicates that the function takes a variable number of arguments.
1134Variable argument functions can access their arguments with the <a
1135 href="#int_varargs">variable argument handling intrinsic</a> functions.</p>
1136<h5>Examples:</h5>
1137<table class="layout">
1138 <tr class="layout">
1139 <td class="left"><tt>i32 (i32)</tt></td>
1140 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
1141 </td>
1142 </tr><tr class="layout">
Reid Spencerf234bed2007-07-19 23:13:04 +00001143 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001144 </tt></td>
1145 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1146 an <tt>i16</tt> that should be sign extended and a
1147 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
1148 <tt>float</tt>.
1149 </td>
1150 </tr><tr class="layout">
1151 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1152 <td class="left">A vararg function that takes at least one
1153 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
1154 which returns an integer. This is the signature for <tt>printf</tt> in
1155 LLVM.
1156 </td>
1157 </tr>
1158</table>
1159
1160</div>
1161<!-- _______________________________________________________________________ -->
1162<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
1163<div class="doc_text">
1164<h5>Overview:</h5>
1165<p>The structure type is used to represent a collection of data members
1166together in memory. The packing of the field types is defined to match
1167the ABI of the underlying processor. The elements of a structure may
1168be any type that has a size.</p>
1169<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1170and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1171field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1172instruction.</p>
1173<h5>Syntax:</h5>
1174<pre> { &lt;type list&gt; }<br></pre>
1175<h5>Examples:</h5>
1176<table class="layout">
1177 <tr class="layout">
1178 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1179 <td class="left">A triple of three <tt>i32</tt> values</td>
1180 </tr><tr class="layout">
1181 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1182 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1183 second element is a <a href="#t_pointer">pointer</a> to a
1184 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1185 an <tt>i32</tt>.</td>
1186 </tr>
1187</table>
1188</div>
1189
1190<!-- _______________________________________________________________________ -->
1191<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1192</div>
1193<div class="doc_text">
1194<h5>Overview:</h5>
1195<p>The packed structure type is used to represent a collection of data members
1196together in memory. There is no padding between fields. Further, the alignment
1197of a packed structure is 1 byte. The elements of a packed structure may
1198be any type that has a size.</p>
1199<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1200and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1201field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1202instruction.</p>
1203<h5>Syntax:</h5>
1204<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1205<h5>Examples:</h5>
1206<table class="layout">
1207 <tr class="layout">
1208 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1209 <td class="left">A triple of three <tt>i32</tt> values</td>
1210 </tr><tr class="layout">
1211 <td class="left"><tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}&nbsp;&gt;</tt></td>
1212 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1213 second element is a <a href="#t_pointer">pointer</a> to a
1214 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1215 an <tt>i32</tt>.</td>
1216 </tr>
1217</table>
1218</div>
1219
1220<!-- _______________________________________________________________________ -->
1221<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
1222<div class="doc_text">
1223<h5>Overview:</h5>
1224<p>As in many languages, the pointer type represents a pointer or
1225reference to another object, which must live in memory.</p>
1226<h5>Syntax:</h5>
1227<pre> &lt;type&gt; *<br></pre>
1228<h5>Examples:</h5>
1229<table class="layout">
1230 <tr class="layout">
1231 <td class="left">
1232 <tt>[4x i32]*</tt><br/>
1233 <tt>i32 (i32 *) *</tt><br/>
1234 </td>
1235 <td class="left">
1236 A <a href="#t_pointer">pointer</a> to <a href="#t_array">array</a> of
1237 four <tt>i32</tt> values<br/>
1238 A <a href="#t_pointer">pointer</a> to a <a
1239 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
1240 <tt>i32</tt>.<br/>
1241 </td>
1242 </tr>
1243</table>
1244</div>
1245
1246<!-- _______________________________________________________________________ -->
1247<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
1248<div class="doc_text">
1249
1250<h5>Overview:</h5>
1251
1252<p>A vector type is a simple derived type that represents a vector
1253of elements. Vector types are used when multiple primitive data
1254are operated in parallel using a single instruction (SIMD).
1255A vector type requires a size (number of
1256elements) and an underlying primitive data type. Vectors must have a power
1257of two length (1, 2, 4, 8, 16 ...). Vector types are
1258considered <a href="#t_firstclass">first class</a>.</p>
1259
1260<h5>Syntax:</h5>
1261
1262<pre>
1263 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1264</pre>
1265
1266<p>The number of elements is a constant integer value; elementtype may
1267be any integer or floating point type.</p>
1268
1269<h5>Examples:</h5>
1270
1271<table class="layout">
1272 <tr class="layout">
1273 <td class="left">
1274 <tt>&lt;4 x i32&gt;</tt><br/>
1275 <tt>&lt;8 x float&gt;</tt><br/>
1276 <tt>&lt;2 x i64&gt;</tt><br/>
1277 </td>
1278 <td class="left">
1279 Vector of 4 32-bit integer values.<br/>
1280 Vector of 8 floating-point values.<br/>
1281 Vector of 2 64-bit integer values.<br/>
1282 </td>
1283 </tr>
1284</table>
1285</div>
1286
1287<!-- _______________________________________________________________________ -->
1288<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1289<div class="doc_text">
1290
1291<h5>Overview:</h5>
1292
1293<p>Opaque types are used to represent unknown types in the system. This
1294corresponds (for example) to the C notion of a foward declared structure type.
1295In LLVM, opaque types can eventually be resolved to any type (not just a
1296structure type).</p>
1297
1298<h5>Syntax:</h5>
1299
1300<pre>
1301 opaque
1302</pre>
1303
1304<h5>Examples:</h5>
1305
1306<table class="layout">
1307 <tr class="layout">
1308 <td class="left">
1309 <tt>opaque</tt>
1310 </td>
1311 <td class="left">
1312 An opaque type.<br/>
1313 </td>
1314 </tr>
1315</table>
1316</div>
1317
1318
1319<!-- *********************************************************************** -->
1320<div class="doc_section"> <a name="constants">Constants</a> </div>
1321<!-- *********************************************************************** -->
1322
1323<div class="doc_text">
1324
1325<p>LLVM has several different basic types of constants. This section describes
1326them all and their syntax.</p>
1327
1328</div>
1329
1330<!-- ======================================================================= -->
1331<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
1332
1333<div class="doc_text">
1334
1335<dl>
1336 <dt><b>Boolean constants</b></dt>
1337
1338 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
1339 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
1340 </dd>
1341
1342 <dt><b>Integer constants</b></dt>
1343
1344 <dd>Standard integers (such as '4') are constants of the <a
1345 href="#t_integer">integer</a> type. Negative numbers may be used with
1346 integer types.
1347 </dd>
1348
1349 <dt><b>Floating point constants</b></dt>
1350
1351 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1352 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
1353 notation (see below). Floating point constants must have a <a
1354 href="#t_floating">floating point</a> type. </dd>
1355
1356 <dt><b>Null pointer constants</b></dt>
1357
1358 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
1359 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1360
1361</dl>
1362
1363<p>The one non-intuitive notation for constants is the optional hexadecimal form
1364of floating point constants. For example, the form '<tt>double
13650x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
13664.5e+15</tt>'. The only time hexadecimal floating point constants are required
1367(and the only time that they are generated by the disassembler) is when a
1368floating point constant must be emitted but it cannot be represented as a
1369decimal floating point number. For example, NaN's, infinities, and other
1370special values are represented in their IEEE hexadecimal format so that
1371assembly and disassembly do not cause any bits to change in the constants.</p>
1372
1373</div>
1374
1375<!-- ======================================================================= -->
1376<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1377</div>
1378
1379<div class="doc_text">
1380<p>Aggregate constants arise from aggregation of simple constants
1381and smaller aggregate constants.</p>
1382
1383<dl>
1384 <dt><b>Structure constants</b></dt>
1385
1386 <dd>Structure constants are represented with notation similar to structure
1387 type definitions (a comma separated list of elements, surrounded by braces
1388 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* %G }</tt>",
1389 where "<tt>%G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
1390 must have <a href="#t_struct">structure type</a>, and the number and
1391 types of elements must match those specified by the type.
1392 </dd>
1393
1394 <dt><b>Array constants</b></dt>
1395
1396 <dd>Array constants are represented with notation similar to array type
1397 definitions (a comma separated list of elements, surrounded by square brackets
1398 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
1399 constants must have <a href="#t_array">array type</a>, and the number and
1400 types of elements must match those specified by the type.
1401 </dd>
1402
1403 <dt><b>Vector constants</b></dt>
1404
1405 <dd>Vector constants are represented with notation similar to vector type
1406 definitions (a comma separated list of elements, surrounded by
1407 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
1408 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
1409 href="#t_vector">vector type</a>, and the number and types of elements must
1410 match those specified by the type.
1411 </dd>
1412
1413 <dt><b>Zero initialization</b></dt>
1414
1415 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1416 value to zero of <em>any</em> type, including scalar and aggregate types.
1417 This is often used to avoid having to print large zero initializers (e.g. for
1418 large arrays) and is always exactly equivalent to using explicit zero
1419 initializers.
1420 </dd>
1421</dl>
1422
1423</div>
1424
1425<!-- ======================================================================= -->
1426<div class="doc_subsection">
1427 <a name="globalconstants">Global Variable and Function Addresses</a>
1428</div>
1429
1430<div class="doc_text">
1431
1432<p>The addresses of <a href="#globalvars">global variables</a> and <a
1433href="#functionstructure">functions</a> are always implicitly valid (link-time)
1434constants. These constants are explicitly referenced when the <a
1435href="#identifiers">identifier for the global</a> is used and always have <a
1436href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1437file:</p>
1438
1439<div class="doc_code">
1440<pre>
1441@X = global i32 17
1442@Y = global i32 42
1443@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1444</pre>
1445</div>
1446
1447</div>
1448
1449<!-- ======================================================================= -->
1450<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
1451<div class="doc_text">
1452 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
1453 no specific value. Undefined values may be of any type and be used anywhere
1454 a constant is permitted.</p>
1455
1456 <p>Undefined values indicate to the compiler that the program is well defined
1457 no matter what value is used, giving the compiler more freedom to optimize.
1458 </p>
1459</div>
1460
1461<!-- ======================================================================= -->
1462<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1463</div>
1464
1465<div class="doc_text">
1466
1467<p>Constant expressions are used to allow expressions involving other constants
1468to be used as constants. Constant expressions may be of any <a
1469href="#t_firstclass">first class</a> type and may involve any LLVM operation
1470that does not have side effects (e.g. load and call are not supported). The
1471following is the syntax for constant expressions:</p>
1472
1473<dl>
1474 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1475 <dd>Truncate a constant to another type. The bit size of CST must be larger
1476 than the bit size of TYPE. Both types must be integers.</dd>
1477
1478 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1479 <dd>Zero extend a constant to another type. The bit size of CST must be
1480 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1481
1482 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1483 <dd>Sign extend a constant to another type. The bit size of CST must be
1484 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1485
1486 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1487 <dd>Truncate a floating point constant to another floating point type. The
1488 size of CST must be larger than the size of TYPE. Both types must be
1489 floating point.</dd>
1490
1491 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1492 <dd>Floating point extend a constant to another type. The size of CST must be
1493 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1494
1495 <dt><b><tt>fp2uint ( CST to TYPE )</tt></b></dt>
1496 <dd>Convert a floating point constant to the corresponding unsigned integer
1497 constant. TYPE must be an integer type. CST must be floating point. If the
1498 value won't fit in the integer type, the results are undefined.</dd>
1499
1500 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
1501 <dd>Convert a floating point constant to the corresponding signed integer
1502 constant. TYPE must be an integer type. CST must be floating point. If the
1503 value won't fit in the integer type, the results are undefined.</dd>
1504
1505 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
1506 <dd>Convert an unsigned integer constant to the corresponding floating point
1507 constant. TYPE must be floating point. CST must be of integer type. If the
1508 value won't fit in the floating point type, the results are undefined.</dd>
1509
1510 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
1511 <dd>Convert a signed integer constant to the corresponding floating point
1512 constant. TYPE must be floating point. CST must be of integer type. If the
1513 value won't fit in the floating point type, the results are undefined.</dd>
1514
1515 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1516 <dd>Convert a pointer typed constant to the corresponding integer constant
1517 TYPE must be an integer type. CST must be of pointer type. The CST value is
1518 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1519
1520 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1521 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1522 pointer type. CST must be of integer type. The CST value is zero extended,
1523 truncated, or unchanged to make it fit in a pointer size. This one is
1524 <i>really</i> dangerous!</dd>
1525
1526 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
1527 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1528 identical (same number of bits). The conversion is done as if the CST value
1529 was stored to memory and read back as TYPE. In other words, no bits change
1530 with this operator, just the type. This can be used for conversion of
1531 vector types to any other type, as long as they have the same bit width. For
1532 pointers it is only valid to cast to another pointer type.
1533 </dd>
1534
1535 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1536
1537 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1538 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1539 instruction, the index list may have zero or more indexes, which are required
1540 to make sense for the type of "CSTPTR".</dd>
1541
1542 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1543
1544 <dd>Perform the <a href="#i_select">select operation</a> on
1545 constants.</dd>
1546
1547 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1548 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1549
1550 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1551 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
1552
1553 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1554
1555 <dd>Perform the <a href="#i_extractelement">extractelement
1556 operation</a> on constants.
1557
1558 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1559
1560 <dd>Perform the <a href="#i_insertelement">insertelement
1561 operation</a> on constants.</dd>
1562
1563
1564 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1565
1566 <dd>Perform the <a href="#i_shufflevector">shufflevector
1567 operation</a> on constants.</dd>
1568
1569 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1570
1571 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1572 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
1573 binary</a> operations. The constraints on operands are the same as those for
1574 the corresponding instruction (e.g. no bitwise operations on floating point
1575 values are allowed).</dd>
1576</dl>
1577</div>
1578
1579<!-- *********************************************************************** -->
1580<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1581<!-- *********************************************************************** -->
1582
1583<!-- ======================================================================= -->
1584<div class="doc_subsection">
1585<a name="inlineasm">Inline Assembler Expressions</a>
1586</div>
1587
1588<div class="doc_text">
1589
1590<p>
1591LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1592Module-Level Inline Assembly</a>) through the use of a special value. This
1593value represents the inline assembler as a string (containing the instructions
1594to emit), a list of operand constraints (stored as a string), and a flag that
1595indicates whether or not the inline asm expression has side effects. An example
1596inline assembler expression is:
1597</p>
1598
1599<div class="doc_code">
1600<pre>
1601i32 (i32) asm "bswap $0", "=r,r"
1602</pre>
1603</div>
1604
1605<p>
1606Inline assembler expressions may <b>only</b> be used as the callee operand of
1607a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1608</p>
1609
1610<div class="doc_code">
1611<pre>
1612%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
1613</pre>
1614</div>
1615
1616<p>
1617Inline asms with side effects not visible in the constraint list must be marked
1618as having side effects. This is done through the use of the
1619'<tt>sideeffect</tt>' keyword, like so:
1620</p>
1621
1622<div class="doc_code">
1623<pre>
1624call void asm sideeffect "eieio", ""()
1625</pre>
1626</div>
1627
1628<p>TODO: The format of the asm and constraints string still need to be
1629documented here. Constraints on what can be done (e.g. duplication, moving, etc
1630need to be documented).
