| Stephen Hines | 36b5688 | 2014-04-23 16:57:46 -0700 | [diff] [blame^] | 1 | //===-------------- ARM64CollectLOH.cpp - ARM64 collect LOH pass --*- C++ -*-=// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file contains a pass that collect the Linker Optimization Hint (LOH). |
| 11 | // This pass should be run at the very end of the compilation flow, just before |
| 12 | // assembly printer. |
| 13 | // To be useful for the linker, the LOH must be printed into the assembly file. |
| 14 | // |
| 15 | // A LOH describes a sequence of instructions that may be optimized by the |
| 16 | // linker. |
| 17 | // This same sequence cannot be optimized by the compiler because some of |
| 18 | // the information will be known at link time. |
| 19 | // For instance, consider the following sequence: |
| 20 | // L1: adrp xA, sym@PAGE |
| 21 | // L2: add xB, xA, sym@PAGEOFF |
| 22 | // L3: ldr xC, [xB, #imm] |
| 23 | // This sequence can be turned into: |
| 24 | // A literal load if sym@PAGE + sym@PAGEOFF + #imm - address(L3) is < 1MB: |
| 25 | // L3: ldr xC, sym+#imm |
| 26 | // It may also be turned into either the following more efficient |
| 27 | // code sequences: |
| 28 | // - If sym@PAGEOFF + #imm fits the encoding space of L3. |
| 29 | // L1: adrp xA, sym@PAGE |
| 30 | // L3: ldr xC, [xB, sym@PAGEOFF + #imm] |
| 31 | // - If sym@PAGE + sym@PAGEOFF - address(L1) < 1MB: |
| 32 | // L1: adr xA, sym |
| 33 | // L3: ldr xC, [xB, #imm] |
| 34 | // |
| 35 | // To be valid a LOH must meet all the requirements needed by all the related |
| 36 | // possible linker transformations. |
| 37 | // For instance, using the running example, the constraints to emit |
| 38 | // ".loh AdrpAddLdr" are: |
| 39 | // - L1, L2, and L3 instructions are of the expected type, i.e., |
| 40 | // respectively ADRP, ADD (immediate), and LD. |
| 41 | // - The result of L1 is used only by L2. |
| 42 | // - The register argument (xA) used in the ADD instruction is defined |
| 43 | // only by L1. |
| 44 | // - The result of L2 is used only by L3. |
| 45 | // - The base address (xB) in L3 is defined only L2. |
| 46 | // - The ADRP in L1 and the ADD in L2 must reference the same symbol using |
| 47 | // @PAGE/@PAGEOFF with no additional constants |
| 48 | // |
| 49 | // Currently supported LOHs are: |
| 50 | // * So called non-ADRP-related: |
| 51 | // - .loh AdrpAddLdr L1, L2, L3: |
| 52 | // L1: adrp xA, sym@PAGE |
| 53 | // L2: add xB, xA, sym@PAGEOFF |
| 54 | // L3: ldr xC, [xB, #imm] |
| 55 | // - .loh AdrpLdrGotLdr L1, L2, L3: |
| 56 | // L1: adrp xA, sym@GOTPAGE |
| 57 | // L2: ldr xB, [xA, sym@GOTPAGEOFF] |
| 58 | // L3: ldr xC, [xB, #imm] |
| 59 | // - .loh AdrpLdr L1, L3: |
| 60 | // L1: adrp xA, sym@PAGE |
| 61 | // L3: ldr xC, [xA, sym@PAGEOFF] |
| 62 | // - .loh AdrpAddStr L1, L2, L3: |
| 63 | // L1: adrp xA, sym@PAGE |
| 64 | // L2: add xB, xA, sym@PAGEOFF |
| 65 | // L3: str xC, [xB, #imm] |
| 66 | // - .loh AdrpLdrGotStr L1, L2, L3: |
| 67 | // L1: adrp xA, sym@GOTPAGE |
| 68 | // L2: ldr xB, [xA, sym@GOTPAGEOFF] |
| 69 | // L3: str xC, [xB, #imm] |
| 70 | // - .loh AdrpAdd L1, L2: |
| 71 | // L1: adrp xA, sym@PAGE |
| 72 | // L2: add xB, xA, sym@PAGEOFF |
| 73 | // For all these LOHs, L1, L2, L3 form a simple chain: |
| 74 | // L1 result is used only by L2 and L2 result by L3. |
| 75 | // L3 LOH-related argument is defined only by L2 and L2 LOH-related argument |
| 76 | // by L1. |
| 77 | // All these LOHs aim at using more efficient load/store patterns by folding |
| 78 | // some instructions used to compute the address directly into the load/store. |
| 79 | // |
| 80 | // * So called ADRP-related: |
| 81 | // - .loh AdrpAdrp L2, L1: |
| 82 | // L2: ADRP xA, sym1@PAGE |
| 83 | // L1: ADRP xA, sym2@PAGE |
| 84 | // L2 dominates L1 and xA is not redifined between L2 and L1 |
| 85 | // This LOH aims at getting rid of redundant ADRP instructions. |
| 86 | // |
| 87 | // The overall design for emitting the LOHs is: |
| 88 | // 1. ARM64CollectLOH (this pass) records the LOHs in the ARM64FunctionInfo. |
| 89 | // 2. ARM64AsmPrinter reads the LOHs from ARM64FunctionInfo and it: |
| 90 | // 1. Associates them a label. |
| 91 | // 2. Emits them in a MCStreamer (EmitLOHDirective). |
| 92 | // - The MCMachOStreamer records them into the MCAssembler. |
| 93 | // - The MCAsmStreamer prints them. |
| 94 | // - Other MCStreamers ignore them. |
| 95 | // 3. Closes the MCStreamer: |
| 96 | // - The MachObjectWriter gets them from the MCAssembler and writes |
| 97 | // them in the object file. |
| 98 | // - Other ObjectWriters ignore them. |
| 99 | //===----------------------------------------------------------------------===// |
| 100 | |
| 101 | #define DEBUG_TYPE "arm64-collect-loh" |
| 102 | #include "ARM64.h" |
| 103 | #include "ARM64InstrInfo.h" |
| 104 | #include "ARM64MachineFunctionInfo.h" |
| 105 | #include "MCTargetDesc/ARM64AddressingModes.h" |
| 106 | #include "llvm/ADT/BitVector.h" |
| 107 | #include "llvm/ADT/DenseMap.h" |
| 108 | #include "llvm/ADT/MapVector.h" |
| 109 | #include "llvm/ADT/SetVector.h" |
| 110 | #include "llvm/ADT/SmallVector.h" |
| 111 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 112 | #include "llvm/CodeGen/MachineDominators.h" |
| 113 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 114 | #include "llvm/CodeGen/MachineInstr.h" |
| 115 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 116 | #include "llvm/Target/TargetInstrInfo.h" |
| 117 | #include "llvm/Target/TargetMachine.h" |
| 118 | #include "llvm/Target/TargetRegisterInfo.h" |
| 119 | #include "llvm/Support/CommandLine.h" |
| 120 | #include "llvm/Support/Debug.h" |
| 121 | #include "llvm/Support/ErrorHandling.h" |
| 122 | #include "llvm/Support/raw_ostream.h" |
| 123 | #include "llvm/ADT/Statistic.h" |
| 124 | using namespace llvm; |
| 125 | |
| 126 | static cl::opt<bool> |
| 127 | PreCollectRegister("arm64-collect-loh-pre-collect-register", cl::Hidden, |
| 128 | cl::desc("Restrict analysis to registers invovled" |
| 129 | " in LOHs"), |
| 130 | cl::init(true)); |
| 131 | |
| 132 | static cl::opt<bool> |
| 133 | BasicBlockScopeOnly("arm64-collect-loh-bb-only", cl::Hidden, |
| 134 | cl::desc("Restrict analysis at basic block scope"), |
| 135 | cl::init(true)); |
| 136 | |
| 137 | STATISTIC(NumADRPSimpleCandidate, |
| 138 | "Number of simplifiable ADRP dominate by another"); |
