blob: 6dd9a1123d7d7b3c96d9e5184251d64aae81f282 [file] [log] [blame]
Chris Lattner87be16a2010-10-05 06:04:14 +00001//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the various pseudo instructions used by the compiler,
11// as well as Pat patterns used during instruction selection.
12//
13//===----------------------------------------------------------------------===//
14
Chris Lattner8af88ef2010-10-05 06:10:16 +000015// PIC base construction. This expands to code that looks like this:
16// call $next_inst
17// popl %destreg"
18let neverHasSideEffects = 1, isNotDuplicable = 1, Uses = [ESP] in
19 def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
20 "", []>;
21
22
23// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
24// a stack adjustment and the codegen must know that they may modify the stack
25// pointer before prolog-epilog rewriting occurs.
26// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
27// sub / add which can clobber EFLAGS.
28let Defs = [ESP, EFLAGS], Uses = [ESP] in {
29def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt),
30 "#ADJCALLSTACKDOWN",
31 [(X86callseq_start timm:$amt)]>,
32 Requires<[In32BitMode]>;
33def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
34 "#ADJCALLSTACKUP",
35 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
36 Requires<[In32BitMode]>;
37}
38
39// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
40// a stack adjustment and the codegen must know that they may modify the stack
41// pointer before prolog-epilog rewriting occurs.
42// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
43// sub / add which can clobber EFLAGS.
44let Defs = [RSP, EFLAGS], Uses = [RSP] in {
45def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt),
46 "#ADJCALLSTACKDOWN",
47 [(X86callseq_start timm:$amt)]>,
48 Requires<[In64BitMode]>;
49def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
50 "#ADJCALLSTACKUP",
51 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
52 Requires<[In64BitMode]>;
53}
54
55
56
57// x86-64 va_start lowering magic.
58let usesCustomInserter = 1 in {
59def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
60 (outs),
61 (ins GR8:$al,
62 i64imm:$regsavefi, i64imm:$offset,
63 variable_ops),
64 "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
65 [(X86vastart_save_xmm_regs GR8:$al,
66 imm:$regsavefi,
67 imm:$offset)]>;
68
69// Dynamic stack allocation yields _alloca call for Cygwin/Mingw targets. Calls
70// to _alloca is needed to probe the stack when allocating more than 4k bytes in
71// one go. Touching the stack at 4K increments is necessary to ensure that the
72// guard pages used by the OS virtual memory manager are allocated in correct
73// sequence.
74// The main point of having separate instruction are extra unmodelled effects
75// (compared to ordinary calls) like stack pointer change.
76
77let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
78 def MINGW_ALLOCA : I<0, Pseudo, (outs), (ins),
79 "# dynamic stack allocation",
80 [(X86MingwAlloca)]>;
81}
82
83
Chris Lattner87be16a2010-10-05 06:04:14 +000084
85//===----------------------------------------------------------------------===//
86// EH Pseudo Instructions
87//
88let isTerminator = 1, isReturn = 1, isBarrier = 1,
89 hasCtrlDep = 1, isCodeGenOnly = 1 in {
90def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
91 "ret\t#eh_return, addr: $addr",
92 [(X86ehret GR32:$addr)]>;
93
94}
95
96let isTerminator = 1, isReturn = 1, isBarrier = 1,
97 hasCtrlDep = 1, isCodeGenOnly = 1 in {
98def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
99 "ret\t#eh_return, addr: $addr",
100 [(X86ehret GR64:$addr)]>;
101
102}
103
Chris Lattner8af88ef2010-10-05 06:10:16 +0000104//===----------------------------------------------------------------------===//
105// Alias Instructions
106//===----------------------------------------------------------------------===//
107
108// Alias instructions that map movr0 to xor.
109// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
110// FIXME: Set encoding to pseudo.
111let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
112 isCodeGenOnly = 1 in {
113def MOV8r0 : I<0x30, MRMInitReg, (outs GR8 :$dst), (ins), "",
114 [(set GR8:$dst, 0)]>;
115
116// We want to rewrite MOV16r0 in terms of MOV32r0, because it's a smaller
117// encoding and avoids a partial-register update sometimes, but doing so
118// at isel time interferes with rematerialization in the current register
119// allocator. For now, this is rewritten when the instruction is lowered
120// to an MCInst.
121def MOV16r0 : I<0x31, MRMInitReg, (outs GR16:$dst), (ins),
122 "",
123 [(set GR16:$dst, 0)]>, OpSize;
124
125// FIXME: Set encoding to pseudo.
126def MOV32r0 : I<0x31, MRMInitReg, (outs GR32:$dst), (ins), "",
127 [(set GR32:$dst, 0)]>;
128}
129
Chris Lattner010496c2010-10-05 06:22:35 +0000130// We want to rewrite MOV64r0 in terms of MOV32r0, because it's sometimes a
131// smaller encoding, but doing so at isel time interferes with rematerialization
132// in the current register allocator. For now, this is rewritten when the
133// instruction is lowered to an MCInst.
134// FIXME: AddedComplexity gives this a higher priority than MOV64ri32. Remove
135// when we have a better way to specify isel priority.
136let Defs = [EFLAGS],
137 AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in
138def MOV64r0 : I<0x31, MRMInitReg, (outs GR64:$dst), (ins), "",
139 [(set GR64:$dst, 0)]>;
140
141// Materialize i64 constant where top 32-bits are zero. This could theoretically
142// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
143// that would make it more difficult to rematerialize.
144let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in
145def MOV64ri64i32 : Ii32<0xB8, AddRegFrm, (outs GR64:$dst), (ins i64i32imm:$src),
146 "", [(set GR64:$dst, i64immZExt32:$src)]>;
147
148
Chris Lattnerd3f033d2010-10-05 06:27:48 +0000149//===----------------------------------------------------------------------===//
150// String Pseudo Instructions
151//
152let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
153def REP_MOVSB : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
154 [(X86rep_movs i8)]>, REP;
155def REP_MOVSW : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
156 [(X86rep_movs i16)]>, REP, OpSize;
157def REP_MOVSD : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
158 [(X86rep_movs i32)]>, REP;
159}
160
161let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in
162def REP_MOVSQ : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
163 [(X86rep_movs i64)]>, REP;
164
165
166// FIXME: Should use "(X86rep_stos AL)" as the pattern.
167let Defs = [ECX,EDI], Uses = [AL,ECX,EDI], isCodeGenOnly = 1 in
168def REP_STOSB : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
169 [(X86rep_stos i8)]>, REP;
170let Defs = [ECX,EDI], Uses = [AX,ECX,EDI], isCodeGenOnly = 1 in
171def REP_STOSW : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
172 [(X86rep_stos i16)]>, REP, OpSize;
173let Defs = [ECX,EDI], Uses = [EAX,ECX,EDI], isCodeGenOnly = 1 in
174def REP_STOSD : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
175 [(X86rep_stos i32)]>, REP;
176
177let Defs = [RCX,RDI], Uses = [RAX,RCX,RDI], isCodeGenOnly = 1 in
178def REP_STOSQ : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
179 [(X86rep_stos i64)]>, REP;
Chris Lattner010496c2010-10-05 06:22:35 +0000180
181
Chris Lattner8af88ef2010-10-05 06:10:16 +0000182//===----------------------------------------------------------------------===//
183// Thread Local Storage Instructions
184//
185
186// ELF TLS Support
187// All calls clobber the non-callee saved registers. ESP is marked as
188// a use to prevent stack-pointer assignments that appear immediately
189// before calls from potentially appearing dead.
190let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
191 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
192 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
193 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
194 Uses = [ESP] in
195def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
196 "leal\t$sym, %eax; "
197 "call\t___tls_get_addr@PLT",
198 [(X86tlsaddr tls32addr:$sym)]>,
199 Requires<[In32BitMode]>;
200
201// All calls clobber the non-callee saved registers. RSP is marked as
202// a use to prevent stack-pointer assignments that appear immediately
203// before calls from potentially appearing dead.
