blob: b19ce2b8c484d2766344e0ab82eef08ddb31466d [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the default implementation of the Alias Analysis interface
11// that simply implements a few identities (two different globals cannot alias,
12// etc), but otherwise does no analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/Passes.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
Christopher Lamb6f9fad52007-08-02 01:18:14 +000021#include "llvm/ParameterAttributes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000022#include "llvm/GlobalVariable.h"
23#include "llvm/Instructions.h"
Owen Anderson37f3ffb2008-02-17 21:29:08 +000024#include "llvm/IntrinsicInst.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000025#include "llvm/Pass.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/ADT/SmallVector.h"
Owen Anderson1636de92007-09-07 04:06:50 +000028#include "llvm/ADT/STLExtras.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000029#include "llvm/Support/Compiler.h"
30#include "llvm/Support/GetElementPtrTypeIterator.h"
31#include "llvm/Support/ManagedStatic.h"
32#include <algorithm>
33using namespace llvm;
34
35namespace {
36 /// NoAA - This class implements the -no-aa pass, which always returns "I
37 /// don't know" for alias queries. NoAA is unlike other alias analysis
38 /// implementations, in that it does not chain to a previous analysis. As
39 /// such it doesn't follow many of the rules that other alias analyses must.
40 ///
41 struct VISIBILITY_HIDDEN NoAA : public ImmutablePass, public AliasAnalysis {
42 static char ID; // Class identification, replacement for typeinfo
43 NoAA() : ImmutablePass((intptr_t)&ID) {}
44 explicit NoAA(intptr_t PID) : ImmutablePass(PID) { }
45
46 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
47 AU.addRequired<TargetData>();
48 }
49
50 virtual void initializePass() {
51 TD = &getAnalysis<TargetData>();
52 }
53
54 virtual AliasResult alias(const Value *V1, unsigned V1Size,
55 const Value *V2, unsigned V2Size) {
56 return MayAlias;
57 }
58
59 virtual ModRefBehavior getModRefBehavior(Function *F, CallSite CS,
60 std::vector<PointerAccessInfo> *Info) {
61 return UnknownModRefBehavior;
62 }
63
64 virtual void getArgumentAccesses(Function *F, CallSite CS,
65 std::vector<PointerAccessInfo> &Info) {
66 assert(0 && "This method may not be called on this function!");
67 }
68
69 virtual void getMustAliases(Value *P, std::vector<Value*> &RetVals) { }
70 virtual bool pointsToConstantMemory(const Value *P) { return false; }
71 virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) {
72 return ModRef;
73 }
74 virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
75 return ModRef;
76 }
77 virtual bool hasNoModRefInfoForCalls() const { return true; }
78
79 virtual void deleteValue(Value *V) {}
80 virtual void copyValue(Value *From, Value *To) {}
81 };
82
83 // Register this pass...
84 char NoAA::ID = 0;
85 RegisterPass<NoAA>
86 U("no-aa", "No Alias Analysis (always returns 'may' alias)");
87
88 // Declare that we implement the AliasAnalysis interface
89 RegisterAnalysisGroup<AliasAnalysis> V(U);
90} // End of anonymous namespace
91
92ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
93
94namespace {
95 /// BasicAliasAnalysis - This is the default alias analysis implementation.
96 /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
97 /// derives from the NoAA class.
98 struct VISIBILITY_HIDDEN BasicAliasAnalysis : public NoAA {
99 static char ID; // Class identification, replacement for typeinfo
100 BasicAliasAnalysis() : NoAA((intptr_t)&ID) { }
101 AliasResult alias(const Value *V1, unsigned V1Size,
102 const Value *V2, unsigned V2Size);
103
104 ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
105 ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
106 return NoAA::getModRefInfo(CS1,CS2);
107 }
108
109 /// hasNoModRefInfoForCalls - We can provide mod/ref information against
110 /// non-escaping allocations.
111 virtual bool hasNoModRefInfoForCalls() const { return false; }
112
113 /// pointsToConstantMemory - Chase pointers until we find a (constant
114 /// global) or not.
115 bool pointsToConstantMemory(const Value *P);
116
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000117 private:
118 // CheckGEPInstructions - Check two GEP instructions with known
119 // must-aliasing base pointers. This checks to see if the index expressions
120 // preclude the pointers from aliasing...
121 AliasResult
122 CheckGEPInstructions(const Type* BasePtr1Ty,
123 Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1Size,
124 const Type *BasePtr2Ty,
125 Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2Size);
126 };
127
128 // Register this pass...
