blob: ef35e1c554c8c20d74b2a3a2d33b075229700bcf [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "apint"
16#include "llvm/ADT/APInt.h"
Ted Kremenek109de0d2008-01-19 04:23:33 +000017#include "llvm/ADT/FoldingSet.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000018#include "llvm/Support/Debug.h"
19#include "llvm/Support/MathExtras.h"
20#include <math.h>
21#include <limits>
22#include <cstring>
23#include <cstdlib>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000024#include <iomanip>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000025
26using namespace llvm;
27
Reid Spencera15c5012007-12-11 06:53:58 +000028/// This enumeration just provides for internal constants used in this
29/// translation unit.
30enum {
31 MIN_INT_BITS = 1, ///< Minimum number of bits that can be specified
32 ///< Note that this must remain synchronized with IntegerType::MIN_INT_BITS
33 MAX_INT_BITS = (1<<23)-1 ///< Maximum number of bits that can be specified
34 ///< Note that this must remain synchronized with IntegerType::MAX_INT_BITS
35};
36
Dan Gohmanf17a25c2007-07-18 16:29:46 +000037/// A utility function for allocating memory, checking for allocation failures,
38/// and ensuring the contents are zeroed.
39inline static uint64_t* getClearedMemory(uint32_t numWords) {
40 uint64_t * result = new uint64_t[numWords];
41 assert(result && "APInt memory allocation fails!");
42 memset(result, 0, numWords * sizeof(uint64_t));
43 return result;
44}
45
46/// A utility function for allocating memory and checking for allocation
47/// failure. The content is not zeroed.
48inline static uint64_t* getMemory(uint32_t numWords) {
49 uint64_t * result = new uint64_t[numWords];
50 assert(result && "APInt memory allocation fails!");
51 return result;
52}
53
54APInt::APInt(uint32_t numBits, uint64_t val, bool isSigned)
55 : BitWidth(numBits), VAL(0) {
Reid Spencera15c5012007-12-11 06:53:58 +000056 assert(BitWidth >= MIN_INT_BITS && "bitwidth too small");
57 assert(BitWidth <= MAX_INT_BITS && "bitwidth too large");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000058 if (isSingleWord())
59 VAL = val;
60 else {
61 pVal = getClearedMemory(getNumWords());
62 pVal[0] = val;
63 if (isSigned && int64_t(val) < 0)
64 for (unsigned i = 1; i < getNumWords(); ++i)
65 pVal[i] = -1ULL;
66 }
67 clearUnusedBits();
68}
69
Dale Johannesena6f79742007-09-21 22:09:37 +000070APInt::APInt(uint32_t numBits, uint32_t numWords, const uint64_t bigVal[])
Dan Gohmanf17a25c2007-07-18 16:29:46 +000071 : BitWidth(numBits), VAL(0) {
Reid Spencera15c5012007-12-11 06:53:58 +000072 assert(BitWidth >= MIN_INT_BITS && "bitwidth too small");
73 assert(BitWidth <= MAX_INT_BITS && "bitwidth too large");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000074 assert(bigVal && "Null pointer detected!");
75 if (isSingleWord())
76 VAL = bigVal[0];
77 else {
78 // Get memory, cleared to 0
79 pVal = getClearedMemory(getNumWords());
80 // Calculate the number of words to copy
81 uint32_t words = std::min<uint32_t>(numWords, getNumWords());
82 // Copy the words from bigVal to pVal
83 memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
84 }
85 // Make sure unused high bits are cleared
86 clearUnusedBits();
87}
88
89APInt::APInt(uint32_t numbits, const char StrStart[], uint32_t slen,
90 uint8_t radix)
91 : BitWidth(numbits), VAL(0) {
Reid Spencera15c5012007-12-11 06:53:58 +000092 assert(BitWidth >= MIN_INT_BITS && "bitwidth too small");
93 assert(BitWidth <= MAX_INT_BITS && "bitwidth too large");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000094 fromString(numbits, StrStart, slen, radix);
95}
96
97APInt::APInt(uint32_t numbits, const std::string& Val, uint8_t radix)
98 : BitWidth(numbits), VAL(0) {
Reid Spencera15c5012007-12-11 06:53:58 +000099 assert(BitWidth >= MIN_INT_BITS && "bitwidth too small");
100 assert(BitWidth <= MAX_INT_BITS && "bitwidth too large");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000101 assert(!Val.empty() && "String empty?");
Evan Cheng279e2c42008-05-02 21:15:08 +0000102 fromString(numbits, Val.c_str(), (uint32_t)Val.size(), radix);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000103}
104
105APInt::APInt(const APInt& that)
106 : BitWidth(that.BitWidth), VAL(0) {
Reid Spencera15c5012007-12-11 06:53:58 +0000107 assert(BitWidth >= MIN_INT_BITS && "bitwidth too small");
108 assert(BitWidth <= MAX_INT_BITS && "bitwidth too large");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000109 if (isSingleWord())
110 VAL = that.VAL;
111 else {
112 pVal = getMemory(getNumWords());
113 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
114 }
115}
116
117APInt::~APInt() {
118 if (!isSingleWord() && pVal)
119 delete [] pVal;
120}
121
122APInt& APInt::operator=(const APInt& RHS) {
123 // Don't do anything for X = X
124 if (this == &RHS)
125 return *this;
126
127 // If the bitwidths are the same, we can avoid mucking with memory
128 if (BitWidth == RHS.getBitWidth()) {
129 if (isSingleWord())
130 VAL = RHS.VAL;
131 else
132 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
133 return *this;
134 }
135
136 if (isSingleWord())
137 if (RHS.isSingleWord())
138 VAL = RHS.VAL;
139 else {
140 VAL = 0;
141 pVal = getMemory(RHS.getNumWords());
142 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
143 }
144 else if (getNumWords() == RHS.getNumWords())
145 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
146 else if (RHS.isSingleWord()) {
147 delete [] pVal;
148 VAL = RHS.VAL;
149 } else {
150 delete [] pVal;
151 pVal = getMemory(RHS.getNumWords());
152 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
153 }
154 BitWidth = RHS.BitWidth;
155 return clearUnusedBits();
156}
157
158APInt& APInt::operator=(uint64_t RHS) {
159 if (isSingleWord())
160 VAL = RHS;
161 else {
162 pVal[0] = RHS;
163 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
164 }
165 return clearUnusedBits();
166}
167
Ted Kremenek109de0d2008-01-19 04:23:33 +0000168/// Profile - This method 'profiles' an APInt for use with FoldingSet.
169void APInt::Profile(FoldingSetNodeID& ID) const {
Ted Kremenek79f65912008-02-19 20:50:41 +0000170 ID.AddInteger(BitWidth);
171
Ted Kremenek109de0d2008-01-19 04:23:33 +0000172 if (isSingleWord()) {
173 ID.AddInteger(VAL);
174 return;
175 }
176
177 uint32_t NumWords = getNumWords();
178 for (unsigned i = 0; i < NumWords; ++i)
179 ID.AddInteger(pVal[i]);
180}
181
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000182/// add_1 - This function adds a single "digit" integer, y, to the multiple
183/// "digit" integer array, x[]. x[] is modified to reflect the addition and
184/// 1 is returned if there is a carry out, otherwise 0 is returned.
185/// @returns the carry of the addition.
186static bool add_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
187 for (uint32_t i = 0; i < len; ++i) {
188 dest[i] = y + x[i];
189 if (dest[i] < y)
190 y = 1; // Carry one to next digit.
191 else {
192 y = 0; // No need to carry so exit early
193 break;
194 }
195 }
196 return y;
197}
198
199/// @brief Prefix increment operator. Increments the APInt by one.
200APInt& APInt::operator++() {
201 if (isSingleWord())
202 ++VAL;
203 else
204 add_1(pVal, pVal, getNumWords(), 1);
205 return clearUnusedBits();
206}
207
208/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
209/// the multi-digit integer array, x[], propagating the borrowed 1 value until
210/// no further borrowing is neeeded or it runs out of "digits" in x. The result
211/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
212/// In other words, if y > x then this function returns 1, otherwise 0.
213/// @returns the borrow out of the subtraction
214static bool sub_1(uint64_t x[], uint32_t len, uint64_t y) {
215 for (uint32_t i = 0; i < len; ++i) {
216 uint64_t X = x[i];
217 x[i] -= y;
218 if (y > X)
219 y = 1; // We have to "borrow 1" from next "digit"
220 else {
221 y = 0; // No need to borrow
222 break; // Remaining digits are unchanged so exit early
223 }
224 }
225 return bool(y);
226}
227
228/// @brief Prefix decrement operator. Decrements the APInt by one.
229APInt& APInt::operator--() {
230 if (isSingleWord())
231 --VAL;
232 else
233 sub_1(pVal, getNumWords(), 1);
234 return clearUnusedBits();
235}
236
237/// add - This function adds the integer array x to the integer array Y and
238/// places the result in dest.
239/// @returns the carry out from the addition
240/// @brief General addition of 64-bit integer arrays
241static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
242 uint32_t len) {
243 bool carry = false;
244 for (uint32_t i = 0; i< len; ++i) {
245 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
246 dest[i] = x[i] + y[i] + carry;
247 carry = dest[i] < limit || (carry && dest[i] == limit);
248 }
249 return carry;
250}
251
252/// Adds the RHS APint to this APInt.
253/// @returns this, after addition of RHS.
254/// @brief Addition assignment operator.
255APInt& APInt::operator+=(const APInt& RHS) {
256 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
257 if (isSingleWord())
258 VAL += RHS.VAL;
259 else {
260 add(pVal, pVal, RHS.pVal, getNumWords());
261 }
262 return clearUnusedBits();
263}
264
265/// Subtracts the integer array y from the integer array x
266/// @returns returns the borrow out.
267/// @brief Generalized subtraction of 64-bit integer arrays.
268static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
269 uint32_t len) {
270 bool borrow = false;
271 for (uint32_t i = 0; i < len; ++i) {
272 uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
273 borrow = y[i] > x_tmp || (borrow && x[i] == 0);
274 dest[i] = x_tmp - y[i];
275 }
276 return borrow;
277}
278
279/// Subtracts the RHS APInt from this APInt
280/// @returns this, after subtraction
281/// @brief Subtraction assignment operator.
