blob: 07a18fe4de42ee59e09fc8e4a35f0efd739a3787 [file] [log] [blame]
Chris Lattner173234a2008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/Constants.h"
17#include "llvm/Instructions.h"
Evan Cheng0ff39b32008-06-30 07:31:25 +000018#include "llvm/GlobalVariable.h"
Chris Lattner173234a2008-06-02 01:18:21 +000019#include "llvm/IntrinsicInst.h"
Bill Wendling0582ae92009-03-13 04:39:26 +000020#include "llvm/Target/TargetData.h"
Chris Lattner173234a2008-06-02 01:18:21 +000021#include "llvm/Support/GetElementPtrTypeIterator.h"
22#include "llvm/Support/MathExtras.h"
Chris Lattner32a9e7a2008-06-04 04:46:14 +000023#include <cstring>
Chris Lattner173234a2008-06-02 01:18:21 +000024using namespace llvm;
25
26/// getOpcode - If this is an Instruction or a ConstantExpr, return the
27/// opcode value. Otherwise return UserOp1.
28static unsigned getOpcode(const Value *V) {
29 if (const Instruction *I = dyn_cast<Instruction>(V))
30 return I->getOpcode();
31 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
32 return CE->getOpcode();
33 // Use UserOp1 to mean there's no opcode.
34 return Instruction::UserOp1;
35}
36
37
38/// ComputeMaskedBits - Determine which of the bits specified in Mask are
39/// known to be either zero or one and return them in the KnownZero/KnownOne
40/// bit sets. This code only analyzes bits in Mask, in order to short-circuit
41/// processing.
42/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
43/// we cannot optimize based on the assumption that it is zero without changing
44/// it to be an explicit zero. If we don't change it to zero, other code could
45/// optimized based on the contradictory assumption that it is non-zero.
46/// Because instcombine aggressively folds operations with undef args anyway,
47/// this won't lose us code quality.
48void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
49 APInt &KnownZero, APInt &KnownOne,
50 TargetData *TD, unsigned Depth) {
Dan Gohman9004c8a2009-05-21 02:28:33 +000051 const unsigned MaxDepth = 6;
Chris Lattner173234a2008-06-02 01:18:21 +000052 assert(V && "No Value?");
Dan Gohman9004c8a2009-05-21 02:28:33 +000053 assert(Depth <= MaxDepth && "Limit Search Depth");
Chris Lattner79abedb2009-01-20 18:22:57 +000054 unsigned BitWidth = Mask.getBitWidth();
Dan Gohman6de29f82009-06-15 22:12:54 +000055 assert((V->getType()->isIntOrIntVector() || isa<PointerType>(V->getType())) &&
Chris Lattner173234a2008-06-02 01:18:21 +000056 "Not integer or pointer type!");
Dan Gohman6de29f82009-06-15 22:12:54 +000057 assert((!TD ||
58 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
59 (!V->getType()->isIntOrIntVector() ||
60 V->getType()->getScalarSizeInBits() == BitWidth) &&
Chris Lattner173234a2008-06-02 01:18:21 +000061 KnownZero.getBitWidth() == BitWidth &&
62 KnownOne.getBitWidth() == BitWidth &&
63 "V, Mask, KnownOne and KnownZero should have same BitWidth");
64
65 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
66 // We know all of the bits for a constant!
67 KnownOne = CI->getValue() & Mask;
68 KnownZero = ~KnownOne & Mask;
69 return;
70 }
Dan Gohman6de29f82009-06-15 22:12:54 +000071 // Null and aggregate-zero are all-zeros.
72 if (isa<ConstantPointerNull>(V) ||
73 isa<ConstantAggregateZero>(V)) {
Chris Lattner173234a2008-06-02 01:18:21 +000074 KnownOne.clear();
75 KnownZero = Mask;
76 return;
77 }
Dan Gohman6de29f82009-06-15 22:12:54 +000078 // Handle a constant vector by taking the intersection of the known bits of
79 // each element.
80 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
81 KnownZero.set(); KnownOne.set();
82 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
83 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
84 ComputeMaskedBits(CV->getOperand(i), Mask, KnownZero2, KnownOne2,
85 TD, Depth);
86 KnownZero &= KnownZero2;
87 KnownOne &= KnownOne2;
88 }
89 return;
90 }
Chris Lattner173234a2008-06-02 01:18:21 +000091 // The address of an aligned GlobalValue has trailing zeros.
92 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
93 unsigned Align = GV->getAlignment();
94 if (Align == 0 && TD && GV->getType()->getElementType()->isSized())
95 Align = TD->getPrefTypeAlignment(GV->getType()->getElementType());
96 if (Align > 0)
97 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
98 CountTrailingZeros_32(Align));
99 else
100 KnownZero.clear();
101 KnownOne.clear();
102 return;
103 }
104
105 KnownZero.clear(); KnownOne.clear(); // Start out not knowing anything.
106
Dan Gohman9004c8a2009-05-21 02:28:33 +0000107 if (Depth == MaxDepth || Mask == 0)
Chris Lattner173234a2008-06-02 01:18:21 +0000108 return; // Limit search depth.
109
110 User *I = dyn_cast<User>(V);
111 if (!I) return;
112
113 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
114 switch (getOpcode(I)) {
115 default: break;
116 case Instruction::And: {
117 // If either the LHS or the RHS are Zero, the result is zero.
