blob: fc1caeb1f2093b9c1e8bf0794f5b2dae6a6b8ec1 [file] [log] [blame]
Erick Tryzelaar37c076b2008-03-30 09:57:12 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3
4<html>
5<head>
6 <title>Kaleidoscope: Adding JIT and Optimizer Support</title>
7 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
8 <meta name="author" content="Chris Lattner">
9 <meta name="author" content="Erick Tryzelaar">
10 <link rel="stylesheet" href="../llvm.css" type="text/css">
11</head>
12
13<body>
14
15<div class="doc_title">Kaleidoscope: Adding JIT and Optimizer Support</div>
16
17<ul>
18<li><a href="index.html">Up to Tutorial Index</a></li>
19<li>Chapter 4
20 <ol>
21 <li><a href="#intro">Chapter 4 Introduction</a></li>
22 <li><a href="#trivialconstfold">Trivial Constant Folding</a></li>
23 <li><a href="#optimizerpasses">LLVM Optimization Passes</a></li>
24 <li><a href="#jit">Adding a JIT Compiler</a></li>
25 <li><a href="#code">Full Code Listing</a></li>
26 </ol>
27</li>
28<li><a href="OCamlLangImpl5.html">Chapter 5</a>: Extending the Language: Control
29Flow</li>
30</ul>
31
32<div class="doc_author">
33 <p>
34 Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
35 and <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a>
36 </p>
37</div>
38
39<!-- *********************************************************************** -->
40<div class="doc_section"><a name="intro">Chapter 4 Introduction</a></div>
41<!-- *********************************************************************** -->
42
43<div class="doc_text">
44
45<p>Welcome to Chapter 4 of the "<a href="index.html">Implementing a language
46with LLVM</a>" tutorial. Chapters 1-3 described the implementation of a simple
47language and added support for generating LLVM IR. This chapter describes
48two new techniques: adding optimizer support to your language, and adding JIT
49compiler support. These additions will demonstrate how to get nice, efficient code
50for the Kaleidoscope language.</p>
51
52</div>
53
54<!-- *********************************************************************** -->
55<div class="doc_section"><a name="trivialconstfold">Trivial Constant
56Folding</a></div>
57<!-- *********************************************************************** -->
58
59<div class="doc_text">
60
61<p><b>Note:</b> the ocaml bindings already use <tt>LLVMFoldingBuilder</tt>.<p>
62
63<p>
64Our demonstration for Chapter 3 is elegant and easy to extend. Unfortunately,
65it does not produce wonderful code. For example, when compiling simple code,
66we don't get obvious optimizations:</p>
67
68<div class="doc_code">
69<pre>
70ready&gt; <b>def test(x) 1+2+x;</b>
71Read function definition:
72define double @test(double %x) {
73entry:
74 %addtmp = add double 1.000000e+00, 2.000000e+00
75 %addtmp1 = add double %addtmp, %x
76 ret double %addtmp1
77}
78</pre>
79</div>
80
81<p>This code is a very, very literal transcription of the AST built by parsing
82the input. As such, this transcription lacks optimizations like constant folding
83(we'd like to get "<tt>add x, 3.0</tt>" in the example above) as well as other
84more important optimizations. Constant folding, in particular, is a very common
85and very important optimization: so much so that many language implementors
86implement constant folding support in their AST representation.</p>
87
88<p>With LLVM, you don't need this support in the AST. Since all calls to build
89LLVM IR go through the LLVM builder, it would be nice if the builder itself
90checked to see if there was a constant folding opportunity when you call it.
91If so, it could just do the constant fold and return the constant instead of
92creating an instruction. This is exactly what the <tt>LLVMFoldingBuilder</tt>
93class does.