204let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
205 FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1,
206 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
207 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
208 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
209 Uses = [RSP] in
210def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
211 ".byte\t0x66; "
212 "leaq\t$sym(%rip), %rdi; "
213 ".word\t0x6666; "
214 "rex64; "
215 "call\t__tls_get_addr@PLT",
216 [(X86tlsaddr tls64addr:$sym)]>,
217 Requires<[In64BitMode]>;
218
219// Darwin TLS Support
220// For i386, the address of the thunk is passed on the stack, on return the
221// address of the variable is in %eax. %ecx is trashed during the function
222// call. All other registers are preserved.
223let Defs = [EAX, ECX],
224 Uses = [ESP],
225 usesCustomInserter = 1 in
226def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
227 "# TLSCall_32",
228 [(X86TLSCall addr:$sym)]>,
229 Requires<[In32BitMode]>;
230
231// For x86_64, the address of the thunk is passed in %rdi, on return
232// the address of the variable is in %rax. All other registers are preserved.
233let Defs = [RAX],
234 Uses = [RDI],
235 usesCustomInserter = 1 in
236def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
237 "# TLSCall_64",
238 [(X86TLSCall addr:$sym)]>,
239 Requires<[In64BitMode]>;
Chris Lattner87be16a2010-10-05 06:04:14 +0000240
241//===----------------------------------------------------------------------===//
Chris Lattner010496c2010-10-05 06:22:35 +0000242// Atomic Instruction Pseudo Instructions
243//===----------------------------------------------------------------------===//
244
245// Atomic exchange, and, or, xor
246let Constraints = "$val = $dst", Defs = [EFLAGS],
247 usesCustomInserter = 1 in {
248
249def ATOMAND8 : I<0, Pseudo, (outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
250 "#ATOMAND8 PSEUDO!",
251 [(set GR8:$dst, (atomic_load_and_8 addr:$ptr, GR8:$val))]>;
252def ATOMOR8 : I<0, Pseudo, (outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
253 "#ATOMOR8 PSEUDO!",
254 [(set GR8:$dst, (atomic_load_or_8 addr:$ptr, GR8:$val))]>;
255def ATOMXOR8 : I<0, Pseudo,(outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
256 "#ATOMXOR8 PSEUDO!",
257 [(set GR8:$dst, (atomic_load_xor_8 addr:$ptr, GR8:$val))]>;
258def ATOMNAND8 : I<0, Pseudo,(outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
259 "#ATOMNAND8 PSEUDO!",
260 [(set GR8:$dst, (atomic_load_nand_8 addr:$ptr, GR8:$val))]>;
261
262def ATOMAND16 : I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
263 "#ATOMAND16 PSEUDO!",
264 [(set GR16:$dst, (atomic_load_and_16 addr:$ptr, GR16:$val))]>;
265def ATOMOR16 : I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
266 "#ATOMOR16 PSEUDO!",
267 [(set GR16:$dst, (atomic_load_or_16 addr:$ptr, GR16:$val))]>;
268def ATOMXOR16 : I<0, Pseudo,(outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
269 "#ATOMXOR16 PSEUDO!",
270 [(set GR16:$dst, (atomic_load_xor_16 addr:$ptr, GR16:$val))]>;
271def ATOMNAND16 : I<0, Pseudo,(outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
272 "#ATOMNAND16 PSEUDO!",
273 [(set GR16:$dst, (atomic_load_nand_16 addr:$ptr, GR16:$val))]>;
274def ATOMMIN16: I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$ptr, GR16:$val),
275 "#ATOMMIN16 PSEUDO!",
276 [(set GR16:$dst, (atomic_load_min_16 addr:$ptr, GR16:$val))]>;
277def ATOMMAX16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
278 "#ATOMMAX16 PSEUDO!",
279 [(set GR16:$dst, (atomic_load_max_16 addr:$ptr, GR16:$val))]>;
280def ATOMUMIN16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
281 "#ATOMUMIN16 PSEUDO!",
282 [(set GR16:$dst, (atomic_load_umin_16 addr:$ptr, GR16:$val))]>;
283def ATOMUMAX16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
284 "#ATOMUMAX16 PSEUDO!",
285 [(set GR16:$dst, (atomic_load_umax_16 addr:$ptr, GR16:$val))]>;
286
287
288def ATOMAND32 : I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
289 "#ATOMAND32 PSEUDO!",
290 [(set GR32:$dst, (atomic_load_and_32 addr:$ptr, GR32:$val))]>;
291def ATOMOR32 : I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
292 "#ATOMOR32 PSEUDO!",
293 [(set GR32:$dst, (atomic_load_or_32 addr:$ptr, GR32:$val))]>;
294def ATOMXOR32 : I<0, Pseudo,(outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
295 "#ATOMXOR32 PSEUDO!",
296 [(set GR32:$dst, (atomic_load_xor_32 addr:$ptr, GR32:$val))]>;
297def ATOMNAND32 : I<0, Pseudo,(outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
298 "#ATOMNAND32 PSEUDO!",
299 [(set GR32:$dst, (atomic_load_nand_32 addr:$ptr, GR32:$val))]>;
300def ATOMMIN32: I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$ptr, GR32:$val),
301 "#ATOMMIN32 PSEUDO!",
302 [(set GR32:$dst, (atomic_load_min_32 addr:$ptr, GR32:$val))]>;
303def ATOMMAX32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
304 "#ATOMMAX32 PSEUDO!",
305 [(set GR32:$dst, (atomic_load_max_32 addr:$ptr, GR32:$val))]>;
306def ATOMUMIN32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
307 "#ATOMUMIN32 PSEUDO!",
308 [(set GR32:$dst, (atomic_load_umin_32 addr:$ptr, GR32:$val))]>;
309def ATOMUMAX32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
310 "#ATOMUMAX32 PSEUDO!",
311 [(set GR32:$dst, (atomic_load_umax_32 addr:$ptr, GR32:$val))]>;
312
313
314
315def ATOMAND64 : I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
316 "#ATOMAND64 PSEUDO!",
317 [(set GR64:$dst, (atomic_load_and_64 addr:$ptr, GR64:$val))]>;
318def ATOMOR64 : I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
319 "#ATOMOR64 PSEUDO!",
320 [(set GR64:$dst, (atomic_load_or_64 addr:$ptr, GR64:$val))]>;
321def ATOMXOR64 : I<0, Pseudo,(outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
322 "#ATOMXOR64 PSEUDO!",
323 [(set GR64:$dst, (atomic_load_xor_64 addr:$ptr, GR64:$val))]>;
324def ATOMNAND64 : I<0, Pseudo,(outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
325 "#ATOMNAND64 PSEUDO!",
326 [(set GR64:$dst, (atomic_load_nand_64 addr:$ptr, GR64:$val))]>;
327def ATOMMIN64: I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$ptr, GR64:$val),
328 "#ATOMMIN64 PSEUDO!",
329 [(set GR64:$dst, (atomic_load_min_64 addr:$ptr, GR64:$val))]>;
330def ATOMMAX64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
331 "#ATOMMAX64 PSEUDO!",
332 [(set GR64:$dst, (atomic_load_max_64 addr:$ptr, GR64:$val))]>;
333def ATOMUMIN64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
334 "#ATOMUMIN64 PSEUDO!",
335 [(set GR64:$dst, (atomic_load_umin_64 addr:$ptr, GR64:$val))]>;
336def ATOMUMAX64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
337 "#ATOMUMAX64 PSEUDO!",
338 [(set GR64:$dst, (atomic_load_umax_64 addr:$ptr, GR64:$val))]>;
339}
340
341let Constraints = "$val1 = $dst1, $val2 = $dst2",
342 Defs = [EFLAGS, EAX, EBX, ECX, EDX],
343 Uses = [EAX, EBX, ECX, EDX],
344 mayLoad = 1, mayStore = 1,
345 usesCustomInserter = 1 in {
346def ATOMAND6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
347 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
348 "#ATOMAND6432 PSEUDO!", []>;
349def ATOMOR6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
350 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
351 "#ATOMOR6432 PSEUDO!", []>;
352def ATOMXOR6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
353 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
354 "#ATOMXOR6432 PSEUDO!", []>;
355def ATOMNAND6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
356 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
357 "#ATOMNAND6432 PSEUDO!", []>;
358def ATOMADD6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
359 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
360 "#ATOMADD6432 PSEUDO!", []>;
361def ATOMSUB6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
362 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
363 "#ATOMSUB6432 PSEUDO!", []>;
364def ATOMSWAP6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
365 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
366 "#ATOMSWAP6432 PSEUDO!", []>;
367}
368
369//===----------------------------------------------------------------------===//
370// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
371//===----------------------------------------------------------------------===//
372
373// FIXME: Use normal instructions and add lock prefix dynamically.
