blob: 0edc726480ce474e09617c0a34d99b90efc316c5 [file] [log] [blame]
Erick Tryzelaar37c076b2008-03-30 09:57:12 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3
4<html>
5<head>
6 <title>Kaleidoscope: Implementing code generation to LLVM IR</title>
7 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
8 <meta name="author" content="Chris Lattner">
9 <meta name="author" content="Erick Tryzelaar">
10 <link rel="stylesheet" href="../llvm.css" type="text/css">
11</head>
12
13<body>
14
15<div class="doc_title">Kaleidoscope: Code generation to LLVM IR</div>
16
17<ul>
18<li><a href="index.html">Up to Tutorial Index</a></li>
19<li>Chapter 3
20 <ol>
21 <li><a href="#intro">Chapter 3 Introduction</a></li>
22 <li><a href="#basics">Code Generation Setup</a></li>
23 <li><a href="#exprs">Expression Code Generation</a></li>
24 <li><a href="#funcs">Function Code Generation</a></li>
25 <li><a href="#driver">Driver Changes and Closing Thoughts</a></li>
26 <li><a href="#code">Full Code Listing</a></li>
27 </ol>
28</li>
29<li><a href="LangImpl4.html">Chapter 4</a>: Adding JIT and Optimizer
30Support</li>
31</ul>
32
33<div class="doc_author">
34 <p>
35 Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
36 and <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a>
37 </p>
38</div>
39
40<!-- *********************************************************************** -->
41<div class="doc_section"><a name="intro">Chapter 3 Introduction</a></div>
42<!-- *********************************************************************** -->
43
44<div class="doc_text">
45
46<p>Welcome to Chapter 3 of the "<a href="index.html">Implementing a language
47with LLVM</a>" tutorial. This chapter shows you how to transform the <a
48href="OCamlLangImpl2.html">Abstract Syntax Tree</a>, built in Chapter 2, into
49LLVM IR. This will teach you a little bit about how LLVM does things, as well
50as demonstrate how easy it is to use. It's much more work to build a lexer and
51parser than it is to generate LLVM IR code. :)
52</p>
53
54<p><b>Please note</b>: the code in this chapter and later require LLVM 2.3 or
55LLVM SVN to work. LLVM 2.2 and before will not work with it.</p>
56
57</div>
58
59<!-- *********************************************************************** -->
60<div class="doc_section"><a name="basics">Code Generation Setup</a></div>
61<!-- *********************************************************************** -->
62
63<div class="doc_text">
64
65<p>
66In order to generate LLVM IR, we want some simple setup to get started. First
67we define virtual code generation (codegen) methods in each AST class:</p>
68
69<div class="doc_code">
70<pre>
71let rec codegen_expr = function
72 | Ast.Number n -&gt; ...
73 | Ast.Variable name -&gt; ...
74</pre>
75</div>
76
77<p>The <tt>Codegen.codegen_expr</tt> function says to emit IR for that AST node
78along with all the things it depends on, and they all return an LLVM Value
79object. "Value" is the class used to represent a "<a
80href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single
81Assignment (SSA)</a> register" or "SSA value" in LLVM. The most distinct aspect
82of SSA values is that their value is computed as the related instruction
83executes, and it does not get a new value until (and if) the instruction
84re-executes. In other words, there is no way to "change" an SSA value. For
85more information, please read up on <a
86href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single
87Assignment</a> - the concepts are really quite natural once you grok them.</p>
88
89<p>The
90second thing we want is an "Error" exception like we used for the parser, which
91will be used to report errors found during code generation (for example, use of
92an undeclared parameter):</p>
93
94<div class="doc_code">
95<pre>
96exception Error of string
97
98let the_module = create_module "my cool jit"
99let builder = builder ()
100let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
101</pre>
102</div>
103
104<p>The static variables will be used during code generation.