1631</p>
1632
1633</div>
1634
1635<!-- *********************************************************************** -->
1636<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1637<!-- *********************************************************************** -->
1638
1639<div class="doc_text">
1640
1641<p>The LLVM instruction set consists of several different
1642classifications of instructions: <a href="#terminators">terminator
1643instructions</a>, <a href="#binaryops">binary instructions</a>,
1644<a href="#bitwiseops">bitwise binary instructions</a>, <a
1645 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1646instructions</a>.</p>
1647
1648</div>
1649
1650<!-- ======================================================================= -->
1651<div class="doc_subsection"> <a name="terminators">Terminator
1652Instructions</a> </div>
1653
1654<div class="doc_text">
1655
1656<p>As mentioned <a href="#functionstructure">previously</a>, every
1657basic block in a program ends with a "Terminator" instruction, which
1658indicates which block should be executed after the current block is
1659finished. These terminator instructions typically yield a '<tt>void</tt>'
1660value: they produce control flow, not values (the one exception being
1661the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
1662<p>There are six different terminator instructions: the '<a
1663 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1664instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
1665the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1666 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1667 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
1668
1669</div>
1670
1671<!-- _______________________________________________________________________ -->
1672<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1673Instruction</a> </div>
1674<div class="doc_text">
1675<h5>Syntax:</h5>
1676<pre> ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
1677 ret void <i>; Return from void function</i>
1678</pre>
1679<h5>Overview:</h5>
1680<p>The '<tt>ret</tt>' instruction is used to return control flow (and a
1681value) from a function back to the caller.</p>
1682<p>There are two forms of the '<tt>ret</tt>' instruction: one that
1683returns a value and then causes control flow, and one that just causes
1684control flow to occur.</p>
1685<h5>Arguments:</h5>
1686<p>The '<tt>ret</tt>' instruction may return any '<a
1687 href="#t_firstclass">first class</a>' type. Notice that a function is
1688not <a href="#wellformed">well formed</a> if there exists a '<tt>ret</tt>'
1689instruction inside of the function that returns a value that does not
1690match the return type of the function.</p>
1691<h5>Semantics:</h5>
1692<p>When the '<tt>ret</tt>' instruction is executed, control flow
1693returns back to the calling function's context. If the caller is a "<a
1694 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
1695the instruction after the call. If the caller was an "<a
1696 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
1697at the beginning of the "normal" destination block. If the instruction
1698returns a value, that value shall set the call or invoke instruction's
1699return value.</p>
1700<h5>Example:</h5>
1701<pre> ret i32 5 <i>; Return an integer value of 5</i>
1702 ret void <i>; Return from a void function</i>
1703</pre>
1704</div>
1705<!-- _______________________________________________________________________ -->
1706<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
1707<div class="doc_text">
1708<h5>Syntax:</h5>
1709<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
1710</pre>
1711<h5>Overview:</h5>
1712<p>The '<tt>br</tt>' instruction is used to cause control flow to
1713transfer to a different basic block in the current function. There are
1714two forms of this instruction, corresponding to a conditional branch
1715and an unconditional branch.</p>
1716<h5>Arguments:</h5>
1717<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
1718single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
1719unconditional form of the '<tt>br</tt>' instruction takes a single
1720'<tt>label</tt>' value as a target.</p>
1721<h5>Semantics:</h5>
1722<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
1723argument is evaluated. If the value is <tt>true</tt>, control flows
1724to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1725control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
1726<h5>Example:</h5>
1727<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
1728 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
1729</div>
1730<!-- _______________________________________________________________________ -->
1731<div class="doc_subsubsection">
1732 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1733</div>
1734
1735<div class="doc_text">
1736<h5>Syntax:</h5>
1737
1738<pre>
1739 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1740</pre>
1741
1742<h5>Overview:</h5>
1743
1744<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1745several different places. It is a generalization of the '<tt>br</tt>'
1746instruction, allowing a branch to occur to one of many possible
1747destinations.</p>
1748
1749
1750<h5>Arguments:</h5>
1751
1752<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1753comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1754an array of pairs of comparison value constants and '<tt>label</tt>'s. The
1755table is not allowed to contain duplicate constant entries.</p>
1756
1757<h5>Semantics:</h5>
1758
1759<p>The <tt>switch</tt> instruction specifies a table of values and
1760destinations. When the '<tt>switch</tt>' instruction is executed, this
1761table is searched for the given value. If the value is found, control flow is
1762transfered to the corresponding destination; otherwise, control flow is
1763transfered to the default destination.</p>
1764
1765<h5>Implementation:</h5>
1766
1767<p>Depending on properties of the target machine and the particular
1768<tt>switch</tt> instruction, this instruction may be code generated in different
1769ways. For example, it could be generated as a series of chained conditional
1770branches or with a lookup table.</p>
1771
1772<h5>Example:</h5>
1773
1774<pre>
1775 <i>; Emulate a conditional br instruction</i>
1776 %Val = <a href="#i_zext">zext</a> i1 %value to i32
1777 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
1778
1779 <i>; Emulate an unconditional br instruction</i>
1780 switch i32 0, label %dest [ ]
1781
1782 <i>; Implement a jump table:</i>
1783 switch i32 %val, label %otherwise [ i32 0, label %onzero
1784 i32 1, label %onone
1785 i32 2, label %ontwo ]
1786</pre>
1787</div>
1788
1789<!-- _______________________________________________________________________ -->
1790<div class="doc_subsubsection">
1791 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
1792</div>
1793
1794<div class="doc_text">
1795
1796<h5>Syntax:</h5>
1797
1798<pre>
1799 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; %&lt;function ptr val&gt;(&lt;function args&gt;)
1800 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
1801</pre>
1802
1803<h5>Overview:</h5>
1804
1805<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
1806function, with the possibility of control flow transfer to either the
1807'<tt>normal</tt>' label or the
1808'<tt>exception</tt>' label. If the callee function returns with the
1809"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
1810"normal" label. If the callee (or any indirect callees) returns with the "<a
1811href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
1812continued at the dynamically nearest "exception" label.</p>
1813
1814<h5>Arguments:</h5>
1815
1816<p>This instruction requires several arguments:</p>
1817
1818<ol>
1819 <li>
1820 The optional "cconv" marker indicates which <a href="#callingconv">calling
1821 convention</a> the call should use. If none is specified, the call defaults
1822 to using C calling conventions.
1823 </li>
1824 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
1825 function value being invoked. In most cases, this is a direct function
1826 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
1827 an arbitrary pointer to function value.
1828 </li>
1829
1830 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
1831 function to be invoked. </li>
1832
1833 <li>'<tt>function args</tt>': argument list whose types match the function
1834 signature argument types. If the function signature indicates the function
1835 accepts a variable number of arguments, the extra arguments can be
1836 specified. </li>
1837
1838 <li>'<tt>normal label</tt>': the label reached when the called function
1839 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
1840
1841 <li>'<tt>exception label</tt>': the label reached when a callee returns with
1842 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
1843
1844</ol>
1845
1846<h5>Semantics:</h5>
1847
1848<p>This instruction is designed to operate as a standard '<tt><a
1849href="#i_call">call</a></tt>' instruction in most regards. The primary
1850difference is that it establishes an association with a label, which is used by
1851the runtime library to unwind the stack.</p>
1852
1853<p>This instruction is used in languages with destructors to ensure that proper
1854cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
1855exception. Additionally, this is important for implementation of
1856'<tt>catch</tt>' clauses in high-level languages that support them.</p>
1857
1858<h5>Example:</h5>
1859<pre>
1860 %retval = invoke i32 %Test(i32 15) to label %Continue
1861 unwind label %TestCleanup <i>; {i32}:retval set</i>
1862 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Test(i32 15) to label %Continue
1863 unwind label %TestCleanup <i>; {i32}:retval set</i>
1864</pre>
1865</div>
1866
1867
1868<!-- _______________________________________________________________________ -->
1869
1870<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
1871Instruction</a> </div>
1872
1873<div class="doc_text">
1874
1875<h5>Syntax:</h5>
1876<pre>
1877 unwind
1878</pre>
1879
1880<h5>Overview:</h5>
1881
1882<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
1883at the first callee in the dynamic call stack which used an <a
1884href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
1885primarily used to implement exception handling.</p>
1886
1887<h5>Semantics:</h5>
1888
1889<p>The '<tt>unwind</tt>' intrinsic causes execution of the current function to
1890immediately halt. The dynamic call stack is then searched for the first <a
1891href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
1892execution continues at the "exceptional" destination block specified by the
1893<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
1894dynamic call chain, undefined behavior results.</p>
1895</div>
1896
1897<!-- _______________________________________________________________________ -->
1898
1899<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
1900Instruction</a> </div>
1901
1902<div class="doc_text">
1903
1904<h5>Syntax:</h5>
1905<pre>
1906 unreachable
1907</pre>
1908
1909<h5>Overview:</h5>
1910
1911<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
1912instruction is used to inform the optimizer that a particular portion of the
1913code is not reachable. This can be used to indicate that the code after a
1914no-return function cannot be reached, and other facts.</p>
1915
1916<h5>Semantics:</h5>
1917
1918<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
1919</div>
1920
1921
1922
1923<!-- ======================================================================= -->
1924<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
1925<div class="doc_text">
1926<p>Binary operators are used to do most of the computation in a
1927program. They require two operands, execute an operation on them, and
1928produce a single value. The operands might represent
1929multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
1930The result value of a binary operator is not
1931necessarily the same type as its operands.</p>
1932<p>There are several different binary operators:</p>
1933</div>
1934<!-- _______________________________________________________________________ -->
1935<div class="doc_subsubsection"> <a name="i_add">'<tt>add</tt>'
1936Instruction</a> </div>
1937<div class="doc_text">
1938<h5>Syntax:</h5>
1939<pre> &lt;result&gt; = add &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1940</pre>
1941<h5>Overview:</h5>
1942<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
1943<h5>Arguments:</h5>
1944<p>The two arguments to the '<tt>add</tt>' instruction must be either <a
1945 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values.
1946 This instruction can also take <a href="#t_vector">vector</a> versions of the values.
1947Both arguments must have identical types.</p>
1948<h5>Semantics:</h5>
1949<p>The value produced is the integer or floating point sum of the two
1950operands.</p>
1951<h5>Example:</h5>
1952<pre> &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
1953</pre>
1954</div>
1955<!-- _______________________________________________________________________ -->
1956<div class="doc_subsubsection"> <a name="i_sub">'<tt>sub</tt>'
1957Instruction</a> </div>
1958<div class="doc_text">
1959<h5>Syntax:</h5>
1960<pre> &lt;result&gt; = sub &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1961</pre>
1962<h5>Overview:</h5>
1963<p>The '<tt>sub</tt>' instruction returns the difference of its two
1964operands.</p>
1965<p>Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>'
1966instruction present in most other intermediate representations.</p>
1967<h5>Arguments:</h5>
1968<p>The two arguments to the '<tt>sub</tt>' instruction must be either <a
1969 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
1970values.
1971This instruction can also take <a href="#t_vector">vector</a> versions of the values.
1972Both arguments must have identical types.</p>
1973<h5>Semantics:</h5>
1974<p>The value produced is the integer or floating point difference of
1975the two operands.</p>
1976<h5>Example:</h5>
1977<pre>
1978 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
1979 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
1980</pre>
1981</div>
1982<!-- _______________________________________________________________________ -->
1983<div class="doc_subsubsection"> <a name="i_mul">'<tt>mul</tt>'
1984Instruction</a> </div>
1985<div class="doc_text">
1986<h5>Syntax:</h5>
1987<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1988</pre>
1989<h5>Overview:</h5>
1990<p>The '<tt>mul</tt>' instruction returns the product of its two
1991operands.</p>
1992<h5>Arguments:</h5>
1993<p>The two arguments to the '<tt>mul</tt>' instruction must be either <a
1994 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
1995values.
1996This instruction can also take <a href="#t_vector">vector</a> versions of the values.