374
375// Memory barriers
376
377// TODO: Get this to fold the constant into the instruction.
378def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
379 "lock\n\t"
380 "or{l}\t{$zero, $dst|$dst, $zero}",
381 []>, Requires<[In32BitMode]>, LOCK;
382
383let hasSideEffects = 1 in
384def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
385 "#MEMBARRIER",
386 [(X86MemBarrier)]>, Requires<[HasSSE2]>;
387
388// TODO: Get this to fold the constant into the instruction.
389let hasSideEffects = 1, Defs = [ESP] in
390def Int_MemBarrierNoSSE64 : RI<0x09, MRM1r, (outs), (ins GR64:$zero),
391 "lock\n\t"
392 "or{q}\t{$zero, (%rsp)|(%rsp), $zero}",
393 [(X86MemBarrierNoSSE GR64:$zero)]>,
394 Requires<[In64BitMode]>, LOCK;
395
396
397// Optimized codegen when the non-memory output is not used.
398let Defs = [EFLAGS], mayLoad = 1, mayStore = 1 in {
399def LOCK_ADD8mr : I<0x00, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
400 "lock\n\t"
401 "add{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
402def LOCK_ADD16mr : I<0x01, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
403 "lock\n\t"
404 "add{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
405def LOCK_ADD32mr : I<0x01, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
406 "lock\n\t"
407 "add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
408def LOCK_ADD64mr : RI<0x01, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
409 "lock\n\t"
410 "add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
411
412def LOCK_ADD8mi : Ii8<0x80, MRM0m, (outs), (ins i8mem :$dst, i8imm :$src2),
413 "lock\n\t"
414 "add{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
415def LOCK_ADD16mi : Ii16<0x81, MRM0m, (outs), (ins i16mem:$dst, i16imm:$src2),
416 "lock\n\t"
417 "add{w}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
418def LOCK_ADD32mi : Ii32<0x81, MRM0m, (outs), (ins i32mem:$dst, i32imm:$src2),
419 "lock\n\t"
420 "add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
421def LOCK_ADD64mi32 : RIi32<0x81, MRM0m, (outs),
422 (ins i64mem:$dst, i64i32imm :$src2),
423 "lock\n\t"
424 "add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
425
426def LOCK_ADD16mi8 : Ii8<0x83, MRM0m, (outs), (ins i16mem:$dst, i16i8imm :$src2),
427 "lock\n\t"
428 "add{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
429def LOCK_ADD32mi8 : Ii8<0x83, MRM0m, (outs), (ins i32mem:$dst, i32i8imm :$src2),
430 "lock\n\t"
431 "add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
432def LOCK_ADD64mi8 : RIi8<0x83, MRM0m, (outs),
433 (ins i64mem:$dst, i64i8imm :$src2),
434 "lock\n\t"
435 "add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
436
437def LOCK_SUB8mr : I<0x28, MRMDestMem, (outs), (ins i8mem :$dst, GR8 :$src2),
438 "lock\n\t"
439 "sub{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
440def LOCK_SUB16mr : I<0x29, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
441 "lock\n\t"
442 "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
443def LOCK_SUB32mr : I<0x29, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
444 "lock\n\t"
445 "sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
446def LOCK_SUB64mr : RI<0x29, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
447 "lock\n\t"
448 "sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
449
450
451def LOCK_SUB8mi : Ii8<0x80, MRM5m, (outs), (ins i8mem :$dst, i8imm:$src2),
452 "lock\n\t"
453 "sub{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
454def LOCK_SUB16mi : Ii16<0x81, MRM5m, (outs), (ins i16mem:$dst, i16imm:$src2),
455 "lock\n\t"
456 "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
457def LOCK_SUB32mi : Ii32<0x81, MRM5m, (outs), (ins i32mem:$dst, i32imm:$src2),
458 "lock\n\t"
459 "sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
460def LOCK_SUB64mi32 : RIi32<0x81, MRM5m, (outs),
461 (ins i64mem:$dst, i64i32imm:$src2),
462 "lock\n\t"
463 "sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
464
465
466def LOCK_SUB16mi8 : Ii8<0x83, MRM5m, (outs), (ins i16mem:$dst, i16i8imm :$src2),
467 "lock\n\t"
468 "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
469def LOCK_SUB32mi8 : Ii8<0x83, MRM5m, (outs), (ins i32mem:$dst, i32i8imm :$src2),
470 "lock\n\t"
471 "sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
472def LOCK_SUB64mi8 : RIi8<0x83, MRM5m, (outs),
473 (ins i64mem:$dst, i64i8imm :$src2),
474 "lock\n\t"
475 "sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
476
477def LOCK_INC8m : I<0xFE, MRM0m, (outs), (ins i8mem :$dst),
478 "lock\n\t"
479 "inc{b}\t$dst", []>, LOCK;
480def LOCK_INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst),
481 "lock\n\t"
482 "inc{w}\t$dst", []>, OpSize, LOCK;
483def LOCK_INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst),
484 "lock\n\t"
485 "inc{l}\t$dst", []>, LOCK;
486def LOCK_INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst),
487 "lock\n\t"
488 "inc{q}\t$dst", []>, LOCK;
489
490def LOCK_DEC8m : I<0xFE, MRM1m, (outs), (ins i8mem :$dst),
491 "lock\n\t"
492 "dec{b}\t$dst", []>, LOCK;
493def LOCK_DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst),
494 "lock\n\t"
495 "dec{w}\t$dst", []>, OpSize, LOCK;
496def LOCK_DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst),
497 "lock\n\t"
498 "dec{l}\t$dst", []>, LOCK;
499def LOCK_DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst),
500 "lock\n\t"
501 "dec{q}\t$dst", []>, LOCK;
502}
503
504// Atomic compare and swap.