105<tt>Codgen.the_module</tt> is the LLVM construct that contains all of the
106functions and global variables in a chunk of code. In many ways, it is the
107top-level structure that the LLVM IR uses to contain code.</p>
108
109<p>The <tt>Codegen.builder</tt> object is a helper object that makes it easy to
110generate LLVM instructions. Instances of the <a
111href="http://llvm.org/doxygen/LLVMBuilder_8h-source.html"><tt>LLVMBuilder</tt></a>
112class keep track of the current place to insert instructions and has methods to
113create new instructions.</p>
114
115<p>The <tt>Codegen.named_values</tt> map keeps track of which values are defined
116in the current scope and what their LLVM representation is. (In other words, it
117is a symbol table for the code). In this form of Kaleidoscope, the only things
118that can be referenced are function parameters. As such, function parameters
119will be in this map when generating code for their function body.</p>
120
121<p>
122With these basics in place, we can start talking about how to generate code for
123each expression. Note that this assumes that the <tt>Codgen.builder</tt> has
124been set up to generate code <em>into</em> something. For now, we'll assume
125that this has already been done, and we'll just use it to emit code.</p>
126
127</div>
128
129<!-- *********************************************************************** -->
130<div class="doc_section"><a name="exprs">Expression Code Generation</a></div>
131<!-- *********************************************************************** -->
132
133<div class="doc_text">
134
135<p>Generating LLVM code for expression nodes is very straightforward: less
136than 30 lines of commented code for all four of our expression nodes. First
137we'll do numeric literals:</p>
138
139<div class="doc_code">
140<pre>
141 | Ast.Number n -&gt; const_float double_type n
142</pre>
143</div>
144
145<p>In the LLVM IR, numeric constants are represented with the
146<tt>ConstantFP</tt> class, which holds the numeric value in an <tt>APFloat</tt>
147internally (<tt>APFloat</tt> has the capability of holding floating point
148constants of <em>A</em>rbitrary <em>P</em>recision). This code basically just
149creates and returns a <tt>ConstantFP</tt>. Note that in the LLVM IR
150that constants are all uniqued together and shared. For this reason, the API
151uses "the foo::get(..)" idiom instead of "new foo(..)" or "foo::create(..)".</p>
152
153<div class="doc_code">
154<pre>
155 | Ast.Variable name -&gt;
156 (try Hashtbl.find named_values name with
157 | Not_found -&gt; raise (Error "unknown variable name"))
158</pre>
159</div>
160
161<p>References to variables are also quite simple using LLVM. In the simple
162version of Kaleidoscope, we assume that the variable has already been emited
163somewhere and its value is available. In practice, the only values that can be
164in the <tt>Codegen.named_values</tt> map are function arguments. This code
165simply checks to see that the specified name is in the map (if not, an unknown
166variable is being referenced) and returns the value for it. In future chapters,
167we'll add support for <a href="LangImpl5.html#for">loop induction variables</a>
168in the symbol table, and for <a href="LangImpl7.html#localvars">local
169variables</a>.</p>
170
171<div class="doc_code">
172<pre>
173 | Ast.Binary (op, lhs, rhs) -&gt;
174 let lhs_val = codegen_expr lhs in
175 let rhs_val = codegen_expr rhs in
176 begin
177 match op with
178 | '+' -&gt; build_add lhs_val rhs_val "addtmp" builder
179 | '-' -&gt; build_sub lhs_val rhs_val "subtmp" builder
180 | '*' -&gt; build_mul lhs_val rhs_val "multmp" builder
181 | '&lt;' -&gt;
182 (* Convert bool 0/1 to double 0.0 or 1.0 *)
183 let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
184 build_uitofp i double_type "booltmp" builder
185 | _ -&gt; raise (Error "invalid binary operator")
186 end
187</pre>
188</div>
189
190<p>Binary operators start to get more interesting. The basic idea here is that
191we recursively emit code for the left-hand side of the expression, then the
192right-hand side, then we compute the result of the binary expression. In this
193code, we do a simple switch on the opcode to create the right LLVM instruction.
194</p>
195
196<p>In the example above, the LLVM builder class is starting to show its value.
197LLVMBuilder knows where to insert the newly created instruction, all you have to
198do is specify what instruction to create (e.g. with <tt>Llvm.create_add</tt>),
199which operands to use (<tt>lhs</tt> and <tt>rhs</tt> here) and optionally
200provide a name for the generated instruction.</p>
201
202<p>One nice thing about LLVM is that the name is just a hint. For instance, if
203the code above emits multiple "addtmp" variables, LLVM will automatically
204provide each one with an increasing, unique numeric suffix. Local value names
205for instructions are purely optional, but it makes it much easier to read the
206IR dumps.</p>
207
208<p><a href="../LangRef.html#instref">LLVM instructions</a> are constrained by
209strict rules: for example, the Left and Right operators of
210an <a href="../LangRef.html#i_add">add instruction</a> must have the same
211type, and the result type of the add must match the operand types. Because
212all values in Kaleidoscope are doubles, this makes for very simple code for add,
213sub and mul.</p>
214
215<p>On the other hand, LLVM specifies that the <a
216href="../LangRef.html#i_fcmp">fcmp instruction</a> always returns an 'i1' value