94
95<p>All we did was switch from <tt>LLVMBuilder</tt> to
96<tt>LLVMFoldingBuilder</tt>. Though we change no other code, we now have all of our
97instructions implicitly constant folded without us having to do anything
98about it. For example, the input above now compiles to:</p>
99
100<div class="doc_code">
101<pre>
102ready&gt; <b>def test(x) 1+2+x;</b>
103Read function definition:
104define double @test(double %x) {
105entry:
106 %addtmp = add double 3.000000e+00, %x
107 ret double %addtmp
108}
109</pre>
110</div>
111
112<p>Well, that was easy :). In practice, we recommend always using
113<tt>LLVMFoldingBuilder</tt> when generating code like this. It has no
114"syntactic overhead" for its use (you don't have to uglify your compiler with
115constant checks everywhere) and it can dramatically reduce the amount of
116LLVM IR that is generated in some cases (particular for languages with a macro
117preprocessor or that use a lot of constants).</p>
118
119<p>On the other hand, the <tt>LLVMFoldingBuilder</tt> is limited by the fact
120that it does all of its analysis inline with the code as it is built. If you
121take a slightly more complex example:</p>
122
123<div class="doc_code">
124<pre>
125ready&gt; <b>def test(x) (1+2+x)*(x+(1+2));</b>
126ready&gt; Read function definition:
127define double @test(double %x) {
128entry:
129 %addtmp = add double 3.000000e+00, %x
130 %addtmp1 = add double %x, 3.000000e+00
131 %multmp = mul double %addtmp, %addtmp1
132 ret double %multmp
133}
134</pre>
135</div>
136
137<p>In this case, the LHS and RHS of the multiplication are the same value. We'd
138really like to see this generate "<tt>tmp = x+3; result = tmp*tmp;</tt>" instead
139of computing "<tt>x*3</tt>" twice.</p>
140
141<p>Unfortunately, no amount of local analysis will be able to detect and correct
142this. This requires two transformations: reassociation of expressions (to
143make the add's lexically identical) and Common Subexpression Elimination (CSE)
144to delete the redundant add instruction. Fortunately, LLVM provides a broad
145range of optimizations that you can use, in the form of "passes".</p>
146
147</div>
148
149<!-- *********************************************************************** -->
150<div class="doc_section"><a name="optimizerpasses">LLVM Optimization
151 Passes</a></div>
152<!-- *********************************************************************** -->
153
154<div class="doc_text">
155
156<p>LLVM provides many optimization passes, which do many different sorts of
157things and have different tradeoffs. Unlike other systems, LLVM doesn't hold
158to the mistaken notion that one set of optimizations is right for all languages
159and for all situations. LLVM allows a compiler implementor to make complete
160decisions about what optimizations to use, in which order, and in what
161situation.</p>
162
163<p>As a concrete example, LLVM supports both "whole module" passes, which look
164across as large of body of code as they can (often a whole file, but if run
165at link time, this can be a substantial portion of the whole program). It also
166supports and includes "per-function" passes which just operate on a single
167function at a time, without looking at other functions. For more information
168on passes and how they are run, see the <a href="../WritingAnLLVMPass.html">How
169to Write a Pass</a> document and the <a href="../Passes.html">List of LLVM
170Passes</a>.</p>
171
172<p>For Kaleidoscope, we are currently generating functions on the fly, one at
173a time, as the user types them in. We aren't shooting for the ultimate
174optimization experience in this setting, but we also want to catch the easy and
175quick stuff where possible. As such, we will choose to run a few per-function
176optimizations as the user types the function in. If we wanted to make a "static
177Kaleidoscope compiler", we would use exactly the code we have now, except that
178we would defer running the optimizer until the entire file has been parsed.</p>
179
180<p>In order to get per-function optimizations going, we need to set up a
181<a href="../WritingAnLLVMPass.html#passmanager">Llvm.PassManager</a> to hold and
182organize the LLVM optimizations that we want to run. Once we have that, we can
183add a set of optimizations to run. The code looks like this:</p>
184
185<div class="doc_code">
186<pre>
187 (* Create the JIT. *)
188 let the_module_provider = ModuleProvider.create Codegen.the_module in
189 let the_execution_engine = ExecutionEngine.create the_module_provider in
190 let the_fpm = PassManager.create_function the_module_provider in
191
192 (* Set up the optimizer pipeline. Start with registering info about how the
193 * target lays out data structures. *)
194 TargetData.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
195
196 (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
197 add_instruction_combining the_fpm;
198
199 (* reassociate expressions. *)
200 add_reassociation the_fpm;
201
202 (* Eliminate Common SubExpressions. *)
203 add_gvn the_fpm;
204
205 (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
206 add_cfg_simplification the_fpm;
207
208 (* Run the main "interpreter loop" now. *)
209 Toplevel.main_loop the_fpm the_execution_engine stream;
210</pre>
211</div>
212
213<p>This code defines two values, an <tt>Llvm.llmoduleprovider</tt> and a
214<tt>Llvm.PassManager.t</tt>. The former is basically a wrapper around our
215<tt>Llvm.llmodule</tt> that the <tt>Llvm.PassManager.t</tt> requires. It
216provides certain flexibility that we're not going to take advantage of here,
217so I won't dive into any details about it.</p>
218
219<p>The meat of the matter here, is the definition of "<tt>the_fpm</tt>". It
220requires a pointer to the <tt>the_module</tt> (through the
221<tt>the_module_provider</tt>) to construct itself. Once it is set up, we use a
222series of "add" calls to add a bunch of LLVM passes. The first pass is
223basically boilerplate, it adds a pass so that later optimizations know how the
224data structures in the program are layed out. The
225"<tt>the_execution_engine</tt>" variable is related to the JIT, which we will
226get to in the next section.</p>
227
228<p>In this case, we choose to add 4 optimization passes. The passes we chose
229here are a pretty standard set of "cleanup" optimizations that are useful for
230a wide variety of code. I won't delve into what they do but, believe me,
231they are a good starting place :).</p>
232
233<p>Once the <tt>Llvm.PassManager.</tt> is set up, we need to make use of it.