129 char BasicAliasAnalysis::ID = 0;
130 RegisterPass<BasicAliasAnalysis>
131 X("basicaa", "Basic Alias Analysis (default AA impl)");
132
133 // Declare that we implement the AliasAnalysis interface
134 RegisterAnalysisGroup<AliasAnalysis, true> Y(X);
135} // End of anonymous namespace
136
137ImmutablePass *llvm::createBasicAliasAnalysisPass() {
138 return new BasicAliasAnalysis();
139}
140
Chris Lattner9603f432008-01-24 18:00:32 +0000141/// getUnderlyingObject - This traverses the use chain to figure out what object
142/// the specified value points to. If the value points to, or is derived from,
143/// a unique object or an argument, return it. This returns:
144/// Arguments, GlobalVariables, Functions, Allocas, Mallocs.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000145static const Value *getUnderlyingObject(const Value *V) {
146 if (!isa<PointerType>(V->getType())) return 0;
147
148 // If we are at some type of object, return it. GlobalValues and Allocations
149 // have unique addresses.
150 if (isa<GlobalValue>(V) || isa<AllocationInst>(V) || isa<Argument>(V))
151 return V;
152
153 // Traverse through different addressing mechanisms...
154 if (const Instruction *I = dyn_cast<Instruction>(V)) {
155 if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I))
156 return getUnderlyingObject(I->getOperand(0));
157 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
158 if (CE->getOpcode() == Instruction::BitCast ||
159 CE->getOpcode() == Instruction::GetElementPtr)
160 return getUnderlyingObject(CE->getOperand(0));
161 }
162 return 0;
163}
164
165static const User *isGEP(const Value *V) {
166 if (isa<GetElementPtrInst>(V) ||
167 (isa<ConstantExpr>(V) &&
168 cast<ConstantExpr>(V)->getOpcode() == Instruction::GetElementPtr))
169 return cast<User>(V);
170 return 0;
171}
172
173static const Value *GetGEPOperands(const Value *V,
174 SmallVector<Value*, 16> &GEPOps){
175 assert(GEPOps.empty() && "Expect empty list to populate!");
176 GEPOps.insert(GEPOps.end(), cast<User>(V)->op_begin()+1,
177 cast<User>(V)->op_end());
178
179 // Accumulate all of the chained indexes into the operand array
180 V = cast<User>(V)->getOperand(0);
181
182 while (const User *G = isGEP(V)) {
183 if (!isa<Constant>(GEPOps[0]) || isa<GlobalValue>(GEPOps[0]) ||
184 !cast<Constant>(GEPOps[0])->isNullValue())
185 break; // Don't handle folding arbitrary pointer offsets yet...
186 GEPOps.erase(GEPOps.begin()); // Drop the zero index
187 GEPOps.insert(GEPOps.begin(), G->op_begin()+1, G->op_end());
188 V = G->getOperand(0);
189 }
190 return V;
191}
192
193/// pointsToConstantMemory - Chase pointers until we find a (constant
194/// global) or not.
195bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
196 if (const Value *V = getUnderlyingObject(P))
197 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
198 return GV->isConstant();
199 return false;
200}
201
202// Determine if an AllocationInst instruction escapes from the function it is
203// contained in. If it does not escape, there is no way for another function to
204// mod/ref it. We do this by looking at its uses and determining if the uses
205// can escape (recursively).
206static bool AddressMightEscape(const Value *V) {
207 for (Value::use_const_iterator UI = V->use_begin(), E = V->use_end();
208 UI != E; ++UI) {
209 const Instruction *I = cast<Instruction>(*UI);
210 switch (I->getOpcode()) {
211 case Instruction::Load:
212 break; //next use.
213 case Instruction::Store:
214 if (I->getOperand(0) == V)
215 return true; // Escapes if the pointer is stored.
216 break; // next use.
217 case Instruction::GetElementPtr:
218 if (AddressMightEscape(I))
219 return true;
Evan Cheng2e9830d2007-09-05 21:36:14 +0000220 break; // next use.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000221 case Instruction::BitCast:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000222 if (AddressMightEscape(I))
223 return true;
224 break; // next use
225 case Instruction::Ret:
226 // If returned, the address will escape to calling functions, but no
227 // callees could modify it.