1997Both arguments must have identical types.</p>
1998<h5>Semantics:</h5>
1999<p>The value produced is the integer or floating point product of the
2000two operands.</p>
2001<p>Because the operands are the same width, the result of an integer
2002multiplication is the same whether the operands should be deemed unsigned or
2003signed.</p>
2004<h5>Example:</h5>
2005<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
2006</pre>
2007</div>
2008<!-- _______________________________________________________________________ -->
2009<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2010</a></div>
2011<div class="doc_text">
2012<h5>Syntax:</h5>
2013<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2014</pre>
2015<h5>Overview:</h5>
2016<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2017operands.</p>
2018<h5>Arguments:</h5>
2019<p>The two arguments to the '<tt>udiv</tt>' instruction must be
2020<a href="#t_integer">integer</a> values. Both arguments must have identical
2021types. This instruction can also take <a href="#t_vector">vector</a> versions
2022of the values in which case the elements must be integers.</p>
2023<h5>Semantics:</h5>
2024<p>The value produced is the unsigned integer quotient of the two operands. This
2025instruction always performs an unsigned division operation, regardless of
2026whether the arguments are unsigned or not.</p>
2027<h5>Example:</h5>
2028<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2029</pre>
2030</div>
2031<!-- _______________________________________________________________________ -->
2032<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2033</a> </div>
2034<div class="doc_text">
2035<h5>Syntax:</h5>
2036<pre> &lt;result&gt; = sdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2037</pre>
2038<h5>Overview:</h5>
2039<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2040operands.</p>
2041<h5>Arguments:</h5>
2042<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2043<a href="#t_integer">integer</a> values. Both arguments must have identical
2044types. This instruction can also take <a href="#t_vector">vector</a> versions
2045of the values in which case the elements must be integers.</p>
2046<h5>Semantics:</h5>
2047<p>The value produced is the signed integer quotient of the two operands. This
2048instruction always performs a signed division operation, regardless of whether
2049the arguments are signed or not.</p>
2050<h5>Example:</h5>
2051<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2052</pre>
2053</div>
2054<!-- _______________________________________________________________________ -->
2055<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
2056Instruction</a> </div>
2057<div class="doc_text">
2058<h5>Syntax:</h5>
2059<pre> &lt;result&gt; = fdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2060</pre>
2061<h5>Overview:</h5>
2062<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
2063operands.</p>
2064<h5>Arguments:</h5>
2065<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
2066<a href="#t_floating">floating point</a> values. Both arguments must have
2067identical types. This instruction can also take <a href="#t_vector">vector</a>
2068versions of floating point values.</p>
2069<h5>Semantics:</h5>
2070<p>The value produced is the floating point quotient of the two operands.</p>
2071<h5>Example:</h5>
2072<pre> &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
2073</pre>
2074</div>
2075<!-- _______________________________________________________________________ -->
2076<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2077</div>
2078<div class="doc_text">
2079<h5>Syntax:</h5>
2080<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2081</pre>
2082<h5>Overview:</h5>
2083<p>The '<tt>urem</tt>' instruction returns the remainder from the
2084unsigned division of its two arguments.</p>
2085<h5>Arguments:</h5>
2086<p>The two arguments to the '<tt>urem</tt>' instruction must be
2087<a href="#t_integer">integer</a> values. Both arguments must have identical
2088types.</p>
2089<h5>Semantics:</h5>
2090<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
2091This instruction always performs an unsigned division to get the remainder,
2092regardless of whether the arguments are unsigned or not.</p>
2093<h5>Example:</h5>
2094<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2095</pre>
2096
2097</div>
2098<!-- _______________________________________________________________________ -->
2099<div class="doc_subsubsection"> <a name="i_srem">'<tt>srem</tt>'
2100Instruction</a> </div>
2101<div class="doc_text">
2102<h5>Syntax:</h5>
2103<pre> &lt;result&gt; = srem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2104</pre>
2105<h5>Overview:</h5>
2106<p>The '<tt>srem</tt>' instruction returns the remainder from the
2107signed division of its two operands.</p>
2108<h5>Arguments:</h5>
2109<p>The two arguments to the '<tt>srem</tt>' instruction must be
2110<a href="#t_integer">integer</a> values. Both arguments must have identical
2111types.</p>
2112<h5>Semantics:</h5>
2113<p>This instruction returns the <i>remainder</i> of a division (where the result
2114has the same sign as the dividend, <tt>var1</tt>), not the <i>modulo</i>
2115operator (where the result has the same sign as the divisor, <tt>var2</tt>) of
2116a value. For more information about the difference, see <a
2117 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
2118Math Forum</a>. For a table of how this is implemented in various languages,
2119please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
2120Wikipedia: modulo operation</a>.</p>
2121<h5>Example:</h5>
2122<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2123</pre>
2124
2125</div>
2126<!-- _______________________________________________________________________ -->
2127<div class="doc_subsubsection"> <a name="i_frem">'<tt>frem</tt>'
2128Instruction</a> </div>
2129<div class="doc_text">
2130<h5>Syntax:</h5>
2131<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2132</pre>
2133<h5>Overview:</h5>
2134<p>The '<tt>frem</tt>' instruction returns the remainder from the
2135division of its two operands.</p>
2136<h5>Arguments:</h5>
2137<p>The two arguments to the '<tt>frem</tt>' instruction must be
2138<a href="#t_floating">floating point</a> values. Both arguments must have
2139identical types.</p>
2140<h5>Semantics:</h5>
2141<p>This instruction returns the <i>remainder</i> of a division.</p>
2142<h5>Example:</h5>
2143<pre> &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
2144</pre>
2145</div>
2146
2147<!-- ======================================================================= -->
2148<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2149Operations</a> </div>
2150<div class="doc_text">
2151<p>Bitwise binary operators are used to do various forms of
2152bit-twiddling in a program. They are generally very efficient
2153instructions and can commonly be strength reduced from other
2154instructions. They require two operands, execute an operation on them,
2155and produce a single value. The resulting value of the bitwise binary
2156operators is always the same type as its first operand.</p>
2157</div>
2158
2159<!-- _______________________________________________________________________ -->
2160<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2161Instruction</a> </div>
2162<div class="doc_text">
2163<h5>Syntax:</h5>
2164<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2165</pre>
2166<h5>Overview:</h5>
2167<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2168the left a specified number of bits.</p>
2169<h5>Arguments:</h5>
2170<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
2171 href="#t_integer">integer</a> type.</p>
2172<h5>Semantics:</h5>
2173<p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>.</p>
2174<h5>Example:</h5><pre>
2175 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2176 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2177 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
2178</pre>
2179</div>
2180<!-- _______________________________________________________________________ -->
2181<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2182Instruction</a> </div>
2183<div class="doc_text">
2184<h5>Syntax:</h5>
2185<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2186</pre>
2187
2188<h5>Overview:</h5>
2189<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
2190operand shifted to the right a specified number of bits with zero fill.</p>
2191
2192<h5>Arguments:</h5>
2193<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
2194<a href="#t_integer">integer</a> type.</p>
2195
2196<h5>Semantics:</h5>
2197<p>This instruction always performs a logical shift right operation. The most
2198significant bits of the result will be filled with zero bits after the
2199shift.</p>
2200
2201<h5>Example:</h5>
2202<pre>
2203 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2204 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2205 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2206 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
2207</pre>
2208</div>
2209
2210<!-- _______________________________________________________________________ -->
2211<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2212Instruction</a> </div>
2213<div class="doc_text">
2214
2215<h5>Syntax:</h5>
2216<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2217</pre>
2218
2219<h5>Overview:</h5>
2220<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
2221operand shifted to the right a specified number of bits with sign extension.</p>
2222
2223<h5>Arguments:</h5>
2224<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
2225<a href="#t_integer">integer</a> type.</p>
2226
2227<h5>Semantics:</h5>
2228<p>This instruction always performs an arithmetic shift right operation,
2229The most significant bits of the result will be filled with the sign bit
2230of <tt>var1</tt>.</p>
2231
2232<h5>Example:</h5>
2233<pre>
2234 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2235 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2236 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2237 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
2238</pre>
2239</div>
2240
2241<!-- _______________________________________________________________________ -->
2242<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2243Instruction</a> </div>
2244<div class="doc_text">
2245<h5>Syntax:</h5>
2246<pre> &lt;result&gt; = and &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2247</pre>
2248<h5>Overview:</h5>
2249<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2250its two operands.</p>
2251<h5>Arguments:</h5>
2252<p>The two arguments to the '<tt>and</tt>' instruction must be <a
2253 href="#t_integer">integer</a> values. Both arguments must have
2254identical types.</p>
2255<h5>Semantics:</h5>
2256<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
2257<p> </p>
2258<div style="align: center">
2259<table border="1" cellspacing="0" cellpadding="4">
2260 <tbody>
2261 <tr>
2262 <td>In0</td>
2263 <td>In1</td>
2264 <td>Out</td>
2265 </tr>
2266 <tr>
2267 <td>0</td>
2268 <td>0</td>
2269 <td>0</td>
2270 </tr>
2271 <tr>
2272 <td>0</td>
2273 <td>1</td>
2274 <td>0</td>
2275 </tr>
2276 <tr>
2277 <td>1</td>
2278 <td>0</td>
2279 <td>0</td>
2280 </tr>
2281 <tr>
2282 <td>1</td>
2283 <td>1</td>
2284 <td>1</td>
2285 </tr>
2286 </tbody>
2287</table>
2288</div>
2289<h5>Example:</h5>
2290<pre> &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
2291 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2292 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
2293</pre>
2294</div>
2295<!-- _______________________________________________________________________ -->
2296<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
2297<div class="doc_text">
2298<h5>Syntax:</h5>
2299<pre> &lt;result&gt; = or &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2300</pre>
2301<h5>Overview:</h5>
2302<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2303or of its two operands.</p>
2304<h5>Arguments:</h5>
2305<p>The two arguments to the '<tt>or</tt>' instruction must be <a
2306 href="#t_integer">integer</a> values. Both arguments must have
2307identical types.</p>
2308<h5>Semantics:</h5>
2309<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
2310<p> </p>
2311<div style="align: center">
2312<table border="1" cellspacing="0" cellpadding="4">
2313 <tbody>
2314 <tr>
2315 <td>In0</td>
2316 <td>In1</td>
2317 <td>Out</td>
2318 </tr>
2319 <tr>
2320 <td>0</td>
2321 <td>0</td>
2322 <td>0</td>
2323 </tr>
2324 <tr>
2325 <td>0</td>
2326 <td>1</td>
2327 <td>1</td>
2328 </tr>
2329 <tr>
2330 <td>1</td>
2331 <td>0</td>
2332 <td>1</td>
2333 </tr>
2334 <tr>
2335 <td>1</td>
2336 <td>1</td>
2337 <td>1</td>
2338 </tr>
2339 </tbody>
2340</table>
2341</div>
2342<h5>Example:</h5>
2343<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2344 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2345 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
2346</pre>
2347</div>
2348<!-- _______________________________________________________________________ -->
2349<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2350Instruction</a> </div>
2351<div class="doc_text">
2352<h5>Syntax:</h5>
2353<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2354</pre>
2355<h5>Overview:</h5>
2356<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2357or of its two operands. The <tt>xor</tt> is used to implement the
2358"one's complement" operation, which is the "~" operator in C.</p>
2359<h5>Arguments:</h5>
2360<p>The two arguments to the '<tt>xor</tt>' instruction must be <a
2361 href="#t_integer">integer</a> values. Both arguments must have
2362identical types.</p>
2363<h5>Semantics:</h5>
2364<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
2365<p> </p>
2366<div style="align: center">
2367<table border="1" cellspacing="0" cellpadding="4">
2368 <tbody>
2369 <tr>
2370 <td>In0</td>
2371 <td>In1</td>
2372 <td>Out</td>
2373 </tr>
2374 <tr>
2375 <td>0</td>
2376 <td>0</td>
2377 <td>0</td>
2378 </tr>
2379 <tr>
2380 <td>0</td>
2381 <td>1</td>
2382 <td>1</td>
2383 </tr>
2384 <tr>
2385 <td>1</td>
2386 <td>0</td>
2387 <td>1</td>
2388 </tr>
2389 <tr>
2390 <td>1</td>
2391 <td>1</td>
2392 <td>0</td>
2393 </tr>
2394 </tbody>
2395</table>
2396</div>
2397<p> </p>
2398<h5>Example:</h5>
2399<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2400 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2401 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2402 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
2403</pre>
2404</div>
2405
2406<!-- ======================================================================= -->
2407<div class="doc_subsection">
2408 <a name="vectorops">Vector Operations</a>
2409</div>
2410
2411<div class="doc_text">
2412
2413<p>LLVM supports several instructions to represent vector operations in a
2414target-independent manner. These instructions cover the element-access and
2415vector-specific operations needed to process vectors effectively. While LLVM
2416does directly support these vector operations, many sophisticated algorithms
2417will want to use target-specific intrinsics to take full advantage of a specific
2418target.</p>
2419
2420</div>
2421
2422<!-- _______________________________________________________________________ -->
2423<div class="doc_subsubsection">
2424 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2425</div>
2426
2427<div class="doc_text">
2428
2429<h5>Syntax:</h5>
2430
2431<pre>
2432 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
2433</pre>
2434
2435<h5>Overview:</h5>
2436
2437<p>
2438The '<tt>extractelement</tt>' instruction extracts a single scalar
2439element from a vector at a specified index.
2440</p>
2441
2442
2443<h5>Arguments:</h5>
2444
2445<p>
2446The first operand of an '<tt>extractelement</tt>' instruction is a
2447value of <a href="#t_vector">vector</a> type. The second operand is
2448an index indicating the position from which to extract the element.
2449The index may be a variable.</p>
2450
2451<h5>Semantics:</h5>
2452
2453<p>
2454The result is a scalar of the same type as the element type of
2455<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2456<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2457results are undefined.
2458</p>
2459
2460<h5>Example:</h5>
2461
2462<pre>
2463 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
2464</pre>
2465</div>
2466
2467
2468<!-- _______________________________________________________________________ -->
2469<div class="doc_subsubsection">
2470 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2471</div>
2472
2473<div class="doc_text">
2474
2475<h5>Syntax:</h5>
2476
2477<pre>
2478 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2479</pre>
2480
2481<h5>Overview:</h5>
2482
2483<p>
2484The '<tt>insertelement</tt>' instruction inserts a scalar
2485element into a vector at a specified index.
2486</p>
2487
2488
2489<h5>Arguments:</h5>
2490
2491<p>
2492The first operand of an '<tt>insertelement</tt>' instruction is a
2493value of <a href="#t_vector">vector</a> type. The second operand is a
2494scalar value whose type must equal the element type of the first
2495operand. The third operand is an index indicating the position at
2496which to insert the value. The index may be a variable.</p>
2497
2498<h5>Semantics:</h5>
2499
2500<p>
2501The result is a vector of the same type as <tt>val</tt>. Its
2502element values are those of <tt>val</tt> except at position
2503<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2504exceeds the length of <tt>val</tt>, the results are undefined.
2505</p>
2506
2507<h5>Example:</h5>
2508
2509<pre>
2510 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
2511</pre>
2512</div>
2513
2514<!-- _______________________________________________________________________ -->
2515<div class="doc_subsubsection">
2516 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2517</div>
2518
2519<div class="doc_text">
2520
2521<h5>Syntax:</h5>
2522
2523<pre>
2524 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2525</pre>
2526
2527<h5>Overview:</h5>
2528
2529<p>
2530The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2531from two input vectors, returning a vector of the same type.
2532</p>
2533
2534<h5>Arguments:</h5>
2535
2536<p>
2537The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2538with types that match each other and types that match the result of the
2539instruction. The third argument is a shuffle mask, which has the same number
2540of elements as the other vector type, but whose element type is always 'i32'.
2541</p>
2542
2543<p>
2544The shuffle mask operand is required to be a constant vector with either
2545constant integer or undef values.
2546</p>
2547
2548<h5>Semantics:</h5>
2549
2550<p>
2551The elements of the two input vectors are numbered from left to right across
2552both of the vectors. The shuffle mask operand specifies, for each element of
2553the result vector, which element of the two input registers the result element
2554gets. The element selector may be undef (meaning "don't care") and the second
2555operand may be undef if performing a shuffle from only one vector.