118 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
119 APInt Mask2(Mask & ~KnownZero);
120 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
121 Depth+1);
122 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
123 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
124
125 // Output known-1 bits are only known if set in both the LHS & RHS.
126 KnownOne &= KnownOne2;
127 // Output known-0 are known to be clear if zero in either the LHS | RHS.
128 KnownZero |= KnownZero2;
129 return;
130 }
131 case Instruction::Or: {
132 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
133 APInt Mask2(Mask & ~KnownOne);
134 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
135 Depth+1);
136 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
137 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
138
139 // Output known-0 bits are only known if clear in both the LHS & RHS.
140 KnownZero &= KnownZero2;
141 // Output known-1 are known to be set if set in either the LHS | RHS.
142 KnownOne |= KnownOne2;
143 return;
144 }
145 case Instruction::Xor: {
146 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
147 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD,
148 Depth+1);
149 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
150 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
151
152 // Output known-0 bits are known if clear or set in both the LHS & RHS.
153 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
154 // Output known-1 are known to be set if set in only one of the LHS, RHS.
155 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
156 KnownZero = KnownZeroOut;
157 return;
158 }
159 case Instruction::Mul: {
160 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
161 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1);
162 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
163 Depth+1);
164 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
165 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
166
167 // If low bits are zero in either operand, output low known-0 bits.
168 // Also compute a conserative estimate for high known-0 bits.
169 // More trickiness is possible, but this is sufficient for the
170 // interesting case of alignment computation.
171 KnownOne.clear();
172 unsigned TrailZ = KnownZero.countTrailingOnes() +
173 KnownZero2.countTrailingOnes();
174 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
175 KnownZero2.countLeadingOnes(),
176 BitWidth) - BitWidth;
177
178 TrailZ = std::min(TrailZ, BitWidth);
179 LeadZ = std::min(LeadZ, BitWidth);
180 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
181 APInt::getHighBitsSet(BitWidth, LeadZ);
182 KnownZero &= Mask;
183 return;
184 }
185 case Instruction::UDiv: {
186 // For the purposes of computing leading zeros we can conservatively
187 // treat a udiv as a logical right shift by the power of 2 known to
188 // be less than the denominator.
189 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
190 ComputeMaskedBits(I->getOperand(0),
191 AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
192 unsigned LeadZ = KnownZero2.countLeadingOnes();
193
194 KnownOne2.clear();
195 KnownZero2.clear();
196 ComputeMaskedBits(I->getOperand(1),
197 AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
198 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
199 if (RHSUnknownLeadingOnes != BitWidth)
200 LeadZ = std::min(BitWidth,
201 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
202
203 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
204 return;
205 }
206 case Instruction::Select:
207 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1);
208 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD,
209 Depth+1);
210 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
211 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
212
213 // Only known if known in both the LHS and RHS.
214 KnownOne &= KnownOne2;
215 KnownZero &= KnownZero2;
216 return;
217 case Instruction::FPTrunc:
218 case Instruction::FPExt:
219 case Instruction::FPToUI:
220 case Instruction::FPToSI:
221 case Instruction::SIToFP:
222 case Instruction::UIToFP:
223 return; // Can't work with floating point.
224 case Instruction::PtrToInt:
225 case Instruction::IntToPtr:
226 // We can't handle these if we don't know the pointer size.
227 if (!TD) return;
228 // FALL THROUGH and handle them the same as zext/trunc.
229 case Instruction::ZExt:
230 case Instruction::Trunc: {
231 // Note that we handle pointer operands here because of inttoptr/ptrtoint
232 // which fall through here.
233 const Type *SrcTy = I->getOperand(0)->getType();
Chris Lattner79abedb2009-01-20 18:22:57 +0000234 unsigned SrcBitWidth = TD ?
Chris Lattner173234a2008-06-02 01:18:21 +0000235 TD->getTypeSizeInBits(SrcTy) :
Dan Gohman6de29f82009-06-15 22:12:54 +0000236 SrcTy->getScalarSizeInBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000237 APInt MaskIn(Mask);
238 MaskIn.zextOrTrunc(SrcBitWidth);
239 KnownZero.zextOrTrunc(SrcBitWidth);
240 KnownOne.zextOrTrunc(SrcBitWidth);
241 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
242 Depth+1);
243 KnownZero.zextOrTrunc(BitWidth);
244 KnownOne.zextOrTrunc(BitWidth);
245 // Any top bits are known to be zero.
246 if (BitWidth > SrcBitWidth)
247 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
248 return;
249 }
250 case Instruction::BitCast: {
251 const Type *SrcTy = I->getOperand(0)->getType();
Chris Lattner0dabb0b2009-07-02 16:04:08 +0000252 if ((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
253 // TODO: For now, not handling conversions like:
254 // (bitcast i64 %x to <2 x i32>)
255 !isa<VectorType>(I->getType())) {
Chris Lattner173234a2008-06-02 01:18:21 +0000256 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD,
257 Depth+1);
258 return;
259 }
260 break;
261 }
262 case Instruction::SExt: {
263 // Compute the bits in the result that are not present in the input.
264 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
Chris Lattner79abedb2009-01-20 18:22:57 +0000265 unsigned SrcBitWidth = SrcTy->getBitWidth();
Chris Lattner173234a2008-06-02 01:18:21 +0000266
267 APInt MaskIn(Mask);
268 MaskIn.trunc(SrcBitWidth);
269 KnownZero.trunc(SrcBitWidth);
270 KnownOne.trunc(SrcBitWidth);
271 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
272 Depth+1);
273 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
274 KnownZero.zext(BitWidth);
275 KnownOne.zext(BitWidth);
276
277 // If the sign bit of the input is known set or clear, then we know the
278 // top bits of the result.