228 break; // next use
Owen Anderson37f3ffb2008-02-17 21:29:08 +0000229 case Instruction::Call:
230 // If the call is to a few known safe intrinsics, we know that it does
231 // not escape
Chris Lattner4a27ab82008-02-18 02:11:28 +0000232 if (!isa<MemIntrinsic>(I))
Owen Anderson37f3ffb2008-02-17 21:29:08 +0000233 return true;
Chris Lattner4a27ab82008-02-18 02:11:28 +0000234 break; // next use
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000235 default:
236 return true;
237 }
238 }
239 return false;
240}
241
242// getModRefInfo - Check to see if the specified callsite can clobber the
243// specified memory object. Since we only look at local properties of this
244// function, we really can't say much about this query. We do, however, use
245// simple "address taken" analysis on local objects.
246//
247AliasAnalysis::ModRefResult
248BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
Chris Lattner9603f432008-01-24 18:00:32 +0000249 if (!isa<Constant>(P)) {
250 const Value *Object = getUnderlyingObject(P);
251 // Allocations and byval arguments are "new" objects.
Chris Lattner36d0a1f2008-01-24 19:07:10 +0000252 if (Object &&
Owen Anderson34f007e2008-02-18 02:31:23 +0000253 (isa<AllocationInst>(Object) || isa<Argument>(Object))) {
Owen Anderson37f3ffb2008-02-17 21:29:08 +0000254 // Okay, the pointer is to a stack allocated (or effectively so, for
255 // for noalias parameters) object. If we can prove that
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000256 // the pointer never "escapes", then we know the call cannot clobber it,
257 // because it simply can't get its address.
Owen Anderson34f007e2008-02-18 02:31:23 +0000258 if (isa<AllocationInst>(Object) ||
259 cast<Argument>(Object)->hasByValAttr() ||
260 cast<Argument>(Object)->hasNoAliasAttr())
261 if (!AddressMightEscape(Object)) {
262 for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
263 CI != CE; ++CI)
264 if (getUnderlyingObject(CI->get()) == P)
265 return AliasAnalysis::getModRefInfo(CS, P, Size);
266
267 return NoModRef;
268 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000269
270 // If this is a tail call and P points to a stack location, we know that
271 // the tail call cannot access or modify the local stack.
Owen Anderson34f007e2008-02-18 02:31:23 +0000272 if (isa<AllocationInst>(Object) ||
273 cast<Argument>(Object)->hasByValAttr())
274 if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
275 if (CI->isTailCall() && !isa<MallocInst>(Object))
276 return NoModRef;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000277 }
Chris Lattner9603f432008-01-24 18:00:32 +0000278 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000279
280 // The AliasAnalysis base class has some smarts, lets use them.
281 return AliasAnalysis::getModRefInfo(CS, P, Size);
282}
283
284// alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such
285// as array references. Note that this function is heavily tail recursive.
286// Hopefully we have a smart C++ compiler. :)
287//
288AliasAnalysis::AliasResult
289BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
290 const Value *V2, unsigned V2Size) {
291 // Strip off any constant expression casts if they exist
292 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V1))
293 if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
294 V1 = CE->getOperand(0);
295 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V2))
296 if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
297 V2 = CE->getOperand(0);
298
299 // Are we checking for alias of the same value?
300 if (V1 == V2) return MustAlias;
301
302 if ((!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType())) &&
303 V1->getType() != Type::Int64Ty && V2->getType() != Type::Int64Ty)
304 return NoAlias; // Scalars cannot alias each other
305
306 // Strip off cast instructions...
307 if (const BitCastInst *I = dyn_cast<BitCastInst>(V1))
308 return alias(I->getOperand(0), V1Size, V2, V2Size);
309 if (const BitCastInst *I = dyn_cast<BitCastInst>(V2))
310 return alias(V1, V1Size, I->getOperand(0), V2Size);
311
312 // Figure out what objects these things are pointing to if we can...
313 const Value *O1 = getUnderlyingObject(V1);
314 const Value *O2 = getUnderlyingObject(V2);
315
316 // Pointing at a discernible object?
317 if (O1) {
318 if (O2) {
Christopher Lambcd533cf2007-08-02 17:52:00 +0000319 if (const Argument *O1Arg = dyn_cast<Argument>(O1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000320 // Incoming argument cannot alias locally allocated object!
321 if (isa<AllocationInst>(O2)) return NoAlias;
Christopher Lamb6f9fad52007-08-02 01:18:14 +0000322
323 // If they are two different objects, and one is a noalias argument
324 // then they do not alias.
Chris Lattner9603f432008-01-24 18:00:32 +0000325 if (O1 != O2 && O1Arg->hasNoAliasAttr())
Christopher Lamb6f9fad52007-08-02 01:18:14 +0000326 return NoAlias;
Chris Lattner9603f432008-01-24 18:00:32 +0000327
328 // Byval arguments can't alias globals or other arguments.