2556</p>
2557
2558<h5>Example:</h5>
2559
2560<pre>
2561 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
2562 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
2563 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2564 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
2565</pre>
2566</div>
2567
2568
2569<!-- ======================================================================= -->
2570<div class="doc_subsection">
2571 <a name="memoryops">Memory Access and Addressing Operations</a>
2572</div>
2573
2574<div class="doc_text">
2575
2576<p>A key design point of an SSA-based representation is how it
2577represents memory. In LLVM, no memory locations are in SSA form, which
2578makes things very simple. This section describes how to read, write,
2579allocate, and free memory in LLVM.</p>
2580
2581</div>
2582
2583<!-- _______________________________________________________________________ -->
2584<div class="doc_subsubsection">
2585 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
2586</div>
2587
2588<div class="doc_text">
2589
2590<h5>Syntax:</h5>
2591
2592<pre>
2593 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
2594</pre>
2595
2596<h5>Overview:</h5>
2597
2598<p>The '<tt>malloc</tt>' instruction allocates memory from the system
2599heap and returns a pointer to it.</p>
2600
2601<h5>Arguments:</h5>
2602
2603<p>The '<tt>malloc</tt>' instruction allocates
2604<tt>sizeof(&lt;type&gt;)*NumElements</tt>
2605bytes of memory from the operating system and returns a pointer of the
2606appropriate type to the program. If "NumElements" is specified, it is the
2607number of elements allocated. If an alignment is specified, the value result
2608of the allocation is guaranteed to be aligned to at least that boundary. If
2609not specified, or if zero, the target can choose to align the allocation on any
2610convenient boundary.</p>
2611
2612<p>'<tt>type</tt>' must be a sized type.</p>
2613
2614<h5>Semantics:</h5>
2615
2616<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
2617a pointer is returned.</p>
2618
2619<h5>Example:</h5>
2620
2621<pre>
2622 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
2623
2624 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
2625 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
2626 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
2627 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
2628 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
2629</pre>
2630</div>
2631
2632<!-- _______________________________________________________________________ -->
2633<div class="doc_subsubsection">
2634 <a name="i_free">'<tt>free</tt>' Instruction</a>
2635</div>
2636
2637<div class="doc_text">
2638
2639<h5>Syntax:</h5>
2640
2641<pre>
2642 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
2643</pre>
2644
2645<h5>Overview:</h5>
2646
2647<p>The '<tt>free</tt>' instruction returns memory back to the unused
2648memory heap to be reallocated in the future.</p>
2649
2650<h5>Arguments:</h5>
2651
2652<p>'<tt>value</tt>' shall be a pointer value that points to a value
2653that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
2654instruction.</p>
2655
2656<h5>Semantics:</h5>
2657
2658<p>Access to the memory pointed to by the pointer is no longer defined
2659after this instruction executes.</p>
2660
2661<h5>Example:</h5>
2662
2663<pre>
2664 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
2665 free [4 x i8]* %array
2666</pre>
2667</div>
2668
2669<!-- _______________________________________________________________________ -->
2670<div class="doc_subsubsection">
2671 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
2672</div>
2673
2674<div class="doc_text">
2675
2676<h5>Syntax:</h5>
2677
2678<pre>
2679 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
2680</pre>
2681
2682<h5>Overview:</h5>
2683
2684<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
2685currently executing function, to be automatically released when this function
2686returns to its caller.</p>
2687
2688<h5>Arguments:</h5>
2689
2690<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
2691bytes of memory on the runtime stack, returning a pointer of the
2692appropriate type to the program. If "NumElements" is specified, it is the
2693number of elements allocated. If an alignment is specified, the value result
2694of the allocation is guaranteed to be aligned to at least that boundary. If
2695not specified, or if zero, the target can choose to align the allocation on any
2696convenient boundary.</p>
2697
2698<p>'<tt>type</tt>' may be any sized type.</p>
2699
2700<h5>Semantics:</h5>
2701
2702<p>Memory is allocated; a pointer is returned. '<tt>alloca</tt>'d
2703memory is automatically released when the function returns. The '<tt>alloca</tt>'
2704instruction is commonly used to represent automatic variables that must
2705have an address available. When the function returns (either with the <tt><a
2706 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
2707instructions), the memory is reclaimed.</p>
2708
2709<h5>Example:</h5>
2710
2711<pre>
2712 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
2713 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
2714 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
2715 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
2716</pre>
2717</div>
2718
2719<!-- _______________________________________________________________________ -->
2720<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
2721Instruction</a> </div>
2722<div class="doc_text">
2723<h5>Syntax:</h5>
2724<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
2725<h5>Overview:</h5>
2726<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
2727<h5>Arguments:</h5>
2728<p>The argument to the '<tt>load</tt>' instruction specifies the memory
2729address from which to load. The pointer must point to a <a
2730 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
2731marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
2732the number or order of execution of this <tt>load</tt> with other
2733volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
2734instructions. </p>
2735<h5>Semantics:</h5>
2736<p>The location of memory pointed to is loaded.</p>
2737<h5>Examples:</h5>
2738<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
2739 <a
2740 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
2741 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
2742</pre>
2743</div>
2744<!-- _______________________________________________________________________ -->
2745<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
2746Instruction</a> </div>
2747<div class="doc_text">
2748<h5>Syntax:</h5>
2749<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
2750 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
2751</pre>
2752<h5>Overview:</h5>
2753<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
2754<h5>Arguments:</h5>
2755<p>There are two arguments to the '<tt>store</tt>' instruction: a value
2756to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
2757operand must be a pointer to the type of the '<tt>&lt;value&gt;</tt>'
2758operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
2759optimizer is not allowed to modify the number or order of execution of
2760this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
2761 href="#i_store">store</a></tt> instructions.</p>
2762<h5>Semantics:</h5>
2763<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
2764at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
2765<h5>Example:</h5>
2766<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
2767 <a
2768 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
2769 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
2770</pre>
2771</div>
2772
2773<!-- _______________________________________________________________________ -->
2774<div class="doc_subsubsection">
2775 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
2776</div>
2777
2778<div class="doc_text">
2779<h5>Syntax:</h5>
2780<pre>
2781 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
2782</pre>
2783
2784<h5>Overview:</h5>
2785
2786<p>
2787The '<tt>getelementptr</tt>' instruction is used to get the address of a
2788subelement of an aggregate data structure.</p>
2789
2790<h5>Arguments:</h5>
2791
2792<p>This instruction takes a list of integer operands that indicate what
2793elements of the aggregate object to index to. The actual types of the arguments
2794provided depend on the type of the first pointer argument. The
2795'<tt>getelementptr</tt>' instruction is used to index down through the type
2796levels of a structure or to a specific index in an array. When indexing into a
2797structure, only <tt>i32</tt> integer constants are allowed. When indexing
2798into an array or pointer, only integers of 32 or 64 bits are allowed, and will
2799be sign extended to 64-bit values.</p>
2800
2801<p>For example, let's consider a C code fragment and how it gets
2802compiled to LLVM:</p>
2803
2804<div class="doc_code">
2805<pre>
2806struct RT {
2807 char A;
2808 int B[10][20];
2809 char C;
2810};
2811struct ST {
2812 int X;
2813 double Y;
2814 struct RT Z;
2815};
2816
2817int *foo(struct ST *s) {
2818 return &amp;s[1].Z.B[5][13];
2819}
2820</pre>
2821</div>
2822
2823<p>The LLVM code generated by the GCC frontend is:</p>
2824
2825<div class="doc_code">
2826<pre>
2827%RT = type { i8 , [10 x [20 x i32]], i8 }
2828%ST = type { i32, double, %RT }
2829
2830define i32* %foo(%ST* %s) {
2831entry:
2832 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
2833 ret i32* %reg
2834}
2835</pre>
2836</div>
2837
2838<h5>Semantics:</h5>
2839
2840<p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
2841on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
2842and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
2843<a href="#t_integer">integer</a> type but the value will always be sign extended
2844to 64-bits. <a href="#t_struct">Structure</a> types require <tt>i32</tt>
2845<b>constants</b>.</p>
2846
2847<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
2848type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
2849}</tt>' type, a structure. The second index indexes into the third element of
2850the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
2851i8 }</tt>' type, another structure. The third index indexes into the second
2852element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
2853array. The two dimensions of the array are subscripted into, yielding an
2854'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
2855to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
2856
2857<p>Note that it is perfectly legal to index partially through a
2858structure, returning a pointer to an inner element. Because of this,
2859the LLVM code for the given testcase is equivalent to:</p>
2860
2861<pre>
2862 define i32* %foo(%ST* %s) {
2863 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
2864 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
2865 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
2866 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
2867 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
2868 ret i32* %t5
2869 }
2870</pre>
2871
2872<p>Note that it is undefined to access an array out of bounds: array and
2873pointer indexes must always be within the defined bounds of the array type.
2874The one exception for this rules is zero length arrays. These arrays are
2875defined to be accessible as variable length arrays, which requires access
2876beyond the zero'th element.</p>
2877
2878<p>The getelementptr instruction is often confusing. For some more insight
2879into how it works, see <a href="GetElementPtr.html">the getelementptr
2880FAQ</a>.</p>
2881
2882<h5>Example:</h5>
2883
2884<pre>
2885 <i>; yields [12 x i8]*:aptr</i>
2886 %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
2887</pre>
2888</div>
2889
2890<!-- ======================================================================= -->
2891<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
2892</div>
2893<div class="doc_text">
2894<p>The instructions in this category are the conversion instructions (casting)
2895which all take a single operand and a type. They perform various bit conversions
2896on the operand.</p>
2897</div>
2898
2899<!-- _______________________________________________________________________ -->
2900<div class="doc_subsubsection">
2901 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
2902</div>
2903<div class="doc_text">
2904
2905<h5>Syntax:</h5>
2906<pre>
2907 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2908</pre>
2909
2910<h5>Overview:</h5>
2911<p>
2912The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
2913</p>
2914
2915<h5>Arguments:</h5>
2916<p>
2917The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
2918be an <a href="#t_integer">integer</a> type, and a type that specifies the size
2919and type of the result, which must be an <a href="#t_integer">integer</a>
2920type. The bit size of <tt>value</tt> must be larger than the bit size of
2921<tt>ty2</tt>. Equal sized types are not allowed.</p>
2922
2923<h5>Semantics:</h5>
2924<p>
2925The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
2926and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
2927larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
2928It will always truncate bits.</p>
2929
2930<h5>Example:</h5>
2931<pre>
2932 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
2933 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
2934 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
2935</pre>
2936</div>
2937
2938<!-- _______________________________________________________________________ -->
2939<div class="doc_subsubsection">
2940 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
2941</div>
2942<div class="doc_text">
2943
2944<h5>Syntax:</h5>
2945<pre>
2946 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2947</pre>
2948
2949<h5>Overview:</h5>
2950<p>The '<tt>zext</tt>' instruction zero extends its operand to type
2951<tt>ty2</tt>.</p>
2952
2953
2954<h5>Arguments:</h5>
2955<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
2956<a href="#t_integer">integer</a> type, and a type to cast it to, which must
2957also be of <a href="#t_integer">integer</a> type. The bit size of the
2958<tt>value</tt> must be smaller than the bit size of the destination type,
2959<tt>ty2</tt>.</p>
2960
2961<h5>Semantics:</h5>
2962<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
2963bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
2964
2965<p>When zero extending from i1, the result will always be either 0 or 1.</p>
2966
2967<h5>Example:</h5>
2968<pre>
2969 %X = zext i32 257 to i64 <i>; yields i64:257</i>
2970 %Y = zext i1 true to i32 <i>; yields i32:1</i>
2971</pre>
2972</div>
2973
2974<!-- _______________________________________________________________________ -->
2975<div class="doc_subsubsection">
2976 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
2977</div>
2978<div class="doc_text">
2979
2980<h5>Syntax:</h5>
2981<pre>
2982 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2983</pre>
2984
2985<h5>Overview:</h5>
2986<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
2987
2988<h5>Arguments:</h5>
2989<p>
2990The '<tt>sext</tt>' instruction takes a value to cast, which must be of
2991<a href="#t_integer">integer</a> type, and a type to cast it to, which must
2992also be of <a href="#t_integer">integer</a> type. The bit size of the
2993<tt>value</tt> must be smaller than the bit size of the destination type,
2994<tt>ty2</tt>.</p>
2995
2996<h5>Semantics:</h5>
2997<p>
2998The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
2999bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
3000the type <tt>ty2</tt>.</p>
3001
3002<p>When sign extending from i1, the extension always results in -1 or 0.</p>
3003
3004<h5>Example:</h5>
3005<pre>
3006 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
3007 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
3008</pre>
3009</div>
3010
3011<!-- _______________________________________________________________________ -->
3012<div class="doc_subsubsection">
3013 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3014</div>
3015
3016<div class="doc_text">
3017
3018<h5>Syntax:</h5>
3019
3020<pre>
3021 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3022</pre>
3023
3024<h5>Overview:</h5>
3025<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3026<tt>ty2</tt>.</p>
3027
3028
3029<h5>Arguments:</h5>
3030<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3031 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3032cast it to. The size of <tt>value</tt> must be larger than the size of
3033<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3034<i>no-op cast</i>.</p>
3035
3036<h5>Semantics:</h5>
3037<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3038<a href="#t_floating">floating point</a> type to a smaller
3039<a href="#t_floating">floating point</a> type. If the value cannot fit within
3040the destination type, <tt>ty2</tt>, then the results are undefined.</p>
3041
3042<h5>Example:</h5>
3043<pre>
3044 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3045 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3046</pre>
3047</div>
3048
3049<!-- _______________________________________________________________________ -->
3050<div class="doc_subsubsection">
3051 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3052</div>
3053<div class="doc_text">
3054
3055<h5>Syntax:</h5>
3056<pre>
3057 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3058</pre>
3059
3060<h5>Overview:</h5>
3061<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3062floating point value.</p>
3063
3064<h5>Arguments:</h5>
3065<p>The '<tt>fpext</tt>' instruction takes a
3066<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
3067and a <a href="#t_floating">floating point</a> type to cast it to. The source
3068type must be smaller than the destination type.</p>
3069
3070<h5>Semantics:</h5>
3071<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
3072<a href="#t_floating">floating point</a> type to a larger
3073<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
3074used to make a <i>no-op cast</i> because it always changes bits. Use
3075<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
3076
3077<h5>Example:</h5>
3078<pre>
3079 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3080 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3081</pre>
3082</div>
3083
3084<!-- _______________________________________________________________________ -->
3085<div class="doc_subsubsection">
3086 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
3087</div>
3088<div class="doc_text">
3089
3090<h5>Syntax:</h5>
3091<pre>
3092 &lt;result&gt; = fp2uint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3093</pre>
3094
3095<h5>Overview:</h5>
3096<p>The '<tt>fp2uint</tt>' converts a floating point <tt>value</tt> to its
3097unsigned integer equivalent of type <tt>ty2</tt>.
3098</p>
3099
3100<h5>Arguments:</h5>
3101<p>The '<tt>fp2uint</tt>' instruction takes a value to cast, which must be a
3102<a href="#t_floating">floating point</a> value, and a type to cast it to, which
3103must be an <a href="#t_integer">integer</a> type.</p>
3104
3105<h5>Semantics:</h5>
3106<p> The '<tt>fp2uint</tt>' instruction converts its
3107<a href="#t_floating">floating point</a> operand into the nearest (rounding
3108towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3109the results are undefined.</p>
3110
3111<p>When converting to i1, the conversion is done as a comparison against
3112zero. If the <tt>value</tt> was zero, the i1 result will be <tt>false</tt>.
3113If the <tt>value</tt> was non-zero, the i1 result will be <tt>true</tt>.</p>
3114
3115<h5>Example:</h5>
3116<pre>
3117 %X = fp2uint double 123.0 to i32 <i>; yields i32:123</i>
3118 %Y = fp2uint float 1.0E+300 to i1 <i>; yields i1:true</i>
3119 %X = fp2uint float 1.04E+17 to i8 <i>; yields undefined:1</i>
3120</pre>
3121</div>
3122
3123<!-- _______________________________________________________________________ -->
3124<div class="doc_subsubsection">
3125 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
3126</div>
3127<div class="doc_text">
3128
3129<h5>Syntax:</h5>
3130<pre>
3131 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3132</pre>
3133
3134<h5>Overview:</h5>
3135<p>The '<tt>fptosi</tt>' instruction converts
3136<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
3137</p>
3138
3139
3140<h5>Arguments:</h5>
3141<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
3142<a href="#t_floating">floating point</a> value, and a type to cast it to, which
3143must also be an <a href="#t_integer">integer</a> type.</p>
3144
3145<h5>Semantics:</h5>
3146<p>The '<tt>fptosi</tt>' instruction converts its
3147<a href="#t_floating">floating point</a> operand into the nearest (rounding
3148towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3149the results are undefined.</p>
3150
3151<p>When converting to i1, the conversion is done as a comparison against
3152zero. If the <tt>value</tt> was zero, the i1 result will be <tt>false</tt>.