| 139 | STATISTIC(NumADRPComplexCandidate2, |
| 140 | "Number of simplifiable ADRP reachable by 2 defs"); |
| 141 | STATISTIC(NumADRPComplexCandidate3, |
| 142 | "Number of simplifiable ADRP reachable by 3 defs"); |
| 143 | STATISTIC(NumADRPComplexCandidateOther, |
| 144 | "Number of simplifiable ADRP reachable by 4 or more defs"); |
| 145 | STATISTIC(NumADDToSTRWithImm, |
| 146 | "Number of simplifiable STR with imm reachable by ADD"); |
| 147 | STATISTIC(NumLDRToSTRWithImm, |
| 148 | "Number of simplifiable STR with imm reachable by LDR"); |
| 149 | STATISTIC(NumADDToSTR, "Number of simplifiable STR reachable by ADD"); |
| 150 | STATISTIC(NumLDRToSTR, "Number of simplifiable STR reachable by LDR"); |
| 151 | STATISTIC(NumADDToLDRWithImm, |
| 152 | "Number of simplifiable LDR with imm reachable by ADD"); |
| 153 | STATISTIC(NumLDRToLDRWithImm, |
| 154 | "Number of simplifiable LDR with imm reachable by LDR"); |
| 155 | STATISTIC(NumADDToLDR, "Number of simplifiable LDR reachable by ADD"); |
| 156 | STATISTIC(NumLDRToLDR, "Number of simplifiable LDR reachable by LDR"); |
| 157 | STATISTIC(NumADRPToLDR, "Number of simplifiable LDR reachable by ADRP"); |
| 158 | STATISTIC(NumCplxLvl1, "Number of complex case of level 1"); |
| 159 | STATISTIC(NumTooCplxLvl1, "Number of too complex case of level 1"); |
| 160 | STATISTIC(NumCplxLvl2, "Number of complex case of level 2"); |
| 161 | STATISTIC(NumTooCplxLvl2, "Number of too complex case of level 2"); |
| 162 | STATISTIC(NumADRSimpleCandidate, "Number of simplifiable ADRP + ADD"); |
| 163 | STATISTIC(NumADRComplexCandidate, "Number of too complex ADRP + ADD"); |
| 164 | |
| 165 | namespace llvm { |
| 166 | void initializeARM64CollectLOHPass(PassRegistry &); |
| 167 | } |
| 168 | |
| 169 | namespace { |
| 170 | struct ARM64CollectLOH : public MachineFunctionPass { |
| 171 | static char ID; |
| 172 | ARM64CollectLOH() : MachineFunctionPass(ID) { |
| 173 | initializeARM64CollectLOHPass(*PassRegistry::getPassRegistry()); |
| 174 | } |
| 175 | |
| 176 | virtual bool runOnMachineFunction(MachineFunction &Fn); |
| 177 | |
| 178 | virtual const char *getPassName() const { |
| 179 | return "ARM64 Collect Linker Optimization Hint (LOH)"; |
| 180 | } |
| 181 | |
| 182 | void getAnalysisUsage(AnalysisUsage &AU) const { |
| 183 | AU.setPreservesAll(); |
| 184 | MachineFunctionPass::getAnalysisUsage(AU); |
| 185 | AU.addRequired<MachineDominatorTree>(); |
| 186 | } |
| 187 | |
| 188 | private: |
| 189 | }; |
| 190 | |
| 191 | /// A set of MachineInstruction. |
| 192 | typedef SetVector<const MachineInstr *> SetOfMachineInstr; |
| 193 | /// Map a basic block to a set of instructions per register. |
| 194 | /// This is used to represent the exposed uses of a basic block |
| 195 | /// per register. |
| 196 | typedef MapVector<const MachineBasicBlock *, SetOfMachineInstr *> |
| 197 | BlockToSetOfInstrsPerColor; |
| 198 | /// Map a basic block to an instruction per register. |
| 199 | /// This is used to represent the live-out definitions of a basic block |
| 200 | /// per register. |
| 201 | typedef MapVector<const MachineBasicBlock *, const MachineInstr **> |
| 202 | BlockToInstrPerColor; |
| 203 | /// Map an instruction to a set of instructions. Used to represent the |
| 204 | /// mapping def to reachable uses or use to definitions. |
| 205 | typedef MapVector<const MachineInstr *, SetOfMachineInstr> InstrToInstrs; |
| 206 | /// Map a basic block to a BitVector. |
| 207 | /// This is used to record the kill registers per basic block. |
| 208 | typedef MapVector<const MachineBasicBlock *, BitVector> BlockToRegSet; |
| 209 | |
| 210 | /// Map a register to a dense id. |
| 211 | typedef DenseMap<unsigned, unsigned> MapRegToId; |
| 212 | /// Map a dense id to a register. Used for debug purposes. |
| 213 | typedef SmallVector<unsigned, 32> MapIdToReg; |
| 214 | } // end anonymous namespace. |
| 215 | |
| 216 | char ARM64CollectLOH::ID = 0; |
| 217 | |
| 218 | INITIALIZE_PASS_BEGIN(ARM64CollectLOH, "arm64-collect-loh", |
| 219 | "ARM64 Collect Linker Optimization Hint (LOH)", false, |
| 220 | false) |
| 221 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) |
| 222 | INITIALIZE_PASS_END(ARM64CollectLOH, "arm64-collect-loh", |
| 223 | "ARM64 Collect Linker Optimization Hint (LOH)", false, |
| 224 | false) |
| 225 | |
| 226 | /// Given a couple (MBB, reg) get the corresponding set of instruction from |
| 227 | /// the given "sets". |
| 228 | /// If this couple does not reference any set, an empty set is added to "sets" |
| 229 | /// for this couple and returned. |
| 230 | /// \param nbRegs is used internally allocate some memory. It must be consistent |
| 231 | /// with the way sets is used. |
| 232 | static SetOfMachineInstr &getSet(BlockToSetOfInstrsPerColor &sets, |
| 233 | const MachineBasicBlock *MBB, unsigned reg, |
| 234 | unsigned nbRegs) { |
| 235 | SetOfMachineInstr *result; |
| 236 | BlockToSetOfInstrsPerColor::iterator it = sets.find(MBB); |
| 237 | if (it != sets.end()) { |
| 238 | result = it->second; |
| 239 | } else { |
| 240 | result = sets[MBB] = new SetOfMachineInstr[nbRegs]; |
| 241 | } |
| 242 | |
| 243 | return result[reg]; |
| 244 | } |
| 245 | |
| 246 | /// Given a couple (reg, MI) get the corresponding set of instructions from the |
| 247 | /// the given "sets". |
| 248 | /// This is used to get the uses record in sets of a definition identified by |
| 249 | /// MI and reg, i.e., MI defines reg. |
| 250 | /// If the couple does not reference anything, an empty set is added to |
| 251 | /// "sets[reg]". |
| 252 | /// \pre set[reg] is valid. |
| 253 | static SetOfMachineInstr &getUses(InstrToInstrs *sets, unsigned reg, |
| 254 | const MachineInstr *MI) { |
| 255 | return sets[reg][MI]; |
| 256 | } |
| 257 | |
| 258 | /// Same as getUses but does not modify the input map: sets. |
| 259 | /// \return NULL if the couple (reg, MI) is not in sets. |
| 260 | static const SetOfMachineInstr *getUses(const InstrToInstrs *sets, unsigned reg, |
| 261 | const MachineInstr *MI) { |
| 262 | InstrToInstrs::const_iterator Res = sets[reg].find(MI); |
| 263 | if (Res != sets[reg].end()) |
| 264 | return &(Res->second); |
| 265 | return NULL; |
| 266 | } |
| 267 | |
| 268 | /// Initialize the reaching definition algorithm: |
| 269 | /// For each basic block BB in MF, record: |