279 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
280 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
281 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
282 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
283 return;
284 }
285 case Instruction::Shl:
286 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
287 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
288 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
289 APInt Mask2(Mask.lshr(ShiftAmt));
290 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
291 Depth+1);
292 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
293 KnownZero <<= ShiftAmt;
294 KnownOne <<= ShiftAmt;
295 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
296 return;
297 }
298 break;
299 case Instruction::LShr:
300 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
301 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
302 // Compute the new bits that are at the top now.
303 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
304
305 // Unsigned shift right.
306 APInt Mask2(Mask.shl(ShiftAmt));
307 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD,
308 Depth+1);
309 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
310 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
311 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
312 // high bits known zero.
313 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
314 return;
315 }
316 break;
317 case Instruction::AShr:
318 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
319 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
320 // Compute the new bits that are at the top now.
321 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
322
323 // Signed shift right.
324 APInt Mask2(Mask.shl(ShiftAmt));
325 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
326 Depth+1);
327 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
328 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
329 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
330
331 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
332 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
333 KnownZero |= HighBits;
334 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
335 KnownOne |= HighBits;
336 return;
337 }
338 break;
339 case Instruction::Sub: {
340 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) {
341 // We know that the top bits of C-X are clear if X contains less bits
342 // than C (i.e. no wrap-around can happen). For example, 20-X is
343 // positive if we can prove that X is >= 0 and < 16.
344 if (!CLHS->getValue().isNegative()) {
345 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
346 // NLZ can't be BitWidth with no sign bit
347 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
348 ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2,
349 TD, Depth+1);
350
351 // If all of the MaskV bits are known to be zero, then we know the
352 // output top bits are zero, because we now know that the output is
353 // from [0-C].
354 if ((KnownZero2 & MaskV) == MaskV) {
355 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
356 // Top bits known zero.
357 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
358 }
359 }
360 }
361 }
362 // fall through
363 case Instruction::Add: {
Dan Gohman39250432009-05-24 18:02:35 +0000364 // If one of the operands has trailing zeros, than the bits that the
365 // other operand has in those bit positions will be preserved in the
366 // result. For an add, this works with either operand. For a subtract,
367 // this only works if the known zeros are in the right operand.
368 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
369 APInt Mask2 = APInt::getLowBitsSet(BitWidth,
370 BitWidth - Mask.countLeadingZeros());
371 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
Chris Lattner173234a2008-06-02 01:18:21 +0000372 Depth+1);
Dan Gohman39250432009-05-24 18:02:35 +0000373 assert((LHSKnownZero & LHSKnownOne) == 0 &&
374 "Bits known to be one AND zero?");
375 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
Chris Lattner173234a2008-06-02 01:18:21 +0000376
377 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD,
378 Depth+1);
379 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
Dan Gohman39250432009-05-24 18:02:35 +0000380 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
Chris Lattner173234a2008-06-02 01:18:21 +0000381
Dan Gohman39250432009-05-24 18:02:35 +0000382 // Determine which operand has more trailing zeros, and use that
383 // many bits from the other operand.
384 if (LHSKnownZeroOut > RHSKnownZeroOut) {
385 if (getOpcode(I) == Instruction::Add) {
386 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
387 KnownZero |= KnownZero2 & Mask;
388 KnownOne |= KnownOne2 & Mask;
389 } else {
390 // If the known zeros are in the left operand for a subtract,
391 // fall back to the minimum known zeros in both operands.
392 KnownZero |= APInt::getLowBitsSet(BitWidth,
393 std::min(LHSKnownZeroOut,
394 RHSKnownZeroOut));
395 }
396 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
397 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
398 KnownZero |= LHSKnownZero & Mask;
399 KnownOne |= LHSKnownOne & Mask;
400 }
Chris Lattner173234a2008-06-02 01:18:21 +0000401 return;
402 }
403 case Instruction::SRem:
404 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
405 APInt RA = Rem->getValue();
406 if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
407 APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
408 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
409 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
410 Depth+1);
411
Dan Gohmana60832b2008-08-13 23:12:35 +0000412 // If the sign bit of the first operand is zero, the sign bit of
413 // the result is zero. If the first operand has no one bits below
414 // the second operand's single 1 bit, its sign will be zero.
Chris Lattner173234a2008-06-02 01:18:21 +0000415 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
416 KnownZero2 |= ~LowBits;
Chris Lattner173234a2008-06-02 01:18:21 +0000417
418 KnownZero |= KnownZero2 & Mask;
Chris Lattner173234a2008-06-02 01:18:21 +0000419
420 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
421 }
422 }
423 break;
424 case Instruction::URem: {
425 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
426 APInt RA = Rem->getValue();
427 if (RA.isPowerOf2()) {
428 APInt LowBits = (RA - 1);
429 APInt Mask2 = LowBits & Mask;
430 KnownZero |= ~LowBits & Mask;
431 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
432 Depth+1);
433 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
434 break;
435 }
436 }
437
438 // Since the result is less than or equal to either operand, any leading
439 // zero bits in either operand must also exist in the result.