217(a one bit integer). The problem with this is that Kaleidoscope wants the value to be a 0.0 or 1.0 value. In order to get these semantics, we combine the fcmp instruction with
218a <a href="../LangRef.html#i_uitofp">uitofp instruction</a>. This instruction
219converts its input integer into a floating point value by treating the input
220as an unsigned value. In contrast, if we used the <a
221href="../LangRef.html#i_sitofp">sitofp instruction</a>, the Kaleidoscope '&lt;'
222operator would return 0.0 and -1.0, depending on the input value.</p>
223
224<div class="doc_code">
225<pre>
226 | Ast.Call (callee, args) -&gt;
227 (* Look up the name in the module table. *)
228 let callee =
229 match lookup_function callee the_module with
230 | Some callee -&gt; callee
231 | None -&gt; raise (Error "unknown function referenced")
232 in
233 let params = params callee in
234
235 (* If argument mismatch error. *)
236 if Array.length params == Array.length args then () else
237 raise (Error "incorrect # arguments passed");
238 let args = Array.map codegen_expr args in
239 build_call callee args "calltmp" builder
240</pre>
241</div>
242
243<p>Code generation for function calls is quite straightforward with LLVM. The
244code above initially does a function name lookup in the LLVM Module's symbol
245table. Recall that the LLVM Module is the container that holds all of the
246functions we are JIT'ing. By giving each function the same name as what the
247user specifies, we can use the LLVM symbol table to resolve function names for
248us.</p>
249
250<p>Once we have the function to call, we recursively codegen each argument that
251is to be passed in, and create an LLVM <a href="../LangRef.html#i_call">call
252instruction</a>. Note that LLVM uses the native C calling conventions by
253default, allowing these calls to also call into standard library functions like
254"sin" and "cos", with no additional effort.</p>
255
256<p>This wraps up our handling of the four basic expressions that we have so far
257in Kaleidoscope. Feel free to go in and add some more. For example, by
258browsing the <a href="../LangRef.html">LLVM language reference</a> you'll find
259several other interesting instructions that are really easy to plug into our
260basic framework.</p>
261
262</div>
263
264<!-- *********************************************************************** -->
265<div class="doc_section"><a name="funcs">Function Code Generation</a></div>
266<!-- *********************************************************************** -->
267
268<div class="doc_text">
269
270<p>Code generation for prototypes and functions must handle a number of
271details, which make their code less beautiful than expression code
272generation, but allows us to illustrate some important points. First, lets
273talk about code generation for prototypes: they are used both for function
274bodies and external function declarations. The code starts with:</p>
275
276<div class="doc_code">
277<pre>
278let codegen_proto = function
279 | Ast.Prototype (name, args) -&gt;
280 (* Make the function type: double(double,double) etc. *)
281 let doubles = Array.make (Array.length args) double_type in
282 let ft = function_type double_type doubles in
283 let f =
284 match lookup_function name the_module with
285</pre>
286</div>
287
288<p>This code packs a lot of power into a few lines. Note first that this
289function returns a "Function*" instead of a "Value*" (although at the moment
290they both are modeled by <tt>llvalue</tt> in ocaml). Because a "prototype"
291really talks about the external interface for a function (not the value computed
292by an expression), it makes sense for it to return the LLVM Function it
293corresponds to when codegen'd.</p>
294
295<p>The call to <tt>Llvm.function_type</tt> creates the <tt>Llvm.llvalue</tt>
296that should be used for a given Prototype. Since all function arguments in
297Kaleidoscope are of type double, the first line creates a vector of "N" LLVM
298double types. It then uses the <tt>Llvm.function_type</tt> method to create a
299function type that takes "N" doubles as arguments, returns one double as a
300result, and that is not vararg (that uses the function
301<tt>Llvm.var_arg_function_type</tt>). Note that Types in LLVM are uniqued just
302like <tt>Constant</tt>s are, so you don't "new" a type, you "get" it.</p>
303
304<p>The final line above checks if the function has already been defined in
305<tt>Codegen.the_module</tt>. If not, we will create it.</p>
306
307<div class="doc_code">
308<pre>
309 | None -&gt; declare_function name ft the_module
310</pre>
311</div>
312
313<p>This indicates the type and name to use, as well as which module to insert
314into. By default we assume a function has
315<tt>Llvm.Linkage.ExternalLinkage</tt>. "<a href="LangRef.html#linkage">external
316linkage</a>" means that the function may be defined outside the current module
317and/or that it is callable by functions outside the module. The "<tt>name</tt>"
318passed in is the name the user specified: this name is registered in
319"<tt>Codegen.the_module</tt>"s symbol table, which is used by the function call
320code above.</p>
321
322<p>In Kaleidoscope, I choose to allow redefinitions of functions in two cases:
323first, we want to allow 'extern'ing a function more than once, as long as the
324prototypes for the externs match (since all arguments have the same type, we
325just have to check that the number of arguments match). Second, we want to
326allow 'extern'ing a function and then definining a body for it. This is useful