282APInt& APInt::operator-=(const APInt& RHS) {
283 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
284 if (isSingleWord())
285 VAL -= RHS.VAL;
286 else
287 sub(pVal, pVal, RHS.pVal, getNumWords());
288 return clearUnusedBits();
289}
290
291/// Multiplies an integer array, x by a a uint64_t integer and places the result
292/// into dest.
293/// @returns the carry out of the multiplication.
294/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
295static uint64_t mul_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
296 // Split y into high 32-bit part (hy) and low 32-bit part (ly)
297 uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
298 uint64_t carry = 0;
299
300 // For each digit of x.
301 for (uint32_t i = 0; i < len; ++i) {
302 // Split x into high and low words
303 uint64_t lx = x[i] & 0xffffffffULL;
304 uint64_t hx = x[i] >> 32;
305 // hasCarry - A flag to indicate if there is a carry to the next digit.
306 // hasCarry == 0, no carry
307 // hasCarry == 1, has carry
308 // hasCarry == 2, no carry and the calculation result == 0.
309 uint8_t hasCarry = 0;
310 dest[i] = carry + lx * ly;
311 // Determine if the add above introduces carry.
312 hasCarry = (dest[i] < carry) ? 1 : 0;
313 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
314 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
315 // (2^32 - 1) + 2^32 = 2^64.
316 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
317
318 carry += (lx * hy) & 0xffffffffULL;
319 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
320 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
321 (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
322 }
323 return carry;
324}
325
326/// Multiplies integer array x by integer array y and stores the result into
327/// the integer array dest. Note that dest's size must be >= xlen + ylen.
328/// @brief Generalized multiplicate of integer arrays.
329static void mul(uint64_t dest[], uint64_t x[], uint32_t xlen, uint64_t y[],
330 uint32_t ylen) {
331 dest[xlen] = mul_1(dest, x, xlen, y[0]);
332 for (uint32_t i = 1; i < ylen; ++i) {
333 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
334 uint64_t carry = 0, lx = 0, hx = 0;
335 for (uint32_t j = 0; j < xlen; ++j) {
336 lx = x[j] & 0xffffffffULL;
337 hx = x[j] >> 32;
338 // hasCarry - A flag to indicate if has carry.
339 // hasCarry == 0, no carry
340 // hasCarry == 1, has carry
341 // hasCarry == 2, no carry and the calculation result == 0.
342 uint8_t hasCarry = 0;
343 uint64_t resul = carry + lx * ly;
344 hasCarry = (resul < carry) ? 1 : 0;
345 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
346 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
347
348 carry += (lx * hy) & 0xffffffffULL;
349 resul = (carry << 32) | (resul & 0xffffffffULL);
350 dest[i+j] += resul;
351 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
352 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
353 ((lx * hy) >> 32) + hx * hy;
354 }
355 dest[i+xlen] = carry;
356 }
357}
358
359APInt& APInt::operator*=(const APInt& RHS) {
360 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
361 if (isSingleWord()) {
362 VAL *= RHS.VAL;
363 clearUnusedBits();
364 return *this;
365 }
366
367 // Get some bit facts about LHS and check for zero
368 uint32_t lhsBits = getActiveBits();
369 uint32_t lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
370 if (!lhsWords)
371 // 0 * X ===> 0
372 return *this;
373
374 // Get some bit facts about RHS and check for zero
375 uint32_t rhsBits = RHS.getActiveBits();
376 uint32_t rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
377 if (!rhsWords) {
378 // X * 0 ===> 0
379 clear();
380 return *this;
381 }
382
383 // Allocate space for the result
384 uint32_t destWords = rhsWords + lhsWords;
385 uint64_t *dest = getMemory(destWords);
386
387 // Perform the long multiply
388 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
389
390 // Copy result back into *this
391 clear();
392 uint32_t wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
393 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
394
395 // delete dest array and return
396 delete[] dest;
397 return *this;
398}
399
400APInt& APInt::operator&=(const APInt& RHS) {
401 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
402 if (isSingleWord()) {
403 VAL &= RHS.VAL;
404 return *this;
405 }
406 uint32_t numWords = getNumWords();
407 for (uint32_t i = 0; i < numWords; ++i)
408 pVal[i] &= RHS.pVal[i];
409 return *this;
410}
411
412APInt& APInt::operator|=(const APInt& RHS) {
413 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
414 if (isSingleWord()) {
415 VAL |= RHS.VAL;
416 return *this;
417 }
418 uint32_t numWords = getNumWords();
419 for (uint32_t i = 0; i < numWords; ++i)
420 pVal[i] |= RHS.pVal[i];
421 return *this;
422}
423
424APInt& APInt::operator^=(const APInt& RHS) {
425 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
426 if (isSingleWord()) {
427 VAL ^= RHS.VAL;
428 this->clearUnusedBits();
429 return *this;
430 }
431 uint32_t numWords = getNumWords();
432 for (uint32_t i = 0; i < numWords; ++i)
433 pVal[i] ^= RHS.pVal[i];
434 return clearUnusedBits();
435}
436
437APInt APInt::operator&(const APInt& RHS) const {
438 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
439 if (isSingleWord())
440 return APInt(getBitWidth(), VAL & RHS.VAL);
441
442 uint32_t numWords = getNumWords();
443 uint64_t* val = getMemory(numWords);
444 for (uint32_t i = 0; i < numWords; ++i)
445 val[i] = pVal[i] & RHS.pVal[i];
446 return APInt(val, getBitWidth());
447}
448
449APInt APInt::operator|(const APInt& RHS) const {
450 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
451 if (isSingleWord())
452 return APInt(getBitWidth(), VAL | RHS.VAL);
453
454 uint32_t numWords = getNumWords();
455 uint64_t *val = getMemory(numWords);
456 for (uint32_t i = 0; i < numWords; ++i)
457 val[i] = pVal[i] | RHS.pVal[i];
458 return APInt(val, getBitWidth());
459}
460
461APInt APInt::operator^(const APInt& RHS) const {
462 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
463 if (isSingleWord())
464 return APInt(BitWidth, VAL ^ RHS.VAL);
465
466 uint32_t numWords = getNumWords();
467 uint64_t *val = getMemory(numWords);
468 for (uint32_t i = 0; i < numWords; ++i)
469 val[i] = pVal[i] ^ RHS.pVal[i];
470
471 // 0^0==1 so clear the high bits in case they got set.
472 return APInt(val, getBitWidth()).clearUnusedBits();
473}
474
475bool APInt::operator !() const {
476 if (isSingleWord())
477 return !VAL;
478
479 for (uint32_t i = 0; i < getNumWords(); ++i)
480 if (pVal[i])
481 return false;
482 return true;
483}
484
485APInt APInt::operator*(const APInt& RHS) const {
486 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
487 if (isSingleWord())
488 return APInt(BitWidth, VAL * RHS.VAL);
489 APInt Result(*this);
490 Result *= RHS;
491 return Result.clearUnusedBits();
492}
493
494APInt APInt::operator+(const APInt& RHS) const {
495 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
496 if (isSingleWord())
497 return APInt(BitWidth, VAL + RHS.VAL);
498 APInt Result(BitWidth, 0);
499 add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
500 return Result.clearUnusedBits();
501}
502
503APInt APInt::operator-(const APInt& RHS) const {
504 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
505 if (isSingleWord())
506 return APInt(BitWidth, VAL - RHS.VAL);
507 APInt Result(BitWidth, 0);
508 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
509 return Result.clearUnusedBits();
510}
511
512bool APInt::operator[](uint32_t bitPosition) const {
513 return (maskBit(bitPosition) &
514 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
515}
516
517bool APInt::operator==(const APInt& RHS) const {
518 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
519 if (isSingleWord())
520 return VAL == RHS.VAL;
521
522 // Get some facts about the number of bits used in the two operands.
523 uint32_t n1 = getActiveBits();
524 uint32_t n2 = RHS.getActiveBits();
525
526 // If the number of bits isn't the same, they aren't equal
527 if (n1 != n2)
528 return false;
529
530 // If the number of bits fits in a word, we only need to compare the low word.
531 if (n1 <= APINT_BITS_PER_WORD)
532 return pVal[0] == RHS.pVal[0];
533
534 // Otherwise, compare everything
535 for (int i = whichWord(n1 - 1); i >= 0; --i)
536 if (pVal[i] != RHS.pVal[i])
537 return false;
538 return true;
539}
540
541bool APInt::operator==(uint64_t Val) const {
542 if (isSingleWord())
543 return VAL == Val;
544
545 uint32_t n = getActiveBits();
546 if (n <= APINT_BITS_PER_WORD)
547 return pVal[0] == Val;
548 else
549 return false;
550}
551
552bool APInt::ult(const APInt& RHS) const {
553 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
554 if (isSingleWord())
555 return VAL < RHS.VAL;
556
557 // Get active bit length of both operands
558 uint32_t n1 = getActiveBits();
559 uint32_t n2 = RHS.getActiveBits();
560
561 // If magnitude of LHS is less than RHS, return true.
562 if (n1 < n2)
563 return true;
564
565 // If magnitude of RHS is greather than LHS, return false.
566 if (n2 < n1)
567 return false;
568
569 // If they bot fit in a word, just compare the low order word
570 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
571 return pVal[0] < RHS.pVal[0];
572
573 // Otherwise, compare all words
574 uint32_t topWord = whichWord(std::max(n1,n2)-1);
575 for (int i = topWord; i >= 0; --i) {
576 if (pVal[i] > RHS.pVal[i])
577 return false;
578 if (pVal[i] < RHS.pVal[i])
579 return true;
580 }
581 return false;
582}
583
584bool APInt::slt(const APInt& RHS) const {
585 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
586 if (isSingleWord()) {
587 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
588 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
589 return lhsSext < rhsSext;
590 }
591
592 APInt lhs(*this);
593 APInt rhs(RHS);
594 bool lhsNeg = isNegative();
595 bool rhsNeg = rhs.isNegative();
596 if (lhsNeg) {
597 // Sign bit is set so perform two's complement to make it positive
598 lhs.flip();
599 lhs++;
600 }
601 if (rhsNeg) {
602 // Sign bit is set so perform two's complement to make it positive
603 rhs.flip();
604 rhs++;
605 }
606
607 // Now we have unsigned values to compare so do the comparison if necessary
608 // based on the negativeness of the values.