440 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
441 ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne,
442 TD, Depth+1);
443 ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2,
444 TD, Depth+1);
445
Chris Lattner79abedb2009-01-20 18:22:57 +0000446 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner173234a2008-06-02 01:18:21 +0000447 KnownZero2.countLeadingOnes());
448 KnownOne.clear();
449 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
450 break;
451 }
452
453 case Instruction::Alloca:
454 case Instruction::Malloc: {
455 AllocationInst *AI = cast<AllocationInst>(V);
456 unsigned Align = AI->getAlignment();
457 if (Align == 0 && TD) {
458 if (isa<AllocaInst>(AI))
Chris Lattner0f2831c2009-01-08 19:28:38 +0000459 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
Chris Lattner173234a2008-06-02 01:18:21 +0000460 else if (isa<MallocInst>(AI)) {
461 // Malloc returns maximally aligned memory.
462 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
463 Align =
464 std::max(Align,
465 (unsigned)TD->getABITypeAlignment(Type::DoubleTy));
466 Align =
467 std::max(Align,
468 (unsigned)TD->getABITypeAlignment(Type::Int64Ty));
469 }
470 }
471
472 if (Align > 0)
473 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
474 CountTrailingZeros_32(Align));
475 break;
476 }
477 case Instruction::GetElementPtr: {
478 // Analyze all of the subscripts of this getelementptr instruction
479 // to determine if we can prove known low zero bits.
480 APInt LocalMask = APInt::getAllOnesValue(BitWidth);
481 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
482 ComputeMaskedBits(I->getOperand(0), LocalMask,
483 LocalKnownZero, LocalKnownOne, TD, Depth+1);
484 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
485
486 gep_type_iterator GTI = gep_type_begin(I);
487 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
488 Value *Index = I->getOperand(i);
489 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
490 // Handle struct member offset arithmetic.
491 if (!TD) return;
492 const StructLayout *SL = TD->getStructLayout(STy);
493 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
494 uint64_t Offset = SL->getElementOffset(Idx);
495 TrailZ = std::min(TrailZ,
496 CountTrailingZeros_64(Offset));
497 } else {
498 // Handle array index arithmetic.
499 const Type *IndexedTy = GTI.getIndexedType();
500 if (!IndexedTy->isSized()) return;
Dan Gohman6de29f82009-06-15 22:12:54 +0000501 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Duncan Sands777d2302009-05-09 07:06:46 +0000502 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
Chris Lattner173234a2008-06-02 01:18:21 +0000503 LocalMask = APInt::getAllOnesValue(GEPOpiBits);
504 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
505 ComputeMaskedBits(Index, LocalMask,
506 LocalKnownZero, LocalKnownOne, TD, Depth+1);
507 TrailZ = std::min(TrailZ,
Chris Lattner79abedb2009-01-20 18:22:57 +0000508 unsigned(CountTrailingZeros_64(TypeSize) +
509 LocalKnownZero.countTrailingOnes()));
Chris Lattner173234a2008-06-02 01:18:21 +0000510 }
511 }
512
513 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask;
514 break;
515 }
516 case Instruction::PHI: {
517 PHINode *P = cast<PHINode>(I);
518 // Handle the case of a simple two-predecessor recurrence PHI.
519 // There's a lot more that could theoretically be done here, but
520 // this is sufficient to catch some interesting cases.
521 if (P->getNumIncomingValues() == 2) {
522 for (unsigned i = 0; i != 2; ++i) {
523 Value *L = P->getIncomingValue(i);
524 Value *R = P->getIncomingValue(!i);
525 User *LU = dyn_cast<User>(L);
526 if (!LU)
527 continue;
528 unsigned Opcode = getOpcode(LU);
529 // Check for operations that have the property that if
530 // both their operands have low zero bits, the result
531 // will have low zero bits.
532 if (Opcode == Instruction::Add ||
533 Opcode == Instruction::Sub ||
534 Opcode == Instruction::And ||
535 Opcode == Instruction::Or ||
536 Opcode == Instruction::Mul) {
537 Value *LL = LU->getOperand(0);
538 Value *LR = LU->getOperand(1);
539 // Find a recurrence.
540 if (LL == I)
541 L = LR;
542 else if (LR == I)
543 L = LL;
544 else
545 break;
546 // Ok, we have a PHI of the form L op= R. Check for low
547 // zero bits.
548 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
549 ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1);
550 Mask2 = APInt::getLowBitsSet(BitWidth,
551 KnownZero2.countTrailingOnes());
David Greenec714f132008-10-27 23:24:03 +0000552
553 // We need to take the minimum number of known bits
554 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
555 ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1);
556
Chris Lattner173234a2008-06-02 01:18:21 +0000557 KnownZero = Mask &
558 APInt::getLowBitsSet(BitWidth,
David Greenec714f132008-10-27 23:24:03 +0000559 std::min(KnownZero2.countTrailingOnes(),
560 KnownZero3.countTrailingOnes()));
Chris Lattner173234a2008-06-02 01:18:21 +0000561 break;
562 }
563 }
564 }
Dan Gohman9004c8a2009-05-21 02:28:33 +0000565
566 // Otherwise take the unions of the known bit sets of the operands,
567 // taking conservative care to avoid excessive recursion.
568 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
569 KnownZero = APInt::getAllOnesValue(BitWidth);
570 KnownOne = APInt::getAllOnesValue(BitWidth);
571 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
572 // Skip direct self references.
573 if (P->getIncomingValue(i) == P) continue;
574
575 KnownZero2 = APInt(BitWidth, 0);
576 KnownOne2 = APInt(BitWidth, 0);
577 // Recurse, but cap the recursion to one level, because we don't
578 // want to waste time spinning around in loops.