| 270 | /// - its kill set. |
| 271 | /// - its reachable uses (uses that are exposed to BB's predecessors). |
| 272 | /// - its the generated definitions. |
| 273 | /// \param DummyOp if not NULL, specifies a Dummy Operation to be added to |
| 274 | /// the list of uses of exposed defintions. |
| 275 | /// \param ADRPMode specifies to only consider ADRP instructions for generated |
| 276 | /// definition. It also consider definitions of ADRP instructions as uses and |
| 277 | /// ignore other uses. The ADRPMode is used to collect the information for LHO |
| 278 | /// that involve ADRP operation only. |
| 279 | static void initReachingDef(MachineFunction *MF, |
| 280 | InstrToInstrs *ColorOpToReachedUses, |
| 281 | BlockToInstrPerColor &Gen, BlockToRegSet &Kill, |
| 282 | BlockToSetOfInstrsPerColor &ReachableUses, |
| 283 | const MapRegToId &RegToId, |
| 284 | const MachineInstr *DummyOp, bool ADRPMode) { |
| 285 | const TargetMachine &TM = MF->getTarget(); |
| 286 | const TargetRegisterInfo *TRI = TM.getRegisterInfo(); |
| 287 | |
| 288 | unsigned NbReg = RegToId.size(); |
| 289 | |
| 290 | for (MachineFunction::const_iterator IMBB = MF->begin(), IMBBEnd = MF->end(); |
| 291 | IMBB != IMBBEnd; ++IMBB) { |
| 292 | const MachineBasicBlock *MBB = &(*IMBB); |
| 293 | const MachineInstr **&BBGen = Gen[MBB]; |
| 294 | BBGen = new const MachineInstr *[NbReg]; |
| 295 | memset(BBGen, 0, sizeof(const MachineInstr *) * NbReg); |
| 296 | |
| 297 | BitVector &BBKillSet = Kill[MBB]; |
| 298 | BBKillSet.resize(NbReg); |
| 299 | for (MachineBasicBlock::const_iterator II = MBB->begin(), IEnd = MBB->end(); |
| 300 | II != IEnd; ++II) { |
| 301 | bool IsADRP = II->getOpcode() == ARM64::ADRP; |
| 302 | |
| 303 | // Process uses first. |
| 304 | if (IsADRP || !ADRPMode) |
| 305 | for (MachineInstr::const_mop_iterator IO = II->operands_begin(), |
| 306 | IOEnd = II->operands_end(); |
| 307 | IO != IOEnd; ++IO) { |
| 308 | // Treat ADRP def as use, as the goal of the analysis is to find |
| 309 | // ADRP defs reached by other ADRP defs. |
| 310 | if (!IO->isReg() || (!ADRPMode && !IO->isUse()) || |
| 311 | (ADRPMode && (!IsADRP || !IO->isDef()))) |
| 312 | continue; |
| 313 | unsigned CurReg = IO->getReg(); |
| 314 | MapRegToId::const_iterator ItCurRegId = RegToId.find(CurReg); |
| 315 | if (ItCurRegId == RegToId.end()) |
| 316 | continue; |
| 317 | CurReg = ItCurRegId->second; |
| 318 | |
| 319 | // if CurReg has not been defined, this use is reachable. |
| 320 | if (!BBGen[CurReg] && !BBKillSet.test(CurReg)) |
| 321 | getSet(ReachableUses, MBB, CurReg, NbReg).insert(&(*II)); |
| 322 | // current basic block definition for this color, if any, is in Gen. |
| 323 | if (BBGen[CurReg]) |
| 324 | getUses(ColorOpToReachedUses, CurReg, BBGen[CurReg]).insert(&(*II)); |
| 325 | } |
| 326 | |
| 327 | // Process clobbers. |
| 328 | for (MachineInstr::const_mop_iterator IO = II->operands_begin(), |
| 329 | IOEnd = II->operands_end(); |
| 330 | IO != IOEnd; ++IO) { |
| 331 | if (!IO->isRegMask()) |
| 332 | continue; |
| 333 | // Clobbers kill the related colors. |
| 334 | const uint32_t *PreservedRegs = IO->getRegMask(); |
| 335 | |
| 336 | // Set generated regs. |
| 337 | for (const auto Entry : RegToId) { |
| 338 | unsigned Reg = Entry.second; |
| 339 | // Use the global register ID when querying APIs external to this |
| 340 | // pass. |
| 341 | if (MachineOperand::clobbersPhysReg(PreservedRegs, Entry.first)) { |
| 342 | // Do not register clobbered definition for no ADRP. |
| 343 | // This definition is not used anyway (otherwise register |
| 344 | // allocation is wrong). |
| 345 | BBGen[Reg] = ADRPMode ? II : NULL; |
| 346 | BBKillSet.set(Reg); |
| 347 | } |
| 348 | } |
| 349 | } |
| 350 | |
| 351 | // Process defs |
| 352 | for (MachineInstr::const_mop_iterator IO = II->operands_begin(), |
| 353 | IOEnd = II->operands_end(); |
| 354 | IO != IOEnd; ++IO) { |
| 355 | if (!IO->isReg() || !IO->isDef()) |
| 356 | continue; |
| 357 | unsigned CurReg = IO->getReg(); |
| 358 | MapRegToId::const_iterator ItCurRegId = RegToId.find(CurReg); |
| 359 | if (ItCurRegId == RegToId.end()) |
| 360 | continue; |
| 361 | |
| 362 | for (MCRegAliasIterator AI(CurReg, TRI, true); AI.isValid(); ++AI) { |
| 363 | MapRegToId::const_iterator ItRegId = RegToId.find(*AI); |
| 364 | assert(ItRegId != RegToId.end() && |
| 365 | "Sub-register of an " |
| 366 | "involved register, not recorded as involved!"); |
| 367 | BBKillSet.set(ItRegId->second); |
| 368 | BBGen[ItRegId->second] = &(*II); |
| 369 | } |
| 370 | BBGen[ItCurRegId->second] = &(*II); |
| 371 | } |
| 372 | } |
| 373 | |
| 374 | // If we restrict our analysis to basic block scope, conservatively add a |
| 375 | // dummy |
| 376 | // use for each generated value. |
| 377 | if (!ADRPMode && DummyOp && !MBB->succ_empty()) |
| 378 | for (unsigned CurReg = 0; CurReg < NbReg; ++CurReg) |
| 379 | if (BBGen[CurReg]) |
| 380 | getUses(ColorOpToReachedUses, CurReg, BBGen[CurReg]).insert(DummyOp); |
| 381 | } |
| 382 | } |
| 383 | |
| 384 | /// Reaching def core algorithm: |
| 385 | /// while an Out has changed |
| 386 | /// for each bb |
| 387 | /// for each color |
| 388 | /// In[bb][color] = U Out[bb.predecessors][color] |
| 389 | /// insert reachableUses[bb][color] in each in[bb][color] |
| 390 | /// op.reachedUses |
| 391 | /// |
| 392 | /// Out[bb] = Gen[bb] U (In[bb] - Kill[bb]) |
| 393 | static void reachingDefAlgorithm(MachineFunction *MF, |
| 394 | InstrToInstrs *ColorOpToReachedUses, |
| 395 | BlockToSetOfInstrsPerColor &In, |
| 396 | BlockToSetOfInstrsPerColor &Out, |
| 397 | BlockToInstrPerColor &Gen, BlockToRegSet &Kill, |
| 398 | BlockToSetOfInstrsPerColor &ReachableUses, |
| 399 | unsigned NbReg) { |
| 400 | bool HasChanged; |
| 401 | do { |
| 402 | HasChanged = false; |
| 403 | for (MachineFunction::const_iterator IMBB = MF->begin(), |
| 404 | IMBBEnd = MF->end(); |
| 405 | IMBB != IMBBEnd; ++IMBB) { |
| 406 | const MachineBasicBlock *MBB = &(*IMBB); |
| 407 | unsigned CurReg; |
| 408 | for (CurReg = 0; CurReg < NbReg; ++CurReg) { |
| 409 | SetOfMachineInstr &BBInSet = getSet(In, MBB, CurReg, NbReg); |
| 410 | SetOfMachineInstr &BBReachableUses = |
| 411 | getSet(ReachableUses, MBB, CurReg, NbReg); |
| 412 | SetOfMachineInstr &BBOutSet = getSet(Out, MBB, CurReg, NbReg); |