234We do this by running it after our newly created function is constructed (in
235<tt>Codegen.codegen_func</tt>), but before it is returned to the client:</p>
236
237<div class="doc_code">
238<pre>
239let codegen_func the_fpm = function
240 ...
241 try
242 let ret_val = codegen_expr body in
243
244 (* Finish off the function. *)
245 let _ = build_ret ret_val builder in
246
247 (* Validate the generated code, checking for consistency. *)
248 Llvm_analysis.assert_valid_function the_function;
249
250 (* Optimize the function. *)
251 let _ = PassManager.run_function the_function the_fpm in
252
253 the_function
254</pre>
255</div>
256
257<p>As you can see, this is pretty straightforward. The <tt>the_fpm</tt>
258optimizes and updates the LLVM Function* in place, improving (hopefully) its
259body. With this in place, we can try our test above again:</p>
260
261<div class="doc_code">
262<pre>
263ready&gt; <b>def test(x) (1+2+x)*(x+(1+2));</b>
264ready&gt; Read function definition:
265define double @test(double %x) {
266entry:
267 %addtmp = add double %x, 3.000000e+00
268 %multmp = mul double %addtmp, %addtmp
269 ret double %multmp
270}
271</pre>
272</div>
273
274<p>As expected, we now get our nicely optimized code, saving a floating point
275add instruction from every execution of this function.</p>
276
277<p>LLVM provides a wide variety of optimizations that can be used in certain
278circumstances. Some <a href="../Passes.html">documentation about the various
279passes</a> is available, but it isn't very complete. Another good source of
280ideas can come from looking at the passes that <tt>llvm-gcc</tt> or
281<tt>llvm-ld</tt> run to get started. The "<tt>opt</tt>" tool allows you to
282experiment with passes from the command line, so you can see if they do
283anything.</p>
284
285<p>Now that we have reasonable code coming out of our front-end, lets talk about
286executing it!</p>
287
288</div>
289
290<!-- *********************************************************************** -->
291<div class="doc_section"><a name="jit">Adding a JIT Compiler</a></div>
292<!-- *********************************************************************** -->
293
294<div class="doc_text">
295
296<p>Code that is available in LLVM IR can have a wide variety of tools
297applied to it. For example, you can run optimizations on it (as we did above),
298you can dump it out in textual or binary forms, you can compile the code to an
299assembly file (.s) for some target, or you can JIT compile it. The nice thing
300about the LLVM IR representation is that it is the "common currency" between
301many different parts of the compiler.
302</p>
303
304<p>In this section, we'll add JIT compiler support to our interpreter. The
305basic idea that we want for Kaleidoscope is to have the user enter function
306bodies as they do now, but immediately evaluate the top-level expressions they
307type in. For example, if they type in "1 + 2;", we should evaluate and print
308out 3. If they define a function, they should be able to call it from the
309command line.</p>
310
311<p>In order to do this, we first declare and initialize the JIT. This is done
312by adding a global variable and a call in <tt>main</tt>:</p>
313
314<div class="doc_code">
315<pre>
316...
317let main () =
318 ...
319 <b>
320 (* Create the JIT. *)
321 let the_module_provider = ModuleProvider.create Codegen.the_module in
322 let the_execution_engine = ExecutionEngine.create the_module_provider in</b>
323 ...
324</pre>
325</div>
326
327<p>This creates an abstract "Execution Engine" which can be either a JIT
328compiler or the LLVM interpreter. LLVM will automatically pick a JIT compiler
329for you if one is available for your platform, otherwise it will fall back to
330the interpreter.</p>
331
332<p>Once the <tt>Llvm_executionengine.ExecutionEngine.t</tt> is created, the JIT
333is ready to be used. There are a variety of APIs that are useful, but the
334simplest one is the "<tt>Llvm_executionengine.ExecutionEngine.run_function</tt>"
335function. This method JIT compiles the specified LLVM Function and returns a
336function pointer to the generated machine code. In our case, this means that we
337can change the code that parses a top-level expression to look like this:</p>
338
339<div class="doc_code">
340<pre>
341 (* Evaluate a top-level expression into an anonymous function. *)
342 let e = Parser.parse_toplevel stream in
343 print_endline "parsed a top-level expr";
344 let the_function = Codegen.codegen_func the_fpm e in
345 dump_value the_function;
346
347 (* JIT the function, returning a function pointer. *)
348 let result = ExecutionEngine.run_function the_function [||]
349 the_execution_engine in
350
351 print_string "Evaluated to ";
352 print_float (GenericValue.as_float double_type result);
353 print_newline ();
354</pre>
355</div>
356
357<p>Recall that we compile top-level expressions into a self-contained LLVM
358function that takes no arguments and returns the computed double. Because the
359LLVM JIT compiler matches the native platform ABI, this means that you can just
360cast the result pointer to a function pointer of that type and call it directly.