579 ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne,
580 KnownZero2, KnownOne2, TD, MaxDepth-1);
581 KnownZero &= KnownZero2;
582 KnownOne &= KnownOne2;
583 // If all bits have been ruled out, there's no need to check
584 // more operands.
585 if (!KnownZero && !KnownOne)
586 break;
587 }
588 }
Chris Lattner173234a2008-06-02 01:18:21 +0000589 break;
590 }
591 case Instruction::Call:
592 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
593 switch (II->getIntrinsicID()) {
594 default: break;
595 case Intrinsic::ctpop:
596 case Intrinsic::ctlz:
597 case Intrinsic::cttz: {
598 unsigned LowBits = Log2_32(BitWidth)+1;
599 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
600 break;
601 }
602 }
603 }
604 break;
605 }
606}
607
608/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
609/// this predicate to simplify operations downstream. Mask is known to be zero
610/// for bits that V cannot have.
611bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
612 TargetData *TD, unsigned Depth) {
613 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
614 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
615 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
616 return (KnownZero & Mask) == Mask;
617}
618
619
620
621/// ComputeNumSignBits - Return the number of times the sign bit of the
622/// register is replicated into the other bits. We know that at least 1 bit
623/// is always equal to the sign bit (itself), but other cases can give us
624/// information. For example, immediately after an "ashr X, 2", we know that
625/// the top 3 bits are all equal to each other, so we return 3.
626///
627/// 'Op' must have a scalar integer type.
628///
629unsigned llvm::ComputeNumSignBits(Value *V, TargetData *TD, unsigned Depth) {
Dan Gohmanbd5ce522009-06-22 22:02:32 +0000630 assert((TD || V->getType()->isIntOrIntVector()) &&
631 "ComputeNumSignBits requires a TargetData object to operate "
632 "on non-integer values!");
Dan Gohman6de29f82009-06-15 22:12:54 +0000633 const Type *Ty = V->getType();
Dan Gohmanbd5ce522009-06-22 22:02:32 +0000634 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
635 Ty->getScalarSizeInBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000636 unsigned Tmp, Tmp2;
637 unsigned FirstAnswer = 1;
638
Chris Lattnerd82e5112008-06-02 18:39:07 +0000639 // Note that ConstantInt is handled by the general ComputeMaskedBits case
640 // below.
641
Chris Lattner173234a2008-06-02 01:18:21 +0000642 if (Depth == 6)
643 return 1; // Limit search depth.
644
645 User *U = dyn_cast<User>(V);
646 switch (getOpcode(V)) {
647 default: break;
648 case Instruction::SExt:
649 Tmp = TyBits-cast<IntegerType>(U->getOperand(0)->getType())->getBitWidth();
650 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
651
652 case Instruction::AShr:
653 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
654 // ashr X, C -> adds C sign bits.
655 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
656 Tmp += C->getZExtValue();
657 if (Tmp > TyBits) Tmp = TyBits;
658 }
659 return Tmp;
660 case Instruction::Shl:
661 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
662 // shl destroys sign bits.
663 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
664 if (C->getZExtValue() >= TyBits || // Bad shift.
665 C->getZExtValue() >= Tmp) break; // Shifted all sign bits out.
666 return Tmp - C->getZExtValue();
667 }
668 break;
669 case Instruction::And:
670 case Instruction::Or:
671 case Instruction::Xor: // NOT is handled here.
672 // Logical binary ops preserve the number of sign bits at the worst.
673 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
674 if (Tmp != 1) {
675 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
676 FirstAnswer = std::min(Tmp, Tmp2);
677 // We computed what we know about the sign bits as our first
678 // answer. Now proceed to the generic code that uses
679 // ComputeMaskedBits, and pick whichever answer is better.
680 }
681 break;
682
683 case Instruction::Select:
684 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
685 if (Tmp == 1) return 1; // Early out.
686 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
687 return std::min(Tmp, Tmp2);
688
689 case Instruction::Add:
690 // Add can have at most one carry bit. Thus we know that the output
691 // is, at worst, one more bit than the inputs.
692 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
693 if (Tmp == 1) return 1; // Early out.
694
695 // Special case decrementing a value (ADD X, -1):
Dan Gohman0001e562009-02-24 02:00:40 +0000696 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
Chris Lattner173234a2008-06-02 01:18:21 +0000697 if (CRHS->isAllOnesValue()) {
698 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
699 APInt Mask = APInt::getAllOnesValue(TyBits);
700 ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD,
701 Depth+1);
702
703 // If the input is known to be 0 or 1, the output is 0/-1, which is all
704 // sign bits set.
705 if ((KnownZero | APInt(TyBits, 1)) == Mask)
706 return TyBits;
707
708 // If we are subtracting one from a positive number, there is no carry
709 // out of the result.
710 if (KnownZero.isNegative())
711 return Tmp;
712 }
713
714 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
715 if (Tmp2 == 1) return 1;
716 return std::min(Tmp, Tmp2)-1;
717 break;
718
719 case Instruction::Sub:
720 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
721 if (Tmp2 == 1) return 1;
722
723 // Handle NEG.
724 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
725 if (CLHS->isNullValue()) {
726 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
727 APInt Mask = APInt::getAllOnesValue(TyBits);
728 ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne,
729 TD, Depth+1);
730 // If the input is known to be 0 or 1, the output is 0/-1, which is all
731 // sign bits set.