| 413 | unsigned Size = BBOutSet.size(); |
| 414 | // In[bb][color] = U Out[bb.predecessors][color] |
| 415 | for (MachineBasicBlock::const_pred_iterator |
| 416 | PredMBB = MBB->pred_begin(), |
| 417 | EndPredMBB = MBB->pred_end(); |
| 418 | PredMBB != EndPredMBB; ++PredMBB) { |
| 419 | SetOfMachineInstr &PredOutSet = getSet(Out, *PredMBB, CurReg, NbReg); |
| 420 | BBInSet.insert(PredOutSet.begin(), PredOutSet.end()); |
| 421 | } |
| 422 | // insert reachableUses[bb][color] in each in[bb][color] op.reachedses |
| 423 | for (const MachineInstr *MI: BBInSet) { |
| 424 | SetOfMachineInstr &OpReachedUses = |
| 425 | getUses(ColorOpToReachedUses, CurReg, MI); |
| 426 | OpReachedUses.insert(BBReachableUses.begin(), BBReachableUses.end()); |
| 427 | } |
| 428 | // Out[bb] = Gen[bb] U (In[bb] - Kill[bb]) |
| 429 | if (!Kill[MBB].test(CurReg)) |
| 430 | BBOutSet.insert(BBInSet.begin(), BBInSet.end()); |
| 431 | if (Gen[MBB][CurReg]) |
| 432 | BBOutSet.insert(Gen[MBB][CurReg]); |
| 433 | HasChanged |= BBOutSet.size() != Size; |
| 434 | } |
| 435 | } |
| 436 | } while (HasChanged); |
| 437 | } |
| 438 | |
| 439 | /// Release all memory dynamically allocated during the reaching |
| 440 | /// definition algorithm. |
| 441 | static void finitReachingDef(BlockToSetOfInstrsPerColor &In, |
| 442 | BlockToSetOfInstrsPerColor &Out, |
| 443 | BlockToInstrPerColor &Gen, |
| 444 | BlockToSetOfInstrsPerColor &ReachableUses) { |
| 445 | for (BlockToSetOfInstrsPerColor::const_iterator IT = Out.begin(), |
| 446 | End = Out.end(); |
| 447 | IT != End; ++IT) |
| 448 | delete[] IT->second; |
| 449 | for (BlockToSetOfInstrsPerColor::const_iterator IT = In.begin(), |
| 450 | End = In.end(); |
| 451 | IT != End; ++IT) |
| 452 | delete[] IT->second; |
| 453 | for (BlockToSetOfInstrsPerColor::const_iterator IT = ReachableUses.begin(), |
| 454 | End = ReachableUses.end(); |
| 455 | IT != End; ++IT) |
| 456 | delete[] IT->second; |
| 457 | for (BlockToInstrPerColor::const_iterator IT = Gen.begin(), End = Gen.end(); |
| 458 | IT != End; ++IT) |
| 459 | delete[] IT->second; |
| 460 | } |
| 461 | |
| 462 | /// Reaching definiton algorithm. |
| 463 | /// \param MF function on which the algorithm will operate. |
| 464 | /// \param[out] ColorOpToReachedUses will contain the result of the reaching |
| 465 | /// def algorithm. |
| 466 | /// \param ADRPMode specify whether the reaching def algorithm should be tuned |
| 467 | /// for ADRP optimization. \see initReachingDef for more details. |
| 468 | /// \param DummyOp if not NULL, the algorithm will work at |
| 469 | /// basic block scope and will set for every exposed defintion a use to |
| 470 | /// @p DummyOp. |
| 471 | /// \pre ColorOpToReachedUses is an array of at least number of registers of |
| 472 | /// InstrToInstrs. |
| 473 | static void reachingDef(MachineFunction *MF, |
| 474 | InstrToInstrs *ColorOpToReachedUses, |
| 475 | const MapRegToId &RegToId, bool ADRPMode = false, |
| 476 | const MachineInstr *DummyOp = NULL) { |
| 477 | // structures: |
| 478 | // For each basic block. |
| 479 | // Out: a set per color of definitions that reach the |
| 480 | // out boundary of this block. |
| 481 | // In: Same as Out but for in boundary. |
| 482 | // Gen: generated color in this block (one operation per color). |
| 483 | // Kill: register set of killed color in this block. |
| 484 | // ReachableUses: a set per color of uses (operation) reachable |
| 485 | // for "In" definitions. |
| 486 | BlockToSetOfInstrsPerColor Out, In, ReachableUses; |
| 487 | BlockToInstrPerColor Gen; |
| 488 | BlockToRegSet Kill; |
| 489 | |
| 490 | // Initialize Gen, kill and reachableUses. |
| 491 | initReachingDef(MF, ColorOpToReachedUses, Gen, Kill, ReachableUses, RegToId, |
| 492 | DummyOp, ADRPMode); |
| 493 | |
| 494 | // Algo. |
| 495 | if (!DummyOp) |
| 496 | reachingDefAlgorithm(MF, ColorOpToReachedUses, In, Out, Gen, Kill, |
| 497 | ReachableUses, RegToId.size()); |
| 498 | |
| 499 | // finit. |
| 500 | finitReachingDef(In, Out, Gen, ReachableUses); |
| 501 | } |
| 502 | |
| 503 | #ifndef NDEBUG |
| 504 | /// print the result of the reaching definition algorithm. |
| 505 | static void printReachingDef(const InstrToInstrs *ColorOpToReachedUses, |
| 506 | unsigned NbReg, const TargetRegisterInfo *TRI, |
| 507 | const MapIdToReg &IdToReg) { |
| 508 | unsigned CurReg; |
| 509 | for (CurReg = 0; CurReg < NbReg; ++CurReg) { |
| 510 | if (ColorOpToReachedUses[CurReg].empty()) |
| 511 | continue; |
| 512 | DEBUG(dbgs() << "*** Reg " << PrintReg(IdToReg[CurReg], TRI) << " ***\n"); |
| 513 | |
| 514 | InstrToInstrs::const_iterator DefsIt = ColorOpToReachedUses[CurReg].begin(); |
| 515 | InstrToInstrs::const_iterator DefsItEnd = |
| 516 | ColorOpToReachedUses[CurReg].end(); |
| 517 | for (; DefsIt != DefsItEnd; ++DefsIt) { |
| 518 | DEBUG(dbgs() << "Def:\n"); |
| 519 | DEBUG(DefsIt->first->print(dbgs())); |
| 520 | DEBUG(dbgs() << "Reachable uses:\n"); |
| 521 | for (SetOfMachineInstr::const_iterator UsesIt = DefsIt->second.begin(), |
| 522 | UsesItEnd = DefsIt->second.end(); |
| 523 | UsesIt != UsesItEnd; ++UsesIt) { |
| 524 | DEBUG((*UsesIt)->print(dbgs())); |
| 525 | } |
| 526 | } |
| 527 | } |
| 528 | } |
| 529 | #endif // NDEBUG |
| 530 | |
| 531 | /// Answer the following question: Can Def be one of the definition |
| 532 | /// involved in a part of a LOH? |
| 533 | static bool canDefBePartOfLOH(const MachineInstr *Def) { |
| 534 | unsigned Opc = Def->getOpcode(); |
| 535 | // Accept ADRP, ADDLow and LOADGot. |
| 536 | switch (Opc) { |
| 537 | default: |
| 538 | return false; |
| 539 | case ARM64::ADRP: |
| 540 | return true; |
| 541 | case ARM64::ADDXri: |
| 542 | // Check immediate to see if the immediate is an address. |
| 543 | switch (Def->getOperand(2).getType()) { |
| 544 | default: |
| 545 | return false; |
| 546 | case MachineOperand::MO_GlobalAddress: |
| 547 | case MachineOperand::MO_JumpTableIndex: |
| 548 | case MachineOperand::MO_ConstantPoolIndex: |
| 549 | case MachineOperand::MO_BlockAddress: |
| 550 | return true; |
| 551 | } |
| 552 | case ARM64::LDRXui: |
| 553 | // Check immediate to see if the immediate is an address. |
| 554 | switch (Def->getOperand(2).getType()) { |
| 555 | default: |
| 556 | return false; |
| 557 | case MachineOperand::MO_GlobalAddress: |
| 558 | return true; |
| 559 | } |
| 560 | } |
| 561 | // Unreachable. |