505let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX] in {
506def LCMPXCHG8B : I<0xC7, MRM1m, (outs), (ins i64mem:$ptr),
507 "lock\n\t"
508 "cmpxchg8b\t$ptr",
509 [(X86cas8 addr:$ptr)]>, TB, LOCK;
510}
511let Defs = [AL, EFLAGS], Uses = [AL] in {
512def LCMPXCHG8 : I<0xB0, MRMDestMem, (outs), (ins i8mem:$ptr, GR8:$swap),
513 "lock\n\t"
514 "cmpxchg{b}\t{$swap, $ptr|$ptr, $swap}",
515 [(X86cas addr:$ptr, GR8:$swap, 1)]>, TB, LOCK;
516}
517
518let Defs = [AX, EFLAGS], Uses = [AX] in {
519def LCMPXCHG16 : I<0xB1, MRMDestMem, (outs), (ins i16mem:$ptr, GR16:$swap),
520 "lock\n\t"
521 "cmpxchg{w}\t{$swap, $ptr|$ptr, $swap}",
522 [(X86cas addr:$ptr, GR16:$swap, 2)]>, TB, OpSize, LOCK;
523}
524
525let Defs = [EAX, EFLAGS], Uses = [EAX] in {
526def LCMPXCHG32 : I<0xB1, MRMDestMem, (outs), (ins i32mem:$ptr, GR32:$swap),
527 "lock\n\t"
528 "cmpxchg{l}\t{$swap, $ptr|$ptr, $swap}",
529 [(X86cas addr:$ptr, GR32:$swap, 4)]>, TB, LOCK;
530}
531
532let Defs = [RAX, EFLAGS], Uses = [RAX] in {
533def LCMPXCHG64 : RI<0xB1, MRMDestMem, (outs), (ins i64mem:$ptr, GR64:$swap),
534 "lock\n\t"
535 "cmpxchgq\t$swap,$ptr",
536 [(X86cas addr:$ptr, GR64:$swap, 8)]>, TB, LOCK;
537}
538
539// Atomic exchange and add
540let Constraints = "$val = $dst", Defs = [EFLAGS] in {
541def LXADD8 : I<0xC0, MRMSrcMem, (outs GR8:$dst), (ins GR8:$val, i8mem:$ptr),
542 "lock\n\t"
543 "xadd{b}\t{$val, $ptr|$ptr, $val}",
544 [(set GR8:$dst, (atomic_load_add_8 addr:$ptr, GR8:$val))]>,
545 TB, LOCK;
546def LXADD16 : I<0xC1, MRMSrcMem, (outs GR16:$dst), (ins GR16:$val, i16mem:$ptr),
547 "lock\n\t"
548 "xadd{w}\t{$val, $ptr|$ptr, $val}",
549 [(set GR16:$dst, (atomic_load_add_16 addr:$ptr, GR16:$val))]>,
550 TB, OpSize, LOCK;
551def LXADD32 : I<0xC1, MRMSrcMem, (outs GR32:$dst), (ins GR32:$val, i32mem:$ptr),
552 "lock\n\t"
553 "xadd{l}\t{$val, $ptr|$ptr, $val}",
554 [(set GR32:$dst, (atomic_load_add_32 addr:$ptr, GR32:$val))]>,
555 TB, LOCK;
556def LXADD64 : RI<0xC1, MRMSrcMem, (outs GR64:$dst), (ins GR64:$val,i64mem:$ptr),
557 "lock\n\t"
558 "xadd\t$val, $ptr",
559 [(set GR64:$dst, (atomic_load_add_64 addr:$ptr, GR64:$val))]>,
560 TB, LOCK;
561}
562
563
564//===----------------------------------------------------------------------===//
565// DAG Pattern Matching Rules
Chris Lattner87be16a2010-10-05 06:04:14 +0000566//===----------------------------------------------------------------------===//
567
568// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
569def : Pat<(i32 (X86Wrapper tconstpool :$dst)), (MOV32ri tconstpool :$dst)>;
570def : Pat<(i32 (X86Wrapper tjumptable :$dst)), (MOV32ri tjumptable :$dst)>;
571def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
572def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
573def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
574def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
575
576def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
577 (ADD32ri GR32:$src1, tconstpool:$src2)>;
578def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
579 (ADD32ri GR32:$src1, tjumptable:$src2)>;
580def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
581 (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
582def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
583 (ADD32ri GR32:$src1, texternalsym:$src2)>;
584def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
585 (ADD32ri GR32:$src1, tblockaddress:$src2)>;
586
587def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
588 (MOV32mi addr:$dst, tglobaladdr:$src)>;
589def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
590 (MOV32mi addr:$dst, texternalsym:$src)>;
591def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
592 (MOV32mi addr:$dst, tblockaddress:$src)>;
593
594
595
596// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
597// code model mode, should use 'movabs'. FIXME: This is really a hack, the
598// 'movabs' predicate should handle this sort of thing.
599def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
600 (MOV64ri tconstpool :$dst)>, Requires<[FarData]>;
601def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
602 (MOV64ri tjumptable :$dst)>, Requires<[FarData]>;
603def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
604 (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
605def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
606 (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
607def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
608 (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
609
610// In static codegen with small code model, we can get the address of a label
611// into a register with 'movl'. FIXME: This is a hack, the 'imm' predicate of
612// the MOV64ri64i32 should accept these.
613def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
614 (MOV64ri64i32 tconstpool :$dst)>, Requires<[SmallCode]>;
615def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
616 (MOV64ri64i32 tjumptable :$dst)>, Requires<[SmallCode]>;
617def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
618 (MOV64ri64i32 tglobaladdr :$dst)>, Requires<[SmallCode]>;
619def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
620 (MOV64ri64i32 texternalsym:$dst)>, Requires<[SmallCode]>;
621def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
622 (MOV64ri64i32 tblockaddress:$dst)>, Requires<[SmallCode]>;
623
624// In kernel code model, we can get the address of a label
625// into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of
626// the MOV64ri32 should accept these.
627def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
628 (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>;
629def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
630 (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>;
631def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
632 (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
633def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
634 (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
635def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
636 (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
637
638// If we have small model and -static mode, it is safe to store global addresses
639// directly as immediates. FIXME: This is really a hack, the 'imm' predicate
640// for MOV64mi32 should handle this sort of thing.
641def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
642 (MOV64mi32 addr:$dst, tconstpool:$src)>,
643 Requires<[NearData, IsStatic]>;
644def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
645 (MOV64mi32 addr:$dst, tjumptable:$src)>,
646 Requires<[NearData, IsStatic]>;
647def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
648 (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
649 Requires<[NearData, IsStatic]>;
650def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
651 (MOV64mi32 addr:$dst, texternalsym:$src)>,
652 Requires<[NearData, IsStatic]>;
653def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
654 (MOV64mi32 addr:$dst, tblockaddress:$src)>,
655 Requires<[NearData, IsStatic]>;
656
657
658
659// Calls
660
661// tls has some funny stuff here...
662// This corresponds to movabs $foo@tpoff, %rax
663def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
664 (MOV64ri tglobaltlsaddr :$dst)>;
665// This corresponds to add $foo@tpoff, %rax
666def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
667 (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
668// This corresponds to mov foo@tpoff(%rbx), %eax
669def : Pat<(load (i64 (X86Wrapper tglobaltlsaddr :$dst))),
670 (MOV64rm tglobaltlsaddr :$dst)>;
671
672
673// Direct PC relative function call for small code model. 32-bit displacement
674// sign extended to 64-bit.
675def : Pat<(X86call (i64 tglobaladdr:$dst)),
676 (CALL64pcrel32 tglobaladdr:$dst)>, Requires<[NotWin64]>;
677def : Pat<(X86call (i64 texternalsym:$dst)),
678 (CALL64pcrel32 texternalsym:$dst)>, Requires<[NotWin64]>;
679
680def : Pat<(X86call (i64 tglobaladdr:$dst)),
681 (WINCALL64pcrel32 tglobaladdr:$dst)>, Requires<[IsWin64]>;
682def : Pat<(X86call (i64 texternalsym:$dst)),
683 (WINCALL64pcrel32 texternalsym:$dst)>, Requires<[IsWin64]>;
684
685// tailcall stuff
686def : Pat<(X86tcret GR32_TC:$dst, imm:$off),
687 (TCRETURNri GR32_TC:$dst, imm:$off)>,
688 Requires<[In32BitMode]>;
689
690// FIXME: This is disabled for 32-bit PIC mode because the global base
691// register which is part of the address mode may be assigned a
692// callee-saved register.
693def : Pat<(X86tcret (load addr:$dst), imm:$off),
694 (TCRETURNmi addr:$dst, imm:$off)>,
695 Requires<[In32BitMode, IsNotPIC]>;
696
697def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
698 (TCRETURNdi texternalsym:$dst, imm:$off)>,
699 Requires<[In32BitMode]>;
700
701def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
702 (TCRETURNdi texternalsym:$dst, imm:$off)>,
703 Requires<[In32BitMode]>;
704
705def : Pat<(X86tcret GR64_TC:$dst, imm:$off),
706 (TCRETURNri64 GR64_TC:$dst, imm:$off)>,
707 Requires<[In64BitMode]>;
708
709def : Pat<(X86tcret (load addr:$dst), imm:$off),
710 (TCRETURNmi64 addr:$dst, imm:$off)>,
711 Requires<[In64BitMode]>;
712
713def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
714 (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
715 Requires<[In64BitMode]>;
716
717def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
718 (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
719 Requires<[In64BitMode]>;
720
721// Normal calls, with various flavors of addresses.