732 if ((KnownZero | APInt(TyBits, 1)) == Mask)
733 return TyBits;
734
735 // If the input is known to be positive (the sign bit is known clear),
736 // the output of the NEG has the same number of sign bits as the input.
737 if (KnownZero.isNegative())
738 return Tmp2;
739
740 // Otherwise, we treat this like a SUB.
741 }
742
743 // Sub can have at most one carry bit. Thus we know that the output
744 // is, at worst, one more bit than the inputs.
745 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
746 if (Tmp == 1) return 1; // Early out.
747 return std::min(Tmp, Tmp2)-1;
748 break;
749 case Instruction::Trunc:
750 // FIXME: it's tricky to do anything useful for this, but it is an important
751 // case for targets like X86.
752 break;
753 }
754
755 // Finally, if we can prove that the top bits of the result are 0's or 1's,
756 // use this information.
757 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
758 APInt Mask = APInt::getAllOnesValue(TyBits);
759 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
760
761 if (KnownZero.isNegative()) { // sign bit is 0
762 Mask = KnownZero;
763 } else if (KnownOne.isNegative()) { // sign bit is 1;
764 Mask = KnownOne;
765 } else {
766 // Nothing known.
767 return FirstAnswer;
768 }
769
770 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
771 // the number of identical bits in the top of the input value.
772 Mask = ~Mask;
773 Mask <<= Mask.getBitWidth()-TyBits;
774 // Return # leading zeros. We use 'min' here in case Val was zero before
775 // shifting. We don't want to return '64' as for an i32 "0".
776 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
777}
Chris Lattner833f25d2008-06-02 01:29:46 +0000778
779/// CannotBeNegativeZero - Return true if we can prove that the specified FP
780/// value is never equal to -0.0.
781///
782/// NOTE: this function will need to be revisited when we support non-default
783/// rounding modes!
784///
785bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
786 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
787 return !CFP->getValueAPF().isNegZero();
788
789 if (Depth == 6)
790 return 1; // Limit search depth.
791
792 const Instruction *I = dyn_cast<Instruction>(V);
793 if (I == 0) return false;
794
795 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000796 if (I->getOpcode() == Instruction::FAdd &&
Chris Lattner833f25d2008-06-02 01:29:46 +0000797 isa<ConstantFP>(I->getOperand(1)) &&
798 cast<ConstantFP>(I->getOperand(1))->isNullValue())
799 return true;
800
801 // sitofp and uitofp turn into +0.0 for zero.
802 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
803 return true;
804
805 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
806 // sqrt(-0.0) = -0.0, no other negative results are possible.
807 if (II->getIntrinsicID() == Intrinsic::sqrt)
808 return CannotBeNegativeZero(II->getOperand(1), Depth+1);
809
810 if (const CallInst *CI = dyn_cast<CallInst>(I))
811 if (const Function *F = CI->getCalledFunction()) {
812 if (F->isDeclaration()) {
813 switch (F->getNameLen()) {
814 case 3: // abs(x) != -0.0
815 if (!strcmp(F->getNameStart(), "abs")) return true;
816 break;
817 case 4: // abs[lf](x) != -0.0
818 if (!strcmp(F->getNameStart(), "absf")) return true;
819 if (!strcmp(F->getNameStart(), "absl")) return true;
820 break;
821 }
822 }
823 }
824
825 return false;
826}
827
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000828// This is the recursive version of BuildSubAggregate. It takes a few different
829// arguments. Idxs is the index within the nested struct From that we are
830// looking at now (which is of type IndexedType). IdxSkip is the number of
831// indices from Idxs that should be left out when inserting into the resulting
832// struct. To is the result struct built so far, new insertvalue instructions
833// build on that.
834Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType,
835 SmallVector<unsigned, 10> &Idxs,
836 unsigned IdxSkip,
Matthijs Kooijman0a7413d2008-06-16 13:13:08 +0000837 Instruction *InsertBefore) {
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000838 const llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
839 if (STy) {
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000840 // Save the original To argument so we can modify it
841 Value *OrigTo = To;
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000842 // General case, the type indexed by Idxs is a struct
843 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
844 // Process each struct element recursively
845 Idxs.push_back(i);
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000846 Value *PrevTo = To;
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000847 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
848 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000849 Idxs.pop_back();
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000850 if (!To) {
851 // Couldn't find any inserted value for this index? Cleanup
852 while (PrevTo != OrigTo) {
853 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
854 PrevTo = Del->getAggregateOperand();
855 Del->eraseFromParent();
856 }
857 // Stop processing elements
858 break;
859 }
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000860 }
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000861 // If we succesfully found a value for each of our subaggregates
862 if (To)
863 return To;
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000864 }
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000865 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
866 // the struct's elements had a value that was inserted directly. In the latter
867 // case, perhaps we can't determine each of the subelements individually, but
868 // we might be able to find the complete struct somewhere.
869
870 // Find the value that is at that particular spot
871 Value *V = FindInsertedValue(From, Idxs.begin(), Idxs.end());
872
873 if (!V)
874 return NULL;
875
876 // Insert the value in the new (sub) aggregrate
877 return llvm::InsertValueInst::Create(To, V, Idxs.begin() + IdxSkip,
878 Idxs.end(), "tmp", InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000879}
880
881// This helper takes a nested struct and extracts a part of it (which is again a
882// struct) into a new value. For example, given the struct:
883// { a, { b, { c, d }, e } }
884// and the indices "1, 1" this returns
885// { c, d }.