| 562 | return false; |
| 563 | } |
| 564 | |
| 565 | /// Check whether the given instruction can the end of a LOH chain involving a |
| 566 | /// store. |
| 567 | static bool isCandidateStore(const MachineInstr *Instr) { |
| 568 | switch (Instr->getOpcode()) { |
| 569 | default: |
| 570 | return false; |
| 571 | case ARM64::STRBui: |
| 572 | case ARM64::STRHui: |
| 573 | case ARM64::STRWui: |
| 574 | case ARM64::STRXui: |
| 575 | case ARM64::STRSui: |
| 576 | case ARM64::STRDui: |
| 577 | case ARM64::STRQui: |
| 578 | // In case we have str xA, [xA, #imm], this is two different uses |
| 579 | // of xA and we cannot fold, otherwise the xA stored may be wrong, |
| 580 | // even if #imm == 0. |
| 581 | if (Instr->getOperand(0).getReg() != Instr->getOperand(1).getReg()) |
| 582 | return true; |
| 583 | } |
| 584 | return false; |
| 585 | } |
| 586 | |
| 587 | /// Given the result of a reaching defintion algorithm in ColorOpToReachedUses, |
| 588 | /// Build the Use to Defs information and filter out obvious non-LOH candidates. |
| 589 | /// In ADRPMode, non-LOH candidates are "uses" with non-ADRP definitions. |
| 590 | /// In non-ADRPMode, non-LOH candidates are "uses" with several definition, |
| 591 | /// i.e., no simple chain. |
| 592 | /// \param ADRPMode -- \see initReachingDef. |
| 593 | static void reachedUsesToDefs(InstrToInstrs &UseToReachingDefs, |
| 594 | const InstrToInstrs *ColorOpToReachedUses, |
| 595 | const MapRegToId &RegToId, |
| 596 | bool ADRPMode = false) { |
| 597 | |
| 598 | SetOfMachineInstr NotCandidate; |
| 599 | unsigned NbReg = RegToId.size(); |
| 600 | MapRegToId::const_iterator EndIt = RegToId.end(); |
| 601 | for (unsigned CurReg = 0; CurReg < NbReg; ++CurReg) { |
| 602 | // If this color is never defined, continue. |
| 603 | if (ColorOpToReachedUses[CurReg].empty()) |
| 604 | continue; |
| 605 | |
| 606 | InstrToInstrs::const_iterator DefsIt = ColorOpToReachedUses[CurReg].begin(); |
| 607 | InstrToInstrs::const_iterator DefsItEnd = |
| 608 | ColorOpToReachedUses[CurReg].end(); |
| 609 | for (; DefsIt != DefsItEnd; ++DefsIt) { |
| 610 | for (SetOfMachineInstr::const_iterator UsesIt = DefsIt->second.begin(), |
| 611 | UsesItEnd = DefsIt->second.end(); |
| 612 | UsesIt != UsesItEnd; ++UsesIt) { |
| 613 | const MachineInstr *Def = DefsIt->first; |
| 614 | MapRegToId::const_iterator It; |
| 615 | // if all the reaching defs are not adrp, this use will not be |
| 616 | // simplifiable. |
| 617 | if ((ADRPMode && Def->getOpcode() != ARM64::ADRP) || |
| 618 | (!ADRPMode && !canDefBePartOfLOH(Def)) || |
| 619 | (!ADRPMode && isCandidateStore(*UsesIt) && |
| 620 | // store are LOH candidate iff the end of the chain is used as |
| 621 | // base. |
| 622 | ((It = RegToId.find((*UsesIt)->getOperand(1).getReg())) == EndIt || |
| 623 | It->second != CurReg))) { |
| 624 | NotCandidate.insert(*UsesIt); |
| 625 | continue; |
| 626 | } |
| 627 | // Do not consider self reaching as a simplifiable case for ADRP. |
| 628 | if (!ADRPMode || *UsesIt != DefsIt->first) { |
| 629 | UseToReachingDefs[*UsesIt].insert(DefsIt->first); |
| 630 | // If UsesIt has several reaching definitions, it is not |
| 631 | // candidate for simplificaton in non-ADRPMode. |
| 632 | if (!ADRPMode && UseToReachingDefs[*UsesIt].size() > 1) |
| 633 | NotCandidate.insert(*UsesIt); |
| 634 | } |
| 635 | } |
| 636 | } |
| 637 | } |
| 638 | for (const MachineInstr *Elem : NotCandidate) { |
| 639 | DEBUG(dbgs() << "Too many reaching defs: " << *Elem << "\n"); |
| 640 | // It would have been better if we could just remove the entry |
| 641 | // from the map. Because of that, we have to filter the garbage |
| 642 | // (second.empty) in the subsequence analysis. |
| 643 | UseToReachingDefs[Elem].clear(); |
| 644 | } |
| 645 | } |
| 646 | |
| 647 | /// Based on the use to defs information (in ADRPMode), compute the |
| 648 | /// opportunities of LOH ADRP-related. |
| 649 | static void computeADRP(const InstrToInstrs &UseToDefs, |
| 650 | ARM64FunctionInfo &ARM64FI, |
| 651 | const MachineDominatorTree *MDT) { |
| 652 | DEBUG(dbgs() << "*** Compute LOH for ADRP\n"); |
| 653 | for (const auto &Entry: UseToDefs) { |
| 654 | unsigned Size = Entry.second.size(); |
| 655 | if (Size == 0) |
| 656 | continue; |
| 657 | if (Size == 1) { |
| 658 | const MachineInstr *L2 = *Entry.second.begin(); |
| 659 | const MachineInstr *L1 = Entry.first; |
| 660 | if (!MDT->dominates(L2, L1)) { |
| 661 | DEBUG(dbgs() << "Dominance check failed:\n" << *L2 << '\n' << *L1 |
| 662 | << '\n'); |
| 663 | continue; |
| 664 | } |
| 665 | DEBUG(dbgs() << "Record AdrpAdrp:\n" << *L2 << '\n' << *L1 << '\n'); |
| 666 | SmallVector<const MachineInstr *, 2> Args; |
| 667 | Args.push_back(L2); |
| 668 | Args.push_back(L1); |
| 669 | ARM64FI.addLOHDirective(MCLOH_AdrpAdrp, Args); |
| 670 | ++NumADRPSimpleCandidate; |
| 671 | } |
| 672 | #ifdef DEBUG |
| 673 | else if (Size == 2) |
| 674 | ++NumADRPComplexCandidate2; |
| 675 | else if (Size == 3) |
| 676 | ++NumADRPComplexCandidate3; |
| 677 | else |
| 678 | ++NumADRPComplexCandidateOther; |
| 679 | #endif |
| 680 | // if Size < 1, the use should have been removed from the candidates |
| 681 | assert(Size >= 1 && "No reaching defs for that use!"); |
| 682 | } |
| 683 | } |
| 684 | |
| 685 | /// Check whether the given instruction can be the end of a LOH chain |
| 686 | /// involving a load. |
| 687 | static bool isCandidateLoad(const MachineInstr *Instr) { |
| 688 | switch (Instr->getOpcode()) { |
| 689 | default: |
| 690 | return false; |
| 691 | case ARM64::LDRSBWui: |
| 692 | case ARM64::LDRSBXui: |
| 693 | case ARM64::LDRSHWui: |
| 694 | case ARM64::LDRSHXui: |
| 695 | case ARM64::LDRSWui: |
| 696 | case ARM64::LDRBui: |
| 697 | case ARM64::LDRHui: |
| 698 | case ARM64::LDRWui: |
| 699 | case ARM64::LDRXui: |
| 700 | case ARM64::LDRSui: |
| 701 | case ARM64::LDRDui: |
| 702 | case ARM64::LDRQui: |
| 703 | if (Instr->getOperand(2).getTargetFlags() & ARM64II::MO_GOT) |
| 704 | return false; |
| 705 | return true; |
| 706 | } |
| 707 | // Unreachable. |
| 708 | return false; |
| 709 | } |
| 710 | |
| 711 | /// Check whether the given instruction can load a litteral. |
| 712 | static bool supportLoadFromLiteral(const MachineInstr *Instr) { |
| 713 | switch (Instr->getOpcode()) { |
| 714 | default: |
| 715 | return false; |