3153If the <tt>value</tt> was non-zero, the i1 result will be <tt>true</tt>.</p>
3154
3155<h5>Example:</h5>
3156<pre>
3157 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
3158 %Y = fptosi float 1.0E-247 to i1 <i>; yields i1:true</i>
3159 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
3160</pre>
3161</div>
3162
3163<!-- _______________________________________________________________________ -->
3164<div class="doc_subsubsection">
3165 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
3166</div>
3167<div class="doc_text">
3168
3169<h5>Syntax:</h5>
3170<pre>
3171 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3172</pre>
3173
3174<h5>Overview:</h5>
3175<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
3176integer and converts that value to the <tt>ty2</tt> type.</p>
3177
3178
3179<h5>Arguments:</h5>
3180<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be an
3181<a href="#t_integer">integer</a> value, and a type to cast it to, which must
3182be a <a href="#t_floating">floating point</a> type.</p>
3183
3184<h5>Semantics:</h5>
3185<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
3186integer quantity and converts it to the corresponding floating point value. If
3187the value cannot fit in the floating point value, the results are undefined.</p>
3188
3189
3190<h5>Example:</h5>
3191<pre>
3192 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
3193 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
3194</pre>
3195</div>
3196
3197<!-- _______________________________________________________________________ -->
3198<div class="doc_subsubsection">
3199 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
3200</div>
3201<div class="doc_text">
3202
3203<h5>Syntax:</h5>
3204<pre>
3205 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3206</pre>
3207
3208<h5>Overview:</h5>
3209<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
3210integer and converts that value to the <tt>ty2</tt> type.</p>
3211
3212<h5>Arguments:</h5>
3213<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be an
3214<a href="#t_integer">integer</a> value, and a type to cast it to, which must be
3215a <a href="#t_floating">floating point</a> type.</p>
3216
3217<h5>Semantics:</h5>
3218<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
3219integer quantity and converts it to the corresponding floating point value. If
3220the value cannot fit in the floating point value, the results are undefined.</p>
3221
3222<h5>Example:</h5>
3223<pre>
3224 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
3225 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
3226</pre>
3227</div>
3228
3229<!-- _______________________________________________________________________ -->
3230<div class="doc_subsubsection">
3231 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3232</div>
3233<div class="doc_text">
3234
3235<h5>Syntax:</h5>
3236<pre>
3237 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3238</pre>
3239
3240<h5>Overview:</h5>
3241<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3242the integer type <tt>ty2</tt>.</p>
3243
3244<h5>Arguments:</h5>
3245<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
3246must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
3247<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3248
3249<h5>Semantics:</h5>
3250<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3251<tt>ty2</tt> by interpreting the pointer value as an integer and either
3252truncating or zero extending that value to the size of the integer type. If
3253<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3254<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
3255are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3256change.</p>
3257
3258<h5>Example:</h5>
3259<pre>
3260 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3261 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
3262</pre>
3263</div>
3264
3265<!-- _______________________________________________________________________ -->
3266<div class="doc_subsubsection">
3267 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3268</div>
3269<div class="doc_text">
3270
3271<h5>Syntax:</h5>
3272<pre>
3273 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3274</pre>
3275
3276<h5>Overview:</h5>
3277<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3278a pointer type, <tt>ty2</tt>.</p>
3279
3280<h5>Arguments:</h5>
3281<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
3282value to cast, and a type to cast it to, which must be a
3283<a href="#t_pointer">pointer</a> type.
3284
3285<h5>Semantics:</h5>
3286<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3287<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3288the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3289size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3290the size of a pointer then a zero extension is done. If they are the same size,
3291nothing is done (<i>no-op cast</i>).</p>
3292
3293<h5>Example:</h5>
3294<pre>
3295 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3296 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3297 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
3298</pre>
3299</div>
3300
3301<!-- _______________________________________________________________________ -->
3302<div class="doc_subsubsection">
3303 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
3304</div>
3305<div class="doc_text">
3306
3307<h5>Syntax:</h5>
3308<pre>
3309 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3310</pre>
3311
3312<h5>Overview:</h5>
3313<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3314<tt>ty2</tt> without changing any bits.</p>
3315
3316<h5>Arguments:</h5>
3317<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
3318a first class value, and a type to cast it to, which must also be a <a
3319 href="#t_firstclass">first class</a> type. The bit sizes of <tt>value</tt>
3320and the destination type, <tt>ty2</tt>, must be identical. If the source
3321type is a pointer, the destination type must also be a pointer.</p>
3322
3323<h5>Semantics:</h5>
3324<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3325<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3326this conversion. The conversion is done as if the <tt>value</tt> had been
3327stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3328converted to other pointer types with this instruction. To convert pointers to
3329other types, use the <a href="#i_inttoptr">inttoptr</a> or
3330<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
3331
3332<h5>Example:</h5>
3333<pre>
3334 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
3335 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3336 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
3337</pre>
3338</div>
3339
3340<!-- ======================================================================= -->
3341<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3342<div class="doc_text">
3343<p>The instructions in this category are the "miscellaneous"
3344instructions, which defy better classification.</p>
3345</div>
3346
3347<!-- _______________________________________________________________________ -->
3348<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3349</div>
3350<div class="doc_text">
3351<h5>Syntax:</h5>
3352<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
3353</pre>
3354<h5>Overview:</h5>
3355<p>The '<tt>icmp</tt>' instruction returns a boolean value based on comparison
3356of its two integer operands.</p>
3357<h5>Arguments:</h5>
3358<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
3359the condition code indicating the kind of comparison to perform. It is not
3360a value, just a keyword. The possible condition code are:
3361<ol>
3362 <li><tt>eq</tt>: equal</li>
3363 <li><tt>ne</tt>: not equal </li>
3364 <li><tt>ugt</tt>: unsigned greater than</li>
3365 <li><tt>uge</tt>: unsigned greater or equal</li>
3366 <li><tt>ult</tt>: unsigned less than</li>
3367 <li><tt>ule</tt>: unsigned less or equal</li>
3368 <li><tt>sgt</tt>: signed greater than</li>
3369 <li><tt>sge</tt>: signed greater or equal</li>
3370 <li><tt>slt</tt>: signed less than</li>
3371 <li><tt>sle</tt>: signed less or equal</li>
3372</ol>
3373<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
3374<a href="#t_pointer">pointer</a> typed. They must also be identical types.</p>
3375<h5>Semantics:</h5>
3376<p>The '<tt>icmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3377the condition code given as <tt>cond</tt>. The comparison performed always
3378yields a <a href="#t_primitive">i1</a> result, as follows:
3379<ol>
3380 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3381 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3382 </li>
3383 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3384 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3385 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
3386 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3387 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
3388 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3389 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
3390 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3391 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
3392 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3393 <li><tt>sgt</tt>: interprets the operands as signed values and yields
3394 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3395 <li><tt>sge</tt>: interprets the operands as signed values and yields
3396 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3397 <li><tt>slt</tt>: interprets the operands as signed values and yields
3398 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3399 <li><tt>sle</tt>: interprets the operands as signed values and yields
3400 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3401</ol>
3402<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
3403values are compared as if they were integers.</p>
3404
3405<h5>Example:</h5>
3406<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3407 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3408 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3409 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3410 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3411 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
3412</pre>
3413</div>
3414
3415<!-- _______________________________________________________________________ -->
3416<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3417</div>
3418<div class="doc_text">
3419<h5>Syntax:</h5>
3420<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
3421</pre>
3422<h5>Overview:</h5>
3423<p>The '<tt>fcmp</tt>' instruction returns a boolean value based on comparison
3424of its floating point operands.</p>
3425<h5>Arguments:</h5>
3426<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
3427the condition code indicating the kind of comparison to perform. It is not
3428a value, just a keyword. The possible condition code are:
3429<ol>
3430 <li><tt>false</tt>: no comparison, always returns false</li>
3431 <li><tt>oeq</tt>: ordered and equal</li>
3432 <li><tt>ogt</tt>: ordered and greater than </li>
3433 <li><tt>oge</tt>: ordered and greater than or equal</li>
3434 <li><tt>olt</tt>: ordered and less than </li>
3435 <li><tt>ole</tt>: ordered and less than or equal</li>
3436 <li><tt>one</tt>: ordered and not equal</li>
3437 <li><tt>ord</tt>: ordered (no nans)</li>
3438 <li><tt>ueq</tt>: unordered or equal</li>
3439 <li><tt>ugt</tt>: unordered or greater than </li>
3440 <li><tt>uge</tt>: unordered or greater than or equal</li>
3441 <li><tt>ult</tt>: unordered or less than </li>
3442 <li><tt>ule</tt>: unordered or less than or equal</li>
3443 <li><tt>une</tt>: unordered or not equal</li>
3444 <li><tt>uno</tt>: unordered (either nans)</li>
3445 <li><tt>true</tt>: no comparison, always returns true</li>
3446</ol>
3447<p><i>Ordered</i> means that neither operand is a QNAN while
3448<i>unordered</i> means that either operand may be a QNAN.</p>
3449<p>The <tt>val1</tt> and <tt>val2</tt> arguments must be
3450<a href="#t_floating">floating point</a> typed. They must have identical
3451types.</p>
3452<h5>Semantics:</h5>
3453<p>The '<tt>fcmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3454the condition code given as <tt>cond</tt>. The comparison performed always
3455yields a <a href="#t_primitive">i1</a> result, as follows:
3456<ol>
3457 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
3458 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3459 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
3460 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3461 <tt>var1</tt> is greather than <tt>var2</tt>.</li>
3462 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3463 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3464 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3465 <tt>var1</tt> is less than <tt>var2</tt>.</li>
3466 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3467 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3468 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3469 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
3470 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
3471 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
3472 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
3473 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
3474 <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3475 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
3476 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3477 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
3478 <tt>var1</tt> is less than <tt>var2</tt>.</li>
3479 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
3480 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3481 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
3482 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
3483 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
3484 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
3485</ol>
3486
3487<h5>Example:</h5>
3488<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
3489 &lt;result&gt; = icmp one float 4.0, 5.0 <i>; yields: result=true</i>
3490 &lt;result&gt; = icmp olt float 4.0, 5.0 <i>; yields: result=true</i>
3491 &lt;result&gt; = icmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
3492</pre>
3493</div>
3494
3495<!-- _______________________________________________________________________ -->
3496<div class="doc_subsubsection"> <a name="i_phi">'<tt>phi</tt>'
3497Instruction</a> </div>
3498<div class="doc_text">
3499<h5>Syntax:</h5>
3500<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
3501<h5>Overview:</h5>
3502<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
3503the SSA graph representing the function.</p>
3504<h5>Arguments:</h5>
3505<p>The type of the incoming values is specified with the first type
3506field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
3507as arguments, with one pair for each predecessor basic block of the
3508current block. Only values of <a href="#t_firstclass">first class</a>
3509type may be used as the value arguments to the PHI node. Only labels
3510may be used as the label arguments.</p>
3511<p>There must be no non-phi instructions between the start of a basic
3512block and the PHI instructions: i.e. PHI instructions must be first in
3513a basic block.</p>
3514<h5>Semantics:</h5>
3515<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
3516specified by the pair corresponding to the predecessor basic block that executed
3517just prior to the current block.</p>
3518<h5>Example:</h5>
3519<pre>Loop: ; Infinite loop that counts from 0 on up...<br> %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]<br> %nextindvar = add i32 %indvar, 1<br> br label %Loop<br></pre>
3520</div>
3521
3522<!-- _______________________________________________________________________ -->
3523<div class="doc_subsubsection">
3524 <a name="i_select">'<tt>select</tt>' Instruction</a>
3525</div>
3526
3527<div class="doc_text">
3528
3529<h5>Syntax:</h5>
3530
3531<pre>
3532 &lt;result&gt; = select i1 &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
3533</pre>
3534
3535<h5>Overview:</h5>
3536
3537<p>
3538The '<tt>select</tt>' instruction is used to choose one value based on a
3539condition, without branching.
3540</p>
3541
3542
3543<h5>Arguments:</h5>
3544
3545<p>
3546The '<tt>select</tt>' instruction requires a boolean value indicating the condition, and two values of the same <a href="#t_firstclass">first class</a> type.
3547</p>
3548
3549<h5>Semantics:</h5>
3550
3551<p>
3552If the boolean condition evaluates to true, the instruction returns the first
3553value argument; otherwise, it returns the second value argument.
3554</p>
3555
3556<h5>Example:</h5>
3557
3558<pre>
3559 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
3560</pre>
3561</div>
3562
3563
3564<!-- _______________________________________________________________________ -->
3565<div class="doc_subsubsection">
3566 <a name="i_call">'<tt>call</tt>' Instruction</a>
3567</div>
3568
3569<div class="doc_text">
3570
3571<h5>Syntax:</h5>
3572<pre>
3573 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt;* &lt;fnptrval&gt;(&lt;param list&gt;)
3574</pre>
3575
3576<h5>Overview:</h5>
3577
3578<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
3579
3580<h5>Arguments:</h5>
3581
3582<p>This instruction requires several arguments:</p>
3583
3584<ol>
3585 <li>
3586 <p>The optional "tail" marker indicates whether the callee function accesses
3587 any allocas or varargs in the caller. If the "tail" marker is present, the
3588 function call is eligible for tail call optimization. Note that calls may
3589 be marked "tail" even if they do not occur before a <a
3590 href="#i_ret"><tt>ret</tt></a> instruction.
3591 </li>
3592 <li>
3593 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
3594 convention</a> the call should use. If none is specified, the call defaults
3595 to using C calling conventions.
3596 </li>
3597 <li>
3598 <p>'<tt>ty</tt>': shall be the signature of the pointer to function value
3599 being invoked. The argument types must match the types implied by this
3600 signature. This type can be omitted if the function is not varargs and
3601 if the function type does not return a pointer to a function.</p>
3602 </li>
3603 <li>
3604 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
3605 be invoked. In most cases, this is a direct function invocation, but
3606 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
3607 to function value.</p>
3608 </li>
3609 <li>
3610 <p>'<tt>function args</tt>': argument list whose types match the
3611 function signature argument types. All arguments must be of
3612 <a href="#t_firstclass">first class</a> type. If the function signature
3613 indicates the function accepts a variable number of arguments, the extra
3614 arguments can be specified.</p>
3615 </li>
3616</ol>
3617
3618<h5>Semantics:</h5>
3619
3620<p>The '<tt>call</tt>' instruction is used to cause control flow to
3621transfer to a specified function, with its incoming arguments bound to
3622the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
3623instruction in the called function, control flow continues with the
3624instruction after the function call, and the return value of the
3625function is bound to the result argument. This is a simpler case of
3626the <a href="#i_invoke">invoke</a> instruction.</p>
3627
3628<h5>Example:</h5>
3629
3630<pre>
3631 %retval = call i32 %test(i32 %argc)
3632 call i32(i8 *, ...) *%printf(i8 * %msg, i32 12, i8 42);
3633 %X = tail call i32 %foo()
3634 %Y = tail call <a href="#callingconv">fastcc</a> i32 %foo()
3635</pre>
3636
3637</div>
3638
3639<!-- _______________________________________________________________________ -->
3640<div class="doc_subsubsection">
3641 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
3642</div>
3643
3644<div class="doc_text">
3645
3646<h5>Syntax:</h5>
3647
3648<pre>
3649 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
3650</pre>
3651
3652<h5>Overview:</h5>
3653
3654<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
3655the "variable argument" area of a function call. It is used to implement the
3656<tt>va_arg</tt> macro in C.</p>
3657
3658<h5>Arguments:</h5>
3659
3660<p>This instruction takes a <tt>va_list*</tt> value and the type of
3661the argument. It returns a value of the specified argument type and
3662increments the <tt>va_list</tt> to point to the next argument. The
3663actual type of <tt>va_list</tt> is target specific.</p>
3664
3665<h5>Semantics:</h5>
3666
3667<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
3668type from the specified <tt>va_list</tt> and causes the
3669<tt>va_list</tt> to point to the next argument. For more information,
3670see the variable argument handling <a href="#int_varargs">Intrinsic
3671Functions</a>.</p>
3672
3673<p>It is legal for this instruction to be called in a function which does not
3674take a variable number of arguments, for example, the <tt>vfprintf</tt>
3675function.</p>
3676
3677<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
3678href="#intrinsics">intrinsic function</a> because it takes a type as an
3679argument.</p>
3680
3681<h5>Example:</h5>
3682
3683<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
3684
3685</div>
3686
3687<!-- *********************************************************************** -->
3688<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
3689<!-- *********************************************************************** -->
3690
3691<div class="doc_text">
3692
3693<p>LLVM supports the notion of an "intrinsic function". These functions have
3694well known names and semantics and are required to follow certain restrictions.