329 if (O1 != O2 && O1Arg->hasByValAttr()) return NoAlias;
330
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000331 // Otherwise, nothing is known...
Christopher Lamb6f9fad52007-08-02 01:18:14 +0000332 }
333
Christopher Lambcd533cf2007-08-02 17:52:00 +0000334 if (const Argument *O2Arg = dyn_cast<Argument>(O2)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000335 // Incoming argument cannot alias locally allocated object!
336 if (isa<AllocationInst>(O1)) return NoAlias;
Christopher Lamb6f9fad52007-08-02 01:18:14 +0000337
338 // If they are two different objects, and one is a noalias argument
339 // then they do not alias.
Chris Lattner9603f432008-01-24 18:00:32 +0000340 if (O1 != O2 && O2Arg->hasNoAliasAttr())
Christopher Lamb6f9fad52007-08-02 01:18:14 +0000341 return NoAlias;
342
Chris Lattner9603f432008-01-24 18:00:32 +0000343 // Byval arguments can't alias globals or other arguments.
344 if (O1 != O2 && O2Arg->hasByValAttr()) return NoAlias;
345
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000346 // Otherwise, nothing is known...
Owen Andersoncd935022007-10-26 03:47:14 +0000347
Chris Lattner9603f432008-01-24 18:00:32 +0000348 } else if (O1 != O2 && !isa<Argument>(O1)) {
349 // If they are two different objects, and neither is an argument,
350 // we know that we have no alias.
351 return NoAlias;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000352 }
Christopher Lambd5fcd572007-07-31 16:18:07 +0000353
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000354 // If they are the same object, they we can look at the indexes. If they
355 // index off of the object is the same for both pointers, they must alias.
356 // If they are provably different, they must not alias. Otherwise, we
357 // can't tell anything.
358 }
359
Chris Lattner9603f432008-01-24 18:00:32 +0000360 // Unique values don't alias null, except non-byval arguments.
361 if (isa<ConstantPointerNull>(V2)) {
362 if (const Argument *O1Arg = dyn_cast<Argument>(O1)) {
363 if (O1Arg->hasByValAttr())
364 return NoAlias;
365 } else {
366 return NoAlias;
367 }
368 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000369
370 if (isa<GlobalVariable>(O1) ||
371 (isa<AllocationInst>(O1) &&
372 !cast<AllocationInst>(O1)->isArrayAllocation()))
373 if (cast<PointerType>(O1->getType())->getElementType()->isSized()) {
374 // If the size of the other access is larger than the total size of the
375 // global/alloca/malloc, it cannot be accessing the global (it's
376 // undefined to load or store bytes before or after an object).
377 const Type *ElTy = cast<PointerType>(O1->getType())->getElementType();
Duncan Sandsf99fdc62007-11-01 20:53:16 +0000378 unsigned GlobalSize = getTargetData().getABITypeSize(ElTy);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000379 if (GlobalSize < V2Size && V2Size != ~0U)
380 return NoAlias;
381 }
382 }
383
384 if (O2) {
385 if (!isa<Argument>(O2) && isa<ConstantPointerNull>(V1))
386 return NoAlias; // Unique values don't alias null
387
388 if (isa<GlobalVariable>(O2) ||
389 (isa<AllocationInst>(O2) &&
390 !cast<AllocationInst>(O2)->isArrayAllocation()))
391 if (cast<PointerType>(O2->getType())->getElementType()->isSized()) {
392 // If the size of the other access is larger than the total size of the
393 // global/alloca/malloc, it cannot be accessing the object (it's
394 // undefined to load or store bytes before or after an object).
395 const Type *ElTy = cast<PointerType>(O2->getType())->getElementType();
Duncan Sandsf99fdc62007-11-01 20:53:16 +0000396 unsigned GlobalSize = getTargetData().getABITypeSize(ElTy);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000397 if (GlobalSize < V1Size && V1Size != ~0U)
398 return NoAlias;
399 }
400 }
401
402 // If we have two gep instructions with must-alias'ing base pointers, figure
403 // out if the indexes to the GEP tell us anything about the derived pointer.
404 // Note that we also handle chains of getelementptr instructions as well as
405 // constant expression getelementptrs here.
406 //
407 if (isGEP(V1) && isGEP(V2)) {
408 // Drill down into the first non-gep value, to test for must-aliasing of
409 // the base pointers.