361This means, there is no difference between JIT compiled code and native machine
362code that is statically linked into your application.</p>
363
364<p>With just these two changes, lets see how Kaleidoscope works now!</p>
365
366<div class="doc_code">
367<pre>
368ready&gt; <b>4+5;</b>
369define double @""() {
370entry:
371 ret double 9.000000e+00
372}
373
374<em>Evaluated to 9.000000</em>
375</pre>
376</div>
377
378<p>Well this looks like it is basically working. The dump of the function
379shows the "no argument function that always returns double" that we synthesize
380for each top level expression that is typed in. This demonstrates very basic
381functionality, but can we do more?</p>
382
383<div class="doc_code">
384<pre>
385ready&gt; <b>def testfunc(x y) x + y*2; </b>
386Read function definition:
387define double @testfunc(double %x, double %y) {
388entry:
389 %multmp = mul double %y, 2.000000e+00
390 %addtmp = add double %multmp, %x
391 ret double %addtmp
392}
393
394ready&gt; <b>testfunc(4, 10);</b>
395define double @""() {
396entry:
397 %calltmp = call double @testfunc( double 4.000000e+00, double 1.000000e+01 )
398 ret double %calltmp
399}
400
401<em>Evaluated to 24.000000</em>
402</pre>
403</div>
404
405<p>This illustrates that we can now call user code, but there is something a bit
406subtle going on here. Note that we only invoke the JIT on the anonymous
407functions that <em>call testfunc</em>, but we never invoked it on <em>testfunc
408</em>itself.</p>
409
410<p>What actually happened here is that the anonymous function was JIT'd when
411requested. When the Kaleidoscope app calls through the function pointer that is
412returned, the anonymous function starts executing. It ends up making the call
413to the "testfunc" function, and ends up in a stub that invokes the JIT, lazily,
414on testfunc. Once the JIT finishes lazily compiling testfunc,
415it returns and the code re-executes the call.</p>
416
417<p>In summary, the JIT will lazily JIT code, on the fly, as it is needed. The
418JIT provides a number of other more advanced interfaces for things like freeing
419allocated machine code, rejit'ing functions to update them, etc. However, even
420with this simple code, we get some surprisingly powerful capabilities - check
421this out (I removed the dump of the anonymous functions, you should get the idea
422by now :) :</p>
423
424<div class="doc_code">
425<pre>
426ready&gt; <b>extern sin(x);</b>
427Read extern:
428declare double @sin(double)
429
430ready&gt; <b>extern cos(x);</b>
431Read extern:
432declare double @cos(double)
433
434ready&gt; <b>sin(1.0);</b>
435<em>Evaluated to 0.841471</em>
436
437ready&gt; <b>def foo(x) sin(x)*sin(x) + cos(x)*cos(x);</b>
438Read function definition:
439define double @foo(double %x) {
440entry:
441 %calltmp = call double @sin( double %x )
442 %multmp = mul double %calltmp, %calltmp
443 %calltmp2 = call double @cos( double %x )
444 %multmp4 = mul double %calltmp2, %calltmp2
445 %addtmp = add double %multmp, %multmp4
446 ret double %addtmp
447}
448
449ready&gt; <b>foo(4.0);</b>
450<em>Evaluated to 1.000000</em>
451</pre>
452</div>
453
454<p>Whoa, how does the JIT know about sin and cos? The answer is surprisingly
455simple: in this example, the JIT started execution of a function and got to a
456function call. It realized that the function was not yet JIT compiled and
457invoked the standard set of routines to resolve the function. In this case,
458there is no body defined for the function, so the JIT ended up calling
459"<tt>dlsym("sin")</tt>" on the Kaleidoscope process itself. Since
460"<tt>sin</tt>" is defined within the JIT's address space, it simply patches up
461calls in the module to call the libm version of <tt>sin</tt> directly.</p>
462
463<p>The LLVM JIT provides a number of interfaces (look in the
464<tt>llvm_executionengine.mli</tt> file) for controlling how unknown functions
465get resolved. It allows you to establish explicit mappings between IR objects
466and addresses (useful for LLVM global variables that you want to map to static
467tables, for example), allows you to dynamically decide on the fly based on the
468function name, and even allows you to have the JIT abort itself if any lazy
469compilation is attempted.</p>
470
471<p>One interesting application of this is that we can now extend the language
472by writing arbitrary C code to implement operations. For example, if we add:
473</p>
474
475<div class="doc_code">
476<pre>