609 if (lhsNeg)
610 if (rhsNeg)
611 return lhs.ugt(rhs);
612 else
613 return true;
614 else if (rhsNeg)
615 return false;
616 else
617 return lhs.ult(rhs);
618}
619
620APInt& APInt::set(uint32_t bitPosition) {
621 if (isSingleWord())
622 VAL |= maskBit(bitPosition);
623 else
624 pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
625 return *this;
626}
627
628APInt& APInt::set() {
629 if (isSingleWord()) {
630 VAL = -1ULL;
631 return clearUnusedBits();
632 }
633
634 // Set all the bits in all the words.
635 for (uint32_t i = 0; i < getNumWords(); ++i)
636 pVal[i] = -1ULL;
637 // Clear the unused ones
638 return clearUnusedBits();
639}
640
641/// Set the given bit to 0 whose position is given as "bitPosition".
642/// @brief Set a given bit to 0.
643APInt& APInt::clear(uint32_t bitPosition) {
644 if (isSingleWord())
645 VAL &= ~maskBit(bitPosition);
646 else
647 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
648 return *this;
649}
650
651/// @brief Set every bit to 0.
652APInt& APInt::clear() {
653 if (isSingleWord())
654 VAL = 0;
655 else
656 memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
657 return *this;
658}
659
660/// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on
661/// this APInt.
662APInt APInt::operator~() const {
663 APInt Result(*this);
664 Result.flip();
665 return Result;
666}
667
668/// @brief Toggle every bit to its opposite value.
669APInt& APInt::flip() {
670 if (isSingleWord()) {
671 VAL ^= -1ULL;
672 return clearUnusedBits();
673 }
674 for (uint32_t i = 0; i < getNumWords(); ++i)
675 pVal[i] ^= -1ULL;
676 return clearUnusedBits();
677}
678
679/// Toggle a given bit to its opposite value whose position is given
680/// as "bitPosition".
681/// @brief Toggles a given bit to its opposite value.
682APInt& APInt::flip(uint32_t bitPosition) {
683 assert(bitPosition < BitWidth && "Out of the bit-width range!");
684 if ((*this)[bitPosition]) clear(bitPosition);
685 else set(bitPosition);
686 return *this;
687}
688
689uint32_t APInt::getBitsNeeded(const char* str, uint32_t slen, uint8_t radix) {
690 assert(str != 0 && "Invalid value string");
691 assert(slen > 0 && "Invalid string length");
692
693 // Each computation below needs to know if its negative
694 uint32_t isNegative = str[0] == '-';
695 if (isNegative) {
696 slen--;
697 str++;
698 }
699 // For radixes of power-of-two values, the bits required is accurately and
700 // easily computed
701 if (radix == 2)
702 return slen + isNegative;
703 if (radix == 8)
704 return slen * 3 + isNegative;
705 if (radix == 16)
706 return slen * 4 + isNegative;
707
708 // Otherwise it must be radix == 10, the hard case
709 assert(radix == 10 && "Invalid radix");
710
711 // This is grossly inefficient but accurate. We could probably do something
712 // with a computation of roughly slen*64/20 and then adjust by the value of
713 // the first few digits. But, I'm not sure how accurate that could be.
714
715 // Compute a sufficient number of bits that is always large enough but might
716 // be too large. This avoids the assertion in the constructor.
717 uint32_t sufficient = slen*64/18;
718
719 // Convert to the actual binary value.
720 APInt tmp(sufficient, str, slen, radix);
721
722 // Compute how many bits are required.
723 return isNegative + tmp.logBase2() + 1;
724}
725
726uint64_t APInt::getHashValue() const {
727 // Put the bit width into the low order bits.
728 uint64_t hash = BitWidth;
729
730 // Add the sum of the words to the hash.
731 if (isSingleWord())
732 hash += VAL << 6; // clear separation of up to 64 bits
733 else
734 for (uint32_t i = 0; i < getNumWords(); ++i)
735 hash += pVal[i] << 6; // clear sepration of up to 64 bits
736 return hash;
737}
738
739/// HiBits - This function returns the high "numBits" bits of this APInt.
740APInt APInt::getHiBits(uint32_t numBits) const {
741 return APIntOps::lshr(*this, BitWidth - numBits);
742}
743
744/// LoBits - This function returns the low "numBits" bits of this APInt.
745APInt APInt::getLoBits(uint32_t numBits) const {
746 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
747 BitWidth - numBits);
748}
749
750bool APInt::isPowerOf2() const {
751 return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
752}
753
754uint32_t APInt::countLeadingZeros() const {
755 uint32_t Count = 0;
756 if (isSingleWord())
757 Count = CountLeadingZeros_64(VAL);
758 else {
759 for (uint32_t i = getNumWords(); i > 0u; --i) {
760 if (pVal[i-1] == 0)
761 Count += APINT_BITS_PER_WORD;
762 else {
763 Count += CountLeadingZeros_64(pVal[i-1]);
764 break;
765 }
766 }
767 }
768 uint32_t remainder = BitWidth % APINT_BITS_PER_WORD;
769 if (remainder)
770 Count -= APINT_BITS_PER_WORD - remainder;
Chris Lattner00b08ce2007-11-23 22:42:31 +0000771 return std::min(Count, BitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000772}
773
774static uint32_t countLeadingOnes_64(uint64_t V, uint32_t skip) {
775 uint32_t Count = 0;
776 if (skip)
777 V <<= skip;
778 while (V && (V & (1ULL << 63))) {
779 Count++;
780 V <<= 1;
781 }
782 return Count;
783}
784
785uint32_t APInt::countLeadingOnes() const {
786 if (isSingleWord())
787 return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
788
789 uint32_t highWordBits = BitWidth % APINT_BITS_PER_WORD;
790 uint32_t shift = (highWordBits == 0 ? 0 : APINT_BITS_PER_WORD - highWordBits);
791 int i = getNumWords() - 1;
792 uint32_t Count = countLeadingOnes_64(pVal[i], shift);
793 if (Count == highWordBits) {
794 for (i--; i >= 0; --i) {
795 if (pVal[i] == -1ULL)
796 Count += APINT_BITS_PER_WORD;
797 else {
798 Count += countLeadingOnes_64(pVal[i], 0);
799 break;
800 }
801 }
802 }
803 return Count;
804}
805
806uint32_t APInt::countTrailingZeros() const {
807 if (isSingleWord())
Anton Korobeynikova0bd36c2007-12-24 11:16:47 +0000808 return std::min(uint32_t(CountTrailingZeros_64(VAL)), BitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000809 uint32_t Count = 0;
810 uint32_t i = 0;
811 for (; i < getNumWords() && pVal[i] == 0; ++i)
812 Count += APINT_BITS_PER_WORD;
813 if (i < getNumWords())
814 Count += CountTrailingZeros_64(pVal[i]);
Chris Lattner9ee26cf2007-11-23 22:36:25 +0000815 return std::min(Count, BitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000816}
817
Dan Gohmanf550d412008-02-13 21:11:05 +0000818uint32_t APInt::countTrailingOnes() const {
819 if (isSingleWord())
820 return std::min(uint32_t(CountTrailingOnes_64(VAL)), BitWidth);
821 uint32_t Count = 0;
822 uint32_t i = 0;
Dan Gohmane4428412008-02-14 22:38:45 +0000823 for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
Dan Gohmanf550d412008-02-13 21:11:05 +0000824 Count += APINT_BITS_PER_WORD;
825 if (i < getNumWords())
826 Count += CountTrailingOnes_64(pVal[i]);
827 return std::min(Count, BitWidth);
828}
829
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000830uint32_t APInt::countPopulation() const {
831 if (isSingleWord())
832 return CountPopulation_64(VAL);
833 uint32_t Count = 0;
834 for (uint32_t i = 0; i < getNumWords(); ++i)
835 Count += CountPopulation_64(pVal[i]);
836 return Count;
837}
838
839APInt APInt::byteSwap() const {
840 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
841 if (BitWidth == 16)
842 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
843 else if (BitWidth == 32)
844 return APInt(BitWidth, ByteSwap_32(uint32_t(VAL)));
845 else if (BitWidth == 48) {
846 uint32_t Tmp1 = uint32_t(VAL >> 16);
847 Tmp1 = ByteSwap_32(Tmp1);
848 uint16_t Tmp2 = uint16_t(VAL);
849 Tmp2 = ByteSwap_16(Tmp2);
850 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
851 } else if (BitWidth == 64)
852 return APInt(BitWidth, ByteSwap_64(VAL));
853 else {
854 APInt Result(BitWidth, 0);
855 char *pByte = (char*)Result.pVal;
856 for (uint32_t i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
857 char Tmp = pByte[i];
858 pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
859 pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
860 }
861 return Result;
862 }
863}
864
865APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
866 const APInt& API2) {
867 APInt A = API1, B = API2;
868 while (!!B) {
869 APInt T = B;
870 B = APIntOps::urem(A, B);
871 A = T;
872 }
873 return A;
874}
875
876APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, uint32_t width) {
877 union {
878 double D;
879 uint64_t I;
880 } T;
881 T.D = Double;
882
883 // Get the sign bit from the highest order bit
884 bool isNeg = T.I >> 63;
885
886 // Get the 11-bit exponent and adjust for the 1023 bit bias
887 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
888
889 // If the exponent is negative, the value is < 0 so just return 0.
890 if (exp < 0)
891 return APInt(width, 0u);
892
893 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
894 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
895
896 // If the exponent doesn't shift all bits out of the mantissa
897 if (exp < 52)
898 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
899 APInt(width, mantissa >> (52 - exp));
900
901 // If the client didn't provide enough bits for us to shift the mantissa into
902 // then the result is undefined, just return 0
903 if (width <= exp - 52)
904 return APInt(width, 0);
905
906 // Otherwise, we have to shift the mantissa bits up to the right location
907 APInt Tmp(width, mantissa);
Evan Cheng279e2c42008-05-02 21:15:08 +0000908 Tmp = Tmp.shl((uint32_t)exp - 52);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000909 return isNeg ? -Tmp : Tmp;
910}
911
912/// RoundToDouble - This function convert this APInt to a double.
913/// The layout for double is as following (IEEE Standard 754):
914/// --------------------------------------
915/// | Sign Exponent Fraction Bias |
916/// |-------------------------------------- |
917/// | 1[63] 11[62-52] 52[51-00] 1023 |
918/// --------------------------------------
919double APInt::roundToDouble(bool isSigned) const {
920
921 // Handle the simple case where the value is contained in one uint64_t.
