blob: 70b6574996be5d555a99fb0212e215e5043ff966 [file] [log] [blame]
Dan Gohmanade9f182008-11-15 00:23:40 +00001//===---- LatencyPriorityQueue.cpp - A latency-oriented priority queue ----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LatencyPriorityQueue class, which is a
11// SchedulingPriorityQueue that schedules using latency information to
12// reduce the length of the critical path through the basic block.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "scheduler"
Dan Gohman343f0c02008-11-19 23:18:57 +000017#include "llvm/CodeGen/LatencyPriorityQueue.h"
Dan Gohmanade9f182008-11-15 00:23:40 +000018#include "llvm/Support/Debug.h"
19using namespace llvm;
20
21bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const {
22 unsigned LHSNum = LHS->NodeNum;
23 unsigned RHSNum = RHS->NodeNum;
24
25 // The most important heuristic is scheduling the critical path.
26 unsigned LHSLatency = PQ->getLatency(LHSNum);
27 unsigned RHSLatency = PQ->getLatency(RHSNum);
28 if (LHSLatency < RHSLatency) return true;
29 if (LHSLatency > RHSLatency) return false;
30
31 // After that, if two nodes have identical latencies, look to see if one will
32 // unblock more other nodes than the other.
33 unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum);
34 unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum);
35 if (LHSBlocked < RHSBlocked) return true;
36 if (LHSBlocked > RHSBlocked) return false;
37
38 // Finally, just to provide a stable ordering, use the node number as a
39 // deciding factor.
40 return LHSNum < RHSNum;
41}
42
43
44/// CalcNodePriority - Calculate the maximal path from the node to the exit.
45///
46int LatencyPriorityQueue::CalcLatency(const SUnit &SU) {
47 int &Latency = Latencies[SU.NodeNum];
48 if (Latency != -1)
49 return Latency;
50
51 std::vector<const SUnit*> WorkList;
52 WorkList.push_back(&SU);
53 while (!WorkList.empty()) {
54 const SUnit *Cur = WorkList.back();
55 bool AllDone = true;
56 int MaxSuccLatency = 0;
57 for (SUnit::const_succ_iterator I = Cur->Succs.begin(),E = Cur->Succs.end();
58 I != E; ++I) {
59 int SuccLatency = Latencies[I->Dep->NodeNum];
60 if (SuccLatency == -1) {
61 AllDone = false;
62 WorkList.push_back(I->Dep);
63 } else {
64 MaxSuccLatency = std::max(MaxSuccLatency, SuccLatency);
65 }
66 }
67 if (AllDone) {
68 Latencies[Cur->NodeNum] = MaxSuccLatency + Cur->Latency;
69 WorkList.pop_back();
70 }
71 }
72
73 return Latency;
74}
75
76/// CalculatePriorities - Calculate priorities of all scheduling units.
77void LatencyPriorityQueue::CalculatePriorities() {
78 Latencies.assign(SUnits->size(), -1);
79 NumNodesSolelyBlocking.assign(SUnits->size(), 0);
80
81 // For each node, calculate the maximal path from the node to the exit.
82 std::vector<std::pair<const SUnit*, unsigned> > WorkList;
83 for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
84 const SUnit *SU = &(*SUnits)[i];
85 if (SU->Succs.empty())
86 WorkList.push_back(std::make_pair(SU, 0U));
87 }
88
89 while (!WorkList.empty()) {
90 const SUnit *SU = WorkList.back().first;
91 unsigned SuccLat = WorkList.back().second;
92 WorkList.pop_back();
93 int &Latency = Latencies[SU->NodeNum];
94 if (Latency == -1 || (SU->Latency + SuccLat) > (unsigned)Latency) {
95 Latency = SU->Latency + SuccLat;
96 for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
97 I != E; ++I)
98 WorkList.push_back(std::make_pair(I->Dep, Latency));
99 }
100 }
101}
102
103/// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
104/// of SU, return it, otherwise return null.
105SUnit *LatencyPriorityQueue::getSingleUnscheduledPred(SUnit *SU) {
106 SUnit *OnlyAvailablePred = 0;
107 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
108 I != E; ++I) {
109 SUnit &Pred = *I->Dep;
110 if (!Pred.isScheduled) {
111 // We found an available, but not scheduled, predecessor. If it's the
112 // only one we have found, keep track of it... otherwise give up.
113 if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
114 return 0;
115 OnlyAvailablePred = &Pred;
116 }
117 }
118
119 return OnlyAvailablePred;
120}
121
122void LatencyPriorityQueue::push_impl(SUnit *SU) {
123 // Look at all of the successors of this node. Count the number of nodes that
124 // this node is the sole unscheduled node for.
125 unsigned NumNodesBlocking = 0;
126 for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
127 I != E; ++I)
128 if (getSingleUnscheduledPred(I->Dep) == SU)
129 ++NumNodesBlocking;
130 NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking;
131
132 Queue.push(SU);
133}
134
135
136// ScheduledNode - As nodes are scheduled, we look to see if there are any
137// successor nodes that have a single unscheduled predecessor. If so, that
138// single predecessor has a higher priority, since scheduling it will make
139// the node available.
140void LatencyPriorityQueue::ScheduledNode(SUnit *SU) {
141 for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
142 I != E; ++I)
143 AdjustPriorityOfUnscheduledPreds(I->Dep);
144}
145
146/// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
147/// scheduled. If SU is not itself available, then there is at least one
148/// predecessor node that has not been scheduled yet. If SU has exactly ONE
149/// unscheduled predecessor, we want to increase its priority: it getting
150/// scheduled will make this node available, so it is better than some other
151/// node of the same priority that will not make a node available.
152void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) {
Dan Gohman6560c002008-11-17 16:37:30 +0000153 if (SU->isAvailable) return; // All preds scheduled.
Dan Gohmanade9f182008-11-15 00:23:40 +0000154
155 SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU);
156 if (OnlyAvailablePred == 0 || !OnlyAvailablePred->isAvailable) return;
157
158 // Okay, we found a single predecessor that is available, but not scheduled.
159 // Since it is available, it must be in the priority queue. First remove it.
160 remove(OnlyAvailablePred);
161
162 // Reinsert the node into the priority queue, which recomputes its
163 // NumNodesSolelyBlocking value.
164 push(OnlyAvailablePred);
165}