477/* putchard - putchar that takes a double and returns 0. */
478extern "C"
479double putchard(double X) {
480 putchar((char)X);
481 return 0;
482}
483</pre>
484</div>
485
486<p>Now we can produce simple output to the console by using things like:
487"<tt>extern putchard(x); putchard(120);</tt>", which prints a lowercase 'x' on
488the console (120 is the ASCII code for 'x'). Similar code could be used to
489implement file I/O, console input, and many other capabilities in
490Kaleidoscope.</p>
491
492<p>This completes the JIT and optimizer chapter of the Kaleidoscope tutorial. At
493this point, we can compile a non-Turing-complete programming language, optimize
494and JIT compile it in a user-driven way. Next up we'll look into <a
495href="OCamlLangImpl5.html">extending the language with control flow
496constructs</a>, tackling some interesting LLVM IR issues along the way.</p>
497
498</div>
499
500<!-- *********************************************************************** -->
501<div class="doc_section"><a name="code">Full Code Listing</a></div>
502<!-- *********************************************************************** -->
503
504<div class="doc_text">
505
506<p>
507Here is the complete code listing for our running example, enhanced with the
508LLVM JIT and optimizer. To build this example, use:
509</p>
510
511<dl>
512<dt>_tags:</dt>
513<dd class="doc_code">
514<pre>
515&lt;{lexer,parser}.ml&gt;: use_camlp4, pp(camlp4of)
516&lt;*.{byte,native}&gt;: g++, use_llvm, use_llvm_analysis
517&lt;*.{byte,native}&gt;: use_llvm_executionengine, use_llvm_target
518&lt;*.{byte,native}&gt;: use_llvm_scalar_opts, use_bindings
519</pre>
520</dd>
521
522<dt>myocamlbuild.ml:</dt>
523<dd class="doc_code">
524<pre>
525open Ocamlbuild_plugin;;
526
527ocaml_lib ~extern:true "llvm";;
528ocaml_lib ~extern:true "llvm_analysis";;
529ocaml_lib ~extern:true "llvm_executionengine";;
530ocaml_lib ~extern:true "llvm_target";;
531ocaml_lib ~extern:true "llvm_scalar_opts";;
532
533flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);;
534dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];;
535</pre>
536</dd>
537
538<dt>token.ml:</dt>
539<dd class="doc_code">
540<pre>
541(*===----------------------------------------------------------------------===
542 * Lexer Tokens
543 *===----------------------------------------------------------------------===*)
544
545(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
546 * these others for known things. *)
547type token =
548 (* commands *)
549 | Def | Extern
550
551 (* primary *)
552 | Ident of string | Number of float
553
554 (* unknown *)
555 | Kwd of char
556</pre>
557</dd>
558
559<dt>lexer.ml:</dt>
560<dd class="doc_code">
561<pre>
562(*===----------------------------------------------------------------------===
563 * Lexer
564 *===----------------------------------------------------------------------===*)
565
566let rec lex = parser
567 (* Skip any whitespace. *)
568 | [&lt; ' (' ' | '\n' | '\r' | '\t'); stream &gt;] -&gt; lex stream
569
570 (* identifier: [a-zA-Z][a-zA-Z0-9] *)
571 | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' as c); stream &gt;] -&gt;
572 let buffer = Buffer.create 1 in
573 Buffer.add_char buffer c;
574 lex_ident buffer stream
575
576 (* number: [0-9.]+ *)
577 | [&lt; ' ('0' .. '9' as c); stream &gt;] -&gt;
578 let buffer = Buffer.create 1 in
579 Buffer.add_char buffer c;
580 lex_number buffer stream
581
582 (* Comment until end of line. *)
583 | [&lt; ' ('#'); stream &gt;] -&gt;
584 lex_comment stream
585
586 (* Otherwise, just return the character as its ascii value. *)
587 | [&lt; 'c; stream &gt;] -&gt;
588 [&lt; 'Token.Kwd c; lex stream &gt;]
589
590 (* end of stream. *)
591 | [&lt; &gt;] -&gt; [&lt; &gt;]
592
593and lex_number buffer = parser
594 | [&lt; ' ('0' .. '9' | '.' as c); stream &gt;] -&gt;
595 Buffer.add_char buffer c;
596 lex_number buffer stream
597 | [&lt; stream=lex &gt;] -&gt;
598 [&lt; 'Token.Number (float_of_string (Buffer.contents buffer)); stream &gt;]
599
600and lex_ident buffer = parser
601 | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream &gt;] -&gt;
602 Buffer.add_char buffer c;
603 lex_ident buffer stream
604 | [&lt; stream=lex &gt;] -&gt;
605 match Buffer.contents buffer with
606 | "def" -&gt; [&lt; 'Token.Def; stream &gt;]
607 | "extern" -&gt; [&lt; 'Token.Extern; stream &gt;]
608 | id -&gt; [&lt; 'Token.Ident id; stream &gt;]
609
610and lex_comment = parser
611 | [&lt; ' ('\n'); stream=lex &gt;] -&gt; stream