327when defining mutually recursive functions.</p>
328
329<div class="doc_code">
330<pre>
331 (* If 'f' conflicted, there was already something named 'name'. If it
332 * has a body, don't allow redefinition or reextern. *)
333 | Some f -&gt;
334 (* If 'f' already has a body, reject this. *)
335 if Array.length (basic_blocks f) == 0 then () else
336 raise (Error "redefinition of function");
337
338 (* If 'f' took a different number of arguments, reject. *)
339 if Array.length (params f) == Array.length args then () else
340 raise (Error "redefinition of function with different # args");
341 f
342 in
343</pre>
344</div>
345
346<p>In order to verify the logic above, we first check to see if the pre-existing
347function is "empty". In this case, empty means that it has no basic blocks in
348it, which means it has no body. If it has no body, it is a forward
349declaration. Since we don't allow anything after a full definition of the
350function, the code rejects this case. If the previous reference to a function
351was an 'extern', we simply verify that the number of arguments for that
352definition and this one match up. If not, we emit an error.</p>
353
354<div class="doc_code">
355<pre>
356 (* Set names for all arguments. *)
357 Array.iteri (fun i a -&gt;
358 let n = args.(i) in
359 set_value_name n a;
360 Hashtbl.add named_values n a;
361 ) (params f);
362 f
363</pre>
364</div>
365
366<p>The last bit of code for prototypes loops over all of the arguments in the
367function, setting the name of the LLVM Argument objects to match, and registering
368the arguments in the <tt>Codegen.named_values</tt> map for future use by the
369<tt>Ast.Variable</tt> variant. Once this is set up, it returns the Function
370object to the caller. Note that we don't check for conflicting
371argument names here (e.g. "extern foo(a b a)"). Doing so would be very
372straight-forward with the mechanics we have already used above.</p>
373
374<div class="doc_code">
375<pre>
376let codegen_func = function
377 | Ast.Function (proto, body) -&gt;
378 Hashtbl.clear named_values;
379 let the_function = codegen_proto proto in
380</pre>
381</div>
382
383<p>Code generation for function definitions starts out simply enough: we just
384codegen the prototype (Proto) and verify that it is ok. We then clear out the
385<tt>Codegen.named_values</tt> map to make sure that there isn't anything in it
386from the last function we compiled. Code generation of the prototype ensures
387that there is an LLVM Function object that is ready to go for us.</p>
388
389<div class="doc_code">
390<pre>
391 (* Create a new basic block to start insertion into. *)
392 let bb = append_block "entry" the_function in
393 position_at_end bb builder;
394
395 try
396 let ret_val = codegen_expr body in
397</pre>
398</div>
399
400<p>Now we get to the point where the <tt>Codegen.builder</tt> is set up. The
401first line creates a new
402<a href="http://en.wikipedia.org/wiki/Basic_block">basic block</a> (named
403"entry"), which is inserted into <tt>the_function</tt>. The second line then
404tells the builder that new instructions should be inserted into the end of the
405new basic block. Basic blocks in LLVM are an important part of functions that
406define the <a
407href="http://en.wikipedia.org/wiki/Control_flow_graph">Control Flow Graph</a>.
408Since we don't have any control flow, our functions will only contain one
409block at this point. We'll fix this in <a href="OCamlLangImpl5.html">Chapter
4105</a> :).</p>
411
412<div class="doc_code">
413<pre>
414 let ret_val = codegen_expr body in
415
416 (* Finish off the function. *)
417 let _ = build_ret ret_val builder in
418
419 (* Validate the generated code, checking for consistency. *)
420 Llvm_analysis.assert_valid_function the_function;
421
422 the_function
423</pre>
424</div>
425
426<p>Once the insertion point is set up, we call the <tt>Codegen.codegen_func</tt>
427method for the root expression of the function. If no error happens, this emits
428code to compute the expression into the entry block and returns the value that
429was computed. Assuming no error, we then create an LLVM <a
430href="../LangRef.html#i_ret">ret instruction</a>, which completes the function.
431Once the function is built, we call
432<tt>Llvm_analysis.assert_valid_function</tt>, which is provided by LLVM. This
433function does a variety of consistency checks on the generated code, to
434determine if our compiler is doing everything right. Using this is important:
435it can catch a lot of bugs. Once the function is finished and validated, we
436return it.</p>
437
438<div class="doc_code">
439<pre>
440 with e -&gt;
441 delete_function the_function;
442 raise e
443</pre>
444</div>
445
446<p>The only piece left here is handling of the error case. For simplicity, we
447handle this by merely deleting the function we produced with the
448<tt>Llvm.delete_function</tt> method. This allows the user to redefine a
449function that they incorrectly typed in before: if we didn't delete it, it
450would live in the symbol table, with a body, preventing future redefinition.</p>
451
452<p>This code does have a bug, though. Since the <tt>Codegen.codegen_proto</tt>
453can return a previously defined forward declaration, our code can actually delete
454a forward declaration. There are a number of ways to fix this bug, see what you
455can come up with! Here is a testcase:</p>
456
457<div class="doc_code">
458<pre>
459extern foo(a b); # ok, defines foo.
460def foo(a b) c; # error, 'c' is invalid.