3695Overall, these intrinsics represent an extension mechanism for the LLVM
3696language that does not require changing all of the transformations in LLVM when
3697adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
3698
3699<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
3700prefix is reserved in LLVM for intrinsic names; thus, function names may not
3701begin with this prefix. Intrinsic functions must always be external functions:
3702you cannot define the body of intrinsic functions. Intrinsic functions may
3703only be used in call or invoke instructions: it is illegal to take the address
3704of an intrinsic function. Additionally, because intrinsic functions are part
3705of the LLVM language, it is required if any are added that they be documented
3706here.</p>
3707
3708<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
3709a family of functions that perform the same operation but on different data
3710types. This is most frequent with the integer types. Since LLVM can represent
3711over 8 million different integer types, there is a way to declare an intrinsic
3712that can be overloaded based on its arguments. Such an intrinsic will have the
3713names of its argument types encoded into its function name, each
3714preceded by a period. For example, the <tt>llvm.ctpop</tt> function can take an
3715integer of any width. This leads to a family of functions such as
3716<tt>i32 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i32 @llvm.ctpop.i29(i29 %val)</tt>.
3717</p>
3718
3719
3720<p>To learn how to add an intrinsic function, please see the
3721<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
3722</p>
3723
3724</div>
3725
3726<!-- ======================================================================= -->
3727<div class="doc_subsection">
3728 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
3729</div>
3730
3731<div class="doc_text">
3732
3733<p>Variable argument support is defined in LLVM with the <a
3734 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
3735intrinsic functions. These functions are related to the similarly
3736named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
3737
3738<p>All of these functions operate on arguments that use a
3739target-specific value type "<tt>va_list</tt>". The LLVM assembly
3740language reference manual does not define what this type is, so all
3741transformations should be prepared to handle these functions regardless of
3742the type used.</p>
3743
3744<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
3745instruction and the variable argument handling intrinsic functions are
3746used.</p>
3747
3748<div class="doc_code">
3749<pre>
3750define i32 @test(i32 %X, ...) {
3751 ; Initialize variable argument processing
3752 %ap = alloca i8*
3753 %ap2 = bitcast i8** %ap to i8*
3754 call void @llvm.va_start(i8* %ap2)
3755
3756 ; Read a single integer argument
3757 %tmp = va_arg i8** %ap, i32
3758
3759 ; Demonstrate usage of llvm.va_copy and llvm.va_end
3760 %aq = alloca i8*
3761 %aq2 = bitcast i8** %aq to i8*
3762 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
3763 call void @llvm.va_end(i8* %aq2)
3764
3765 ; Stop processing of arguments.
3766 call void @llvm.va_end(i8* %ap2)
3767 ret i32 %tmp
3768}
3769
3770declare void @llvm.va_start(i8*)
3771declare void @llvm.va_copy(i8*, i8*)
3772declare void @llvm.va_end(i8*)
3773</pre>
3774</div>
3775
3776</div>
3777
3778<!-- _______________________________________________________________________ -->
3779<div class="doc_subsubsection">
3780 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
3781</div>
3782
3783
3784<div class="doc_text">
3785<h5>Syntax:</h5>
3786<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
3787<h5>Overview:</h5>
3788<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
3789<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
3790href="#i_va_arg">va_arg</a></tt>.</p>
3791
3792<h5>Arguments:</h5>
3793
3794<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
3795
3796<h5>Semantics:</h5>
3797
3798<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
3799macro available in C. In a target-dependent way, it initializes the
3800<tt>va_list</tt> element to which the argument points, so that the next call to
3801<tt>va_arg</tt> will produce the first variable argument passed to the function.
3802Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
3803last argument of the function as the compiler can figure that out.</p>
3804
3805</div>
3806
3807<!-- _______________________________________________________________________ -->
3808<div class="doc_subsubsection">
3809 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
3810</div>
3811
3812<div class="doc_text">
3813<h5>Syntax:</h5>
3814<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
3815<h5>Overview:</h5>
3816
3817<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
3818which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
3819or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
3820
3821<h5>Arguments:</h5>
3822
3823<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
3824
3825<h5>Semantics:</h5>
3826
3827<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
3828macro available in C. In a target-dependent way, it destroys the
3829<tt>va_list</tt> element to which the argument points. Calls to <a
3830href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
3831<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
3832<tt>llvm.va_end</tt>.</p>
3833
3834</div>
3835
3836<!-- _______________________________________________________________________ -->
3837<div class="doc_subsubsection">
3838 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
3839</div>
3840
3841<div class="doc_text">
3842
3843<h5>Syntax:</h5>
3844
3845<pre>
3846 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
3847</pre>
3848
3849<h5>Overview:</h5>
3850
3851<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
3852from the source argument list to the destination argument list.</p>
3853
3854<h5>Arguments:</h5>
3855
3856<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
3857The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
3858
3859
3860<h5>Semantics:</h5>
3861
3862<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
3863macro available in C. In a target-dependent way, it copies the source
3864<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
3865intrinsic is necessary because the <tt><a href="#int_va_start">
3866llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
3867example, memory allocation.</p>
3868
3869</div>
3870
3871<!-- ======================================================================= -->
3872<div class="doc_subsection">
3873 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
3874</div>
3875
3876<div class="doc_text">
3877
3878<p>
3879LLVM support for <a href="GarbageCollection.html">Accurate Garbage
3880Collection</a> requires the implementation and generation of these intrinsics.
3881These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
3882stack</a>, as well as garbage collector implementations that require <a
3883href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
3884Front-ends for type-safe garbage collected languages should generate these
3885intrinsics to make use of the LLVM garbage collectors. For more details, see <a
3886href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
3887</p>
3888</div>
3889
3890<!-- _______________________________________________________________________ -->
3891<div class="doc_subsubsection">
3892 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
3893</div>
3894
3895<div class="doc_text">
3896
3897<h5>Syntax:</h5>
3898
3899<pre>
3900 declare void @llvm.gcroot(&lt;ty&gt;** %ptrloc, &lt;ty2&gt;* %metadata)
3901</pre>
3902
3903<h5>Overview:</h5>
3904
3905<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
3906the code generator, and allows some metadata to be associated with it.</p>
3907
3908<h5>Arguments:</h5>
3909
3910<p>The first argument specifies the address of a stack object that contains the
3911root pointer. The second pointer (which must be either a constant or a global
3912value address) contains the meta-data to be associated with the root.</p>
3913
3914<h5>Semantics:</h5>
3915
3916<p>At runtime, a call to this intrinsics stores a null pointer into the "ptrloc"
3917location. At compile-time, the code generator generates information to allow
3918the runtime to find the pointer at GC safe points.
3919</p>
3920
3921</div>
3922
3923
3924<!-- _______________________________________________________________________ -->
3925<div class="doc_subsubsection">
3926 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
3927</div>
3928
3929<div class="doc_text">
3930
3931<h5>Syntax:</h5>
3932
3933<pre>
3934 declare i8 * @llvm.gcread(i8 * %ObjPtr, i8 ** %Ptr)
3935</pre>
3936
3937<h5>Overview:</h5>
3938
3939<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
3940locations, allowing garbage collector implementations that require read
3941barriers.</p>
3942
3943<h5>Arguments:</h5>
3944
3945<p>The second argument is the address to read from, which should be an address
3946allocated from the garbage collector. The first object is a pointer to the
3947start of the referenced object, if needed by the language runtime (otherwise
3948null).</p>
3949
3950<h5>Semantics:</h5>
3951
3952<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
3953instruction, but may be replaced with substantially more complex code by the
3954garbage collector runtime, as needed.</p>
3955
3956</div>
3957
3958
3959<!-- _______________________________________________________________________ -->
3960<div class="doc_subsubsection">
3961 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
3962</div>
3963
3964<div class="doc_text">
3965
3966<h5>Syntax:</h5>
3967
3968<pre>
3969 declare void @llvm.gcwrite(i8 * %P1, i8 * %Obj, i8 ** %P2)
3970</pre>
3971
3972<h5>Overview:</h5>
3973
3974<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
3975locations, allowing garbage collector implementations that require write
3976barriers (such as generational or reference counting collectors).</p>
3977
3978<h5>Arguments:</h5>
3979
3980<p>The first argument is the reference to store, the second is the start of the
3981object to store it to, and the third is the address of the field of Obj to
3982store to. If the runtime does not require a pointer to the object, Obj may be
3983null.</p>
3984
3985<h5>Semantics:</h5>
3986
3987<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
3988instruction, but may be replaced with substantially more complex code by the
3989garbage collector runtime, as needed.</p>
3990
3991</div>
3992
3993
3994
3995<!-- ======================================================================= -->
3996<div class="doc_subsection">
3997 <a name="int_codegen">Code Generator Intrinsics</a>
3998</div>
3999
4000<div class="doc_text">
4001<p>
4002These intrinsics are provided by LLVM to expose special features that may only
4003be implemented with code generator support.
4004</p>
4005
4006</div>
4007
4008<!-- _______________________________________________________________________ -->
4009<div class="doc_subsubsection">
4010 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
4011</div>
4012
4013<div class="doc_text">
4014
4015<h5>Syntax:</h5>
4016<pre>
4017 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
4018</pre>
4019
4020<h5>Overview:</h5>
4021
4022<p>
4023The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4024target-specific value indicating the return address of the current function
4025or one of its callers.
4026</p>
4027
4028<h5>Arguments:</h5>
4029
4030<p>
4031The argument to this intrinsic indicates which function to return the address
4032for. Zero indicates the calling function, one indicates its caller, etc. The
4033argument is <b>required</b> to be a constant integer value.
4034</p>
4035
4036<h5>Semantics:</h5>
4037
4038<p>
4039The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4040the return address of the specified call frame, or zero if it cannot be
4041identified. The value returned by this intrinsic is likely to be incorrect or 0
4042for arguments other than zero, so it should only be used for debugging purposes.
4043</p>
4044
4045<p>
4046Note that calling this intrinsic does not prevent function inlining or other
4047aggressive transformations, so the value returned may not be that of the obvious
4048source-language caller.
4049</p>
4050</div>
4051
4052
4053<!-- _______________________________________________________________________ -->
4054<div class="doc_subsubsection">
4055 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
4056</div>
4057
4058<div class="doc_text">
4059
4060<h5>Syntax:</h5>
4061<pre>
4062 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
4063</pre>
4064
4065<h5>Overview:</h5>
4066
4067<p>
4068The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4069target-specific frame pointer value for the specified stack frame.
4070</p>
4071
4072<h5>Arguments:</h5>
4073
4074<p>
4075The argument to this intrinsic indicates which function to return the frame
4076pointer for. Zero indicates the calling function, one indicates its caller,
4077etc. The argument is <b>required</b> to be a constant integer value.
4078</p>
4079
4080<h5>Semantics:</h5>
4081
4082<p>
4083The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4084the frame address of the specified call frame, or zero if it cannot be
4085identified. The value returned by this intrinsic is likely to be incorrect or 0
4086for arguments other than zero, so it should only be used for debugging purposes.
4087</p>
4088
4089<p>
4090Note that calling this intrinsic does not prevent function inlining or other
4091aggressive transformations, so the value returned may not be that of the obvious
4092source-language caller.
4093</p>
4094</div>
4095
4096<!-- _______________________________________________________________________ -->
4097<div class="doc_subsubsection">
4098 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
4099</div>
4100
4101<div class="doc_text">
4102
4103<h5>Syntax:</h5>
4104<pre>
4105 declare i8 *@llvm.stacksave()
4106</pre>
4107
4108<h5>Overview:</h5>
4109
4110<p>
4111The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
4112the function stack, for use with <a href="#int_stackrestore">
4113<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4114features like scoped automatic variable sized arrays in C99.
4115</p>
4116
4117<h5>Semantics:</h5>
4118
4119<p>
4120This intrinsic returns a opaque pointer value that can be passed to <a
4121href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
4122<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4123<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4124state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4125practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4126that were allocated after the <tt>llvm.stacksave</tt> was executed.
4127</p>
4128
4129</div>
4130
4131<!-- _______________________________________________________________________ -->
4132<div class="doc_subsubsection">
4133 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
4134</div>
4135
4136<div class="doc_text">
4137
4138<h5>Syntax:</h5>
4139<pre>
4140 declare void @llvm.stackrestore(i8 * %ptr)
4141</pre>
4142
4143<h5>Overview:</h5>
4144
4145<p>
4146The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4147the function stack to the state it was in when the corresponding <a
4148href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
4149useful for implementing language features like scoped automatic variable sized
4150arrays in C99.
4151</p>
4152
4153<h5>Semantics:</h5>
4154
4155<p>
4156See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
4157</p>
4158
4159</div>
4160
4161
4162<!-- _______________________________________________________________________ -->
4163<div class="doc_subsubsection">
4164 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
4165</div>
4166
4167<div class="doc_text">
4168
4169<h5>Syntax:</h5>
4170<pre>
4171 declare void @llvm.prefetch(i8 * &lt;address&gt;,
4172 i32 &lt;rw&gt;, i32 &lt;locality&gt;)
4173</pre>
4174
4175<h5>Overview:</h5>
4176
4177
4178<p>
4179The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
4180a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4181no
4182effect on the behavior of the program but can change its performance
4183characteristics.
4184</p>
4185
4186<h5>Arguments:</h5>
4187
4188<p>
4189<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4190determining if the fetch should be for a read (0) or write (1), and
4191<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
4192locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
4193<tt>locality</tt> arguments must be constant integers.
4194</p>
4195
4196<h5>Semantics:</h5>
4197
4198<p>
4199This intrinsic does not modify the behavior of the program. In particular,
4200prefetches cannot trap and do not produce a value. On targets that support this
4201intrinsic, the prefetch can provide hints to the processor cache for better
4202performance.
4203</p>
4204
4205</div>
4206
4207<!-- _______________________________________________________________________ -->
4208<div class="doc_subsubsection">
4209 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
4210</div>
4211
4212<div class="doc_text">
4213
4214<h5>Syntax:</h5>
4215<pre>
4216 declare void @llvm.pcmarker( i32 &lt;id&gt; )
4217</pre>
4218
4219<h5>Overview:</h5>
4220
4221
4222<p>
4223The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
4224(PC) in a region of
4225code to simulators and other tools. The method is target specific, but it is
4226expected that the marker will use exported symbols to transmit the PC of the marker.
4227The marker makes no guarantees that it will remain with any specific instruction
4228after optimizations. It is possible that the presence of a marker will inhibit
4229optimizations. The intended use is to be inserted after optimizations to allow
4230correlations of simulation runs.
4231</p>
4232
4233<h5>Arguments:</h5>
4234
4235<p>
4236<tt>id</tt> is a numerical id identifying the marker.
4237</p>
4238
4239<h5>Semantics:</h5>
4240
4241<p>
4242This intrinsic does not modify the behavior of the program. Backends that do not
4243support this intrinisic may ignore it.
4244</p>
4245
4246</div>
4247
4248<!-- _______________________________________________________________________ -->
4249<div class="doc_subsubsection">
4250 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
4251</div>
4252
4253<div class="doc_text">
4254
4255<h5>Syntax:</h5>
4256<pre>
4257 declare i64 @llvm.readcyclecounter( )
4258</pre>
4259
4260<h5>Overview:</h5>
4261
4262
4263<p>
4264The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
4265counter register (or similar low latency, high accuracy clocks) on those targets
4266that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
4267As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
4268should only be used for small timings.