922 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
923 if (isSigned) {
924 int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
925 return double(sext);
926 } else
927 return double(VAL);
928 }
929
930 // Determine if the value is negative.
931 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
932
933 // Construct the absolute value if we're negative.
934 APInt Tmp(isNeg ? -(*this) : (*this));
935
936 // Figure out how many bits we're using.
937 uint32_t n = Tmp.getActiveBits();
938
939 // The exponent (without bias normalization) is just the number of bits
940 // we are using. Note that the sign bit is gone since we constructed the
941 // absolute value.
942 uint64_t exp = n;
943
944 // Return infinity for exponent overflow
945 if (exp > 1023) {
946 if (!isSigned || !isNeg)
947 return std::numeric_limits<double>::infinity();
948 else
949 return -std::numeric_limits<double>::infinity();
950 }
951 exp += 1023; // Increment for 1023 bias
952
953 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
954 // extract the high 52 bits from the correct words in pVal.
955 uint64_t mantissa;
956 unsigned hiWord = whichWord(n-1);
957 if (hiWord == 0) {
958 mantissa = Tmp.pVal[0];
959 if (n > 52)
960 mantissa >>= n - 52; // shift down, we want the top 52 bits.
961 } else {
962 assert(hiWord > 0 && "huh?");
963 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
964 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
965 mantissa = hibits | lobits;
966 }
967
968 // The leading bit of mantissa is implicit, so get rid of it.
969 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
970 union {
971 double D;
972 uint64_t I;
973 } T;
974 T.I = sign | (exp << 52) | mantissa;
975 return T.D;
976}
977
978// Truncate to new width.
979APInt &APInt::trunc(uint32_t width) {
980 assert(width < BitWidth && "Invalid APInt Truncate request");
Reid Spencera15c5012007-12-11 06:53:58 +0000981 assert(width >= MIN_INT_BITS && "Can't truncate to 0 bits");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000982 uint32_t wordsBefore = getNumWords();
983 BitWidth = width;
984 uint32_t wordsAfter = getNumWords();
985 if (wordsBefore != wordsAfter) {
986 if (wordsAfter == 1) {
987 uint64_t *tmp = pVal;
988 VAL = pVal[0];
989 delete [] tmp;
990 } else {
991 uint64_t *newVal = getClearedMemory(wordsAfter);
992 for (uint32_t i = 0; i < wordsAfter; ++i)
993 newVal[i] = pVal[i];
994 delete [] pVal;
995 pVal = newVal;
996 }
997 }
998 return clearUnusedBits();
999}
1000
1001// Sign extend to a new width.
1002APInt &APInt::sext(uint32_t width) {
1003 assert(width > BitWidth && "Invalid APInt SignExtend request");
Reid Spencera15c5012007-12-11 06:53:58 +00001004 assert(width <= MAX_INT_BITS && "Too many bits");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001005 // If the sign bit isn't set, this is the same as zext.
1006 if (!isNegative()) {
1007 zext(width);
1008 return *this;
1009 }
1010
1011 // The sign bit is set. First, get some facts
1012 uint32_t wordsBefore = getNumWords();
1013 uint32_t wordBits = BitWidth % APINT_BITS_PER_WORD;
1014 BitWidth = width;
1015 uint32_t wordsAfter = getNumWords();
1016
1017 // Mask the high order word appropriately
1018 if (wordsBefore == wordsAfter) {
1019 uint32_t newWordBits = width % APINT_BITS_PER_WORD;
1020 // The extension is contained to the wordsBefore-1th word.
1021 uint64_t mask = ~0ULL;
1022 if (newWordBits)
1023 mask >>= APINT_BITS_PER_WORD - newWordBits;
1024 mask <<= wordBits;
1025 if (wordsBefore == 1)
1026 VAL |= mask;
1027 else
1028 pVal[wordsBefore-1] |= mask;
1029 return clearUnusedBits();
1030 }
1031
1032 uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
1033 uint64_t *newVal = getMemory(wordsAfter);
1034 if (wordsBefore == 1)
1035 newVal[0] = VAL | mask;
1036 else {
1037 for (uint32_t i = 0; i < wordsBefore; ++i)
1038 newVal[i] = pVal[i];
1039 newVal[wordsBefore-1] |= mask;
1040 }
1041 for (uint32_t i = wordsBefore; i < wordsAfter; i++)
1042 newVal[i] = -1ULL;
1043 if (wordsBefore != 1)
1044 delete [] pVal;
1045 pVal = newVal;
1046 return clearUnusedBits();
1047}
1048
1049// Zero extend to a new width.
1050APInt &APInt::zext(uint32_t width) {
1051 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
Reid Spencera15c5012007-12-11 06:53:58 +00001052 assert(width <= MAX_INT_BITS && "Too many bits");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001053 uint32_t wordsBefore = getNumWords();
1054 BitWidth = width;
1055 uint32_t wordsAfter = getNumWords();
1056 if (wordsBefore != wordsAfter) {
1057 uint64_t *newVal = getClearedMemory(wordsAfter);
1058 if (wordsBefore == 1)
1059 newVal[0] = VAL;
1060 else
1061 for (uint32_t i = 0; i < wordsBefore; ++i)
1062 newVal[i] = pVal[i];
1063 if (wordsBefore != 1)
1064 delete [] pVal;
1065 pVal = newVal;
1066 }
1067 return *this;
1068}
1069
1070APInt &APInt::zextOrTrunc(uint32_t width) {
1071 if (BitWidth < width)
1072 return zext(width);
1073 if (BitWidth > width)
1074 return trunc(width);
1075 return *this;
1076}
1077
1078APInt &APInt::sextOrTrunc(uint32_t width) {
1079 if (BitWidth < width)
1080 return sext(width);
1081 if (BitWidth > width)
1082 return trunc(width);
1083 return *this;
1084}
1085
1086/// Arithmetic right-shift this APInt by shiftAmt.
1087/// @brief Arithmetic right-shift function.
Dan Gohman625ff8d2008-02-29 01:40:47 +00001088APInt APInt::ashr(const APInt &shiftAmt) const {
Evan Cheng279e2c42008-05-02 21:15:08 +00001089 return ashr((uint32_t)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001090}
1091
1092/// Arithmetic right-shift this APInt by shiftAmt.
1093/// @brief Arithmetic right-shift function.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001094APInt APInt::ashr(uint32_t shiftAmt) const {
1095 assert(shiftAmt <= BitWidth && "Invalid shift amount");
1096 // Handle a degenerate case
1097 if (shiftAmt == 0)
1098 return *this;
1099
1100 // Handle single word shifts with built-in ashr
1101 if (isSingleWord()) {
1102 if (shiftAmt == BitWidth)
1103 return APInt(BitWidth, 0); // undefined
1104 else {
1105 uint32_t SignBit = APINT_BITS_PER_WORD - BitWidth;
1106 return APInt(BitWidth,
1107 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1108 }
1109 }
1110
1111 // If all the bits were shifted out, the result is, technically, undefined.
1112 // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1113 // issues in the algorithm below.
1114 if (shiftAmt == BitWidth) {
1115 if (isNegative())
1116 return APInt(BitWidth, -1ULL);
1117 else
1118 return APInt(BitWidth, 0);
1119 }
1120
1121 // Create some space for the result.
1122 uint64_t * val = new uint64_t[getNumWords()];
1123
1124 // Compute some values needed by the following shift algorithms
1125 uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1126 uint32_t offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1127 uint32_t breakWord = getNumWords() - 1 - offset; // last word affected
1128 uint32_t bitsInWord = whichBit(BitWidth); // how many bits in last word?
1129 if (bitsInWord == 0)
1130 bitsInWord = APINT_BITS_PER_WORD;
1131
1132 // If we are shifting whole words, just move whole words
1133 if (wordShift == 0) {
1134 // Move the words containing significant bits
1135 for (uint32_t i = 0; i <= breakWord; ++i)
1136 val[i] = pVal[i+offset]; // move whole word
1137
1138 // Adjust the top significant word for sign bit fill, if negative
1139 if (isNegative())
1140 if (bitsInWord < APINT_BITS_PER_WORD)
1141 val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1142 } else {
1143 // Shift the low order words
1144 for (uint32_t i = 0; i < breakWord; ++i) {
1145 // This combines the shifted corresponding word with the low bits from
1146 // the next word (shifted into this word's high bits).
1147 val[i] = (pVal[i+offset] >> wordShift) |
1148 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1149 }
1150
1151 // Shift the break word. In this case there are no bits from the next word
1152 // to include in this word.
1153 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1154
1155 // Deal with sign extenstion in the break word, and possibly the word before
1156 // it.
1157 if (isNegative()) {
1158 if (wordShift > bitsInWord) {
1159 if (breakWord > 0)
1160 val[breakWord-1] |=
1161 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1162 val[breakWord] |= ~0ULL;
1163 } else
1164 val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
1165 }
1166 }
1167
1168 // Remaining words are 0 or -1, just assign them.
1169 uint64_t fillValue = (isNegative() ? -1ULL : 0);
1170 for (uint32_t i = breakWord+1; i < getNumWords(); ++i)
1171 val[i] = fillValue;
1172 return APInt(val, BitWidth).clearUnusedBits();
1173}
1174
1175/// Logical right-shift this APInt by shiftAmt.
1176/// @brief Logical right-shift function.
Dan Gohman625ff8d2008-02-29 01:40:47 +00001177APInt APInt::lshr(const APInt &shiftAmt) const {
Evan Cheng279e2c42008-05-02 21:15:08 +00001178 return lshr((uint32_t)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001179}
1180
1181/// Logical right-shift this APInt by shiftAmt.
1182/// @brief Logical right-shift function.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001183APInt APInt::lshr(uint32_t shiftAmt) const {
1184 if (isSingleWord()) {
1185 if (shiftAmt == BitWidth)
1186 return APInt(BitWidth, 0);
1187 else
1188 return APInt(BitWidth, this->VAL >> shiftAmt);
1189 }
1190
1191 // If all the bits were shifted out, the result is 0. This avoids issues
1192 // with shifting by the size of the integer type, which produces undefined
1193 // results. We define these "undefined results" to always be 0.
1194 if (shiftAmt == BitWidth)
1195 return APInt(BitWidth, 0);
1196
1197 // If none of the bits are shifted out, the result is *this. This avoids
1198 // issues with shifting byt he size of the integer type, which produces
1199 // undefined results in the code below. This is also an optimization.