612 | [&lt; 'c; e=lex_comment &gt;] -&gt; e
613 | [&lt; &gt;] -&gt; [&lt; &gt;]
614</pre>
615</dd>
616
617<dt>ast.ml:</dt>
618<dd class="doc_code">
619<pre>
620(*===----------------------------------------------------------------------===
621 * Abstract Syntax Tree (aka Parse Tree)
622 *===----------------------------------------------------------------------===*)
623
624(* expr - Base type for all expression nodes. *)
625type expr =
626 (* variant for numeric literals like "1.0". *)
627 | Number of float
628
629 (* variant for referencing a variable, like "a". *)
630 | Variable of string
631
632 (* variant for a binary operator. *)
633 | Binary of char * expr * expr
634
635 (* variant for function calls. *)
636 | Call of string * expr array
637
638(* proto - This type represents the "prototype" for a function, which captures
639 * its name, and its argument names (thus implicitly the number of arguments the
640 * function takes). *)
641type proto = Prototype of string * string array
642
643(* func - This type represents a function definition itself. *)
644type func = Function of proto * expr
645</pre>
646</dd>
647
648<dt>parser.ml:</dt>
649<dd class="doc_code">
650<pre>
651(*===---------------------------------------------------------------------===
652 * Parser
653 *===---------------------------------------------------------------------===*)
654
655(* binop_precedence - This holds the precedence for each binary operator that is
656 * defined *)
657let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
658
659(* precedence - Get the precedence of the pending binary operator token. *)
660let precedence c = try Hashtbl.find binop_precedence c with Not_found -&gt; -1
661
662(* primary
663 * ::= identifier
664 * ::= numberexpr
665 * ::= parenexpr *)
666let rec parse_primary = parser
667 (* numberexpr ::= number *)
668 | [&lt; 'Token.Number n &gt;] -&gt; Ast.Number n
669
670 (* parenexpr ::= '(' expression ')' *)
671 | [&lt; 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" &gt;] -&gt; e
672
673 (* identifierexpr
674 * ::= identifier
675 * ::= identifier '(' argumentexpr ')' *)
676 | [&lt; 'Token.Ident id; stream &gt;] -&gt;
677 let rec parse_args accumulator = parser
678 | [&lt; e=parse_expr; stream &gt;] -&gt;
679 begin parser
680 | [&lt; 'Token.Kwd ','; e=parse_args (e :: accumulator) &gt;] -&gt; e
681 | [&lt; &gt;] -&gt; e :: accumulator
682 end stream
683 | [&lt; &gt;] -&gt; accumulator
684 in
685 let rec parse_ident id = parser
686 (* Call. *)
687 | [&lt; 'Token.Kwd '(';
688 args=parse_args [];
689 'Token.Kwd ')' ?? "expected ')'"&gt;] -&gt;
690 Ast.Call (id, Array.of_list (List.rev args))
691
692 (* Simple variable ref. *)
693 | [&lt; &gt;] -&gt; Ast.Variable id
694 in
695 parse_ident id stream
696
697 | [&lt; &gt;] -&gt; raise (Stream.Error "unknown token when expecting an expression.")
698
699(* binoprhs
700 * ::= ('+' primary)* *)
701and parse_bin_rhs expr_prec lhs stream =
702 match Stream.peek stream with
703 (* If this is a binop, find its precedence. *)
704 | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -&gt;
705 let token_prec = precedence c in
706
707 (* If this is a binop that binds at least as tightly as the current binop,
708 * consume it, otherwise we are done. *)
709 if token_prec &lt; expr_prec then lhs else begin
710 (* Eat the binop. *)
711 Stream.junk stream;
712
713 (* Parse the primary expression after the binary operator. *)
714 let rhs = parse_primary stream in
715
716 (* Okay, we know this is a binop. *)
717 let rhs =
718 match Stream.peek stream with
719 | Some (Token.Kwd c2) -&gt;
720 (* If BinOp binds less tightly with rhs than the operator after
721 * rhs, let the pending operator take rhs as its lhs. *)
722 let next_prec = precedence c2 in
723 if token_prec &lt; next_prec
724 then parse_bin_rhs (token_prec + 1) rhs stream
725 else rhs
726 | _ -&gt; rhs
727 in
728
729 (* Merge lhs/rhs. *)
730 let lhs = Ast.Binary (c, lhs, rhs) in
731 parse_bin_rhs expr_prec lhs stream
732 end
733 | _ -&gt; lhs
734
735(* expression
736 * ::= primary binoprhs *)
737and parse_expr = parser
738 | [&lt; lhs=parse_primary; stream &gt;] -&gt; parse_bin_rhs 0 lhs stream
739
740(* prototype
741 * ::= id '(' id* ')' *)
742let parse_prototype =
743 let rec parse_args accumulator = parser
744 | [&lt; 'Token.Ident id; e=parse_args (id::accumulator) &gt;] -&gt; e
745 | [&lt; &gt;] -&gt; accumulator
746 in
747
748 parser
749 | [&lt; 'Token.Ident id;