Wojciech Matyjewicz170707f2007-12-13 16:22:58 +0000410 const User *G = cast<User>(V1);
411 while (isGEP(G->getOperand(0)) &&
412 G->getOperand(1) ==
413 Constant::getNullValue(G->getOperand(1)->getType()))
414 G = cast<User>(G->getOperand(0));
415 const Value *BasePtr1 = G->getOperand(0);
416
417 G = cast<User>(V2);
418 while (isGEP(G->getOperand(0)) &&
419 G->getOperand(1) ==
420 Constant::getNullValue(G->getOperand(1)->getType()))
421 G = cast<User>(G->getOperand(0));
422 const Value *BasePtr2 = G->getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000423
424 // Do the base pointers alias?
425 AliasResult BaseAlias = alias(BasePtr1, ~0U, BasePtr2, ~0U);
426 if (BaseAlias == NoAlias) return NoAlias;
427 if (BaseAlias == MustAlias) {
428 // If the base pointers alias each other exactly, check to see if we can
429 // figure out anything about the resultant pointers, to try to prove
430 // non-aliasing.
431
432 // Collect all of the chained GEP operands together into one simple place
433 SmallVector<Value*, 16> GEP1Ops, GEP2Ops;
434 BasePtr1 = GetGEPOperands(V1, GEP1Ops);
435 BasePtr2 = GetGEPOperands(V2, GEP2Ops);
436
437 // If GetGEPOperands were able to fold to the same must-aliased pointer,
438 // do the comparison.
439 if (BasePtr1 == BasePtr2) {
440 AliasResult GAlias =
441 CheckGEPInstructions(BasePtr1->getType(),
442 &GEP1Ops[0], GEP1Ops.size(), V1Size,
443 BasePtr2->getType(),
444 &GEP2Ops[0], GEP2Ops.size(), V2Size);
445 if (GAlias != MayAlias)
446 return GAlias;
447 }
448 }
449 }
450
451 // Check to see if these two pointers are related by a getelementptr
452 // instruction. If one pointer is a GEP with a non-zero index of the other
453 // pointer, we know they cannot alias.
454 //
455 if (isGEP(V2)) {
456 std::swap(V1, V2);
457 std::swap(V1Size, V2Size);
458 }
459
460 if (V1Size != ~0U && V2Size != ~0U)
461 if (isGEP(V1)) {
462 SmallVector<Value*, 16> GEPOperands;
463 const Value *BasePtr = GetGEPOperands(V1, GEPOperands);
464
465 AliasResult R = alias(BasePtr, V1Size, V2, V2Size);
466 if (R == MustAlias) {
467 // If there is at least one non-zero constant index, we know they cannot
468 // alias.
469 bool ConstantFound = false;
470 bool AllZerosFound = true;
471 for (unsigned i = 0, e = GEPOperands.size(); i != e; ++i)
472 if (const Constant *C = dyn_cast<Constant>(GEPOperands[i])) {
473 if (!C->isNullValue()) {
474 ConstantFound = true;
475 AllZerosFound = false;
476 break;
477 }
478 } else {
479 AllZerosFound = false;
480 }
481
482 // If we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 must aliases
483 // the ptr, the end result is a must alias also.
484 if (AllZerosFound)
485 return MustAlias;
486
487 if (ConstantFound) {
488 if (V2Size <= 1 && V1Size <= 1) // Just pointer check?
489 return NoAlias;
490
491 // Otherwise we have to check to see that the distance is more than
492 // the size of the argument... build an index vector that is equal to
493 // the arguments provided, except substitute 0's for any variable
494 // indexes we find...
495 if (cast<PointerType>(
496 BasePtr->getType())->getElementType()->isSized()) {
497 for (unsigned i = 0; i != GEPOperands.size(); ++i)
498 if (!isa<ConstantInt>(GEPOperands[i]))
499 GEPOperands[i] =
500 Constant::getNullValue(GEPOperands[i]->getType());
501 int64_t Offset =
502 getTargetData().getIndexedOffset(BasePtr->getType(),
503 &GEPOperands[0],
504 GEPOperands.size());
505
506 if (Offset >= (int64_t)V2Size || Offset <= -(int64_t)V1Size)
507 return NoAlias;
508 }
509 }
510 }
511 }
512
513 return MayAlias;
514}
515
516// This function is used to determin if the indices of two GEP instructions are
517// equal. V1 and V2 are the indices.