461def bar() foo(1, 2); # error, unknown function "foo"
462</pre>
463</div>
464
465</div>
466
467<!-- *********************************************************************** -->
468<div class="doc_section"><a name="driver">Driver Changes and
469Closing Thoughts</a></div>
470<!-- *********************************************************************** -->
471
472<div class="doc_text">
473
474<p>
475For now, code generation to LLVM doesn't really get us much, except that we can
476look at the pretty IR calls. The sample code inserts calls to Codegen into the
477"<tt>Toplevel.main_loop</tt>", and then dumps out the LLVM IR. This gives a
478nice way to look at the LLVM IR for simple functions. For example:
479</p>
480
481<div class="doc_code">
482<pre>
483ready&gt; <b>4+5</b>;
484Read top-level expression:
485define double @""() {
486entry:
487 %addtmp = add double 4.000000e+00, 5.000000e+00
488 ret double %addtmp
489}
490</pre>
491</div>
492
493<p>Note how the parser turns the top-level expression into anonymous functions
494for us. This will be handy when we add <a href="LangImpl4.html#jit">JIT
495support</a> in the next chapter. Also note that the code is very literally
496transcribed, no optimizations are being performed. We will
497<a href="OCamlLangImpl4.html#trivialconstfold">add optimizations</a> explicitly
498in the next chapter.</p>
499
500<div class="doc_code">
501<pre>
502ready&gt; <b>def foo(a b) a*a + 2*a*b + b*b;</b>
503Read function definition:
504define double @foo(double %a, double %b) {
505entry:
506 %multmp = mul double %a, %a
507 %multmp1 = mul double 2.000000e+00, %a
508 %multmp2 = mul double %multmp1, %b
509 %addtmp = add double %multmp, %multmp2
510 %multmp3 = mul double %b, %b
511 %addtmp4 = add double %addtmp, %multmp3
512 ret double %addtmp4
513}
514</pre>
515</div>
516
517<p>This shows some simple arithmetic. Notice the striking similarity to the
518LLVM builder calls that we use to create the instructions.</p>
519
520<div class="doc_code">
521<pre>
522ready&gt; <b>def bar(a) foo(a, 4.0) + bar(31337);</b>
523Read function definition:
524define double @bar(double %a) {
525entry:
526 %calltmp = call double @foo( double %a, double 4.000000e+00 )
527 %calltmp1 = call double @bar( double 3.133700e+04 )
528 %addtmp = add double %calltmp, %calltmp1
529 ret double %addtmp
530}
531</pre>
532</div>
533
534<p>This shows some function calls. Note that this function will take a long
535time to execute if you call it. In the future we'll add conditional control
536flow to actually make recursion useful :).</p>
537
538<div class="doc_code">
539<pre>
540ready&gt; <b>extern cos(x);</b>
541Read extern:
542declare double @cos(double)
543
544ready&gt; <b>cos(1.234);</b>
545Read top-level expression:
546define double @""() {
547entry:
548 %calltmp = call double @cos( double 1.234000e+00 )
549 ret double %calltmp
550}
551</pre>
552</div>
553
554<p>This shows an extern for the libm "cos" function, and a call to it.</p>
555
556
557<div class="doc_code">
558<pre>
559ready&gt; <b>^D</b>
560; ModuleID = 'my cool jit'
561
562define double @""() {
563entry:
564 %addtmp = add double 4.000000e+00, 5.000000e+00
565 ret double %addtmp
566}
567
568define double @foo(double %a, double %b) {
569entry:
570 %multmp = mul double %a, %a
571 %multmp1 = mul double 2.000000e+00, %a
572 %multmp2 = mul double %multmp1, %b
573 %addtmp = add double %multmp, %multmp2
574 %multmp3 = mul double %b, %b
575 %addtmp4 = add double %addtmp, %multmp3
576 ret double %addtmp4
577}
578
579define double @bar(double %a) {
580entry:
581 %calltmp = call double @foo( double %a, double 4.000000e+00 )
582 %calltmp1 = call double @bar( double 3.133700e+04 )
583 %addtmp = add double %calltmp, %calltmp1
584 ret double %addtmp
585}
586
587declare double @cos(double)
588
589define double @""() {
590entry:
591 %calltmp = call double @cos( double 1.234000e+00 )
592 ret double %calltmp
593}
594</pre>
595</div>
596
597<p>When you quit the current demo, it dumps out the IR for the entire module
598generated. Here you can see the big picture with all the functions referencing
599each other.</p>
600
601<p>This wraps up the third chapter of the Kaleidoscope tutorial. Up next, we'll
602describe how to <a href="LangImpl4.html">add JIT codegen and optimizer
603support</a> to this so we can actually start running code!</p>
604
605</div>
606
607
608<!-- *********************************************************************** -->
609<div class="doc_section"><a name="code">Full Code Listing</a></div>
610<!-- *********************************************************************** -->
611
612<div class="doc_text">
613
614<p>
615Here is the complete code listing for our running example, enhanced with the
616LLVM code generator. Because this uses the LLVM libraries, we need to link
617them in. To do this, we use the <a
618href="http://llvm.org/cmds/llvm-config.html">llvm-config</a> tool to inform
619our makefile/command line about which options to use:</p>
620
621<div class="doc_code">
622<pre>
623# Compile
624ocamlbuild toy.byte
625# Run
626./toy.byte
627</pre>
628</div>
629
630<p>Here is the code:</p>
631
632<dl>
633<dt>_tags:</dt>
634<dd class="doc_code">
635<pre>
636&lt;{lexer,parser}.ml&gt;: use_camlp4, pp(camlp4of)
637&lt;*.{byte,native}&gt;: g++, use_llvm, use_llvm_analysis
638</pre>
639</dd>
640
641<dt>myocamlbuild.ml:</dt>
642<dd class="doc_code">
643<pre>