722def : Pat<(X86call (i32 tglobaladdr:$dst)),
723 (CALLpcrel32 tglobaladdr:$dst)>;
724def : Pat<(X86call (i32 texternalsym:$dst)),
725 (CALLpcrel32 texternalsym:$dst)>;
726def : Pat<(X86call (i32 imm:$dst)),
727 (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
728
729// X86 specific add which produces a flag.
730def : Pat<(addc GR32:$src1, GR32:$src2),
731 (ADD32rr GR32:$src1, GR32:$src2)>;
732def : Pat<(addc GR32:$src1, (load addr:$src2)),
733 (ADD32rm GR32:$src1, addr:$src2)>;
734def : Pat<(addc GR32:$src1, imm:$src2),
735 (ADD32ri GR32:$src1, imm:$src2)>;
736def : Pat<(addc GR32:$src1, i32immSExt8:$src2),
737 (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
738
739def : Pat<(addc GR64:$src1, GR64:$src2),
740 (ADD64rr GR64:$src1, GR64:$src2)>;
741def : Pat<(addc GR64:$src1, (load addr:$src2)),
742 (ADD64rm GR64:$src1, addr:$src2)>;
743def : Pat<(addc GR64:$src1, i64immSExt8:$src2),
744 (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
745def : Pat<(addc GR64:$src1, i64immSExt32:$src2),
746 (ADD64ri32 GR64:$src1, imm:$src2)>;
747
748def : Pat<(subc GR32:$src1, GR32:$src2),
749 (SUB32rr GR32:$src1, GR32:$src2)>;
750def : Pat<(subc GR32:$src1, (load addr:$src2)),
751 (SUB32rm GR32:$src1, addr:$src2)>;
752def : Pat<(subc GR32:$src1, imm:$src2),
753 (SUB32ri GR32:$src1, imm:$src2)>;
754def : Pat<(subc GR32:$src1, i32immSExt8:$src2),
755 (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
756
757def : Pat<(subc GR64:$src1, GR64:$src2),
758 (SUB64rr GR64:$src1, GR64:$src2)>;
759def : Pat<(subc GR64:$src1, (load addr:$src2)),
760 (SUB64rm GR64:$src1, addr:$src2)>;
761def : Pat<(subc GR64:$src1, i64immSExt8:$src2),
762 (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
763def : Pat<(subc GR64:$src1, imm:$src2),
764 (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
765
766// Comparisons.
767
768// TEST R,R is smaller than CMP R,0
769def : Pat<(X86cmp GR8:$src1, 0),
770 (TEST8rr GR8:$src1, GR8:$src1)>;
771def : Pat<(X86cmp GR16:$src1, 0),
772 (TEST16rr GR16:$src1, GR16:$src1)>;
773def : Pat<(X86cmp GR32:$src1, 0),
774 (TEST32rr GR32:$src1, GR32:$src1)>;
775def : Pat<(X86cmp GR64:$src1, 0),
776 (TEST64rr GR64:$src1, GR64:$src1)>;
777
778// Conditional moves with folded loads with operands swapped and conditions
779// inverted.
780def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_B, EFLAGS),
781 (CMOVAE16rm GR16:$src2, addr:$src1)>;
782def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_B, EFLAGS),
783 (CMOVAE32rm GR32:$src2, addr:$src1)>;
784def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_AE, EFLAGS),
785 (CMOVB16rm GR16:$src2, addr:$src1)>;
786def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_AE, EFLAGS),
787 (CMOVB32rm GR32:$src2, addr:$src1)>;
788def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_E, EFLAGS),
789 (CMOVNE16rm GR16:$src2, addr:$src1)>;
790def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_E, EFLAGS),
791 (CMOVNE32rm GR32:$src2, addr:$src1)>;
792def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_NE, EFLAGS),
793 (CMOVE16rm GR16:$src2, addr:$src1)>;
794def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_NE, EFLAGS),
795 (CMOVE32rm GR32:$src2, addr:$src1)>;
796def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_BE, EFLAGS),
797 (CMOVA16rm GR16:$src2, addr:$src1)>;
798def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_BE, EFLAGS),
799 (CMOVA32rm GR32:$src2, addr:$src1)>;
800def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_A, EFLAGS),
801 (CMOVBE16rm GR16:$src2, addr:$src1)>;
802def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_A, EFLAGS),
803 (CMOVBE32rm GR32:$src2, addr:$src1)>;
804def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_L, EFLAGS),
805 (CMOVGE16rm GR16:$src2, addr:$src1)>;
806def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_L, EFLAGS),
807 (CMOVGE32rm GR32:$src2, addr:$src1)>;
808def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_GE, EFLAGS),
809 (CMOVL16rm GR16:$src2, addr:$src1)>;
810def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_GE, EFLAGS),
811 (CMOVL32rm GR32:$src2, addr:$src1)>;
812def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_LE, EFLAGS),
813 (CMOVG16rm GR16:$src2, addr:$src1)>;
814def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_LE, EFLAGS),
815 (CMOVG32rm GR32:$src2, addr:$src1)>;
816def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_G, EFLAGS),
817 (CMOVLE16rm GR16:$src2, addr:$src1)>;
818def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_G, EFLAGS),
819 (CMOVLE32rm GR32:$src2, addr:$src1)>;
820def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_P, EFLAGS),
821 (CMOVNP16rm GR16:$src2, addr:$src1)>;
822def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_P, EFLAGS),
823 (CMOVNP32rm GR32:$src2, addr:$src1)>;
824def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_NP, EFLAGS),
825 (CMOVP16rm GR16:$src2, addr:$src1)>;
826def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_NP, EFLAGS),
827 (CMOVP32rm GR32:$src2, addr:$src1)>;
828def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_S, EFLAGS),
829 (CMOVNS16rm GR16:$src2, addr:$src1)>;
830def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_S, EFLAGS),
831 (CMOVNS32rm GR32:$src2, addr:$src1)>;
832def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_NS, EFLAGS),
833 (CMOVS16rm GR16:$src2, addr:$src1)>;
834def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_NS, EFLAGS),
835 (CMOVS32rm GR32:$src2, addr:$src1)>;
836def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_O, EFLAGS),
837 (CMOVNO16rm GR16:$src2, addr:$src1)>;
838def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_O, EFLAGS),
839 (CMOVNO32rm GR32:$src2, addr:$src1)>;
840def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_NO, EFLAGS),
841 (CMOVO16rm GR16:$src2, addr:$src1)>;
842def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_NO, EFLAGS),
843 (CMOVO32rm GR32:$src2, addr:$src1)>;
844
845def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_B, EFLAGS),
846 (CMOVAE64rm GR64:$src2, addr:$src1)>;
847def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_AE, EFLAGS),
848 (CMOVB64rm GR64:$src2, addr:$src1)>;
849def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_E, EFLAGS),
850 (CMOVNE64rm GR64:$src2, addr:$src1)>;
851def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_NE, EFLAGS),
852 (CMOVE64rm GR64:$src2, addr:$src1)>;
853def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_BE, EFLAGS),
854 (CMOVA64rm GR64:$src2, addr:$src1)>;
855def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_A, EFLAGS),
856 (CMOVBE64rm GR64:$src2, addr:$src1)>;
857def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_L, EFLAGS),
858 (CMOVGE64rm GR64:$src2, addr:$src1)>;
859def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_GE, EFLAGS),
860 (CMOVL64rm GR64:$src2, addr:$src1)>;
861def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_LE, EFLAGS),
862 (CMOVG64rm GR64:$src2, addr:$src1)>;
863def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_G, EFLAGS),
864 (CMOVLE64rm GR64:$src2, addr:$src1)>;
865def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_P, EFLAGS),
866 (CMOVNP64rm GR64:$src2, addr:$src1)>;
867def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_NP, EFLAGS),
868 (CMOVP64rm GR64:$src2, addr:$src1)>;
869def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_S, EFLAGS),
870 (CMOVNS64rm GR64:$src2, addr:$src1)>;
871def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_NS, EFLAGS),
872 (CMOVS64rm GR64:$src2, addr:$src1)>;
873def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_O, EFLAGS),
874 (CMOVNO64rm GR64:$src2, addr:$src1)>;
875def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_NO, EFLAGS),
876 (CMOVO64rm GR64:$src2, addr:$src1)>;
877
878
879// zextload bool -> zextload byte
880def : Pat<(zextloadi8i1 addr:$src), (MOV8rm addr:$src)>;
881def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
882def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
883def : Pat<(zextloadi64i1 addr:$src), (MOVZX64rm8 addr:$src)>;
884
885// extload bool -> extload byte
886// When extloading from 16-bit and smaller memory locations into 64-bit
887// registers, use zero-extending loads so that the entire 64-bit register is
888// defined, avoiding partial-register updates.