| 716 | case ARM64::LDRSWui: |
| 717 | case ARM64::LDRWui: |
| 718 | case ARM64::LDRXui: |
| 719 | case ARM64::LDRSui: |
| 720 | case ARM64::LDRDui: |
| 721 | case ARM64::LDRQui: |
| 722 | return true; |
| 723 | } |
| 724 | // Unreachable. |
| 725 | return false; |
| 726 | } |
| 727 | |
| 728 | /// Check whether the given instruction is a LOH candidate. |
| 729 | /// \param UseToDefs is used to check that Instr is at the end of LOH supported |
| 730 | /// chain. |
| 731 | /// \pre UseToDefs contains only on def per use, i.e., obvious non candidate are |
| 732 | /// already been filtered out. |
| 733 | static bool isCandidate(const MachineInstr *Instr, |
| 734 | const InstrToInstrs &UseToDefs, |
| 735 | const MachineDominatorTree *MDT) { |
| 736 | if (!isCandidateLoad(Instr) && !isCandidateStore(Instr)) |
| 737 | return false; |
| 738 | |
| 739 | const MachineInstr *Def = *UseToDefs.find(Instr)->second.begin(); |
| 740 | if (Def->getOpcode() != ARM64::ADRP) { |
| 741 | // At this point, Def is ADDXri or LDRXui of the right type of |
| 742 | // symbol, because we filtered out the uses that were not defined |
| 743 | // by these kind of instructions (+ ADRP). |
| 744 | |
| 745 | // Check if this forms a simple chain: each intermediate node must |
| 746 | // dominates the next one. |
| 747 | if (!MDT->dominates(Def, Instr)) |
| 748 | return false; |
| 749 | // Move one node up in the simple chain. |
| 750 | if (UseToDefs.find(Def) == UseToDefs.end() |
| 751 | // The map may contain garbage we have to ignore. |
| 752 | || |
| 753 | UseToDefs.find(Def)->second.empty()) |
| 754 | return false; |
| 755 | Instr = Def; |
| 756 | Def = *UseToDefs.find(Def)->second.begin(); |
| 757 | } |
| 758 | // Check if we reached the top of the simple chain: |
| 759 | // - top is ADRP. |
| 760 | // - check the simple chain property: each intermediate node must |
| 761 | // dominates the next one. |
| 762 | if (Def->getOpcode() == ARM64::ADRP) |
| 763 | return MDT->dominates(Def, Instr); |
| 764 | return false; |
| 765 | } |
| 766 | |
| 767 | static bool registerADRCandidate(const MachineInstr *Use, |
| 768 | const InstrToInstrs &UseToDefs, |
| 769 | const InstrToInstrs *DefsPerColorToUses, |
| 770 | ARM64FunctionInfo &ARM64FI, |
| 771 | SetOfMachineInstr *InvolvedInLOHs, |
| 772 | const MapRegToId &RegToId) { |
| 773 | // Look for opportunities to turn ADRP -> ADD or |
| 774 | // ADRP -> LDR GOTPAGEOFF into ADR. |
| 775 | // If ADRP has more than one use. Give up. |
| 776 | if (Use->getOpcode() != ARM64::ADDXri && |
| 777 | (Use->getOpcode() != ARM64::LDRXui || |
| 778 | !(Use->getOperand(2).getTargetFlags() & ARM64II::MO_GOT))) |
| 779 | return false; |
| 780 | InstrToInstrs::const_iterator It = UseToDefs.find(Use); |
| 781 | // The map may contain garbage that we need to ignore. |
| 782 | if (It == UseToDefs.end() || It->second.empty()) |
| 783 | return false; |
| 784 | const MachineInstr *Def = *It->second.begin(); |
| 785 | if (Def->getOpcode() != ARM64::ADRP) |
| 786 | return false; |
| 787 | // Check the number of users of ADRP. |
| 788 | const SetOfMachineInstr *Users = |
| 789 | getUses(DefsPerColorToUses, |
| 790 | RegToId.find(Def->getOperand(0).getReg())->second, Def); |
| 791 | if (Users->size() > 1) { |
| 792 | ++NumADRComplexCandidate; |
| 793 | return false; |
| 794 | } |
| 795 | ++NumADRSimpleCandidate; |
| 796 | assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Def)) && |
| 797 | "ADRP already involved in LOH."); |
| 798 | assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Use)) && |
| 799 | "ADD already involved in LOH."); |
| 800 | DEBUG(dbgs() << "Record AdrpAdd\n" << *Def << '\n' << *Use << '\n'); |
| 801 | |
| 802 | SmallVector<const MachineInstr *, 2> Args; |
| 803 | Args.push_back(Def); |
| 804 | Args.push_back(Use); |
| 805 | |
| 806 | ARM64FI.addLOHDirective(Use->getOpcode() == ARM64::ADDXri ? MCLOH_AdrpAdd |
| 807 | : MCLOH_AdrpLdrGot, |
| 808 | Args); |
| 809 | return true; |
| 810 | } |
| 811 | |
| 812 | /// Based on the use to defs information (in non-ADRPMode), compute the |
| 813 | /// opportunities of LOH non-ADRP-related |
| 814 | static void computeOthers(const InstrToInstrs &UseToDefs, |
| 815 | const InstrToInstrs *DefsPerColorToUses, |
| 816 | ARM64FunctionInfo &ARM64FI, const MapRegToId &RegToId, |
| 817 | const MachineDominatorTree *MDT) { |
| 818 | SetOfMachineInstr *InvolvedInLOHs = NULL; |
| 819 | #ifdef DEBUG |
| 820 | SetOfMachineInstr InvolvedInLOHsStorage; |
| 821 | InvolvedInLOHs = &InvolvedInLOHsStorage; |
| 822 | #endif // DEBUG |
| 823 | DEBUG(dbgs() << "*** Compute LOH for Others\n"); |
| 824 | // ADRP -> ADD/LDR -> LDR/STR pattern. |
| 825 | // Fall back to ADRP -> ADD pattern if we fail to catch the bigger pattern. |
| 826 | |
| 827 | // FIXME: When the statistics are not important, |
| 828 | // This initial filtering loop can be merged into the next loop. |
| 829 | // Currently, we didn't do it to have the same code for both DEBUG and |
| 830 | // NDEBUG builds. Indeed, the iterator of the second loop would need |
| 831 | // to be changed. |
| 832 | SetOfMachineInstr PotentialCandidates; |
| 833 | SetOfMachineInstr PotentialADROpportunities; |
| 834 | for (InstrToInstrs::const_iterator UseIt = UseToDefs.begin(), |
| 835 | EndUseIt = UseToDefs.end(); |
| 836 | UseIt != EndUseIt; ++UseIt) { |
| 837 | // If no definition is available, this is a non candidate. |
| 838 | if (UseIt->second.empty()) |
| 839 | continue; |
| 840 | // Keep only instructions that are load or store and at the end of |
| 841 | // a ADRP -> ADD/LDR/Nothing chain. |
| 842 | // We already filtered out the no-chain cases. |
| 843 | if (!isCandidate(UseIt->first, UseToDefs, MDT)) { |
| 844 | PotentialADROpportunities.insert(UseIt->first); |
| 845 | continue; |
| 846 | } |
| 847 | PotentialCandidates.insert(UseIt->first); |
| 848 | } |
| 849 | |
| 850 | // Make the following distinctions for statistics as the linker does |
| 851 | // know how to decode instructions: |
| 852 | // - ADD/LDR/Nothing make there different patterns. |
| 853 | // - LDR/STR make two different patterns. |
| 854 | // Hence, 6 - 1 base patterns. |
| 855 | // (because ADRP-> Nothing -> STR is not simplifiable) |
| 856 | |
| 857 | // The linker is only able to have a simple semantic, i.e., if pattern A |
| 858 | // do B. |