644open Ocamlbuild_plugin;;
645
646ocaml_lib ~extern:true "llvm";;
647ocaml_lib ~extern:true "llvm_analysis";;
648
649flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);;
650</pre>
651</dd>
652
653<dt>token.ml:</dt>
654<dd class="doc_code">
655<pre>
656(*===----------------------------------------------------------------------===
657 * Lexer Tokens
658 *===----------------------------------------------------------------------===*)
659
660(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
661 * these others for known things. *)
662type token =
663 (* commands *)
664 | Def | Extern
665
666 (* primary *)
667 | Ident of string | Number of float
668
669 (* unknown *)
670 | Kwd of char
671</pre>
672</dd>
673
674<dt>lexer.ml:</dt>
675<dd class="doc_code">
676<pre>
677(*===----------------------------------------------------------------------===
678 * Lexer
679 *===----------------------------------------------------------------------===*)
680
681let rec lex = parser
682 (* Skip any whitespace. *)
683 | [&lt; ' (' ' | '\n' | '\r' | '\t'); stream &gt;] -&gt; lex stream
684
685 (* identifier: [a-zA-Z][a-zA-Z0-9] *)
686 | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' as c); stream &gt;] -&gt;
687 let buffer = Buffer.create 1 in
688 Buffer.add_char buffer c;
689 lex_ident buffer stream
690
691 (* number: [0-9.]+ *)
692 | [&lt; ' ('0' .. '9' as c); stream &gt;] -&gt;
693 let buffer = Buffer.create 1 in
694 Buffer.add_char buffer c;
695 lex_number buffer stream
696
697 (* Comment until end of line. *)
698 | [&lt; ' ('#'); stream &gt;] -&gt;
699 lex_comment stream
700
701 (* Otherwise, just return the character as its ascii value. *)
702 | [&lt; 'c; stream &gt;] -&gt;
703 [&lt; 'Token.Kwd c; lex stream &gt;]
704
705 (* end of stream. *)
706 | [&lt; &gt;] -&gt; [&lt; &gt;]
707
708and lex_number buffer = parser
709 | [&lt; ' ('0' .. '9' | '.' as c); stream &gt;] -&gt;
710 Buffer.add_char buffer c;
711 lex_number buffer stream
712 | [&lt; stream=lex &gt;] -&gt;
713 [&lt; 'Token.Number (float_of_string (Buffer.contents buffer)); stream &gt;]
714
715and lex_ident buffer = parser
716 | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream &gt;] -&gt;
717 Buffer.add_char buffer c;
718 lex_ident buffer stream
719 | [&lt; stream=lex &gt;] -&gt;
720 match Buffer.contents buffer with
721 | "def" -&gt; [&lt; 'Token.Def; stream &gt;]
722 | "extern" -&gt; [&lt; 'Token.Extern; stream &gt;]
723 | id -&gt; [&lt; 'Token.Ident id; stream &gt;]
724
725and lex_comment = parser
726 | [&lt; ' ('\n'); stream=lex &gt;] -&gt; stream
727 | [&lt; 'c; e=lex_comment &gt;] -&gt; e
728 | [&lt; &gt;] -&gt; [&lt; &gt;]
729</pre>
730</dd>
731
732<dt>ast.ml:</dt>
733<dd class="doc_code">
734<pre>
735(*===----------------------------------------------------------------------===
736 * Abstract Syntax Tree (aka Parse Tree)
737 *===----------------------------------------------------------------------===*)
738
739(* expr - Base type for all expression nodes. *)
740type expr =
741 (* variant for numeric literals like "1.0". *)
742 | Number of float
743
744 (* variant for referencing a variable, like "a". *)
745 | Variable of string
746
747 (* variant for a binary operator. *)
748 | Binary of char * expr * expr
749
750 (* variant for function calls. *)
751 | Call of string * expr array
752
753(* proto - This type represents the "prototype" for a function, which captures
754 * its name, and its argument names (thus implicitly the number of arguments the
755 * function takes). *)
756type proto = Prototype of string * string array
757
758(* func - This type represents a function definition itself. *)
759type func = Function of proto * expr
760</pre>
761</dd>
762
763<dt>parser.ml:</dt>
764<dd class="doc_code">
765<pre>
766(*===---------------------------------------------------------------------===
767 * Parser
768 *===---------------------------------------------------------------------===*)
769
770(* binop_precedence - This holds the precedence for each binary operator that is
771 * defined *)
772let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
773
774(* precedence - Get the precedence of the pending binary operator token. *)
775let precedence c = try Hashtbl.find binop_precedence c with Not_found -&gt; -1
776
777(* primary
778 * ::= identifier
779 * ::= numberexpr
780 * ::= parenexpr *)
781let rec parse_primary = parser
782 (* numberexpr ::= number *)
783 | [&lt; 'Token.Number n &gt;] -&gt; Ast.Number n
784
785 (* parenexpr ::= '(' expression ')' *)
786 | [&lt; 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" &gt;] -&gt; e
787
788 (* identifierexpr
789 * ::= identifier
790 * ::= identifier '(' argumentexpr ')' *)
791 | [&lt; 'Token.Ident id; stream &gt;] -&gt;
792 let rec parse_args accumulator = parser
793 | [&lt; e=parse_expr; stream &gt;] -&gt;
794 begin parser
795 | [&lt; 'Token.Kwd ','; e=parse_args (e :: accumulator) &gt;] -&gt; e
796 | [&lt; &gt;] -&gt; e :: accumulator
797 end stream
798 | [&lt; &gt;] -&gt; accumulator
799 in
800 let rec parse_ident id = parser
801 (* Call. *)
802 | [&lt; 'Token.Kwd '(';
803 args=parse_args [];
804 'Token.Kwd ')' ?? "expected ')'"&gt;] -&gt;
805 Ast.Call (id, Array.of_list (List.rev args))
806
807 (* Simple variable ref. *)
808 | [&lt; &gt;] -&gt; Ast.Variable id
809 in
810 parse_ident id stream
811
812 | [&lt; &gt;] -&gt; raise (Stream.Error "unknown token when expecting an expression.")
