Dan Gohman | 5eb6d65 | 2010-04-21 01:22:34 +0000 | [diff] [blame] | 1 | //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities --*- C++ ------*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file defines several CodeGen-specific LLVM IR analysis utilties. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/CodeGen/Analysis.h" |
| 15 | #include "llvm/DerivedTypes.h" |
| 16 | #include "llvm/Function.h" |
| 17 | #include "llvm/Instructions.h" |
| 18 | #include "llvm/IntrinsicInst.h" |
| 19 | #include "llvm/LLVMContext.h" |
| 20 | #include "llvm/Module.h" |
| 21 | #include "llvm/CodeGen/MachineFunction.h" |
| 22 | #include "llvm/Target/TargetData.h" |
| 23 | #include "llvm/Target/TargetLowering.h" |
| 24 | #include "llvm/Target/TargetOptions.h" |
| 25 | #include "llvm/Support/ErrorHandling.h" |
| 26 | #include "llvm/Support/MathExtras.h" |
| 27 | using namespace llvm; |
| 28 | |
| 29 | /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence |
| 30 | /// of insertvalue or extractvalue indices that identify a member, return |
| 31 | /// the linearized index of the start of the member. |
| 32 | /// |
Dan Gohman | 0dadb15 | 2010-10-06 16:18:29 +0000 | [diff] [blame] | 33 | unsigned llvm::ComputeLinearIndex(const Type *Ty, |
Dan Gohman | 5eb6d65 | 2010-04-21 01:22:34 +0000 | [diff] [blame] | 34 | const unsigned *Indices, |
| 35 | const unsigned *IndicesEnd, |
| 36 | unsigned CurIndex) { |
| 37 | // Base case: We're done. |
| 38 | if (Indices && Indices == IndicesEnd) |
| 39 | return CurIndex; |
| 40 | |
| 41 | // Given a struct type, recursively traverse the elements. |
| 42 | if (const StructType *STy = dyn_cast<StructType>(Ty)) { |
| 43 | for (StructType::element_iterator EB = STy->element_begin(), |
| 44 | EI = EB, |
| 45 | EE = STy->element_end(); |
| 46 | EI != EE; ++EI) { |
| 47 | if (Indices && *Indices == unsigned(EI - EB)) |
Dan Gohman | 0dadb15 | 2010-10-06 16:18:29 +0000 | [diff] [blame] | 48 | return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex); |
| 49 | CurIndex = ComputeLinearIndex(*EI, 0, 0, CurIndex); |
Dan Gohman | 5eb6d65 | 2010-04-21 01:22:34 +0000 | [diff] [blame] | 50 | } |
| 51 | return CurIndex; |
| 52 | } |
| 53 | // Given an array type, recursively traverse the elements. |
| 54 | else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { |
| 55 | const Type *EltTy = ATy->getElementType(); |
| 56 | for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { |
| 57 | if (Indices && *Indices == i) |
Dan Gohman | 0dadb15 | 2010-10-06 16:18:29 +0000 | [diff] [blame] | 58 | return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex); |
| 59 | CurIndex = ComputeLinearIndex(EltTy, 0, 0, CurIndex); |
Dan Gohman | 5eb6d65 | 2010-04-21 01:22:34 +0000 | [diff] [blame] | 60 | } |
| 61 | return CurIndex; |
| 62 | } |
| 63 | // We haven't found the type we're looking for, so keep searching. |
| 64 | return CurIndex + 1; |
| 65 | } |
| 66 | |
| 67 | /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of |
| 68 | /// EVTs that represent all the individual underlying |
| 69 | /// non-aggregate types that comprise it. |
| 70 | /// |
| 71 | /// If Offsets is non-null, it points to a vector to be filled in |
| 72 | /// with the in-memory offsets of each of the individual values. |
| 73 | /// |
| 74 | void llvm::ComputeValueVTs(const TargetLowering &TLI, const Type *Ty, |
| 75 | SmallVectorImpl<EVT> &ValueVTs, |
| 76 | SmallVectorImpl<uint64_t> *Offsets, |
| 77 | uint64_t StartingOffset) { |
| 78 | // Given a struct type, recursively traverse the elements. |
| 79 | if (const StructType *STy = dyn_cast<StructType>(Ty)) { |
| 80 | const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy); |
| 81 | for (StructType::element_iterator EB = STy->element_begin(), |
| 82 | EI = EB, |
| 83 | EE = STy->element_end(); |
| 84 | EI != EE; ++EI) |
| 85 | ComputeValueVTs(TLI, *EI, ValueVTs, Offsets, |
| 86 | StartingOffset + SL->getElementOffset(EI - EB)); |
| 87 | return; |
| 88 | } |
| 89 | // Given an array type, recursively traverse the elements. |
| 90 | if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { |
| 91 | const Type *EltTy = ATy->getElementType(); |
| 92 | uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy); |
| 93 | for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) |
| 94 | ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets, |
| 95 | StartingOffset + i * EltSize); |