886//
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000887// It does this by inserting an insertvalue for each element in the resulting
888// struct, as opposed to just inserting a single struct. This will only work if
889// each of the elements of the substruct are known (ie, inserted into From by an
890// insertvalue instruction somewhere).
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000891//
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000892// All inserted insertvalue instructions are inserted before InsertBefore
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000893Value *BuildSubAggregate(Value *From, const unsigned *idx_begin,
Matthijs Kooijman0a7413d2008-06-16 13:13:08 +0000894 const unsigned *idx_end, Instruction *InsertBefore) {
Matthijs Kooijman97728912008-06-16 13:28:31 +0000895 assert(InsertBefore && "Must have someplace to insert!");
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000896 const Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
897 idx_begin,
898 idx_end);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000899 Value *To = UndefValue::get(IndexedType);
900 SmallVector<unsigned, 10> Idxs(idx_begin, idx_end);
901 unsigned IdxSkip = Idxs.size();
902
903 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
904}
905
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000906/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
907/// the scalar value indexed is already around as a register, for example if it
908/// were inserted directly into the aggregrate.
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000909///
910/// If InsertBefore is not null, this function will duplicate (modified)
911/// insertvalues when a part of a nested struct is extracted.
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000912Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin,
Matthijs Kooijman0a7413d2008-06-16 13:13:08 +0000913 const unsigned *idx_end, Instruction *InsertBefore) {
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000914 // Nothing to index? Just return V then (this is useful at the end of our
915 // recursion)
916 if (idx_begin == idx_end)
917 return V;
918 // We have indices, so V should have an indexable type
919 assert((isa<StructType>(V->getType()) || isa<ArrayType>(V->getType()))
920 && "Not looking at a struct or array?");
921 assert(ExtractValueInst::getIndexedType(V->getType(), idx_begin, idx_end)
922 && "Invalid indices for type?");
923 const CompositeType *PTy = cast<CompositeType>(V->getType());
924
925 if (isa<UndefValue>(V))
926 return UndefValue::get(ExtractValueInst::getIndexedType(PTy,
927 idx_begin,
928 idx_end));
929 else if (isa<ConstantAggregateZero>(V))
930 return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy,
931 idx_begin,
932 idx_end));
933 else if (Constant *C = dyn_cast<Constant>(V)) {
934 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C))
935 // Recursively process this constant
Matthijs Kooijmandddc8272008-07-16 10:47:35 +0000936 return FindInsertedValue(C->getOperand(*idx_begin), idx_begin + 1, idx_end,
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000937 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000938 } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
939 // Loop the indices for the insertvalue instruction in parallel with the
940 // requested indices
941 const unsigned *req_idx = idx_begin;
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000942 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
943 i != e; ++i, ++req_idx) {
Duncan Sands9954c762008-06-19 08:47:31 +0000944 if (req_idx == idx_end) {
Matthijs Kooijman97728912008-06-16 13:28:31 +0000945 if (InsertBefore)
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000946 // The requested index identifies a part of a nested aggregate. Handle
947 // this specially. For example,
948 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
949 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
950 // %C = extractvalue {i32, { i32, i32 } } %B, 1
951 // This can be changed into
952 // %A = insertvalue {i32, i32 } undef, i32 10, 0
953 // %C = insertvalue {i32, i32 } %A, i32 11, 1
954 // which allows the unused 0,0 element from the nested struct to be
955 // removed.
Matthijs Kooijman97728912008-06-16 13:28:31 +0000956 return BuildSubAggregate(V, idx_begin, req_idx, InsertBefore);
957 else
958 // We can't handle this without inserting insertvalues
959 return 0;
Duncan Sands9954c762008-06-19 08:47:31 +0000960 }
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000961
962 // This insert value inserts something else than what we are looking for.
963 // See if the (aggregrate) value inserted into has the value we are
964 // looking for, then.
965 if (*req_idx != *i)
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000966 return FindInsertedValue(I->getAggregateOperand(), idx_begin, idx_end,
967 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000968 }
969 // If we end up here, the indices of the insertvalue match with those
970 // requested (though possibly only partially). Now we recursively look at
971 // the inserted value, passing any remaining indices.
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000972 return FindInsertedValue(I->getInsertedValueOperand(), req_idx, idx_end,
973 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000974 } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
975 // If we're extracting a value from an aggregrate that was extracted from
976 // something else, we can extract from that something else directly instead.
977 // However, we will need to chain I's indices with the requested indices.
978
979 // Calculate the number of indices required
980 unsigned size = I->getNumIndices() + (idx_end - idx_begin);
981 // Allocate some space to put the new indices in
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +0000982 SmallVector<unsigned, 5> Idxs;
983 Idxs.reserve(size);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000984 // Add indices from the extract value instruction
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000985 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +0000986 i != e; ++i)
987 Idxs.push_back(*i);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000988
989 // Add requested indices
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +0000990 for (const unsigned *i = idx_begin, *e = idx_end; i != e; ++i)
991 Idxs.push_back(*i);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000992
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +0000993 assert(Idxs.size() == size
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000994 && "Number of indices added not correct?");
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000995
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +0000996 return FindInsertedValue(I->getAggregateOperand(), Idxs.begin(), Idxs.end(),
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000997 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000998 }
999 // Otherwise, we don't know (such as, extracting from a function return value
1000 // or load instruction)
1001 return 0;
1002}
Evan Cheng0ff39b32008-06-30 07:31:25 +00001003
1004/// GetConstantStringInfo - This function computes the length of a
1005/// null-terminated C string pointed to by V. If successful, it returns true
1006/// and returns the string in Str. If unsuccessful, it returns false.