813
814(* binoprhs
815 * ::= ('+' primary)* *)
816and parse_bin_rhs expr_prec lhs stream =
817 match Stream.peek stream with
818 (* If this is a binop, find its precedence. *)
819 | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -&gt;
820 let token_prec = precedence c in
821
822 (* If this is a binop that binds at least as tightly as the current binop,
823 * consume it, otherwise we are done. *)
824 if token_prec &lt; expr_prec then lhs else begin
825 (* Eat the binop. *)
826 Stream.junk stream;
827
828 (* Parse the primary expression after the binary operator. *)
829 let rhs = parse_primary stream in
830
831 (* Okay, we know this is a binop. *)
832 let rhs =
833 match Stream.peek stream with
834 | Some (Token.Kwd c2) -&gt;
835 (* If BinOp binds less tightly with rhs than the operator after
836 * rhs, let the pending operator take rhs as its lhs. *)
837 let next_prec = precedence c2 in
838 if token_prec &lt; next_prec
839 then parse_bin_rhs (token_prec + 1) rhs stream
840 else rhs
841 | _ -&gt; rhs
842 in
843
844 (* Merge lhs/rhs. *)
845 let lhs = Ast.Binary (c, lhs, rhs) in
846 parse_bin_rhs expr_prec lhs stream
847 end
848 | _ -&gt; lhs
849
850(* expression
851 * ::= primary binoprhs *)
852and parse_expr = parser
853 | [&lt; lhs=parse_primary; stream &gt;] -&gt; parse_bin_rhs 0 lhs stream
854
855(* prototype
856 * ::= id '(' id* ')' *)
857let parse_prototype =
858 let rec parse_args accumulator = parser
859 | [&lt; 'Token.Ident id; e=parse_args (id::accumulator) &gt;] -&gt; e
860 | [&lt; &gt;] -&gt; accumulator
861 in
862
863 parser
864 | [&lt; 'Token.Ident id;
865 'Token.Kwd '(' ?? "expected '(' in prototype";
866 args=parse_args [];
867 'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
868 (* success. *)
869 Ast.Prototype (id, Array.of_list (List.rev args))
870
871 | [&lt; &gt;] -&gt;
872 raise (Stream.Error "expected function name in prototype")
873
874(* definition ::= 'def' prototype expression *)
875let parse_definition = parser
876 | [&lt; 'Token.Def; p=parse_prototype; e=parse_expr &gt;] -&gt;
877 Ast.Function (p, e)
878
879(* toplevelexpr ::= expression *)
880let parse_toplevel = parser
881 | [&lt; e=parse_expr &gt;] -&gt;
882 (* Make an anonymous proto. *)
883 Ast.Function (Ast.Prototype ("", [||]), e)
884
885(* external ::= 'extern' prototype *)
886let parse_extern = parser
887 | [&lt; 'Token.Extern; e=parse_prototype &gt;] -&gt; e
888</pre>
889</dd>
890
891<dt>codegen.ml:</dt>
892<dd class="doc_code">
893<pre>
894(*===----------------------------------------------------------------------===
895 * Code Generation
896 *===----------------------------------------------------------------------===*)
897
898open Llvm
899
900exception Error of string
901
902let the_module = create_module "my cool jit"
903let builder = builder ()
904let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
905
906let rec codegen_expr = function
907 | Ast.Number n -&gt; const_float double_type n
908 | Ast.Variable name -&gt;
909 (try Hashtbl.find named_values name with
910 | Not_found -&gt; raise (Error "unknown variable name"))
911 | Ast.Binary (op, lhs, rhs) -&gt;
912 let lhs_val = codegen_expr lhs in
913 let rhs_val = codegen_expr rhs in
914 begin
915 match op with
916 | '+' -&gt; build_add lhs_val rhs_val "addtmp" builder
917 | '-' -&gt; build_sub lhs_val rhs_val "subtmp" builder
918 | '*' -&gt; build_mul lhs_val rhs_val "multmp" builder
919 | '&lt;' -&gt;
920 (* Convert bool 0/1 to double 0.0 or 1.0 *)
921 let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
922 build_uitofp i double_type "booltmp" builder
923 | _ -&gt; raise (Error "invalid binary operator")
924 end
925 | Ast.Call (callee, args) -&gt;
926 (* Look up the name in the module table. *)
927 let callee =
928 match lookup_function callee the_module with
929 | Some callee -&gt; callee
930 | None -&gt; raise (Error "unknown function referenced")
931 in
932 let params = params callee in
933
934 (* If argument mismatch error. *)
935 if Array.length params == Array.length args then () else
936 raise (Error "incorrect # arguments passed");
937 let args = Array.map codegen_expr args in
938 build_call callee args "calltmp" builder
939
940let codegen_proto = function
941 | Ast.Prototype (name, args) -&gt;
942 (* Make the function type: double(double,double) etc. *)
943 let doubles = Array.make (Array.length args) double_type in
944 let ft = function_type double_type doubles in
945 let f =
946 match lookup_function name the_module with