518static bool IndexOperandsEqual(Value *V1, Value *V2) {
519 if (V1->getType() == V2->getType())
520 return V1 == V2;
521 if (Constant *C1 = dyn_cast<Constant>(V1))
522 if (Constant *C2 = dyn_cast<Constant>(V2)) {
523 // Sign extend the constants to long types, if necessary
524 if (C1->getType() != Type::Int64Ty)
525 C1 = ConstantExpr::getSExt(C1, Type::Int64Ty);
526 if (C2->getType() != Type::Int64Ty)
527 C2 = ConstantExpr::getSExt(C2, Type::Int64Ty);
528 return C1 == C2;
529 }
530 return false;
531}
532
533/// CheckGEPInstructions - Check two GEP instructions with known must-aliasing
534/// base pointers. This checks to see if the index expressions preclude the
535/// pointers from aliasing...
536AliasAnalysis::AliasResult
537BasicAliasAnalysis::CheckGEPInstructions(
538 const Type* BasePtr1Ty, Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1S,
539 const Type *BasePtr2Ty, Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2S) {
540 // We currently can't handle the case when the base pointers have different
541 // primitive types. Since this is uncommon anyway, we are happy being
542 // extremely conservative.
543 if (BasePtr1Ty != BasePtr2Ty)
544 return MayAlias;
545
546 const PointerType *GEPPointerTy = cast<PointerType>(BasePtr1Ty);
547
548 // Find the (possibly empty) initial sequence of equal values... which are not
549 // necessarily constants.
550 unsigned NumGEP1Operands = NumGEP1Ops, NumGEP2Operands = NumGEP2Ops;
551 unsigned MinOperands = std::min(NumGEP1Operands, NumGEP2Operands);
552 unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands);
553 unsigned UnequalOper = 0;
554 while (UnequalOper != MinOperands &&
555 IndexOperandsEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper])) {
556 // Advance through the type as we go...
557 ++UnequalOper;
558 if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
559 BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[UnequalOper-1]);
560 else {
561 // If all operands equal each other, then the derived pointers must
562 // alias each other...
563 BasePtr1Ty = 0;
564 assert(UnequalOper == NumGEP1Operands && UnequalOper == NumGEP2Operands &&
565 "Ran out of type nesting, but not out of operands?");
566 return MustAlias;
567 }
568 }
569
570 // If we have seen all constant operands, and run out of indexes on one of the
571 // getelementptrs, check to see if the tail of the leftover one is all zeros.
572 // If so, return mustalias.
573 if (UnequalOper == MinOperands) {
574 if (NumGEP1Ops < NumGEP2Ops) {
575 std::swap(GEP1Ops, GEP2Ops);
576 std::swap(NumGEP1Ops, NumGEP2Ops);
577 }
578
579 bool AllAreZeros = true;
580 for (unsigned i = UnequalOper; i != MaxOperands; ++i)
581 if (!isa<Constant>(GEP1Ops[i]) ||
582 !cast<Constant>(GEP1Ops[i])->isNullValue()) {
583 AllAreZeros = false;
584 break;
585 }
586 if (AllAreZeros) return MustAlias;
587 }
588
589
590 // So now we know that the indexes derived from the base pointers,
591 // which are known to alias, are different. We can still determine a
592 // no-alias result if there are differing constant pairs in the index
593 // chain. For example:
594 // A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
595 //
596 // We have to be careful here about array accesses. In particular, consider:
597 // A[1][0] vs A[0][i]
598 // In this case, we don't *know* that the array will be accessed in bounds:
599 // the index could even be negative. Because of this, we have to
600 // conservatively *give up* and return may alias. We disregard differing
601 // array subscripts that are followed by a variable index without going
602 // through a struct.
603 //
604 unsigned SizeMax = std::max(G1S, G2S);
605 if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work.
606
607 // Scan for the first operand that is constant and unequal in the
608 // two getelementptrs...
609 unsigned FirstConstantOper = UnequalOper;
610 for (; FirstConstantOper != MinOperands; ++FirstConstantOper) {
611 const Value *G1Oper = GEP1Ops[FirstConstantOper];
612 const Value *G2Oper = GEP2Ops[FirstConstantOper];
613
614 if (G1Oper != G2Oper) // Found non-equal constant indexes...
615 if (Constant *G1OC = dyn_cast<ConstantInt>(const_cast<Value*>(G1Oper)))
616 if (Constant *G2OC = dyn_cast<ConstantInt>(const_cast<Value*>(G2Oper))){
617 if (G1OC->getType() != G2OC->getType()) {
618 // Sign extend both operands to long.