4269</p>
4270
4271<h5>Semantics:</h5>
4272
4273<p>
4274When directly supported, reading the cycle counter should not modify any memory.
4275Implementations are allowed to either return a application specific value or a
4276system wide value. On backends without support, this is lowered to a constant 0.
4277</p>
4278
4279</div>
4280
4281<!-- ======================================================================= -->
4282<div class="doc_subsection">
4283 <a name="int_libc">Standard C Library Intrinsics</a>
4284</div>
4285
4286<div class="doc_text">
4287<p>
4288LLVM provides intrinsics for a few important standard C library functions.
4289These intrinsics allow source-language front-ends to pass information about the
4290alignment of the pointer arguments to the code generator, providing opportunity
4291for more efficient code generation.
4292</p>
4293
4294</div>
4295
4296<!-- _______________________________________________________________________ -->
4297<div class="doc_subsubsection">
4298 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
4299</div>
4300
4301<div class="doc_text">
4302
4303<h5>Syntax:</h5>
4304<pre>
4305 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4306 i32 &lt;len&gt;, i32 &lt;align&gt;)
4307 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4308 i64 &lt;len&gt;, i32 &lt;align&gt;)
4309</pre>
4310
4311<h5>Overview:</h5>
4312
4313<p>
4314The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
4315location to the destination location.
4316</p>
4317
4318<p>
4319Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
4320intrinsics do not return a value, and takes an extra alignment argument.
4321</p>
4322
4323<h5>Arguments:</h5>
4324
4325<p>
4326The first argument is a pointer to the destination, the second is a pointer to
4327the source. The third argument is an integer argument
4328specifying the number of bytes to copy, and the fourth argument is the alignment
4329of the source and destination locations.
4330</p>
4331
4332<p>
4333If the call to this intrinisic has an alignment value that is not 0 or 1, then
4334the caller guarantees that both the source and destination pointers are aligned
4335to that boundary.
4336</p>
4337
4338<h5>Semantics:</h5>
4339
4340<p>
4341The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
4342location to the destination location, which are not allowed to overlap. It
4343copies "len" bytes of memory over. If the argument is known to be aligned to
4344some boundary, this can be specified as the fourth argument, otherwise it should
4345be set to 0 or 1.
4346</p>
4347</div>
4348
4349
4350<!-- _______________________________________________________________________ -->
4351<div class="doc_subsubsection">
4352 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
4353</div>
4354
4355<div class="doc_text">
4356
4357<h5>Syntax:</h5>
4358<pre>
4359 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4360 i32 &lt;len&gt;, i32 &lt;align&gt;)
4361 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4362 i64 &lt;len&gt;, i32 &lt;align&gt;)
4363</pre>
4364
4365<h5>Overview:</h5>
4366
4367<p>
4368The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
4369location to the destination location. It is similar to the
4370'<tt>llvm.memcmp</tt>' intrinsic but allows the two memory locations to overlap.
4371</p>
4372
4373<p>
4374Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
4375intrinsics do not return a value, and takes an extra alignment argument.
4376</p>
4377
4378<h5>Arguments:</h5>
4379
4380<p>
4381The first argument is a pointer to the destination, the second is a pointer to
4382the source. The third argument is an integer argument
4383specifying the number of bytes to copy, and the fourth argument is the alignment
4384of the source and destination locations.
4385</p>
4386
4387<p>
4388If the call to this intrinisic has an alignment value that is not 0 or 1, then
4389the caller guarantees that the source and destination pointers are aligned to
4390that boundary.
4391</p>
4392
4393<h5>Semantics:</h5>
4394
4395<p>
4396The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
4397location to the destination location, which may overlap. It
4398copies "len" bytes of memory over. If the argument is known to be aligned to
4399some boundary, this can be specified as the fourth argument, otherwise it should
4400be set to 0 or 1.
4401</p>
4402</div>
4403
4404
4405<!-- _______________________________________________________________________ -->
4406<div class="doc_subsubsection">
4407 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
4408</div>
4409
4410<div class="doc_text">
4411
4412<h5>Syntax:</h5>
4413<pre>
4414 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
4415 i32 &lt;len&gt;, i32 &lt;align&gt;)
4416 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
4417 i64 &lt;len&gt;, i32 &lt;align&gt;)
4418</pre>
4419
4420<h5>Overview:</h5>
4421
4422<p>
4423The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
4424byte value.
4425</p>
4426
4427<p>
4428Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
4429does not return a value, and takes an extra alignment argument.
4430</p>
4431
4432<h5>Arguments:</h5>
4433
4434<p>
4435The first argument is a pointer to the destination to fill, the second is the
4436byte value to fill it with, the third argument is an integer
4437argument specifying the number of bytes to fill, and the fourth argument is the
4438known alignment of destination location.
4439</p>
4440
4441<p>
4442If the call to this intrinisic has an alignment value that is not 0 or 1, then
4443the caller guarantees that the destination pointer is aligned to that boundary.
4444</p>
4445
4446<h5>Semantics:</h5>
4447
4448<p>
4449The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
4450the
4451destination location. If the argument is known to be aligned to some boundary,
4452this can be specified as the fourth argument, otherwise it should be set to 0 or
44531.
4454</p>
4455</div>
4456
4457
4458<!-- _______________________________________________________________________ -->
4459<div class="doc_subsubsection">
4460 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
4461</div>
4462
4463<div class="doc_text">
4464
4465<h5>Syntax:</h5>
4466<pre>
4467 declare float @llvm.sqrt.f32(float %Val)
4468 declare double @llvm.sqrt.f64(double %Val)
4469</pre>
4470
4471<h5>Overview:</h5>
4472
4473<p>
4474The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
4475returning the same value as the libm '<tt>sqrt</tt>' function would. Unlike
4476<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
4477negative numbers (which allows for better optimization).
4478</p>
4479
4480<h5>Arguments:</h5>
4481
4482<p>
4483The argument and return value are floating point numbers of the same type.
4484</p>
4485
4486<h5>Semantics:</h5>
4487
4488<p>
4489This function returns the sqrt of the specified operand if it is a nonnegative
4490floating point number.
4491</p>
4492</div>
4493
4494<!-- _______________________________________________________________________ -->
4495<div class="doc_subsubsection">
4496 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
4497</div>
4498
4499<div class="doc_text">
4500
4501<h5>Syntax:</h5>
4502<pre>
4503 declare float @llvm.powi.f32(float %Val, i32 %power)
4504 declare double @llvm.powi.f64(double %Val, i32 %power)
4505</pre>
4506
4507<h5>Overview:</h5>
4508
4509<p>
4510The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
4511specified (positive or negative) power. The order of evaluation of
4512multiplications is not defined.
4513</p>
4514
4515<h5>Arguments:</h5>
4516
4517<p>
4518The second argument is an integer power, and the first is a value to raise to
4519that power.
4520</p>
4521
4522<h5>Semantics:</h5>
4523
4524<p>
4525This function returns the first value raised to the second power with an
4526unspecified sequence of rounding operations.</p>
4527</div>
4528
4529
4530<!-- ======================================================================= -->
4531<div class="doc_subsection">
4532 <a name="int_manip">Bit Manipulation Intrinsics</a>
4533</div>
4534
4535<div class="doc_text">
4536<p>
4537LLVM provides intrinsics for a few important bit manipulation operations.
4538These allow efficient code generation for some algorithms.
4539</p>
4540
4541</div>
4542
4543<!-- _______________________________________________________________________ -->
4544<div class="doc_subsubsection">
4545 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
4546</div>
4547
4548<div class="doc_text">
4549
4550<h5>Syntax:</h5>
4551<p>This is an overloaded intrinsic function. You can use bswap on any integer
4552type that is an even number of bytes (i.e. BitWidth % 16 == 0). Note the suffix
4553that includes the type for the result and the operand.
4554<pre>
4555 declare i16 @llvm.bswap.i16.i16(i16 &lt;id&gt;)
4556 declare i32 @llvm.bswap.i32.i32(i32 &lt;id&gt;)
4557 declare i64 @llvm.bswap.i64.i64(i64 &lt;id&gt;)
4558</pre>
4559
4560<h5>Overview:</h5>
4561
4562<p>
4563The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
4564values with an even number of bytes (positive multiple of 16 bits). These are
4565useful for performing operations on data that is not in the target's native
4566byte order.
4567</p>
4568
4569<h5>Semantics:</h5>
4570
4571<p>
4572The <tt>llvm.bswap.16.i16</tt> intrinsic returns an i16 value that has the high
4573and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
4574intrinsic returns an i32 value that has the four bytes of the input i32
4575swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
4576i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48.i48</tt>,
4577<tt>llvm.bswap.i64.i64</tt> and other intrinsics extend this concept to
4578additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
4579</p>
4580
4581</div>
4582
4583<!-- _______________________________________________________________________ -->
4584<div class="doc_subsubsection">
4585 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
4586</div>
4587
4588<div class="doc_text">
4589
4590<h5>Syntax:</h5>
4591<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
4592width. Not all targets support all bit widths however.
4593<pre>
4594 declare i32 @llvm.ctpop.i8 (i8 &lt;src&gt;)
4595 declare i32 @llvm.ctpop.i16(i16 &lt;src&gt;)
4596 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
4597 declare i32 @llvm.ctpop.i64(i64 &lt;src&gt;)
4598 declare i32 @llvm.ctpop.i256(i256 &lt;src&gt;)
4599</pre>
4600
4601<h5>Overview:</h5>
4602
4603<p>
4604The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
4605value.
4606</p>
4607
4608<h5>Arguments:</h5>
4609
4610<p>
4611The only argument is the value to be counted. The argument may be of any
4612integer type. The return type must match the argument type.
4613</p>
4614
4615<h5>Semantics:</h5>
4616
4617<p>
4618The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
4619</p>
4620</div>
4621
4622<!-- _______________________________________________________________________ -->
4623<div class="doc_subsubsection">
4624 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
4625</div>
4626
4627<div class="doc_text">
4628
4629<h5>Syntax:</h5>
4630<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
4631integer bit width. Not all targets support all bit widths however.
4632<pre>
4633 declare i32 @llvm.ctlz.i8 (i8 &lt;src&gt;)
4634 declare i32 @llvm.ctlz.i16(i16 &lt;src&gt;)
4635 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
4636 declare i32 @llvm.ctlz.i64(i64 &lt;src&gt;)
4637 declare i32 @llvm.ctlz.i256(i256 &lt;src&gt;)
4638</pre>
4639
4640<h5>Overview:</h5>
4641
4642<p>
4643The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
4644leading zeros in a variable.
4645</p>
4646
4647<h5>Arguments:</h5>
4648
4649<p>
4650The only argument is the value to be counted. The argument may be of any
4651integer type. The return type must match the argument type.
4652</p>
4653
4654<h5>Semantics:</h5>
4655
4656<p>
4657The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
4658in a variable. If the src == 0 then the result is the size in bits of the type
4659of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
4660</p>
4661</div>
4662
4663
4664
4665<!-- _______________________________________________________________________ -->
4666<div class="doc_subsubsection">
4667 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
4668</div>
4669
4670<div class="doc_text">
4671
4672<h5>Syntax:</h5>
4673<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
4674integer bit width. Not all targets support all bit widths however.
4675<pre>
4676 declare i32 @llvm.cttz.i8 (i8 &lt;src&gt;)
4677 declare i32 @llvm.cttz.i16(i16 &lt;src&gt;)
4678 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
4679 declare i32 @llvm.cttz.i64(i64 &lt;src&gt;)
4680 declare i32 @llvm.cttz.i256(i256 &lt;src&gt;)
4681</pre>
4682
4683<h5>Overview:</h5>
4684
4685<p>
4686The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
4687trailing zeros.
4688</p>
4689
4690<h5>Arguments:</h5>
4691
4692<p>
4693The only argument is the value to be counted. The argument may be of any
4694integer type. The return type must match the argument type.
4695</p>
4696
4697<h5>Semantics:</h5>
4698
4699<p>
4700The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
4701in a variable. If the src == 0 then the result is the size in bits of the type
4702of src. For example, <tt>llvm.cttz(2) = 1</tt>.
4703</p>
4704</div>
4705
4706<!-- _______________________________________________________________________ -->
4707<div class="doc_subsubsection">
4708 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
4709</div>
4710
4711<div class="doc_text">
4712
4713<h5>Syntax:</h5>
4714<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
4715on any integer bit width.
4716<pre>
4717 declare i17 @llvm.part.select.i17.i17 (i17 %val, i32 %loBit, i32 %hiBit)
4718 declare i29 @llvm.part.select.i29.i29 (i29 %val, i32 %loBit, i32 %hiBit)
4719</pre>
4720
4721<h5>Overview:</h5>
4722<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
4723range of bits from an integer value and returns them in the same bit width as
4724the original value.</p>
4725
4726<h5>Arguments:</h5>
4727<p>The first argument, <tt>%val</tt> and the result may be integer types of
4728any bit width but they must have the same bit width. The second and third
4729arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
4730
4731<h5>Semantics:</h5>
4732<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
4733of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
4734<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
4735operates in forward mode.</p>
4736<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
4737right by <tt>%loBit</tt> bits and then ANDing it with a mask with
4738only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
4739<ol>
4740 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
4741 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
4742 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
4743 to determine the number of bits to retain.</li>
4744 <li>A mask of the retained bits is created by shifting a -1 value.</li>
4745 <li>The mask is ANDed with <tt>%val</tt> to produce the result.
4746</ol>
4747<p>In reverse mode, a similar computation is made except that the bits are
4748returned in the reverse order. So, for example, if <tt>X</tt> has the value
4749<tt>i16 0x0ACF (101011001111)</tt> and we apply
4750<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
4751<tt>i16 0x0026 (000000100110)</tt>.</p>
4752</div>
4753
4754<div class="doc_subsubsection">
4755 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
4756</div>
4757
4758<div class="doc_text">
4759
4760<h5>Syntax:</h5>
4761<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
4762on any integer bit width.
4763<pre>
4764 declare i17 @llvm.part.set.i17.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
4765 declare i29 @llvm.part.set.i29.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
4766</pre>
4767
4768<h5>Overview:</h5>
4769<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
4770of bits in an integer value with another integer value. It returns the integer
4771with the replaced bits.</p>
4772
4773<h5>Arguments:</h5>
4774<p>The first argument, <tt>%val</tt> and the result may be integer types of
4775any bit width but they must have the same bit width. <tt>%val</tt> is the value
4776whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
4777integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
4778type since they specify only a bit index.</p>
4779
4780<h5>Semantics:</h5>
4781<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
4782of operation: forwards and reverse. If <tt>%lo</tt> is greater than
4783<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
4784operates in forward mode.</p>
4785<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
4786truncating it down to the size of the replacement area or zero extending it
4787up to that size.</p>
4788<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
4789are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
4790in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
4791to the <tt>%hi</tt>th bit.
4792<p>In reverse mode, a similar computation is made except that the bits are
4793reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
4794<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.
4795<h5>Examples:</h5>
4796<pre>
4797 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
4798 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
4799 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
4800 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
4801 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
4802</pre>
4803</div>
4804
4805<!-- ======================================================================= -->
4806<div class="doc_subsection">
4807 <a name="int_debugger">Debugger Intrinsics</a>
4808</div>
4809
4810<div class="doc_text">
4811<p>
4812The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
4813are described in the <a
4814href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
4815Debugging</a> document.