Bill Wendling0582ae92009-03-13 04:39:26 +00001007bool llvm::GetConstantStringInfo(Value *V, std::string &Str, uint64_t Offset,
1008 bool StopAtNul) {
1009 // If V is NULL then return false;
1010 if (V == NULL) return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001011
1012 // Look through bitcast instructions.
1013 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
Bill Wendling0582ae92009-03-13 04:39:26 +00001014 return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul);
1015
Evan Cheng0ff39b32008-06-30 07:31:25 +00001016 // If the value is not a GEP instruction nor a constant expression with a
1017 // GEP instruction, then return false because ConstantArray can't occur
1018 // any other way
1019 User *GEP = 0;
1020 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
1021 GEP = GEPI;
1022 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
1023 if (CE->getOpcode() == Instruction::BitCast)
Bill Wendling0582ae92009-03-13 04:39:26 +00001024 return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul);
1025 if (CE->getOpcode() != Instruction::GetElementPtr)
1026 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001027 GEP = CE;
1028 }
1029
1030 if (GEP) {
1031 // Make sure the GEP has exactly three arguments.
Bill Wendling0582ae92009-03-13 04:39:26 +00001032 if (GEP->getNumOperands() != 3)
1033 return false;
1034
Evan Cheng0ff39b32008-06-30 07:31:25 +00001035 // Make sure the index-ee is a pointer to array of i8.
1036 const PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
1037 const ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
Bill Wendling0582ae92009-03-13 04:39:26 +00001038 if (AT == 0 || AT->getElementType() != Type::Int8Ty)
1039 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001040
1041 // Check to make sure that the first operand of the GEP is an integer and
1042 // has value 0 so that we are sure we're indexing into the initializer.
1043 ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
Bill Wendling0582ae92009-03-13 04:39:26 +00001044 if (FirstIdx == 0 || !FirstIdx->isZero())
1045 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001046
1047 // If the second index isn't a ConstantInt, then this is a variable index
1048 // into the array. If this occurs, we can't say anything meaningful about
1049 // the string.
1050 uint64_t StartIdx = 0;
Bill Wendling0582ae92009-03-13 04:39:26 +00001051 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Cheng0ff39b32008-06-30 07:31:25 +00001052 StartIdx = CI->getZExtValue();
Bill Wendling0582ae92009-03-13 04:39:26 +00001053 else
1054 return false;
1055 return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset,
Evan Cheng0ff39b32008-06-30 07:31:25 +00001056 StopAtNul);
1057 }
1058
1059 // The GEP instruction, constant or instruction, must reference a global
1060 // variable that is a constant and is initialized. The referenced constant
1061 // initializer is the array that we'll use for optimization.
1062 GlobalVariable* GV = dyn_cast<GlobalVariable>(V);
Bill Wendling0582ae92009-03-13 04:39:26 +00001063 if (!GV || !GV->isConstant() || !GV->hasInitializer())
1064 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001065 Constant *GlobalInit = GV->getInitializer();
1066
1067 // Handle the ConstantAggregateZero case
Bill Wendling0582ae92009-03-13 04:39:26 +00001068 if (isa<ConstantAggregateZero>(GlobalInit)) {
Evan Cheng0ff39b32008-06-30 07:31:25 +00001069 // This is a degenerate case. The initializer is constant zero so the
1070 // length of the string must be zero.
Bill Wendling0582ae92009-03-13 04:39:26 +00001071 Str.clear();
1072 return true;
1073 }
Evan Cheng0ff39b32008-06-30 07:31:25 +00001074
1075 // Must be a Constant Array
1076 ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
Bill Wendling0582ae92009-03-13 04:39:26 +00001077 if (Array == 0 || Array->getType()->getElementType() != Type::Int8Ty)
1078 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001079
1080 // Get the number of elements in the array
1081 uint64_t NumElts = Array->getType()->getNumElements();
1082
Bill Wendling0582ae92009-03-13 04:39:26 +00001083 if (Offset > NumElts)
1084 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001085
1086 // Traverse the constant array from 'Offset' which is the place the GEP refers
1087 // to in the array.
Bill Wendling0582ae92009-03-13 04:39:26 +00001088 Str.reserve(NumElts-Offset);
Evan Cheng0ff39b32008-06-30 07:31:25 +00001089 for (unsigned i = Offset; i != NumElts; ++i) {
1090 Constant *Elt = Array->getOperand(i);
1091 ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
Bill Wendling0582ae92009-03-13 04:39:26 +00001092 if (!CI) // This array isn't suitable, non-int initializer.
1093 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001094 if (StopAtNul && CI->isZero())
Bill Wendling0582ae92009-03-13 04:39:26 +00001095 return true; // we found end of string, success!
1096 Str += (char)CI->getZExtValue();
Evan Cheng0ff39b32008-06-30 07:31:25 +00001097 }
Bill Wendling0582ae92009-03-13 04:39:26 +00001098
Evan Cheng0ff39b32008-06-30 07:31:25 +00001099 // The array isn't null terminated, but maybe this is a memcpy, not a strcpy.
Bill Wendling0582ae92009-03-13 04:39:26 +00001100 return true;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001101}