947 | None -&gt; declare_function name ft the_module
948
949 (* If 'f' conflicted, there was already something named 'name'. If it
950 * has a body, don't allow redefinition or reextern. *)
951 | Some f -&gt;
952 (* If 'f' already has a body, reject this. *)
953 if block_begin f &lt;&gt; At_end f then
954 raise (Error "redefinition of function");
955
956 (* If 'f' took a different number of arguments, reject. *)
957 if element_type (type_of f) &lt;&gt; ft then
958 raise (Error "redefinition of function with different # args");
959 f
960 in
961
962 (* Set names for all arguments. *)
963 Array.iteri (fun i a -&gt;
964 let n = args.(i) in
965 set_value_name n a;
966 Hashtbl.add named_values n a;
967 ) (params f);
968 f
969
970let codegen_func = function
971 | Ast.Function (proto, body) -&gt;
972 Hashtbl.clear named_values;
973 let the_function = codegen_proto proto in
974
975 (* Create a new basic block to start insertion into. *)
976 let bb = append_block "entry" the_function in
977 position_at_end bb builder;
978
979 try
980 let ret_val = codegen_expr body in
981
982 (* Finish off the function. *)
983 let _ = build_ret ret_val builder in
984
985 (* Validate the generated code, checking for consistency. *)
986 Llvm_analysis.assert_valid_function the_function;
987
988 the_function
989 with e -&gt;
990 delete_function the_function;
991 raise e
992</pre>
993</dd>
994
995<dt>toplevel.ml:</dt>
996<dd class="doc_code">
997<pre>
998(*===----------------------------------------------------------------------===
999 * Top-Level parsing and JIT Driver
1000 *===----------------------------------------------------------------------===*)
1001
1002open Llvm
1003
1004(* top ::= definition | external | expression | ';' *)
1005let rec main_loop stream =
1006 match Stream.peek stream with
1007 | None -&gt; ()
1008
1009 (* ignore top-level semicolons. *)
1010 | Some (Token.Kwd ';') -&gt;
1011 Stream.junk stream;
1012 main_loop stream
1013
1014 | Some token -&gt;
1015 begin
1016 try match token with
1017 | Token.Def -&gt;
1018 let e = Parser.parse_definition stream in
1019 print_endline "parsed a function definition.";
1020 dump_value (Codegen.codegen_func e);
1021 | Token.Extern -&gt;
1022 let e = Parser.parse_extern stream in
1023 print_endline "parsed an extern.";
1024 dump_value (Codegen.codegen_proto e);
1025 | _ -&gt;
1026 (* Evaluate a top-level expression into an anonymous function. *)
1027 let e = Parser.parse_toplevel stream in
1028 print_endline "parsed a top-level expr";
1029 dump_value (Codegen.codegen_func e);
1030 with Stream.Error s | Codegen.Error s -&gt;
1031 (* Skip token for error recovery. *)
1032 Stream.junk stream;
1033 print_endline s;
1034 end;
1035 print_string "ready&gt; "; flush stdout;
1036 main_loop stream
1037</pre>
1038</dd>
1039
1040<dt>toy.ml:</dt>
1041<dd class="doc_code">
1042<pre>
1043(*===----------------------------------------------------------------------===
1044 * Main driver code.
1045 *===----------------------------------------------------------------------===*)
1046
1047open Llvm
1048
1049let main () =
1050 (* Install standard binary operators.
1051 * 1 is the lowest precedence. *)
1052 Hashtbl.add Parser.binop_precedence '&lt;' 10;
1053 Hashtbl.add Parser.binop_precedence '+' 20;
1054 Hashtbl.add Parser.binop_precedence '-' 20;
1055 Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)
1056
1057 (* Prime the first token. *)
1058 print_string "ready&gt; "; flush stdout;
1059 let stream = Lexer.lex (Stream.of_channel stdin) in
1060
1061 (* Run the main "interpreter loop" now. *)
1062 Toplevel.main_loop stream;
1063
1064 (* Print out all the generated code. *)
1065 dump_module Codegen.the_module
1066;;
1067
1068main ()
1069</pre>
1070</dd>
1071</dl>
1072
1073<a href="OCamlLangImpl4.html">Next: Adding JIT and Optimizer Support</a>
1074</div>
1075
1076<!-- *********************************************************************** -->
1077<hr>
1078<address>
1079 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
1080 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
1081 <a href="http://validator.w3.org/check/referer"><img
1082 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
1083
1084 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
1085 <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a><br>
1086 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
1087 Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $
1088</address>
1089</body>
1090</html>