619 if (G1OC->getType() != Type::Int64Ty)
620 G1OC = ConstantExpr::getSExt(G1OC, Type::Int64Ty);
621 if (G2OC->getType() != Type::Int64Ty)
622 G2OC = ConstantExpr::getSExt(G2OC, Type::Int64Ty);
623 GEP1Ops[FirstConstantOper] = G1OC;
624 GEP2Ops[FirstConstantOper] = G2OC;
625 }
626
627 if (G1OC != G2OC) {
628 // Handle the "be careful" case above: if this is an array/vector
629 // subscript, scan for a subsequent variable array index.
630 if (isa<SequentialType>(BasePtr1Ty)) {
631 const Type *NextTy =
632 cast<SequentialType>(BasePtr1Ty)->getElementType();
633 bool isBadCase = false;
634
635 for (unsigned Idx = FirstConstantOper+1;
636 Idx != MinOperands && isa<SequentialType>(NextTy); ++Idx) {
637 const Value *V1 = GEP1Ops[Idx], *V2 = GEP2Ops[Idx];
638 if (!isa<Constant>(V1) || !isa<Constant>(V2)) {
639 isBadCase = true;
640 break;
641 }
642 NextTy = cast<SequentialType>(NextTy)->getElementType();
643 }
644
645 if (isBadCase) G1OC = 0;
646 }
647
648 // Make sure they are comparable (ie, not constant expressions), and
649 // make sure the GEP with the smaller leading constant is GEP1.
650 if (G1OC) {
651 Constant *Compare = ConstantExpr::getICmp(ICmpInst::ICMP_SGT,
652 G1OC, G2OC);
653 if (ConstantInt *CV = dyn_cast<ConstantInt>(Compare)) {
654 if (CV->getZExtValue()) { // If they are comparable and G2 > G1
655 std::swap(GEP1Ops, GEP2Ops); // Make GEP1 < GEP2
656 std::swap(NumGEP1Ops, NumGEP2Ops);
657 }
658 break;
659 }
660 }
661 }
662 }
663 BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(G1Oper);
664 }
665
666 // No shared constant operands, and we ran out of common operands. At this
667 // point, the GEP instructions have run through all of their operands, and we
668 // haven't found evidence that there are any deltas between the GEP's.
669 // However, one GEP may have more operands than the other. If this is the
670 // case, there may still be hope. Check this now.
671 if (FirstConstantOper == MinOperands) {
672 // Make GEP1Ops be the longer one if there is a longer one.
673 if (NumGEP1Ops < NumGEP2Ops) {
674 std::swap(GEP1Ops, GEP2Ops);
675 std::swap(NumGEP1Ops, NumGEP2Ops);
676 }
677
678 // Is there anything to check?
679 if (NumGEP1Ops > MinOperands) {
680 for (unsigned i = FirstConstantOper; i != MaxOperands; ++i)
681 if (isa<ConstantInt>(GEP1Ops[i]) &&
682 !cast<ConstantInt>(GEP1Ops[i])->isZero()) {
683 // Yup, there's a constant in the tail. Set all variables to
684 // constants in the GEP instruction to make it suiteable for
685 // TargetData::getIndexedOffset.
686 for (i = 0; i != MaxOperands; ++i)
687 if (!isa<ConstantInt>(GEP1Ops[i]))
688 GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
689 // Okay, now get the offset. This is the relative offset for the full
690 // instruction.
691 const TargetData &TD = getTargetData();
692 int64_t Offset1 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops,
693 NumGEP1Ops);
694
695 // Now check without any constants at the end.
696 int64_t Offset2 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops,
697 MinOperands);
698
699 // If the tail provided a bit enough offset, return noalias!
700 if ((uint64_t)(Offset2-Offset1) >= SizeMax)
701 return NoAlias;
702 }
703 }
704
705 // Couldn't find anything useful.
706 return MayAlias;
707 }
708
709 // If there are non-equal constants arguments, then we can figure
710 // out a minimum known delta between the two index expressions... at
711 // this point we know that the first constant index of GEP1 is less
712 // than the first constant index of GEP2.
713
714 // Advance BasePtr[12]Ty over this first differing constant operand.
715 BasePtr2Ty = cast<CompositeType>(BasePtr1Ty)->
716 getTypeAtIndex(GEP2Ops[FirstConstantOper]);
717 BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->
718 getTypeAtIndex(GEP1Ops[FirstConstantOper]);
719
720 // We are going to be using TargetData::getIndexedOffset to determine the
721 // offset that each of the GEP's is reaching. To do this, we have to convert
722 // all variable references to constant references. To do this, we convert the
723 // initial sequence of array subscripts into constant zeros to start with.