| 96 | return; |
| 97 | } |
| 98 | // Interpret void as zero return values. |
| 99 | if (Ty->isVoidTy()) |
| 100 | return; |
| 101 | // Base case: we can get an EVT for this LLVM IR type. |
| 102 | ValueVTs.push_back(TLI.getValueType(Ty)); |
| 103 | if (Offsets) |
| 104 | Offsets->push_back(StartingOffset); |
| 105 | } |
| 106 | |
| 107 | /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. |
| 108 | GlobalVariable *llvm::ExtractTypeInfo(Value *V) { |
| 109 | V = V->stripPointerCasts(); |
| 110 | GlobalVariable *GV = dyn_cast<GlobalVariable>(V); |
| 111 | |
Bill Wendling | 23295cc | 2010-07-26 22:36:52 +0000 | [diff] [blame] | 112 | if (GV && GV->getName() == "llvm.eh.catch.all.value") { |
Dan Gohman | 5eb6d65 | 2010-04-21 01:22:34 +0000 | [diff] [blame] | 113 | assert(GV->hasInitializer() && |
| 114 | "The EH catch-all value must have an initializer"); |
| 115 | Value *Init = GV->getInitializer(); |
| 116 | GV = dyn_cast<GlobalVariable>(Init); |
| 117 | if (!GV) V = cast<ConstantPointerNull>(Init); |
| 118 | } |
| 119 | |
| 120 | assert((GV || isa<ConstantPointerNull>(V)) && |
| 121 | "TypeInfo must be a global variable or NULL"); |
| 122 | return GV; |
| 123 | } |
| 124 | |
| 125 | /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being |
| 126 | /// processed uses a memory 'm' constraint. |
| 127 | bool |
| 128 | llvm::hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos, |
| 129 | const TargetLowering &TLI) { |
| 130 | for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { |
| 131 | InlineAsm::ConstraintInfo &CI = CInfos[i]; |
| 132 | for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { |
| 133 | TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); |
| 134 | if (CType == TargetLowering::C_Memory) |
| 135 | return true; |
| 136 | } |
| 137 | |
| 138 | // Indirect operand accesses access memory. |
| 139 | if (CI.isIndirect) |
| 140 | return true; |
| 141 | } |
| 142 | |
| 143 | return false; |
| 144 | } |
| 145 | |
| 146 | /// getFCmpCondCode - Return the ISD condition code corresponding to |
| 147 | /// the given LLVM IR floating-point condition code. This includes |
| 148 | /// consideration of global floating-point math flags. |
| 149 | /// |
| 150 | ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { |
| 151 | ISD::CondCode FPC, FOC; |
| 152 | switch (Pred) { |
| 153 | case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break; |
| 154 | case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break; |
| 155 | case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break; |
| 156 | case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break; |
| 157 | case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break; |
| 158 | case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break; |
| 159 | case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break; |
| 160 | case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break; |
| 161 | case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break; |
| 162 | case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break; |
| 163 | case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break; |
| 164 | case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break; |
| 165 | case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break; |
| 166 | case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break; |
| 167 | case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break; |
| 168 | case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break; |
| 169 | default: |
| 170 | llvm_unreachable("Invalid FCmp predicate opcode!"); |
| 171 | FOC = FPC = ISD::SETFALSE; |
| 172 | break; |
| 173 | } |
Evan Cheng | 60108e9 | 2010-07-15 22:07:12 +0000 | [diff] [blame] | 174 | if (NoNaNsFPMath) |
Dan Gohman | 5eb6d65 | 2010-04-21 01:22:34 +0000 | [diff] [blame] | 175 | return FOC; |
| 176 | else |
| 177 | return FPC; |
| 178 | } |
| 179 | |
| 180 | /// getICmpCondCode - Return the ISD condition code corresponding to |
| 181 | /// the given LLVM IR integer condition code. |
| 182 | /// |
| 183 | ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { |
| 184 | switch (Pred) { |
| 185 | case ICmpInst::ICMP_EQ: return ISD::SETEQ; |
| 186 | case ICmpInst::ICMP_NE: return ISD::SETNE; |
| 187 | case ICmpInst::ICMP_SLE: return ISD::SETLE; |
| 188 | case ICmpInst::ICMP_ULE: return ISD::SETULE; |