889
890def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>;
891def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
892def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
893def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>;
894def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>;
895def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
896
897def : Pat<(extloadi64i1 addr:$src), (MOVZX64rm8 addr:$src)>;
898def : Pat<(extloadi64i8 addr:$src), (MOVZX64rm8 addr:$src)>;
899def : Pat<(extloadi64i16 addr:$src), (MOVZX64rm16 addr:$src)>;
900// For other extloads, use subregs, since the high contents of the register are
901// defined after an extload.
902def : Pat<(extloadi64i32 addr:$src),
903 (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src),
904 sub_32bit)>;
905
906// anyext. Define these to do an explicit zero-extend to
907// avoid partial-register updates.
908def : Pat<(i16 (anyext GR8 :$src)), (MOVZX16rr8 GR8 :$src)>;
909def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>;
910
911// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
912def : Pat<(i32 (anyext GR16:$src)),
913 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
914
915def : Pat<(i64 (anyext GR8 :$src)), (MOVZX64rr8 GR8 :$src)>;
916def : Pat<(i64 (anyext GR16:$src)), (MOVZX64rr16 GR16 :$src)>;
917def : Pat<(i64 (anyext GR32:$src)),
918 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
919
920//===----------------------------------------------------------------------===//
921// Some peepholes
922//===----------------------------------------------------------------------===//
923
924// Odd encoding trick: -128 fits into an 8-bit immediate field while
925// +128 doesn't, so in this special case use a sub instead of an add.
926def : Pat<(add GR16:$src1, 128),
927 (SUB16ri8 GR16:$src1, -128)>;
928def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
929 (SUB16mi8 addr:$dst, -128)>;
930
931def : Pat<(add GR32:$src1, 128),
932 (SUB32ri8 GR32:$src1, -128)>;
933def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
934 (SUB32mi8 addr:$dst, -128)>;
935
936def : Pat<(add GR64:$src1, 128),
937 (SUB64ri8 GR64:$src1, -128)>;
938def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
939 (SUB64mi8 addr:$dst, -128)>;
940
941// The same trick applies for 32-bit immediate fields in 64-bit
942// instructions.
943def : Pat<(add GR64:$src1, 0x0000000080000000),
944 (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
945def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
946 (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
947
948// Use a 32-bit and with implicit zero-extension instead of a 64-bit and if it
949// has an immediate with at least 32 bits of leading zeros, to avoid needing to
950// materialize that immediate in a register first.
951def : Pat<(and GR64:$src, i64immZExt32:$imm),
952 (SUBREG_TO_REG
953 (i64 0),
954 (AND32ri
955 (EXTRACT_SUBREG GR64:$src, sub_32bit),
956 (i32 (GetLo32XForm imm:$imm))),
957 sub_32bit)>;
958
959
960// r & (2^16-1) ==> movz
961def : Pat<(and GR32:$src1, 0xffff),
962 (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
963// r & (2^8-1) ==> movz
964def : Pat<(and GR32:$src1, 0xff),
965 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
966 GR32_ABCD)),
967 sub_8bit))>,
968 Requires<[In32BitMode]>;
969// r & (2^8-1) ==> movz
970def : Pat<(and GR16:$src1, 0xff),
971 (MOVZX16rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src1,
972 GR16_ABCD)),
973 sub_8bit))>,
974 Requires<[In32BitMode]>;
975
976// r & (2^32-1) ==> movz
977def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
978 (MOVZX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
979// r & (2^16-1) ==> movz
980def : Pat<(and GR64:$src, 0xffff),
981 (MOVZX64rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit)))>;
982// r & (2^8-1) ==> movz
983def : Pat<(and GR64:$src, 0xff),
984 (MOVZX64rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit)))>;
985// r & (2^8-1) ==> movz
986def : Pat<(and GR32:$src1, 0xff),
987 (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
988 Requires<[In64BitMode]>;
989// r & (2^8-1) ==> movz
990def : Pat<(and GR16:$src1, 0xff),
991 (MOVZX16rr8 (i8 (EXTRACT_SUBREG GR16:$src1, sub_8bit)))>,
992 Requires<[In64BitMode]>;
993
994
995// sext_inreg patterns
996def : Pat<(sext_inreg GR32:$src, i16),
997 (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
998def : Pat<(sext_inreg GR32:$src, i8),
999 (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1000 GR32_ABCD)),
1001 sub_8bit))>,
1002 Requires<[In32BitMode]>;
1003def : Pat<(sext_inreg GR16:$src, i8),
1004 (MOVSX16rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1005 GR16_ABCD)),
1006 sub_8bit))>,
1007 Requires<[In32BitMode]>;
1008
1009def : Pat<(sext_inreg GR64:$src, i32),
1010 (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1011def : Pat<(sext_inreg GR64:$src, i16),
1012 (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
1013def : Pat<(sext_inreg GR64:$src, i8),
1014 (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
1015def : Pat<(sext_inreg GR32:$src, i8),
1016 (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
1017 Requires<[In64BitMode]>;
1018def : Pat<(sext_inreg GR16:$src, i8),
1019 (MOVSX16rr8 (i8 (EXTRACT_SUBREG GR16:$src, sub_8bit)))>,
1020 Requires<[In64BitMode]>;
1021
1022
1023// trunc patterns
1024def : Pat<(i16 (trunc GR32:$src)),
1025 (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
1026def : Pat<(i8 (trunc GR32:$src)),
1027 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1028 sub_8bit)>,
1029 Requires<[In32BitMode]>;
1030def : Pat<(i8 (trunc GR16:$src)),
1031 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1032 sub_8bit)>,
1033 Requires<[In32BitMode]>;
1034def : Pat<(i32 (trunc GR64:$src)),
1035 (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
1036def : Pat<(i16 (trunc GR64:$src)),
1037 (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
1038def : Pat<(i8 (trunc GR64:$src)),
1039 (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
1040def : Pat<(i8 (trunc GR32:$src)),
1041 (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
1042 Requires<[In64BitMode]>;
1043def : Pat<(i8 (trunc GR16:$src)),
1044 (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
1045 Requires<[In64BitMode]>;
1046
1047// h-register tricks
1048def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
1049 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1050 sub_8bit_hi)>,
1051 Requires<[In32BitMode]>;
1052def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
1053 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1054 sub_8bit_hi)>,
1055 Requires<[In32BitMode]>;
1056def : Pat<(srl GR16:$src, (i8 8)),
1057 (EXTRACT_SUBREG
1058 (MOVZX32rr8
1059 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1060 sub_8bit_hi)),
1061 sub_16bit)>,
1062 Requires<[In32BitMode]>;
1063def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1064 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1065 GR16_ABCD)),
1066 sub_8bit_hi))>,
1067 Requires<[In32BitMode]>;
1068def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1069 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1070 GR16_ABCD)),
1071 sub_8bit_hi))>,
1072 Requires<[In32BitMode]>;
1073def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1074 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1075 GR32_ABCD)),
1076 sub_8bit_hi))>,
1077 Requires<[In32BitMode]>;
1078def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1079 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1080 GR32_ABCD)),
1081 sub_8bit_hi))>,
1082 Requires<[In32BitMode]>;
1083
1084// h-register tricks.