1200 if (shiftAmt == 0)
1201 return *this;
1202
1203 // Create some space for the result.
1204 uint64_t * val = new uint64_t[getNumWords()];
1205
1206 // If we are shifting less than a word, compute the shift with a simple carry
1207 if (shiftAmt < APINT_BITS_PER_WORD) {
1208 uint64_t carry = 0;
1209 for (int i = getNumWords()-1; i >= 0; --i) {
1210 val[i] = (pVal[i] >> shiftAmt) | carry;
1211 carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
1212 }
1213 return APInt(val, BitWidth).clearUnusedBits();
1214 }
1215
1216 // Compute some values needed by the remaining shift algorithms
1217 uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
1218 uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
1219
1220 // If we are shifting whole words, just move whole words
1221 if (wordShift == 0) {
1222 for (uint32_t i = 0; i < getNumWords() - offset; ++i)
1223 val[i] = pVal[i+offset];
1224 for (uint32_t i = getNumWords()-offset; i < getNumWords(); i++)
1225 val[i] = 0;
1226 return APInt(val,BitWidth).clearUnusedBits();
1227 }
1228
1229 // Shift the low order words
1230 uint32_t breakWord = getNumWords() - offset -1;
1231 for (uint32_t i = 0; i < breakWord; ++i)
1232 val[i] = (pVal[i+offset] >> wordShift) |
1233 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1234 // Shift the break word.
1235 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1236
1237 // Remaining words are 0
1238 for (uint32_t i = breakWord+1; i < getNumWords(); ++i)
1239 val[i] = 0;
1240 return APInt(val, BitWidth).clearUnusedBits();
1241}
1242
1243/// Left-shift this APInt by shiftAmt.
1244/// @brief Left-shift function.
Dan Gohman625ff8d2008-02-29 01:40:47 +00001245APInt APInt::shl(const APInt &shiftAmt) const {
1246 // It's undefined behavior in C to shift by BitWidth or greater, but
Evan Cheng279e2c42008-05-02 21:15:08 +00001247 return shl((uint32_t)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001248}
1249
1250/// Left-shift this APInt by shiftAmt.
1251/// @brief Left-shift function.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001252APInt APInt::shl(uint32_t shiftAmt) const {
1253 assert(shiftAmt <= BitWidth && "Invalid shift amount");
1254 if (isSingleWord()) {
1255 if (shiftAmt == BitWidth)
1256 return APInt(BitWidth, 0); // avoid undefined shift results
1257 return APInt(BitWidth, VAL << shiftAmt);
1258 }
1259
1260 // If all the bits were shifted out, the result is 0. This avoids issues
1261 // with shifting by the size of the integer type, which produces undefined
1262 // results. We define these "undefined results" to always be 0.
1263 if (shiftAmt == BitWidth)
1264 return APInt(BitWidth, 0);
1265
1266 // If none of the bits are shifted out, the result is *this. This avoids a
1267 // lshr by the words size in the loop below which can produce incorrect
1268 // results. It also avoids the expensive computation below for a common case.
1269 if (shiftAmt == 0)
1270 return *this;
1271
1272 // Create some space for the result.
1273 uint64_t * val = new uint64_t[getNumWords()];
1274
1275 // If we are shifting less than a word, do it the easy way
1276 if (shiftAmt < APINT_BITS_PER_WORD) {
1277 uint64_t carry = 0;
1278 for (uint32_t i = 0; i < getNumWords(); i++) {
1279 val[i] = pVal[i] << shiftAmt | carry;
1280 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1281 }
1282 return APInt(val, BitWidth).clearUnusedBits();
1283 }
1284
1285 // Compute some values needed by the remaining shift algorithms
1286 uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
1287 uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
1288
1289 // If we are shifting whole words, just move whole words
1290 if (wordShift == 0) {
1291 for (uint32_t i = 0; i < offset; i++)
1292 val[i] = 0;
1293 for (uint32_t i = offset; i < getNumWords(); i++)
1294 val[i] = pVal[i-offset];
1295 return APInt(val,BitWidth).clearUnusedBits();
1296 }
1297
1298 // Copy whole words from this to Result.
1299 uint32_t i = getNumWords() - 1;
1300 for (; i > offset; --i)
1301 val[i] = pVal[i-offset] << wordShift |
1302 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
1303 val[offset] = pVal[0] << wordShift;
1304 for (i = 0; i < offset; ++i)
1305 val[i] = 0;
1306 return APInt(val, BitWidth).clearUnusedBits();
1307}
1308
Dan Gohman625ff8d2008-02-29 01:40:47 +00001309APInt APInt::rotl(const APInt &rotateAmt) const {
Evan Cheng279e2c42008-05-02 21:15:08 +00001310 return rotl((uint32_t)rotateAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001311}
1312
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001313APInt APInt::rotl(uint32_t rotateAmt) const {
1314 if (rotateAmt == 0)
1315 return *this;
1316 // Don't get too fancy, just use existing shift/or facilities
1317 APInt hi(*this);
1318 APInt lo(*this);
1319 hi.shl(rotateAmt);
1320 lo.lshr(BitWidth - rotateAmt);
1321 return hi | lo;
1322}
1323
Dan Gohman625ff8d2008-02-29 01:40:47 +00001324APInt APInt::rotr(const APInt &rotateAmt) const {
Evan Cheng279e2c42008-05-02 21:15:08 +00001325 return rotr((uint32_t)rotateAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001326}
1327
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001328APInt APInt::rotr(uint32_t rotateAmt) const {
1329 if (rotateAmt == 0)
1330 return *this;
1331 // Don't get too fancy, just use existing shift/or facilities
1332 APInt hi(*this);
1333 APInt lo(*this);
1334 lo.lshr(rotateAmt);
1335 hi.shl(BitWidth - rotateAmt);
1336 return hi | lo;
1337}
1338
1339// Square Root - this method computes and returns the square root of "this".
1340// Three mechanisms are used for computation. For small values (<= 5 bits),
1341// a table lookup is done. This gets some performance for common cases. For
1342// values using less than 52 bits, the value is converted to double and then
1343// the libc sqrt function is called. The result is rounded and then converted
1344// back to a uint64_t which is then used to construct the result. Finally,
1345// the Babylonian method for computing square roots is used.
1346APInt APInt::sqrt() const {
1347
1348 // Determine the magnitude of the value.
1349 uint32_t magnitude = getActiveBits();
1350
1351 // Use a fast table for some small values. This also gets rid of some
1352 // rounding errors in libc sqrt for small values.
1353 if (magnitude <= 5) {
1354 static const uint8_t results[32] = {
1355 /* 0 */ 0,
1356 /* 1- 2 */ 1, 1,
1357 /* 3- 6 */ 2, 2, 2, 2,
1358 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1359 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1360 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1361 /* 31 */ 6
1362 };
1363 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
1364 }
1365
1366 // If the magnitude of the value fits in less than 52 bits (the precision of
1367 // an IEEE double precision floating point value), then we can use the
1368 // libc sqrt function which will probably use a hardware sqrt computation.
1369 // This should be faster than the algorithm below.
1370 if (magnitude < 52) {
1371#ifdef _MSC_VER
1372 // Amazingly, VC++ doesn't have round().
1373 return APInt(BitWidth,
1374 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
1375#else
1376 return APInt(BitWidth,
1377 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
1378#endif
1379 }
1380
1381 // Okay, all the short cuts are exhausted. We must compute it. The following
1382 // is a classical Babylonian method for computing the square root. This code
1383 // was adapted to APINt from a wikipedia article on such computations.
1384 // See http://www.wikipedia.org/ and go to the page named
1385 // Calculate_an_integer_square_root.
1386 uint32_t nbits = BitWidth, i = 4;
1387 APInt testy(BitWidth, 16);
1388 APInt x_old(BitWidth, 1);
1389 APInt x_new(BitWidth, 0);
1390 APInt two(BitWidth, 2);
1391
1392 // Select a good starting value using binary logarithms.
1393 for (;; i += 2, testy = testy.shl(2))
1394 if (i >= nbits || this->ule(testy)) {
1395 x_old = x_old.shl(i / 2);
1396 break;
1397 }
1398
1399 // Use the Babylonian method to arrive at the integer square root:
1400 for (;;) {
1401 x_new = (this->udiv(x_old) + x_old).udiv(two);
1402 if (x_old.ule(x_new))
1403 break;
1404 x_old = x_new;
1405 }
1406
1407 // Make sure we return the closest approximation
1408 // NOTE: The rounding calculation below is correct. It will produce an
1409 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1410 // determined to be a rounding issue with pari/gp as it begins to use a
1411 // floating point representation after 192 bits. There are no discrepancies
1412 // between this algorithm and pari/gp for bit widths < 192 bits.
1413 APInt square(x_old * x_old);
1414 APInt nextSquare((x_old + 1) * (x_old +1));
1415 if (this->ult(square))
1416 return x_old;
1417 else if (this->ule(nextSquare)) {
1418 APInt midpoint((nextSquare - square).udiv(two));
1419 APInt offset(*this - square);
1420 if (offset.ult(midpoint))
1421 return x_old;
1422 else
1423 return x_old + 1;
1424 } else
1425 assert(0 && "Error in APInt::sqrt computation");
1426 return x_old + 1;
1427}
1428
1429/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1430/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1431/// variables here have the same names as in the algorithm. Comments explain
1432/// the algorithm and any deviation from it.
1433static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1434 uint32_t m, uint32_t n) {
1435 assert(u && "Must provide dividend");
1436 assert(v && "Must provide divisor");
1437 assert(q && "Must provide quotient");
1438 assert(u != v && u != q && v != q && "Must us different memory");
1439 assert(n>1 && "n must be > 1");
1440
1441 // Knuth uses the value b as the base of the number system. In our case b
1442 // is 2^31 so we just set it to -1u.
1443 uint64_t b = uint64_t(1) << 32;
1444
1445 DEBUG(cerr << "KnuthDiv: m=" << m << " n=" << n << '\n');
1446 DEBUG(cerr << "KnuthDiv: original:");
1447 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1448 DEBUG(cerr << " by");
1449 DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1450 DEBUG(cerr << '\n');
1451 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1452 // u and v by d. Note that we have taken Knuth's advice here to use a power
1453 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1454 // 2 allows us to shift instead of multiply and it is easy to determine the
1455 // shift amount from the leading zeros. We are basically normalizing the u
1456 // and v so that its high bits are shifted to the top of v's range without
1457 // overflow. Note that this can require an extra word in u so that u must
1458 // be of length m+n+1.