| 189 | case ICmpInst::ICMP_SGE: return ISD::SETGE; |
| 190 | case ICmpInst::ICMP_UGE: return ISD::SETUGE; |
| 191 | case ICmpInst::ICMP_SLT: return ISD::SETLT; |
| 192 | case ICmpInst::ICMP_ULT: return ISD::SETULT; |
| 193 | case ICmpInst::ICMP_SGT: return ISD::SETGT; |
| 194 | case ICmpInst::ICMP_UGT: return ISD::SETUGT; |
| 195 | default: |
| 196 | llvm_unreachable("Invalid ICmp predicate opcode!"); |
| 197 | return ISD::SETNE; |
| 198 | } |
| 199 | } |
| 200 | |
| 201 | /// Test if the given instruction is in a position to be optimized |
| 202 | /// with a tail-call. This roughly means that it's in a block with |
| 203 | /// a return and there's nothing that needs to be scheduled |
| 204 | /// between it and the return. |
| 205 | /// |
| 206 | /// This function only tests target-independent requirements. |
| 207 | bool llvm::isInTailCallPosition(ImmutableCallSite CS, Attributes CalleeRetAttr, |
| 208 | const TargetLowering &TLI) { |
| 209 | const Instruction *I = CS.getInstruction(); |
| 210 | const BasicBlock *ExitBB = I->getParent(); |
| 211 | const TerminatorInst *Term = ExitBB->getTerminator(); |
| 212 | const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); |
| 213 | const Function *F = ExitBB->getParent(); |
| 214 | |
| 215 | // The block must end in a return statement or unreachable. |
| 216 | // |
| 217 | // FIXME: Decline tailcall if it's not guaranteed and if the block ends in |
| 218 | // an unreachable, for now. The way tailcall optimization is currently |
| 219 | // implemented means it will add an epilogue followed by a jump. That is |
| 220 | // not profitable. Also, if the callee is a special function (e.g. |
| 221 | // longjmp on x86), it can end up causing miscompilation that has not |
| 222 | // been fully understood. |
| 223 | if (!Ret && |
| 224 | (!GuaranteedTailCallOpt || !isa<UnreachableInst>(Term))) return false; |
| 225 | |
| 226 | // If I will have a chain, make sure no other instruction that will have a |
| 227 | // chain interposes between I and the return. |
| 228 | if (I->mayHaveSideEffects() || I->mayReadFromMemory() || |
| 229 | !I->isSafeToSpeculativelyExecute()) |
| 230 | for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ; |
| 231 | --BBI) { |
| 232 | if (&*BBI == I) |
| 233 | break; |
| 234 | // Debug info intrinsics do not get in the way of tail call optimization. |
| 235 | if (isa<DbgInfoIntrinsic>(BBI)) |
| 236 | continue; |
| 237 | if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || |
| 238 | !BBI->isSafeToSpeculativelyExecute()) |
| 239 | return false; |
| 240 | } |
| 241 | |
| 242 | // If the block ends with a void return or unreachable, it doesn't matter |
| 243 | // what the call's return type is. |
| 244 | if (!Ret || Ret->getNumOperands() == 0) return true; |
| 245 | |
| 246 | // If the return value is undef, it doesn't matter what the call's |
| 247 | // return type is. |
| 248 | if (isa<UndefValue>(Ret->getOperand(0))) return true; |
| 249 | |
| 250 | // Conservatively require the attributes of the call to match those of |
| 251 | // the return. Ignore noalias because it doesn't affect the call sequence. |
| 252 | unsigned CallerRetAttr = F->getAttributes().getRetAttributes(); |
| 253 | if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias) |
| 254 | return false; |
| 255 | |
| 256 | // It's not safe to eliminate the sign / zero extension of the return value. |
| 257 | if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt)) |
| 258 | return false; |
| 259 | |
| 260 | // Otherwise, make sure the unmodified return value of I is the return value. |
| 261 | for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ; |
| 262 | U = dyn_cast<Instruction>(U->getOperand(0))) { |
| 263 | if (!U) |
| 264 | return false; |
| 265 | if (!U->hasOneUse()) |
| 266 | return false; |
| 267 | if (U == I) |
| 268 | break; |
| 269 | // Check for a truly no-op truncate. |
| 270 | if (isa<TruncInst>(U) && |
| 271 | TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType())) |
| 272 | continue; |
| 273 | // Check for a truly no-op bitcast. |
| 274 | if (isa<BitCastInst>(U) && |
| 275 | (U->getOperand(0)->getType() == U->getType() || |
| 276 | (U->getOperand(0)->getType()->isPointerTy() && |
| 277 | U->getType()->isPointerTy()))) |
| 278 | continue; |
| 279 | // Otherwise it's not a true no-op. |
| 280 | return false; |
| 281 | } |
| 282 | |
| 283 | return true; |
| 284 | } |
| 285 | |