1085// For now, be conservative on x86-64 and use an h-register extract only if the
1086// value is immediately zero-extended or stored, which are somewhat common
1087// cases. This uses a bunch of code to prevent a register requiring a REX prefix
1088// from being allocated in the same instruction as the h register, as there's
1089// currently no way to describe this requirement to the register allocator.
1090
1091// h-register extract and zero-extend.
1092def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
1093 (SUBREG_TO_REG
1094 (i64 0),
1095 (MOVZX32_NOREXrr8
1096 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1097 sub_8bit_hi)),
1098 sub_32bit)>;
1099def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1100 (MOVZX32_NOREXrr8
1101 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1102 sub_8bit_hi))>,
1103 Requires<[In64BitMode]>;
1104def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1105 (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1106 GR32_ABCD)),
1107 sub_8bit_hi))>,
1108 Requires<[In64BitMode]>;
1109def : Pat<(srl GR16:$src, (i8 8)),
1110 (EXTRACT_SUBREG
1111 (MOVZX32_NOREXrr8
1112 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1113 sub_8bit_hi)),
1114 sub_16bit)>,
1115 Requires<[In64BitMode]>;
1116def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1117 (MOVZX32_NOREXrr8
1118 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1119 sub_8bit_hi))>,
1120 Requires<[In64BitMode]>;
1121def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1122 (MOVZX32_NOREXrr8
1123 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1124 sub_8bit_hi))>,
1125 Requires<[In64BitMode]>;
1126def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
1127 (SUBREG_TO_REG
1128 (i64 0),
1129 (MOVZX32_NOREXrr8
1130 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1131 sub_8bit_hi)),
1132 sub_32bit)>;
1133def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
1134 (SUBREG_TO_REG
1135 (i64 0),
1136 (MOVZX32_NOREXrr8
1137 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1138 sub_8bit_hi)),
1139 sub_32bit)>;
1140
1141// h-register extract and store.
1142def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
1143 (MOV8mr_NOREX
1144 addr:$dst,
1145 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1146 sub_8bit_hi))>;
1147def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
1148 (MOV8mr_NOREX
1149 addr:$dst,
1150 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1151 sub_8bit_hi))>,
1152 Requires<[In64BitMode]>;
1153def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
1154 (MOV8mr_NOREX
1155 addr:$dst,
1156 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1157 sub_8bit_hi))>,
1158 Requires<[In64BitMode]>;
1159
1160
1161// (shl x, 1) ==> (add x, x)
1162def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>;
1163def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
1164def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
1165def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
1166
1167// (shl x (and y, 31)) ==> (shl x, y)
1168def : Pat<(shl GR8:$src1, (and CL, 31)),
1169 (SHL8rCL GR8:$src1)>;
1170def : Pat<(shl GR16:$src1, (and CL, 31)),
1171 (SHL16rCL GR16:$src1)>;
1172def : Pat<(shl GR32:$src1, (and CL, 31)),
1173 (SHL32rCL GR32:$src1)>;
1174def : Pat<(store (shl (loadi8 addr:$dst), (and CL, 31)), addr:$dst),
1175 (SHL8mCL addr:$dst)>;
1176def : Pat<(store (shl (loadi16 addr:$dst), (and CL, 31)), addr:$dst),
1177 (SHL16mCL addr:$dst)>;
1178def : Pat<(store (shl (loadi32 addr:$dst), (and CL, 31)), addr:$dst),
1179 (SHL32mCL addr:$dst)>;
1180
1181def : Pat<(srl GR8:$src1, (and CL, 31)),
1182 (SHR8rCL GR8:$src1)>;
1183def : Pat<(srl GR16:$src1, (and CL, 31)),
1184 (SHR16rCL GR16:$src1)>;
1185def : Pat<(srl GR32:$src1, (and CL, 31)),
1186 (SHR32rCL GR32:$src1)>;
1187def : Pat<(store (srl (loadi8 addr:$dst), (and CL, 31)), addr:$dst),
1188 (SHR8mCL addr:$dst)>;
1189def : Pat<(store (srl (loadi16 addr:$dst), (and CL, 31)), addr:$dst),
1190 (SHR16mCL addr:$dst)>;
1191def : Pat<(store (srl (loadi32 addr:$dst), (and CL, 31)), addr:$dst),
1192 (SHR32mCL addr:$dst)>;
1193
1194def : Pat<(sra GR8:$src1, (and CL, 31)),
1195 (SAR8rCL GR8:$src1)>;
1196def : Pat<(sra GR16:$src1, (and CL, 31)),
1197 (SAR16rCL GR16:$src1)>;
1198def : Pat<(sra GR32:$src1, (and CL, 31)),
1199 (SAR32rCL GR32:$src1)>;
1200def : Pat<(store (sra (loadi8 addr:$dst), (and CL, 31)), addr:$dst),
1201 (SAR8mCL addr:$dst)>;
1202def : Pat<(store (sra (loadi16 addr:$dst), (and CL, 31)), addr:$dst),
1203 (SAR16mCL addr:$dst)>;
1204def : Pat<(store (sra (loadi32 addr:$dst), (and CL, 31)), addr:$dst),
1205 (SAR32mCL addr:$dst)>;
1206
1207// (shl x (and y, 63)) ==> (shl x, y)
1208def : Pat<(shl GR64:$src1, (and CL, 63)),
1209 (SHL64rCL GR64:$src1)>;
1210def : Pat<(store (shl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1211 (SHL64mCL addr:$dst)>;
1212
1213def : Pat<(srl GR64:$src1, (and CL, 63)),
1214 (SHR64rCL GR64:$src1)>;
1215def : Pat<(store (srl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1216 (SHR64mCL addr:$dst)>;
1217
1218def : Pat<(sra GR64:$src1, (and CL, 63)),
1219 (SAR64rCL GR64:$src1)>;
1220def : Pat<(store (sra (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1221 (SAR64mCL addr:$dst)>;
1222
1223
1224// (anyext (setcc_carry)) -> (setcc_carry)
1225def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1226 (SETB_C16r)>;
1227def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1228 (SETB_C32r)>;
1229def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
1230 (SETB_C32r)>;
1231
1232// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
1233let AddedComplexity = 5 in { // Try this before the selecting to OR
1234def : Pat<(or_is_add GR16:$src1, imm:$src2),
1235 (ADD16ri GR16:$src1, imm:$src2)>;
1236def : Pat<(or_is_add GR32:$src1, imm:$src2),
1237 (ADD32ri GR32:$src1, imm:$src2)>;
1238def : Pat<(or_is_add GR16:$src1, i16immSExt8:$src2),
1239 (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1240def : Pat<(or_is_add GR32:$src1, i32immSExt8:$src2),
1241 (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1242def : Pat<(or_is_add GR16:$src1, GR16:$src2),
1243 (ADD16rr GR16:$src1, GR16:$src2)>;
1244def : Pat<(or_is_add GR32:$src1, GR32:$src2),
1245 (ADD32rr GR32:$src1, GR32:$src2)>;
1246def : Pat<(or_is_add GR64:$src1, i64immSExt8:$src2),
1247 (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1248def : Pat<(or_is_add GR64:$src1, i64immSExt32:$src2),
1249 (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1250def : Pat<(or_is_add GR64:$src1, GR64:$src2),
1251 (ADD64rr GR64:$src1, GR64:$src2)>;
1252} // AddedComplexity
1253
1254//===----------------------------------------------------------------------===//
1255// EFLAGS-defining Patterns
1256//===----------------------------------------------------------------------===//
1257
1258// add reg, reg
1259def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>;
1260def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
1261def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
1262
1263// add reg, mem
1264def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
1265 (ADD8rm GR8:$src1, addr:$src2)>;
1266def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
1267 (ADD16rm GR16:$src1, addr:$src2)>;
1268def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
1269 (ADD32rm GR32:$src1, addr:$src2)>;
1270
1271// add reg, imm
1272def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>;
1273def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
1274def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
1275def : Pat<(add GR16:$src1, i16immSExt8:$src2),
1276 (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1277def : Pat<(add GR32:$src1, i32immSExt8:$src2),
1278 (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1279
1280// sub reg, reg
1281def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>;
1282def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
1283def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
1284
1285// sub reg, mem
1286def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
1287 (SUB8rm GR8:$src1, addr:$src2)>;
1288def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
1289 (SUB16rm GR16:$src1, addr:$src2)>;
1290def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
1291 (SUB32rm GR32:$src1, addr:$src2)>;
1292
1293// sub reg, imm
1294def : Pat<(sub GR8:$src1, imm:$src2),
1295 (SUB8ri GR8:$src1, imm:$src2)>;
1296def : Pat<(sub GR16:$src1, imm:$src2),
1297 (SUB16ri GR16:$src1, imm:$src2)>;
1298def : Pat<(sub GR32:$src1, imm:$src2),
1299 (SUB32ri GR32:$src1, imm:$src2)>;
1300def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
1301 (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
1302def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
1303 (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
1304
1305// mul reg, reg
1306def : Pat<(mul GR16:$src1, GR16:$src2),
1307 (IMUL16rr GR16:$src1, GR16:$src2)>;
1308def : Pat<(mul GR32:$src1, GR32:$src2),
1309 (IMUL32rr GR32:$src1, GR32:$src2)>;
1310
1311// mul reg, mem
1312def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
1313 (IMUL16rm GR16:$src1, addr:$src2)>;
1314def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
1315 (IMUL32rm GR32:$src1, addr:$src2)>;
1316
1317// mul reg, imm
1318def : Pat<(mul GR16:$src1, imm:$src2),
1319 (IMUL16rri GR16:$src1, imm:$src2)>;
1320def : Pat<(mul GR32:$src1, imm:$src2),
1321 (IMUL32rri GR32:$src1, imm:$src2)>;
1322def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
1323 (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
1324def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
1325 (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
1326
1327// reg = mul mem, imm
1328def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
1329 (IMUL16rmi addr:$src1, imm:$src2)>;
1330def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
1331 (IMUL32rmi addr:$src1, imm:$src2)>;
1332def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
1333 (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
1334def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
1335 (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
1336
1337// Optimize multiply by 2 with EFLAGS result.