| 859 | // However, we want to see the opportunity we may miss if we were able to |
| 860 | // catch more complex cases. |
| 861 | |
| 862 | // PotentialCandidates are result of a chain ADRP -> ADD/LDR -> |
| 863 | // A potential candidate becomes a candidate, if its current immediate |
| 864 | // operand is zero and all nodes of the chain have respectively only one user |
| 865 | SetOfMachineInstr::const_iterator CandidateIt, EndCandidateIt; |
| 866 | #ifdef DEBUG |
| 867 | SetOfMachineInstr DefsOfPotentialCandidates; |
| 868 | #endif |
| 869 | for (CandidateIt = PotentialCandidates.begin(), |
| 870 | EndCandidateIt = PotentialCandidates.end(); |
| 871 | CandidateIt != EndCandidateIt; ++CandidateIt) { |
| 872 | const MachineInstr *Candidate = *CandidateIt; |
| 873 | // Get the definition of the candidate i.e., ADD or LDR. |
| 874 | const MachineInstr *Def = *UseToDefs.find(Candidate)->second.begin(); |
| 875 | // Record the elements of the chain. |
| 876 | const MachineInstr *L1 = Def; |
| 877 | const MachineInstr *L2 = NULL; |
| 878 | unsigned ImmediateDefOpc = Def->getOpcode(); |
| 879 | if (Def->getOpcode() != ARM64::ADRP) { |
| 880 | // Check the number of users of this node. |
| 881 | const SetOfMachineInstr *Users = |
| 882 | getUses(DefsPerColorToUses, |
| 883 | RegToId.find(Def->getOperand(0).getReg())->second, Def); |
| 884 | if (Users->size() > 1) { |
| 885 | #ifdef DEBUG |
| 886 | // if all the uses of this def are in potential candidate, this is |
| 887 | // a complex candidate of level 2. |
| 888 | SetOfMachineInstr::const_iterator UseIt = Users->begin(); |
| 889 | SetOfMachineInstr::const_iterator EndUseIt = Users->end(); |
| 890 | for (; UseIt != EndUseIt; ++UseIt) { |
| 891 | if (!PotentialCandidates.count(*UseIt)) { |
| 892 | ++NumTooCplxLvl2; |
| 893 | break; |
| 894 | } |
| 895 | } |
| 896 | if (UseIt == EndUseIt) |
| 897 | ++NumCplxLvl2; |
| 898 | #endif // DEBUG |
| 899 | PotentialADROpportunities.insert(Def); |
| 900 | continue; |
| 901 | } |
| 902 | L2 = Def; |
| 903 | Def = *UseToDefs.find(Def)->second.begin(); |
| 904 | L1 = Def; |
| 905 | } // else the element in the middle of the chain is nothing, thus |
| 906 | // Def already contains the first element of the chain. |
| 907 | |
| 908 | // Check the number of users of the first node in the chain, i.e., ADRP |
| 909 | const SetOfMachineInstr *Users = |
| 910 | getUses(DefsPerColorToUses, |
| 911 | RegToId.find(Def->getOperand(0).getReg())->second, Def); |
| 912 | if (Users->size() > 1) { |
| 913 | #ifdef DEBUG |
| 914 | // if all the uses of this def are in the defs of the potential candidate, |
| 915 | // this is a complex candidate of level 1 |
| 916 | if (DefsOfPotentialCandidates.empty()) { |
| 917 | // lazy init |
| 918 | DefsOfPotentialCandidates = PotentialCandidates; |
| 919 | for (const MachineInstr *Candidate : PotentialCandidates) { |
| 920 | if (!UseToDefs.find(Candidate)->second.empty()) |
| 921 | DefsOfPotentialCandidates.insert( |
| 922 | *UseToDefs.find(Candidate)->second.begin()); |
| 923 | } |
| 924 | } |
| 925 | bool Found = false; |
| 926 | for (auto &Use: *Users) { |
| 927 | if (!DefsOfPotentialCandidates.count(Use)) { |
| 928 | ++NumTooCplxLvl1; |
| 929 | Found = true; |
| 930 | break; |
| 931 | } |
| 932 | } |
| 933 | if (!Found) |
| 934 | ++NumCplxLvl1; |
| 935 | #endif // DEBUG |
| 936 | continue; |
| 937 | } |
| 938 | |
| 939 | bool IsL2Add = (ImmediateDefOpc == ARM64::ADDXri); |
| 940 | // If the chain is three instructions long and ldr is the second element, |
| 941 | // then this ldr must load form GOT, otherwise this is not a correct chain. |
| 942 | if (L2 && !IsL2Add && L2->getOperand(2).getTargetFlags() != ARM64II::MO_GOT) |
| 943 | continue; |
| 944 | SmallVector<const MachineInstr *, 3> Args; |
| 945 | MCLOHType Kind; |
| 946 | if (isCandidateLoad(Candidate)) { |
| 947 | if (L2 == NULL) { |
| 948 | // At this point, the candidate LOH indicates that the ldr instruction |
| 949 | // may use a direct access to the symbol. There is not such encoding |
| 950 | // for loads of byte and half. |
| 951 | if (!supportLoadFromLiteral(Candidate)) |
| 952 | continue; |
| 953 | |
| 954 | DEBUG(dbgs() << "Record AdrpLdr:\n" << *L1 << '\n' << *Candidate |
| 955 | << '\n'); |
| 956 | Kind = MCLOH_AdrpLdr; |
| 957 | Args.push_back(L1); |
| 958 | Args.push_back(Candidate); |
| 959 | assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L1)) && |
| 960 | "L1 already involved in LOH."); |
| 961 | assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Candidate)) && |
| 962 | "Candidate already involved in LOH."); |
| 963 | ++NumADRPToLDR; |
| 964 | } else { |
| 965 | DEBUG(dbgs() << "Record Adrp" << (IsL2Add ? "Add" : "LdrGot") |
| 966 | << "Ldr:\n" << *L1 << '\n' << *L2 << '\n' << *Candidate |
| 967 | << '\n'); |
| 968 | |
| 969 | Kind = IsL2Add ? MCLOH_AdrpAddLdr : MCLOH_AdrpLdrGotLdr; |
| 970 | Args.push_back(L1); |
| 971 | Args.push_back(L2); |
| 972 | Args.push_back(Candidate); |
| 973 | |
| 974 | PotentialADROpportunities.remove(L2); |
| 975 | assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L1)) && |
| 976 | "L1 already involved in LOH."); |
| 977 | assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L2)) && |
| 978 | "L2 already involved in LOH."); |
| 979 | assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Candidate)) && |
| 980 | "Candidate already involved in LOH."); |
| 981 | #ifdef DEBUG |
| 982 | // get the immediate of the load |
| 983 | if (Candidate->getOperand(2).getImm() == 0) |
| 984 | if (ImmediateDefOpc == ARM64::ADDXri) |
| 985 | ++NumADDToLDR; |
| 986 | else |
| 987 | ++NumLDRToLDR; |
| 988 | else if (ImmediateDefOpc == ARM64::ADDXri) |
| 989 | ++NumADDToLDRWithImm; |
| 990 | else |
| 991 | ++NumLDRToLDRWithImm; |
| 992 | #endif // DEBUG |
| 993 | } |
| 994 | } else { |
| 995 | if (ImmediateDefOpc == ARM64::ADRP) |
| 996 | continue; |
| 997 | else { |
| 998 | |
| 999 | DEBUG(dbgs() << "Record Adrp" << (IsL2Add ? "Add" : "LdrGot") |
| 1000 | << "Str:\n" << *L1 << '\n' << *L2 << '\n' << *Candidate |
| 1001 | << '\n'); |
| 1002 | |
| 1003 | Kind = IsL2Add ? MCLOH_AdrpAddStr : MCLOH_AdrpLdrGotStr; |
| 1004 | Args.push_back(L1); |
| 1005 | Args.push_back(L2); |
| 1006 | Args.push_back(Candidate); |
| 1007 | |
| 1008 | PotentialADROpportunities.remove(L2); |
| 1009 | assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L1)) && |