724 const Type *ZeroIdxTy = GEPPointerTy;
725 for (unsigned i = 0; i != FirstConstantOper; ++i) {
726 if (!isa<StructType>(ZeroIdxTy))
727 GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Type::Int32Ty);
728
729 if (const CompositeType *CT = dyn_cast<CompositeType>(ZeroIdxTy))
730 ZeroIdxTy = CT->getTypeAtIndex(GEP1Ops[i]);
731 }
732
733 // We know that GEP1Ops[FirstConstantOper] & GEP2Ops[FirstConstantOper] are ok
734
735 // Loop over the rest of the operands...
736 for (unsigned i = FirstConstantOper+1; i != MaxOperands; ++i) {
737 const Value *Op1 = i < NumGEP1Ops ? GEP1Ops[i] : 0;
738 const Value *Op2 = i < NumGEP2Ops ? GEP2Ops[i] : 0;
739 // If they are equal, use a zero index...
740 if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) {
741 if (!isa<ConstantInt>(Op1))
742 GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Op1->getType());
743 // Otherwise, just keep the constants we have.
744 } else {
745 if (Op1) {
746 if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
747 // If this is an array index, make sure the array element is in range.
748 if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty)) {
749 if (Op1C->getZExtValue() >= AT->getNumElements())
750 return MayAlias; // Be conservative with out-of-range accesses
Chris Lattnereaf7b232007-12-09 07:35:13 +0000751 } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty)) {
752 if (Op1C->getZExtValue() >= VT->getNumElements())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000753 return MayAlias; // Be conservative with out-of-range accesses
754 }
755
756 } else {
757 // GEP1 is known to produce a value less than GEP2. To be
758 // conservatively correct, we must assume the largest possible
759 // constant is used in this position. This cannot be the initial
760 // index to the GEP instructions (because we know we have at least one
761 // element before this one with the different constant arguments), so
762 // we know that the current index must be into either a struct or
763 // array. Because we know it's not constant, this cannot be a
764 // structure index. Because of this, we can calculate the maximum
765 // value possible.
766 //
767 if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
768 GEP1Ops[i] = ConstantInt::get(Type::Int64Ty,AT->getNumElements()-1);
Chris Lattnerc0656ad2007-11-06 05:58:42 +0000769 else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty))
770 GEP1Ops[i] = ConstantInt::get(Type::Int64Ty,VT->getNumElements()-1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000771 }
772 }
773
774 if (Op2) {
775 if (const ConstantInt *Op2C = dyn_cast<ConstantInt>(Op2)) {
776 // If this is an array index, make sure the array element is in range.
Chris Lattnereaf7b232007-12-09 07:35:13 +0000777 if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr2Ty)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000778 if (Op2C->getZExtValue() >= AT->getNumElements())
779 return MayAlias; // Be conservative with out-of-range accesses
Chris Lattnereaf7b232007-12-09 07:35:13 +0000780 } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr2Ty)) {
Chris Lattnerc0656ad2007-11-06 05:58:42 +0000781 if (Op2C->getZExtValue() >= VT->getNumElements())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000782 return MayAlias; // Be conservative with out-of-range accesses
783 }
784 } else { // Conservatively assume the minimum value for this index
785 GEP2Ops[i] = Constant::getNullValue(Op2->getType());
786 }
787 }
788 }
789
790 if (BasePtr1Ty && Op1) {
791 if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
792 BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[i]);
793 else
794 BasePtr1Ty = 0;
795 }
796
797 if (BasePtr2Ty && Op2) {
798 if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr2Ty))
799 BasePtr2Ty = CT->getTypeAtIndex(GEP2Ops[i]);
800 else
801 BasePtr2Ty = 0;
802 }
803 }
804
805 if (GEPPointerTy->getElementType()->isSized()) {
806 int64_t Offset1 =
807 getTargetData().getIndexedOffset(GEPPointerTy, GEP1Ops, NumGEP1Ops);
808 int64_t Offset2 =
809 getTargetData().getIndexedOffset(GEPPointerTy, GEP2Ops, NumGEP2Ops);
Chris Lattnerc0656ad2007-11-06 05:58:42 +0000810 assert(Offset1 != Offset2 &&
811 "There is at least one different constant here!");
812
813 // Make sure we compare the absolute difference.
814 if (Offset1 > Offset2)
815 std::swap(Offset1, Offset2);
816
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000817 if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
818 //cerr << "Determined that these two GEP's don't alias ["
819 // << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
820 return NoAlias;
821 }
822 }
823 return MayAlias;
824}
825
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000826// Make sure that anything that uses AliasAnalysis pulls in this file...
827DEFINING_FILE_FOR(BasicAliasAnalysis)