750 'Token.Kwd '(' ?? "expected '(' in prototype";
751 args=parse_args [];
752 'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
753 (* success. *)
754 Ast.Prototype (id, Array.of_list (List.rev args))
755
756 | [&lt; &gt;] -&gt;
757 raise (Stream.Error "expected function name in prototype")
758
759(* definition ::= 'def' prototype expression *)
760let parse_definition = parser
761 | [&lt; 'Token.Def; p=parse_prototype; e=parse_expr &gt;] -&gt;
762 Ast.Function (p, e)
763
764(* toplevelexpr ::= expression *)
765let parse_toplevel = parser
766 | [&lt; e=parse_expr &gt;] -&gt;
767 (* Make an anonymous proto. *)
768 Ast.Function (Ast.Prototype ("", [||]), e)
769
770(* external ::= 'extern' prototype *)
771let parse_extern = parser
772 | [&lt; 'Token.Extern; e=parse_prototype &gt;] -&gt; e
773</pre>
774</dd>
775
776<dt>codegen.ml:</dt>
777<dd class="doc_code">
778<pre>
779(*===----------------------------------------------------------------------===
780 * Code Generation
781 *===----------------------------------------------------------------------===*)
782
783open Llvm
784
785exception Error of string
786
787let the_module = create_module "my cool jit"
788let builder = builder ()
789let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
790
791let rec codegen_expr = function
792 | Ast.Number n -&gt; const_float double_type n
793 | Ast.Variable name -&gt;
794 (try Hashtbl.find named_values name with
795 | Not_found -&gt; raise (Error "unknown variable name"))
796 | Ast.Binary (op, lhs, rhs) -&gt;
797 let lhs_val = codegen_expr lhs in
798 let rhs_val = codegen_expr rhs in
799 begin
800 match op with
801 | '+' -&gt; build_add lhs_val rhs_val "addtmp" builder
802 | '-' -&gt; build_sub lhs_val rhs_val "subtmp" builder
803 | '*' -&gt; build_mul lhs_val rhs_val "multmp" builder
804 | '&lt;' -&gt;
805 (* Convert bool 0/1 to double 0.0 or 1.0 *)
806 let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
807 build_uitofp i double_type "booltmp" builder
808 | _ -&gt; raise (Error "invalid binary operator")
809 end
810 | Ast.Call (callee, args) -&gt;
811 (* Look up the name in the module table. *)
812 let callee =
813 match lookup_function callee the_module with
814 | Some callee -&gt; callee
815 | None -&gt; raise (Error "unknown function referenced")
816 in
817 let params = params callee in
818
819 (* If argument mismatch error. *)
820 if Array.length params == Array.length args then () else
821 raise (Error "incorrect # arguments passed");
822 let args = Array.map codegen_expr args in
823 build_call callee args "calltmp" builder
824
825let codegen_proto = function
826 | Ast.Prototype (name, args) -&gt;
827 (* Make the function type: double(double,double) etc. *)
828 let doubles = Array.make (Array.length args) double_type in
829 let ft = function_type double_type doubles in
830 let f =
831 match lookup_function name the_module with
832 | None -&gt; declare_function name ft the_module
833
834 (* If 'f' conflicted, there was already something named 'name'. If it
835 * has a body, don't allow redefinition or reextern. *)
836 | Some f -&gt;
837 (* If 'f' already has a body, reject this. *)
838 if block_begin f &lt;&gt; At_end f then
839 raise (Error "redefinition of function");
840
841 (* If 'f' took a different number of arguments, reject. *)
842 if element_type (type_of f) &lt;&gt; ft then
843 raise (Error "redefinition of function with different # args");
844 f
845 in
846
847 (* Set names for all arguments. *)
848 Array.iteri (fun i a -&gt;
849 let n = args.(i) in
850 set_value_name n a;
851 Hashtbl.add named_values n a;
852 ) (params f);
853 f
854
855let codegen_func the_fpm = function
856 | Ast.Function (proto, body) -&gt;
857 Hashtbl.clear named_values;
858 let the_function = codegen_proto proto in
859
860 (* Create a new basic block to start insertion into. *)
861 let bb = append_block "entry" the_function in
862 position_at_end bb builder;
863
864 try
865 let ret_val = codegen_expr body in
866
867 (* Finish off the function. *)
868 let _ = build_ret ret_val builder in
869
870 (* Validate the generated code, checking for consistency. *)
871 Llvm_analysis.assert_valid_function the_function;
872
873 (* Optimize the function. *)
874 let _ = PassManager.run_function the_function the_fpm in
875
876 the_function
877 with e -&gt;
878 delete_function the_function;
879 raise e
880</pre>
881</dd>
882
883<dt>toplevel.ml:</dt>
884<dd class="doc_code">
885<pre>
886(*===----------------------------------------------------------------------===