| 1010 | "L1 already involved in LOH."); |
| 1011 | assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L2)) && |
| 1012 | "L2 already involved in LOH."); |
| 1013 | assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Candidate)) && |
| 1014 | "Candidate already involved in LOH."); |
| 1015 | #ifdef DEBUG |
| 1016 | // get the immediate of the store |
| 1017 | if (Candidate->getOperand(2).getImm() == 0) |
| 1018 | if (ImmediateDefOpc == ARM64::ADDXri) |
| 1019 | ++NumADDToSTR; |
| 1020 | else |
| 1021 | ++NumLDRToSTR; |
| 1022 | else if (ImmediateDefOpc == ARM64::ADDXri) |
| 1023 | ++NumADDToSTRWithImm; |
| 1024 | else |
| 1025 | ++NumLDRToSTRWithImm; |
| 1026 | #endif // DEBUG |
| 1027 | } |
| 1028 | } |
| 1029 | ARM64FI.addLOHDirective(Kind, Args); |
| 1030 | } |
| 1031 | |
| 1032 | // Now, we grabbed all the big patterns, check ADR opportunities. |
| 1033 | for (const MachineInstr *Candidate: PotentialADROpportunities) |
| 1034 | registerADRCandidate(Candidate, UseToDefs, DefsPerColorToUses, ARM64FI, |
| 1035 | InvolvedInLOHs, RegToId); |
| 1036 | } |
| 1037 | |
| 1038 | /// Look for every register defined by potential LOHs candidates. |
| 1039 | /// Map these registers with dense id in @p RegToId and vice-versa in |
| 1040 | /// @p IdToReg. @p IdToReg is populated only in DEBUG mode. |
| 1041 | static void collectInvolvedReg(MachineFunction &MF, MapRegToId &RegToId, |
| 1042 | MapIdToReg &IdToReg, |
| 1043 | const TargetRegisterInfo *TRI) { |
| 1044 | unsigned CurRegId = 0; |
| 1045 | if (!PreCollectRegister) { |
| 1046 | unsigned NbReg = TRI->getNumRegs(); |
| 1047 | for (; CurRegId < NbReg; ++CurRegId) { |
| 1048 | RegToId[CurRegId] = CurRegId; |
| 1049 | DEBUG(IdToReg.push_back(CurRegId)); |
| 1050 | DEBUG(assert(IdToReg[CurRegId] == CurRegId && "Reg index mismatches")); |
| 1051 | } |
| 1052 | return; |
| 1053 | } |
| 1054 | |
| 1055 | DEBUG(dbgs() << "** Collect Involved Register\n"); |
| 1056 | for (MachineFunction::const_iterator IMBB = MF.begin(), IMBBEnd = MF.end(); |
| 1057 | IMBB != IMBBEnd; ++IMBB) |
| 1058 | for (MachineBasicBlock::const_iterator II = IMBB->begin(), |
| 1059 | IEnd = IMBB->end(); |
| 1060 | II != IEnd; ++II) { |
| 1061 | |
| 1062 | if (!canDefBePartOfLOH(II)) |
| 1063 | continue; |
| 1064 | |
| 1065 | // Process defs |
| 1066 | for (MachineInstr::const_mop_iterator IO = II->operands_begin(), |
| 1067 | IOEnd = II->operands_end(); |
| 1068 | IO != IOEnd; ++IO) { |
| 1069 | if (!IO->isReg() || !IO->isDef()) |
| 1070 | continue; |
| 1071 | unsigned CurReg = IO->getReg(); |
| 1072 | for (MCRegAliasIterator AI(CurReg, TRI, true); AI.isValid(); ++AI) |
| 1073 | if (RegToId.find(*AI) == RegToId.end()) { |
| 1074 | DEBUG(IdToReg.push_back(*AI); |
| 1075 | assert(IdToReg[CurRegId] == *AI && |
| 1076 | "Reg index mismatches insertion index.")); |
| 1077 | RegToId[*AI] = CurRegId++; |
| 1078 | DEBUG(dbgs() << "Register: " << PrintReg(*AI, TRI) << '\n'); |
| 1079 | } |
| 1080 | } |
| 1081 | } |
| 1082 | } |
| 1083 | |
| 1084 | bool ARM64CollectLOH::runOnMachineFunction(MachineFunction &Fn) { |
| 1085 | const TargetMachine &TM = Fn.getTarget(); |
| 1086 | const TargetRegisterInfo *TRI = TM.getRegisterInfo(); |
| 1087 | const MachineDominatorTree *MDT = &getAnalysis<MachineDominatorTree>(); |
| 1088 | |
| 1089 | MapRegToId RegToId; |
| 1090 | MapIdToReg IdToReg; |
| 1091 | ARM64FunctionInfo *ARM64FI = Fn.getInfo<ARM64FunctionInfo>(); |
| 1092 | assert(ARM64FI && "No MachineFunctionInfo for this function!"); |
| 1093 | |
| 1094 | DEBUG(dbgs() << "Looking for LOH in " << Fn.getName() << '\n'); |
| 1095 | |
| 1096 | collectInvolvedReg(Fn, RegToId, IdToReg, TRI); |
| 1097 | if (RegToId.empty()) |
| 1098 | return false; |
| 1099 | |
| 1100 | MachineInstr *DummyOp = NULL; |
| 1101 | if (BasicBlockScopeOnly) { |
| 1102 | const ARM64InstrInfo *TII = |
| 1103 | static_cast<const ARM64InstrInfo *>(TM.getInstrInfo()); |
| 1104 | // For local analysis, create a dummy operation to record uses that are not |
| 1105 | // local. |
| 1106 | DummyOp = Fn.CreateMachineInstr(TII->get(ARM64::COPY), DebugLoc()); |
| 1107 | } |
| 1108 | |
| 1109 | unsigned NbReg = RegToId.size(); |
| 1110 | bool Modified = false; |
| 1111 | |
| 1112 | // Start with ADRP. |
| 1113 | InstrToInstrs *ColorOpToReachedUses = new InstrToInstrs[NbReg]; |
| 1114 | |
| 1115 | // Compute the reaching def in ADRP mode, meaning ADRP definitions |
| 1116 | // are first considered as uses. |
| 1117 | reachingDef(&Fn, ColorOpToReachedUses, RegToId, true, DummyOp); |
| 1118 | DEBUG(dbgs() << "ADRP reaching defs\n"); |
| 1119 | DEBUG(printReachingDef(ColorOpToReachedUses, NbReg, TRI, IdToReg)); |
| 1120 | |
| 1121 | // Translate the definition to uses map into a use to definitions map to ease |
| 1122 | // statistic computation. |
| 1123 | InstrToInstrs ADRPToReachingDefs; |
| 1124 | reachedUsesToDefs(ADRPToReachingDefs, ColorOpToReachedUses, RegToId, true); |
| 1125 | |
| 1126 | // Compute LOH for ADRP. |
| 1127 | computeADRP(ADRPToReachingDefs, *ARM64FI, MDT); |
| 1128 | delete[] ColorOpToReachedUses; |
| 1129 | |
| 1130 | // Continue with general ADRP -> ADD/LDR -> LDR/STR pattern. |
| 1131 | ColorOpToReachedUses = new InstrToInstrs[NbReg]; |
| 1132 | |
| 1133 | // first perform a regular reaching def analysis. |
| 1134 | reachingDef(&Fn, ColorOpToReachedUses, RegToId, false, DummyOp); |
| 1135 | DEBUG(dbgs() << "All reaching defs\n"); |
| 1136 | DEBUG(printReachingDef(ColorOpToReachedUses, NbReg, TRI, IdToReg)); |
| 1137 | |
| 1138 | // Turn that into a use to defs to ease statistic computation. |
| 1139 | InstrToInstrs UsesToReachingDefs; |
| 1140 | reachedUsesToDefs(UsesToReachingDefs, ColorOpToReachedUses, RegToId, false); |
| 1141 | |
| 1142 | // Compute other than AdrpAdrp LOH. |
| 1143 | computeOthers(UsesToReachingDefs, ColorOpToReachedUses, *ARM64FI, RegToId, |
| 1144 | MDT); |
| 1145 | delete[] ColorOpToReachedUses; |
| 1146 | |
| 1147 | if (BasicBlockScopeOnly) |
| 1148 | Fn.DeleteMachineInstr(DummyOp); |
| 1149 | |
| 1150 | return Modified; |
| 1151 | } |
| 1152 | |
| 1153 | /// createARM64CollectLOHPass - returns an instance of the Statistic for |
| 1154 | /// linker optimization pass. |
| 1155 | FunctionPass *llvm::createARM64CollectLOHPass() { |
| 1156 | return new ARM64CollectLOH(); |
| 1157 | } |