1459 uint32_t shift = CountLeadingZeros_32(v[n-1]);
1460 uint32_t v_carry = 0;
1461 uint32_t u_carry = 0;
1462 if (shift) {
1463 for (uint32_t i = 0; i < m+n; ++i) {
1464 uint32_t u_tmp = u[i] >> (32 - shift);
1465 u[i] = (u[i] << shift) | u_carry;
1466 u_carry = u_tmp;
1467 }
1468 for (uint32_t i = 0; i < n; ++i) {
1469 uint32_t v_tmp = v[i] >> (32 - shift);
1470 v[i] = (v[i] << shift) | v_carry;
1471 v_carry = v_tmp;
1472 }
1473 }
1474 u[m+n] = u_carry;
1475 DEBUG(cerr << "KnuthDiv: normal:");
1476 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1477 DEBUG(cerr << " by");
1478 DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1479 DEBUG(cerr << '\n');
1480
1481 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1482 int j = m;
1483 do {
1484 DEBUG(cerr << "KnuthDiv: quotient digit #" << j << '\n');
1485 // D3. [Calculate q'.].
1486 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1487 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1488 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1489 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1490 // on v[n-2] determines at high speed most of the cases in which the trial
1491 // value qp is one too large, and it eliminates all cases where qp is two
1492 // too large.
1493 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
1494 DEBUG(cerr << "KnuthDiv: dividend == " << dividend << '\n');
1495 uint64_t qp = dividend / v[n-1];
1496 uint64_t rp = dividend % v[n-1];
1497 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1498 qp--;
1499 rp += v[n-1];
1500 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1501 qp--;
1502 }
1503 DEBUG(cerr << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1504
1505 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1506 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1507 // consists of a simple multiplication by a one-place number, combined with
1508 // a subtraction.
1509 bool isNeg = false;
1510 for (uint32_t i = 0; i < n; ++i) {
1511 uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
1512 uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
1513 bool borrow = subtrahend > u_tmp;
1514 DEBUG(cerr << "KnuthDiv: u_tmp == " << u_tmp
1515 << ", subtrahend == " << subtrahend
1516 << ", borrow = " << borrow << '\n');
1517
1518 uint64_t result = u_tmp - subtrahend;
1519 uint32_t k = j + i;
Evan Cheng279e2c42008-05-02 21:15:08 +00001520 u[k++] = (uint32_t)(result & (b-1)); // subtract low word
1521 u[k++] = (uint32_t)(result >> 32); // subtract high word
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001522 while (borrow && k <= m+n) { // deal with borrow to the left
1523 borrow = u[k] == 0;
1524 u[k]--;
1525 k++;
1526 }
1527 isNeg |= borrow;
1528 DEBUG(cerr << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
1529 u[j+i+1] << '\n');
1530 }
1531 DEBUG(cerr << "KnuthDiv: after subtraction:");
1532 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1533 DEBUG(cerr << '\n');
1534 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1535 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1536 // true value plus b**(n+1), namely as the b's complement of
1537 // the true value, and a "borrow" to the left should be remembered.
1538 //
1539 if (isNeg) {
1540 bool carry = true; // true because b's complement is "complement + 1"
1541 for (uint32_t i = 0; i <= m+n; ++i) {
1542 u[i] = ~u[i] + carry; // b's complement
1543 carry = carry && u[i] == 0;
1544 }
1545 }
1546 DEBUG(cerr << "KnuthDiv: after complement:");
1547 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1548 DEBUG(cerr << '\n');
1549
1550 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1551 // negative, go to step D6; otherwise go on to step D7.
Evan Cheng279e2c42008-05-02 21:15:08 +00001552 q[j] = (uint32_t)qp;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001553 if (isNeg) {
1554 // D6. [Add back]. The probability that this step is necessary is very
1555 // small, on the order of only 2/b. Make sure that test data accounts for
1556 // this possibility. Decrease q[j] by 1
1557 q[j]--;
1558 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1559 // A carry will occur to the left of u[j+n], and it should be ignored
1560 // since it cancels with the borrow that occurred in D4.
1561 bool carry = false;
1562 for (uint32_t i = 0; i < n; i++) {
1563 uint32_t limit = std::min(u[j+i],v[i]);
1564 u[j+i] += v[i] + carry;
1565 carry = u[j+i] < limit || (carry && u[j+i] == limit);
1566 }
1567 u[j+n] += carry;
1568 }
1569 DEBUG(cerr << "KnuthDiv: after correction:");
1570 DEBUG(for (int i = m+n; i >=0; i--) cerr <<" " << u[i]);
1571 DEBUG(cerr << "\nKnuthDiv: digit result = " << q[j] << '\n');
1572
1573 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1574 } while (--j >= 0);
1575
1576 DEBUG(cerr << "KnuthDiv: quotient:");
1577 DEBUG(for (int i = m; i >=0; i--) cerr <<" " << q[i]);
1578 DEBUG(cerr << '\n');
1579
1580 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1581 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1582 // compute the remainder (urem uses this).
1583 if (r) {
1584 // The value d is expressed by the "shift" value above since we avoided
1585 // multiplication by d by using a shift left. So, all we have to do is
1586 // shift right here. In order to mak
1587 if (shift) {
1588 uint32_t carry = 0;
1589 DEBUG(cerr << "KnuthDiv: remainder:");
1590 for (int i = n-1; i >= 0; i--) {
1591 r[i] = (u[i] >> shift) | carry;
1592 carry = u[i] << (32 - shift);
1593 DEBUG(cerr << " " << r[i]);
1594 }
1595 } else {
1596 for (int i = n-1; i >= 0; i--) {
1597 r[i] = u[i];
1598 DEBUG(cerr << " " << r[i]);
1599 }
1600 }
1601 DEBUG(cerr << '\n');
1602 }
1603 DEBUG(cerr << std::setbase(10) << '\n');
1604}
1605
1606void APInt::divide(const APInt LHS, uint32_t lhsWords,
1607 const APInt &RHS, uint32_t rhsWords,
1608 APInt *Quotient, APInt *Remainder)
1609{
1610 assert(lhsWords >= rhsWords && "Fractional result");
1611
1612 // First, compose the values into an array of 32-bit words instead of
1613 // 64-bit words. This is a necessity of both the "short division" algorithm
1614 // and the the Knuth "classical algorithm" which requires there to be native
1615 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1616 // can't use 64-bit operands here because we don't have native results of
1617 // 128-bits. Furthremore, casting the 64-bit values to 32-bit values won't
1618 // work on large-endian machines.
1619 uint64_t mask = ~0ull >> (sizeof(uint32_t)*8);
1620 uint32_t n = rhsWords * 2;
1621 uint32_t m = (lhsWords * 2) - n;
1622
1623 // Allocate space for the temporary values we need either on the stack, if
1624 // it will fit, or on the heap if it won't.
1625 uint32_t SPACE[128];
1626 uint32_t *U = 0;
1627 uint32_t *V = 0;
1628 uint32_t *Q = 0;
1629 uint32_t *R = 0;
1630 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1631 U = &SPACE[0];
1632 V = &SPACE[m+n+1];
1633 Q = &SPACE[(m+n+1) + n];
1634 if (Remainder)
1635 R = &SPACE[(m+n+1) + n + (m+n)];
1636 } else {
1637 U = new uint32_t[m + n + 1];
1638 V = new uint32_t[n];
1639 Q = new uint32_t[m+n];
1640 if (Remainder)
1641 R = new uint32_t[n];
1642 }
1643
1644 // Initialize the dividend
1645 memset(U, 0, (m+n+1)*sizeof(uint32_t));
1646 for (unsigned i = 0; i < lhsWords; ++i) {
1647 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
Evan Cheng279e2c42008-05-02 21:15:08 +00001648 U[i * 2] = (uint32_t)(tmp & mask);
1649 U[i * 2 + 1] = (uint32_t)(tmp >> (sizeof(uint32_t)*8));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001650 }
1651 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1652
1653 // Initialize the divisor
1654 memset(V, 0, (n)*sizeof(uint32_t));
1655 for (unsigned i = 0; i < rhsWords; ++i) {
1656 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
Evan Cheng279e2c42008-05-02 21:15:08 +00001657 V[i * 2] = (uint32_t)(tmp & mask);
1658 V[i * 2 + 1] = (uint32_t)(tmp >> (sizeof(uint32_t)*8));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001659 }
1660
1661 // initialize the quotient and remainder
1662 memset(Q, 0, (m+n) * sizeof(uint32_t));
1663 if (Remainder)
1664 memset(R, 0, n * sizeof(uint32_t));
1665
1666 // Now, adjust m and n for the Knuth division. n is the number of words in
1667 // the divisor. m is the number of words by which the dividend exceeds the
1668 // divisor (i.e. m+n is the length of the dividend). These sizes must not
1669 // contain any zero words or the Knuth algorithm fails.
1670 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1671 n--;
1672 m++;
1673 }
1674 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1675 m--;
1676
1677 // If we're left with only a single word for the divisor, Knuth doesn't work
1678 // so we implement the short division algorithm here. This is much simpler
1679 // and faster because we are certain that we can divide a 64-bit quantity
1680 // by a 32-bit quantity at hardware speed and short division is simply a
1681 // series of such operations. This is just like doing short division but we
1682 // are using base 2^32 instead of base 10.
1683 assert(n != 0 && "Divide by zero?");
1684 if (n == 1) {
1685 uint32_t divisor = V[0];
1686 uint32_t remainder = 0;
1687 for (int i = m+n-1; i >= 0; i--) {
1688 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1689 if (partial_dividend == 0) {
1690 Q[i] = 0;
1691 remainder = 0;
1692 } else if (partial_dividend < divisor) {
1693 Q[i] = 0;
Evan Cheng279e2c42008-05-02 21:15:08 +00001694 remainder = (uint32_t)partial_dividend;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001695 } else if (partial_dividend == divisor) {
1696 Q[i] = 1;
1697 remainder = 0;
1698 } else {
Evan Cheng279e2c42008-05-02 21:15:08 +00001699 Q[i] = (uint32_t)(partial_dividend / divisor);
1700 remainder = (uint32_t)(partial_dividend - (Q[i] * divisor));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001701 }
1702 }
1703 if (R)
1704 R[0] = remainder;
1705 } else {
1706 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1707 // case n > 1.