887 * Top-Level parsing and JIT Driver
888 *===----------------------------------------------------------------------===*)
889
890open Llvm
891open Llvm_executionengine
892
893(* top ::= definition | external | expression | ';' *)
894let rec main_loop the_fpm the_execution_engine stream =
895 match Stream.peek stream with
896 | None -&gt; ()
897
898 (* ignore top-level semicolons. *)
899 | Some (Token.Kwd ';') -&gt;
900 Stream.junk stream;
901 main_loop the_fpm the_execution_engine stream
902
903 | Some token -&gt;
904 begin
905 try match token with
906 | Token.Def -&gt;
907 let e = Parser.parse_definition stream in
908 print_endline "parsed a function definition.";
909 dump_value (Codegen.codegen_func the_fpm e);
910 | Token.Extern -&gt;
911 let e = Parser.parse_extern stream in
912 print_endline "parsed an extern.";
913 dump_value (Codegen.codegen_proto e);
914 | _ -&gt;
915 (* Evaluate a top-level expression into an anonymous function. *)
916 let e = Parser.parse_toplevel stream in
917 print_endline "parsed a top-level expr";
918 let the_function = Codegen.codegen_func the_fpm e in
919 dump_value the_function;
920
921 (* JIT the function, returning a function pointer. *)
922 let result = ExecutionEngine.run_function the_function [||]
923 the_execution_engine in
924
925 print_string "Evaluated to ";
926 print_float (GenericValue.as_float double_type result);
927 print_newline ();
928 with Stream.Error s | Codegen.Error s -&gt;
929 (* Skip token for error recovery. *)
930 Stream.junk stream;
931 print_endline s;
932 end;
933 print_string "ready&gt; "; flush stdout;
934 main_loop the_fpm the_execution_engine stream
935</pre>
936</dd>
937
938<dt>toy.ml:</dt>
939<dd class="doc_code">
940<pre>
941(*===----------------------------------------------------------------------===
942 * Main driver code.
943 *===----------------------------------------------------------------------===*)
944
945open Llvm
946open Llvm_executionengine
947open Llvm_target
948open Llvm_scalar_opts
949
950let main () =
951 (* Install standard binary operators.
952 * 1 is the lowest precedence. *)
953 Hashtbl.add Parser.binop_precedence '&lt;' 10;
954 Hashtbl.add Parser.binop_precedence '+' 20;
955 Hashtbl.add Parser.binop_precedence '-' 20;
956 Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)
957
958 (* Prime the first token. *)
959 print_string "ready&gt; "; flush stdout;
960 let stream = Lexer.lex (Stream.of_channel stdin) in
961
962 (* Create the JIT. *)
963 let the_module_provider = ModuleProvider.create Codegen.the_module in
964 let the_execution_engine = ExecutionEngine.create the_module_provider in
965 let the_fpm = PassManager.create_function the_module_provider in
966
967 (* Set up the optimizer pipeline. Start with registering info about how the
968 * target lays out data structures. *)
969 TargetData.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
970
971 (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
972 add_instruction_combining the_fpm;
973
974 (* reassociate expressions. *)
975 add_reassociation the_fpm;
976
977 (* Eliminate Common SubExpressions. *)
978 add_gvn the_fpm;
979
980 (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
981 add_cfg_simplification the_fpm;
982
983 (* Run the main "interpreter loop" now. *)
984 Toplevel.main_loop the_fpm the_execution_engine stream;
985
986 (* Print out all the generated code. *)
987 dump_module Codegen.the_module
988;;
989
990main ()
991</pre>
992</dd>
993
994<dt>bindings.c</dt>
995<dd class="doc_code">
996<pre>
997#include &lt;stdio.h&gt;
998
999/* putchard - putchar that takes a double and returns 0. */
1000extern double putchard(double X) {
1001 putchar((char)X);
1002 return 0;
1003}
1004</pre>
1005</dd>
1006</dl>
1007
1008<a href="OCamlLangImpl5.html">Next: Extending the language: control flow</a>
1009</div>
1010
1011<!-- *********************************************************************** -->
1012<hr>
1013<address>
1014 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
1015 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
1016 <a href="http://validator.w3.org/check/referer"><img
1017 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
1018
1019 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
1020 <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a><br>
1021 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
1022 Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $
1023</address>
1024</body>
1025</html>