4816</p>
4817</div>
4818
4819
4820<!-- ======================================================================= -->
4821<div class="doc_subsection">
4822 <a name="int_eh">Exception Handling Intrinsics</a>
4823</div>
4824
4825<div class="doc_text">
4826<p> The LLVM exception handling intrinsics (which all start with
4827<tt>llvm.eh.</tt> prefix), are described in the <a
4828href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
4829Handling</a> document. </p>
4830</div>
4831
4832<!-- ======================================================================= -->
4833<div class="doc_subsection">
Chandler Carruthc0470a82007-07-20 19:34:37 +00004834 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
4835</div>
4836
4837<div class="doc_text">
4838<p>
4839 These intrinsic functions expand the "universal IR" of LLVM to represent
4840 hardware constructs for atomic operations and memory synchronization. This
4841 provides an interface to the hardware, not an interface to the programmer. It
4842 is aimed at a low enough level to allow any programming models or APIs which
4843 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
Chandler Carruth3060d9a2007-07-20 20:14:52 +00004844 hardware behavior. Just as hardware provides a "universal IR" for source
Chandler Carruthc0470a82007-07-20 19:34:37 +00004845 languages, it also provides a starting point for developing a "universal"
4846 atomic operation and synchronization IR.
4847</p>
4848<p>
4849 These do <em>not</em> form an API such as high-level threading libraries,
4850 software transaction memory systems, atomic primitives, and intrinsic
Reid Spencerb043f672007-07-20 19:59:11 +00004851 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
Chandler Carruthc0470a82007-07-20 19:34:37 +00004852 application libraries. The hardware interface provided by LLVM should allow
4853 a clean implementation of all of these APIs and parallel programming models.
4854 No one model or paradigm should be selected above others unless the hardware
4855 itself ubiquitously does so.
4856</p>
4857</div>
4858
4859<!-- _______________________________________________________________________ -->
4860<div class="doc_subsubsection">
4861 <a name="int_lcs">'<tt>llvm.atomic.lcs.*</tt>' Intrinsic</a>
4862</div>
4863<div class="doc_text">
4864<h5>Syntax:</h5>
4865<p>
4866 This is an overloaded intrinsic. You can use <tt>llvm.atomic.lcs</tt> on any
Reid Spencerb043f672007-07-20 19:59:11 +00004867 integer bit width. Not all targets support all bit widths however.</p>
Chandler Carruthc0470a82007-07-20 19:34:37 +00004868<pre>
4869declare i8 @llvm.atomic.lcs.i8.i8p.i8.i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
4870declare i16 @llvm.atomic.lcs.i16.i16p.i16.i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
4871declare i32 @llvm.atomic.lcs.i32.i32p.i32.i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
4872declare i64 @llvm.atomic.lcs.i64.i64p.i64.i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
4873</pre>
Chandler Carruthc0470a82007-07-20 19:34:37 +00004874<h5>Overview:</h5>
4875<p>
Chandler Carruth3060d9a2007-07-20 20:14:52 +00004876 This loads a value in memory and compares it to a given value. If they are
4877 equal, it stores a new value into the memory.
Chandler Carruthc0470a82007-07-20 19:34:37 +00004878</p>
4879<h5>Arguments:</h5>
4880<p>
4881 The <tt>llvm.atomic.lcs</tt> intrinsic takes three arguments. The result as
4882 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
4883 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
4884 this integer type. While any bit width integer may be used, targets may only
4885 lower representations they support in hardware.
4886</p>
4887<h5>Semantics:</h5>
4888<p>
4889 This entire intrinsic must be executed atomically. It first loads the value
Chandler Carruth3060d9a2007-07-20 20:14:52 +00004890 in memory pointed to by <tt>ptr</tt> and compares it with the value
4891 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
4892 loaded value is yielded in all cases. This provides the equivalent of an
4893 atomic compare-and-swap operation within the SSA framework.
Chandler Carruthc0470a82007-07-20 19:34:37 +00004894</p>
4895<h5>Examples:</h5>
4896<pre>
4897%ptr = malloc i32
4898 store i32 4, %ptr
4899
4900%val1 = add i32 4, 4
4901%result1 = call i32 @llvm.atomic.lcs( i32* %ptr, i32 4, %val1 )
4902 <i>; yields {i32}:result1 = 4</i>
4903%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
4904%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
4905
4906%val2 = add i32 1, 1
4907%result2 = call i32 @llvm.atomic.lcs( i32* %ptr, i32 5, %val2 )
4908 <i>; yields {i32}:result2 = 8</i>
4909%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
4910%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
4911</pre>
4912</div>
4913
4914<!-- _______________________________________________________________________ -->
4915<div class="doc_subsubsection">
4916 <a name="int_ls">'<tt>llvm.atomic.ls.*</tt>' Intrinsic</a>
4917</div>
4918<div class="doc_text">
4919<h5>Syntax:</h5>
4920<p>
4921 This is an overloaded intrinsic. You can use <tt>llvm.atomic.ls</tt> on any
Reid Spencerb043f672007-07-20 19:59:11 +00004922 integer bit width. Not all targets support all bit widths however.</p>
Chandler Carruthc0470a82007-07-20 19:34:37 +00004923<pre>
4924declare i8 @llvm.atomic.ls.i8.i8p.i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
4925declare i16 @llvm.atomic.ls.i16.i16p.i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
4926declare i32 @llvm.atomic.ls.i32.i32p.i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
4927declare i64 @llvm.atomic.ls.i64.i64p.i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
4928</pre>
Chandler Carruthc0470a82007-07-20 19:34:37 +00004929<h5>Overview:</h5>
4930<p>
Chandler Carruth3060d9a2007-07-20 20:14:52 +00004931 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
4932 the value from memory. It then stores the value in <tt>val</tt> in the memory
4933 at <tt>ptr</tt>.
Chandler Carruthc0470a82007-07-20 19:34:37 +00004934</p>
4935<h5>Arguments:</h5>
4936<p>
4937 The <tt>llvm.atomic.ls</tt> intrinsic takes two arguments. Both the
4938 <tt>val</tt> argument and the result must be integers of the same bit width.
4939 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
4940 integer type. The targets may only lower integer representations they
4941 support.
4942</p>
4943<h5>Semantics:</h5>
4944<p>
4945 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
4946 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
4947 equivalent of an atomic swap operation within the SSA framework.
4948</p>
4949<h5>Examples:</h5>
4950<pre>
4951%ptr = malloc i32
4952 store i32 4, %ptr
4953
4954%val1 = add i32 4, 4
4955%result1 = call i32 @llvm.atomic.ls( i32* %ptr, i32 %val1 )
4956 <i>; yields {i32}:result1 = 4</i>
4957%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
4958%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
4959
4960%val2 = add i32 1, 1
4961%result2 = call i32 @llvm.atomic.ls( i32* %ptr, i32 %val2 )
4962 <i>; yields {i32}:result2 = 8</i>
4963%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
4964%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
4965</pre>
4966 </div>
4967
4968<!-- _______________________________________________________________________ -->
4969<div class="doc_subsubsection">
4970 <a name="int_las">'<tt>llvm.atomic.las.*</tt>' Intrinsic</a>
4971</div>
4972<div class="doc_text">
4973<h5>Syntax:</h5>
4974<p>
4975 This is an overloaded intrinsic. You can use <tt>llvm.atomic.las</tt> on any
Reid Spencerb043f672007-07-20 19:59:11 +00004976 integer bit width. Not all targets support all bit widths however.</p>
Chandler Carruthc0470a82007-07-20 19:34:37 +00004977<pre>
4978declare i8 @llvm.atomic.las.i8.i8p.i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
4979declare i16 @llvm.atomic.las.i16.i16p.i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
4980declare i32 @llvm.atomic.las.i32.i32p.i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
4981declare i64 @llvm.atomic.las.i64.i64p.i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
4982</pre>
Chandler Carruthc0470a82007-07-20 19:34:37 +00004983<h5>Overview:</h5>
4984<p>
Chandler Carruth3060d9a2007-07-20 20:14:52 +00004985 This intrinsic adds <tt>delta</tt> to the value stored in memory at
Chandler Carruthc0470a82007-07-20 19:34:37 +00004986 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
4987</p>
4988<h5>Arguments:</h5>
4989<p>
4990 The intrinsic takes two arguments, the first a pointer to an integer value
4991 and the second an integer value. The result is also an integer value. These
4992 integer types can have any bit width, but they must all have the same bit
4993 width. The targets may only lower integer representations they support.
4994</p>
4995<h5>Semantics:</h5>
4996<p>
4997 This intrinsic does a series of operations atomically. It first loads the
4998 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
4999 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
5000</p>
5001<h5>Examples:</h5>
5002<pre>
5003%ptr = malloc i32
5004 store i32 4, %ptr
5005%result1 = call i32 @llvm.atomic.las( i32* %ptr, i32 4 )
5006 <i>; yields {i32}:result1 = 4</i>
5007%result2 = call i32 @llvm.atomic.las( i32* %ptr, i32 2 )
5008 <i>; yields {i32}:result2 = 8</i>
5009%result3 = call i32 @llvm.atomic.las( i32* %ptr, i32 5 )
5010 <i>; yields {i32}:result3 = 10</i>
5011%memval = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
5012</pre>
5013</div>
5014
5015<!-- _______________________________________________________________________ -->
5016<div class="doc_subsubsection">
5017 <a name="int_lss">'<tt>llvm.atomic.lss.*</tt>' Intrinsic</a>
5018</div>
5019<div class="doc_text">
5020<h5>Syntax:</h5>
5021<p>
5022 This is an overloaded intrinsic. You can use <tt>llvm.atomic.lss</tt> on any
Reid Spencerb043f672007-07-20 19:59:11 +00005023 integer bit width. Not all targets support all bit widths however.</p>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005024<pre>
5025declare i8 @llvm.atomic.lss.i8.i8.i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
5026declare i16 @llvm.atomic.lss.i16.i16.i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
5027declare i32 @llvm.atomic.lss.i32.i32.i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
5028declare i64 @llvm.atomic.lss.i64.i64.i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
5029</pre>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005030<h5>Overview:</h5>
5031<p>
Chandler Carruth3060d9a2007-07-20 20:14:52 +00005032 This intrinsic subtracts <tt>delta</tt> from the value stored in memory at
5033 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
Chandler Carruthc0470a82007-07-20 19:34:37 +00005034</p>
5035<h5>Arguments:</h5>
5036<p>
5037 The intrinsic takes two arguments, the first a pointer to an integer value
5038 and the second an integer value. The result is also an integer value. These
5039 integer types can have any bit width, but they must all have the same bit
5040 width. The targets may only lower integer representations they support.
5041</p>
5042<h5>Semantics:</h5>
5043<p>
5044 This intrinsic does a series of operations atomically. It first loads the
5045 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>,
5046 stores the result to <tt>ptr</tt>. It yields the original value stored
5047 at <tt>ptr</tt>.
5048</p>
5049<h5>Examples:</h5>
5050<pre>
5051%ptr = malloc i32
5052 store i32 32, %ptr
5053%result1 = call i32 @llvm.atomic.lss( i32* %ptr, i32 4 )
5054 <i>; yields {i32}:result1 = 32</i>
5055%result2 = call i32 @llvm.atomic.lss( i32* %ptr, i32 2 )
5056 <i>; yields {i32}:result2 = 28</i>
5057%result3 = call i32 @llvm.atomic.lss( i32* %ptr, i32 5 )
5058 <i>; yields {i32}:result3 = 26</i>
5059%memval = load i32* %ptr <i>; yields {i32}:memval1 = 21</i>
5060</pre>
5061</div>
5062
5063<!-- _______________________________________________________________________ -->
5064<div class="doc_subsubsection">
5065 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
5066</div>
5067<div class="doc_text">
5068<h5>Syntax:</h5>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005069<pre>
5070declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt; )
5071</pre>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005072<h5>Overview:</h5>
5073<p>
5074 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
5075 specific pairs of memory access types.
5076</p>
5077<h5>Arguments:</h5>
5078<p>
5079 The <tt>llvm.memory.barrier</tt> intrinsic requires four boolean arguments.
5080 Each argument enables a specific barrier as listed below.
Reid Spencerc64165c2007-07-20 20:03:33 +00005081</p>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005082 <ul>
5083 <li><tt>ll</tt>: load-load barrier</li>
5084 <li><tt>ls</tt>: load-store barrier</li>
5085 <li><tt>sl</tt>: store-load barrier</li>
5086 <li><tt>ss</tt>: store-store barrier</li>
5087 </ul>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005088<h5>Semantics:</h5>
5089<p>
5090 This intrinsic causes the system to enforce some ordering constraints upon
5091 the loads and stores of the program. This barrier does not indicate
5092 <em>when</em> any events will occur, it only enforces an <em>order</em> in
5093 which they occur. For any of the specified pairs of load and store operations
5094 (f.ex. load-load, or store-load), all of the first operations preceding the
5095 barrier will complete before any of the second operations succeeding the
5096 barrier begin. Specifically the semantics for each pairing is as follows:
Reid Spencerc64165c2007-07-20 20:03:33 +00005097</p>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005098 <ul>
5099 <li><tt>ll</tt>: All loads before the barrier must complete before any load
5100 after the barrier begins.</li>
5101 <li><tt>ls</tt>: All loads before the barrier must complete before any
5102 store after the barrier begins.</li>
5103 <li><tt>ss</tt>: All stores before the barrier must complete before any
5104 store after the barrier begins.</li>
5105 <li><tt>sl</tt>: All stores before the barrier must complete before any
5106 load after the barrier begins.</li>
5107 </ul>
Reid Spencerc64165c2007-07-20 20:03:33 +00005108<p>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005109 These semantics are applied with a logical "and" behavior when more than one
5110 is enabled in a single memory barrier intrinsic.
5111</p>
5112<h5>Example:</h5>
5113<pre>
5114%ptr = malloc i32
5115 store i32 4, %ptr
5116
5117%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
5118 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
5119 <i>; guarantee the above finishes</i>
5120 store i32 8, %ptr <i>; before this begins</i>
5121</pre>
5122</div>
5123
5124<!-- ======================================================================= -->
5125<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005126 <a name="int_general">General Intrinsics</a>
5127</div>
5128
5129<div class="doc_text">
5130<p> This class of intrinsics is designed to be generic and has
5131no specific purpose. </p>
5132</div>
5133
5134<!-- _______________________________________________________________________ -->
5135<div class="doc_subsubsection">
5136 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
5137</div>
5138
5139<div class="doc_text">
5140
5141<h5>Syntax:</h5>
5142<pre>
5143 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
5144</pre>
5145
5146<h5>Overview:</h5>
5147
5148<p>
5149The '<tt>llvm.var.annotation</tt>' intrinsic
5150</p>
5151
5152<h5>Arguments:</h5>
5153
5154<p>
5155The first argument is a pointer to a value, the second is a pointer to a
5156global string, the third is a pointer to a global string which is the source
5157file name, and the last argument is the line number.
5158</p>
5159
5160<h5>Semantics:</h5>
5161
5162<p>
5163This intrinsic allows annotation of local variables with arbitrary strings.
5164This can be useful for special purpose optimizations that want to look for these
5165 annotations. These have no other defined use, they are ignored by code
5166 generation and optimization.
5167</div>
5168
5169
5170<!-- *********************************************************************** -->
5171<hr>
5172<address>
5173 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
5174 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
5175 <a href="http://validator.w3.org/check/referer"><img
5176 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a>
5177
5178 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
5179 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
5180 Last modified: $Date$
5181</address>
5182</body>
5183</html>