1338let AddedComplexity = 2 in {
1339def : Pat<(X86smul_flag GR16:$src1, 2), (ADD16rr GR16:$src1, GR16:$src1)>;
1340def : Pat<(X86smul_flag GR32:$src1, 2), (ADD32rr GR32:$src1, GR32:$src1)>;
1341}
1342
1343// Patterns for nodes that do not produce flags, for instructions that do.
1344
1345// addition
1346def : Pat<(add GR64:$src1, GR64:$src2),
1347 (ADD64rr GR64:$src1, GR64:$src2)>;
1348def : Pat<(add GR64:$src1, i64immSExt8:$src2),
1349 (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1350def : Pat<(add GR64:$src1, i64immSExt32:$src2),
1351 (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1352def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
1353 (ADD64rm GR64:$src1, addr:$src2)>;
1354
1355// subtraction
1356def : Pat<(sub GR64:$src1, GR64:$src2),
1357 (SUB64rr GR64:$src1, GR64:$src2)>;
1358def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
1359 (SUB64rm GR64:$src1, addr:$src2)>;
1360def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
1361 (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
1362def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
1363 (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
1364
1365// Multiply
1366def : Pat<(mul GR64:$src1, GR64:$src2),
1367 (IMUL64rr GR64:$src1, GR64:$src2)>;
1368def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
1369 (IMUL64rm GR64:$src1, addr:$src2)>;
1370def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
1371 (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
1372def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
1373 (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
1374def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
1375 (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
1376def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
1377 (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
1378
1379// Increment reg.
1380def : Pat<(add GR8 :$src, 1), (INC8r GR8 :$src)>;
1381def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>, Requires<[In32BitMode]>;
1382def : Pat<(add GR16:$src, 1), (INC64_16r GR16:$src)>, Requires<[In64BitMode]>;
1383def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>, Requires<[In32BitMode]>;
1384def : Pat<(add GR32:$src, 1), (INC64_32r GR32:$src)>, Requires<[In64BitMode]>;
1385def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>;
1386
1387// Decrement reg.
1388def : Pat<(add GR8 :$src, -1), (DEC8r GR8 :$src)>;
1389def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>, Requires<[In32BitMode]>;
1390def : Pat<(add GR16:$src, -1), (DEC64_16r GR16:$src)>, Requires<[In64BitMode]>;
1391def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>, Requires<[In32BitMode]>;
1392def : Pat<(add GR32:$src, -1), (DEC64_32r GR32:$src)>, Requires<[In64BitMode]>;
1393def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
1394
1395// or reg/reg.
1396def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>;
1397def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
1398def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
1399def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
1400
1401// or reg/mem
1402def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
1403 (OR8rm GR8:$src1, addr:$src2)>;
1404def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
1405 (OR16rm GR16:$src1, addr:$src2)>;
1406def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
1407 (OR32rm GR32:$src1, addr:$src2)>;
1408def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
1409 (OR64rm GR64:$src1, addr:$src2)>;
1410
1411// or reg/imm
1412def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>;
1413def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
1414def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
1415def : Pat<(or GR16:$src1, i16immSExt8:$src2),
1416 (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1417def : Pat<(or GR32:$src1, i32immSExt8:$src2),
1418 (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1419def : Pat<(or GR64:$src1, i64immSExt8:$src2),
1420 (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1421def : Pat<(or GR64:$src1, i64immSExt32:$src2),
1422 (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1423
1424// xor reg/reg
1425def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>;
1426def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
1427def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
1428def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
1429
1430// xor reg/mem
1431def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
1432 (XOR8rm GR8:$src1, addr:$src2)>;
1433def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
1434 (XOR16rm GR16:$src1, addr:$src2)>;
1435def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
1436 (XOR32rm GR32:$src1, addr:$src2)>;
1437def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
1438 (XOR64rm GR64:$src1, addr:$src2)>;
1439
1440// xor reg/imm
1441def : Pat<(xor GR8:$src1, imm:$src2),
1442 (XOR8ri GR8:$src1, imm:$src2)>;
1443def : Pat<(xor GR16:$src1, imm:$src2),
1444 (XOR16ri GR16:$src1, imm:$src2)>;
1445def : Pat<(xor GR32:$src1, imm:$src2),
1446 (XOR32ri GR32:$src1, imm:$src2)>;
1447def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
1448 (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1449def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
1450 (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1451def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
1452 (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1453def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
1454 (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1455
1456// and reg/reg
1457def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>;
1458def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
1459def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
1460def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
1461
1462// and reg/mem
1463def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
1464 (AND8rm GR8:$src1, addr:$src2)>;
1465def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
1466 (AND16rm GR16:$src1, addr:$src2)>;
1467def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
1468 (AND32rm GR32:$src1, addr:$src2)>;
1469def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
1470 (AND64rm GR64:$src1, addr:$src2)>;
1471
1472// and reg/imm
1473def : Pat<(and GR8:$src1, imm:$src2),
1474 (AND8ri GR8:$src1, imm:$src2)>;
1475def : Pat<(and GR16:$src1, imm:$src2),
1476 (AND16ri GR16:$src1, imm:$src2)>;
1477def : Pat<(and GR32:$src1, imm:$src2),
1478 (AND32ri GR32:$src1, imm:$src2)>;
1479def : Pat<(and GR16:$src1, i16immSExt8:$src2),
1480 (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
1481def : Pat<(and GR32:$src1, i32immSExt8:$src2),
1482 (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
1483def : Pat<(and GR64:$src1, i64immSExt8:$src2),
1484 (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
1485def : Pat<(and GR64:$src1, i64immSExt32:$src2),
1486 (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
Chris Lattner87be16a2010-10-05 06:04:14 +00001487