1708 KnuthDiv(U, V, Q, R, m, n);
1709 }
1710
1711 // If the caller wants the quotient
1712 if (Quotient) {
1713 // Set up the Quotient value's memory.
1714 if (Quotient->BitWidth != LHS.BitWidth) {
1715 if (Quotient->isSingleWord())
1716 Quotient->VAL = 0;
1717 else
1718 delete [] Quotient->pVal;
1719 Quotient->BitWidth = LHS.BitWidth;
1720 if (!Quotient->isSingleWord())
1721 Quotient->pVal = getClearedMemory(Quotient->getNumWords());
1722 } else
1723 Quotient->clear();
1724
1725 // The quotient is in Q. Reconstitute the quotient into Quotient's low
1726 // order words.
1727 if (lhsWords == 1) {
1728 uint64_t tmp =
1729 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1730 if (Quotient->isSingleWord())
1731 Quotient->VAL = tmp;
1732 else
1733 Quotient->pVal[0] = tmp;
1734 } else {
1735 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1736 for (unsigned i = 0; i < lhsWords; ++i)
1737 Quotient->pVal[i] =
1738 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1739 }
1740 }
1741
1742 // If the caller wants the remainder
1743 if (Remainder) {
1744 // Set up the Remainder value's memory.
1745 if (Remainder->BitWidth != RHS.BitWidth) {
1746 if (Remainder->isSingleWord())
1747 Remainder->VAL = 0;
1748 else
1749 delete [] Remainder->pVal;
1750 Remainder->BitWidth = RHS.BitWidth;
1751 if (!Remainder->isSingleWord())
1752 Remainder->pVal = getClearedMemory(Remainder->getNumWords());
1753 } else
1754 Remainder->clear();
1755
1756 // The remainder is in R. Reconstitute the remainder into Remainder's low
1757 // order words.
1758 if (rhsWords == 1) {
1759 uint64_t tmp =
1760 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1761 if (Remainder->isSingleWord())
1762 Remainder->VAL = tmp;
1763 else
1764 Remainder->pVal[0] = tmp;
1765 } else {
1766 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1767 for (unsigned i = 0; i < rhsWords; ++i)
1768 Remainder->pVal[i] =
1769 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1770 }
1771 }
1772
1773 // Clean up the memory we allocated.
1774 if (U != &SPACE[0]) {
1775 delete [] U;
1776 delete [] V;
1777 delete [] Q;
1778 delete [] R;
1779 }
1780}
1781
1782APInt APInt::udiv(const APInt& RHS) const {
1783 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1784
1785 // First, deal with the easy case
1786 if (isSingleWord()) {
1787 assert(RHS.VAL != 0 && "Divide by zero?");
1788 return APInt(BitWidth, VAL / RHS.VAL);
1789 }
1790
1791 // Get some facts about the LHS and RHS number of bits and words
1792 uint32_t rhsBits = RHS.getActiveBits();
1793 uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1794 assert(rhsWords && "Divided by zero???");
1795 uint32_t lhsBits = this->getActiveBits();
1796 uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1797
1798 // Deal with some degenerate cases
1799 if (!lhsWords)
1800 // 0 / X ===> 0
1801 return APInt(BitWidth, 0);
1802 else if (lhsWords < rhsWords || this->ult(RHS)) {
1803 // X / Y ===> 0, iff X < Y
1804 return APInt(BitWidth, 0);
1805 } else if (*this == RHS) {
1806 // X / X ===> 1
1807 return APInt(BitWidth, 1);
1808 } else if (lhsWords == 1 && rhsWords == 1) {
1809 // All high words are zero, just use native divide
1810 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
1811 }
1812
1813 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1814 APInt Quotient(1,0); // to hold result.
1815 divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1816 return Quotient;
1817}
1818
1819APInt APInt::urem(const APInt& RHS) const {
1820 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1821 if (isSingleWord()) {
1822 assert(RHS.VAL != 0 && "Remainder by zero?");
1823 return APInt(BitWidth, VAL % RHS.VAL);
1824 }
1825
1826 // Get some facts about the LHS
1827 uint32_t lhsBits = getActiveBits();
1828 uint32_t lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
1829
1830 // Get some facts about the RHS
1831 uint32_t rhsBits = RHS.getActiveBits();
1832 uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1833 assert(rhsWords && "Performing remainder operation by zero ???");
1834
1835 // Check the degenerate cases
1836 if (lhsWords == 0) {
1837 // 0 % Y ===> 0
1838 return APInt(BitWidth, 0);
1839 } else if (lhsWords < rhsWords || this->ult(RHS)) {
1840 // X % Y ===> X, iff X < Y
1841 return *this;
1842 } else if (*this == RHS) {
1843 // X % X == 0;
1844 return APInt(BitWidth, 0);
1845 } else if (lhsWords == 1) {
1846 // All high words are zero, just use native remainder
1847 return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
1848 }
1849
1850 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1851 APInt Remainder(1,0);
1852 divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
1853 return Remainder;
1854}
1855
1856void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1857 APInt &Quotient, APInt &Remainder) {
1858 // Get some size facts about the dividend and divisor
1859 uint32_t lhsBits = LHS.getActiveBits();
1860 uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1861 uint32_t rhsBits = RHS.getActiveBits();
1862 uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1863
1864 // Check the degenerate cases
1865 if (lhsWords == 0) {
1866 Quotient = 0; // 0 / Y ===> 0
1867 Remainder = 0; // 0 % Y ===> 0
1868 return;
1869 }
1870
1871 if (lhsWords < rhsWords || LHS.ult(RHS)) {
1872 Quotient = 0; // X / Y ===> 0, iff X < Y
1873 Remainder = LHS; // X % Y ===> X, iff X < Y
1874 return;
1875 }
1876
1877 if (LHS == RHS) {
1878 Quotient = 1; // X / X ===> 1
1879 Remainder = 0; // X % X ===> 0;
1880 return;
1881 }
1882
1883 if (lhsWords == 1 && rhsWords == 1) {
1884 // There is only one word to consider so use the native versions.
1885 if (LHS.isSingleWord()) {
1886 Quotient = APInt(LHS.getBitWidth(), LHS.VAL / RHS.VAL);
1887 Remainder = APInt(LHS.getBitWidth(), LHS.VAL % RHS.VAL);
1888 } else {
1889 Quotient = APInt(LHS.getBitWidth(), LHS.pVal[0] / RHS.pVal[0]);
1890 Remainder = APInt(LHS.getBitWidth(), LHS.pVal[0] % RHS.pVal[0]);
1891 }
1892 return;
1893 }
1894
1895 // Okay, lets do it the long way
1896 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
1897}
1898
1899void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen,
1900 uint8_t radix) {
1901 // Check our assumptions here
1902 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
1903 "Radix should be 2, 8, 10, or 16!");
1904 assert(str && "String is null?");
1905 bool isNeg = str[0] == '-';
1906 if (isNeg)
1907 str++, slen--;
1908 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
1909 assert((slen*3 <= numbits || radix != 8) && "Insufficient bit width");
1910 assert((slen*4 <= numbits || radix != 16) && "Insufficient bit width");
1911 assert(((slen*64)/22 <= numbits || radix != 10) && "Insufficient bit width");
1912
1913 // Allocate memory
1914 if (!isSingleWord())
1915 pVal = getClearedMemory(getNumWords());
1916
1917 // Figure out if we can shift instead of multiply
1918 uint32_t shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
1919
1920 // Set up an APInt for the digit to add outside the loop so we don't
1921 // constantly construct/destruct it.
1922 APInt apdigit(getBitWidth(), 0);
1923 APInt apradix(getBitWidth(), radix);
1924
1925 // Enter digit traversal loop
1926 for (unsigned i = 0; i < slen; i++) {
1927 // Get a digit
1928 uint32_t digit = 0;
1929 char cdigit = str[i];
1930 if (radix == 16) {
1931 if (!isxdigit(cdigit))
1932 assert(0 && "Invalid hex digit in string");
1933 if (isdigit(cdigit))
1934 digit = cdigit - '0';
1935 else if (cdigit >= 'a')
1936 digit = cdigit - 'a' + 10;
1937 else if (cdigit >= 'A')
1938 digit = cdigit - 'A' + 10;
1939 else
1940 assert(0 && "huh? we shouldn't get here");
1941 } else if (isdigit(cdigit)) {
1942 digit = cdigit - '0';
Bill Wendling1dde5862008-03-16 20:05:52 +00001943 assert((radix == 10 ||
1944 (radix == 8 && digit != 8 && digit != 9) ||
1945 (radix == 2 && (digit == 0 || digit == 1))) &&
1946 "Invalid digit in string for given radix");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001947 } else {
1948 assert(0 && "Invalid character in digit string");
1949 }
1950
1951 // Shift or multiply the value by the radix
1952 if (shift)
1953 *this <<= shift;
1954 else
1955 *this *= apradix;
1956
1957 // Add in the digit we just interpreted
1958 if (apdigit.isSingleWord())
1959 apdigit.VAL = digit;
1960 else
1961 apdigit.pVal[0] = digit;
1962 *this += apdigit;
1963 }
1964 // If its negative, put it in two's complement form
1965 if (isNeg) {
1966 (*this)--;
1967 this->flip();
1968 }
1969}
1970
1971std::string APInt::toString(uint8_t radix, bool wantSigned) const {
1972 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
1973 "Radix should be 2, 8, 10, or 16!");
Dan Gohman12300e12008-03-25 21:45:14 +00001974 static const char *const digits[] = {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001975 "0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F"
1976 };
1977 std::string result;
1978 uint32_t bits_used = getActiveBits();
1979 if (isSingleWord()) {
1980 char buf[65];
1981 const char *format = (radix == 10 ? (wantSigned ? "%lld" : "%llu") :
1982 (radix == 16 ? "%llX" : (radix == 8 ? "%llo" : 0)));
1983 if (format) {
1984 if (wantSigned) {
1985 int64_t sextVal = (int64_t(VAL) << (APINT_BITS_PER_WORD-BitWidth)) >>
1986 (APINT_BITS_PER_WORD-BitWidth);
1987 sprintf(buf, format, sextVal);
1988 } else
1989 sprintf(buf, format, VAL);
1990 } else {
1991 memset(buf, 0, 65);
1992 uint64_t v = VAL;
1993 while (bits_used) {
Evan Cheng279e2c42008-05-02 21:15:08 +00001994 uint32_t bit = (uint32_t)v & 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001995 bits_used--;
1996 buf[bits_used] = digits[bit][0];
1997 v >>=1;
1998 }
1999 }
2000 result = buf;
2001 return result;
2002 }
2003
2004 if (radix != 10) {
2005 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2006 // because the number of bits per digit (1,3 and 4 respectively) divides
2007 // equaly. We just shift until there value is zero.
2008
2009 // First, check for a zero value and just short circuit the logic below.
2010 if (*this == 0)
2011 result = "0";
2012 else {
2013 APInt tmp(*this);
2014 size_t insert_at = 0;
2015 if (wantSigned && this->isNegative()) {
2016 // They want to print the signed version and it is a negative value
2017 // Flip the bits and add one to turn it into the equivalent positive
2018 // value and put a '-' in the result.
2019 tmp.flip();
2020 tmp++;
2021 result = "-";
2022 insert_at = 1;
2023 }
2024 // Just shift tmp right for each digit width until it becomes zero
2025 uint32_t shift = (radix == 16 ? 4 : (radix == 8 ? 3 : 1));
2026 uint64_t mask = radix - 1;
2027 APInt zero(tmp.getBitWidth(), 0);
2028 while (tmp.ne(zero)) {
Evan Cheng279e2c42008-05-02 21:15:08 +00002029 unsigned digit =
2030 (unsigned)((tmp.isSingleWord() ? tmp.VAL : tmp.pVal[0]) & mask);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002031 result.insert(insert_at, digits[digit]);
2032 tmp = tmp.lshr(shift);
2033 }
2034 }
2035 return result;
2036 }
2037
2038 APInt tmp(*this);
2039 APInt divisor(4, radix);
2040 APInt zero(tmp.getBitWidth(), 0);
2041 size_t insert_at = 0;
2042 if (wantSigned && tmp[BitWidth-1]) {
2043 // They want to print the signed version and it is a negative value
2044 // Flip the bits and add one to turn it into the equivalent positive
2045 // value and put a '-' in the result.
2046 tmp.flip();
2047 tmp++;
2048 result = "-";
2049 insert_at = 1;
2050 }
2051 if (tmp == APInt(tmp.getBitWidth(), 0))
2052 result = "0";
2053 else while (tmp.ne(zero)) {
2054 APInt APdigit(1,0);
2055 APInt tmp2(tmp.getBitWidth(), 0);
2056 divide(tmp, tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
2057 &APdigit);
Evan Cheng279e2c42008-05-02 21:15:08 +00002058 uint32_t digit = (uint32_t)APdigit.getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002059 assert(digit < radix && "divide failed");
2060 result.insert(insert_at,digits[digit]);
2061 tmp = tmp2;
2062 }
2063
2064 return result;
2065}
2066
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002067void APInt::dump() const
2068{
2069 cerr << "APInt(" << BitWidth << ")=" << std::setbase(16);
2070 if (isSingleWord())
2071 cerr << VAL;
2072 else for (unsigned i = getNumWords(); i > 0; i--) {
2073 cerr << pVal[i-1] << " ";
2074 }
Chris Lattner9b502d42007-08-23 05:15:32 +00002075 cerr << " U(" << this->toStringUnsigned(10) << ") S("
Dale Johannesen2fc20782007-09-14 22:26:36 +00002076 << this->toStringSigned(10) << ")" << std::setbase(10);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002077}
Chris Lattner73cde982007-08-16 15:56:55 +00002078
2079// This implements a variety of operations on a representation of
2080// arbitrary precision, two's-complement, bignum integer values.
2081
2082/* Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2083 and unrestricting assumption. */
Chris Lattnerdb80e212007-08-20 22:49:32 +00002084COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
Chris Lattner73cde982007-08-16 15:56:55 +00002085
2086/* Some handy functions local to this file. */
2087namespace {
2088
Chris Lattnerdb80e212007-08-20 22:49:32 +00002089 /* Returns the integer part with the least significant BITS set.
2090 BITS cannot be zero. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002091 static inline integerPart
Chris Lattnerdb80e212007-08-20 22:49:32 +00002092 lowBitMask(unsigned int bits)
2093 {
2094 assert (bits != 0 && bits <= integerPartWidth);
2095
2096 return ~(integerPart) 0 >> (integerPartWidth - bits);
2097 }
2098
Neil Booth58ffb232007-10-06 00:43:45 +00002099 /* Returns the value of the lower half of PART. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002100 static inline integerPart
Chris Lattnerdb80e212007-08-20 22:49:32 +00002101 lowHalf(integerPart part)
2102 {
2103 return part & lowBitMask(integerPartWidth / 2);
2104 }
2105
Neil Booth58ffb232007-10-06 00:43:45 +00002106 /* Returns the value of the upper half of PART. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002107 static inline integerPart
Chris Lattnerdb80e212007-08-20 22:49:32 +00002108 highHalf(integerPart part)
2109 {
2110 return part >> (integerPartWidth / 2);
2111 }
2112
Neil Booth58ffb232007-10-06 00:43:45 +00002113 /* Returns the bit number of the most significant set bit of a part.
2114 If the input number has no bits set -1U is returned. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002115 static unsigned int
Chris Lattnerdb80e212007-08-20 22:49:32 +00002116 partMSB(integerPart value)
Chris Lattner73cde982007-08-16 15:56:55 +00002117 {
2118 unsigned int n, msb;
2119
2120 if (value == 0)
2121 return -1U;
2122
2123 n = integerPartWidth / 2;
2124
2125 msb = 0;
2126 do {
2127 if (value >> n) {
2128 value >>= n;
2129 msb += n;
2130 }
2131
2132 n >>= 1;
2133 } while (n);
2134
2135 return msb;
2136 }
2137
Neil Booth58ffb232007-10-06 00:43:45 +00002138 /* Returns the bit number of the least significant set bit of a
2139 part. If the input number has no bits set -1U is returned. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002140 static unsigned int
Chris Lattner73cde982007-08-16 15:56:55 +00002141 partLSB(integerPart value)
2142 {
2143 unsigned int n, lsb;
2144
2145 if (value == 0)
2146 return -1U;
2147
2148 lsb = integerPartWidth - 1;
2149 n = integerPartWidth / 2;
2150
2151 do {
2152 if (value << n) {
2153 value <<= n;
2154 lsb -= n;
2155 }
2156
2157 n >>= 1;
2158 } while (n);
2159
2160 return lsb;
2161 }
2162}
2163
2164/* Sets the least significant part of a bignum to the input value, and
2165 zeroes out higher parts. */
2166void
2167APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
2168{
2169 unsigned int i;
2170
Neil Bootha0f524a2007-10-08 13:47:12 +00002171 assert (parts > 0);
2172
Chris Lattner73cde982007-08-16 15:56:55 +00002173 dst[0] = part;
2174 for(i = 1; i < parts; i++)
2175 dst[i] = 0;
2176}
2177
2178/* Assign one bignum to another. */
2179void
2180APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
2181{
2182 unsigned int i;
2183
2184 for(i = 0; i < parts; i++)
2185 dst[i] = src[i];
2186}
2187
2188/* Returns true if a bignum is zero, false otherwise. */
2189bool
2190APInt::tcIsZero(const integerPart *src, unsigned int parts)
2191{
2192 unsigned int i;
2193
2194 for(i = 0; i < parts; i++)
2195 if (src[i])
2196 return false;
2197
2198 return true;
2199}
2200
2201/* Extract the given bit of a bignum; returns 0 or 1. */
2202int
2203APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
2204{
2205 return(parts[bit / integerPartWidth]
2206 & ((integerPart) 1 << bit % integerPartWidth)) != 0;
2207}
2208
2209/* Set the given bit of a bignum. */
2210void
2211APInt::tcSetBit(integerPart *parts, unsigned int bit)
2212{
2213 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
2214}
2215
Neil Booth58ffb232007-10-06 00:43:45 +00002216/* Returns the bit number of the least significant set bit of a
2217 number. If the input number has no bits set -1U is returned. */
Chris Lattner73cde982007-08-16 15:56:55 +00002218unsigned int
2219APInt::tcLSB(const integerPart *parts, unsigned int n)
2220{
2221 unsigned int i, lsb;
2222
2223 for(i = 0; i < n; i++) {
2224 if (parts[i] != 0) {
2225 lsb = partLSB(parts[i]);
2226
2227 return lsb + i * integerPartWidth;
2228 }
2229 }
2230
2231 return -1U;
2232}
2233
Neil Booth58ffb232007-10-06 00:43:45 +00002234/* Returns the bit number of the most significant set bit of a number.
2235 If the input number has no bits set -1U is returned. */
Chris Lattner73cde982007-08-16 15:56:55 +00002236unsigned int
2237APInt::tcMSB(const integerPart *parts, unsigned int n)
2238{
2239 unsigned int msb;
2240
2241 do {
2242 --n;
2243
2244 if (parts[n] != 0) {
Chris Lattnerdb80e212007-08-20 22:49:32 +00002245 msb = partMSB(parts[n]);
Chris Lattner73cde982007-08-16 15:56:55 +00002246
2247 return msb + n * integerPartWidth;
2248 }
2249 } while (n);
2250
2251 return -1U;
2252}
2253
Neil Bootha0f524a2007-10-08 13:47:12 +00002254/* Copy the bit vector of width srcBITS from SRC, starting at bit
2255 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2256 the least significant bit of DST. All high bits above srcBITS in
2257 DST are zero-filled. */
2258void
2259APInt::tcExtract(integerPart *dst, unsigned int dstCount, const integerPart *src,
2260 unsigned int srcBits, unsigned int srcLSB)
2261{
2262 unsigned int firstSrcPart, dstParts, shift, n;
2263
2264 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
2265 assert (dstParts <= dstCount);
2266
2267 firstSrcPart = srcLSB / integerPartWidth;
2268 tcAssign (dst, src + firstSrcPart, dstParts);
2269
2270 shift = srcLSB % integerPartWidth;
2271 tcShiftRight (dst, dstParts, shift);
2272
2273 /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2274 in DST. If this is less that srcBits, append the rest, else
2275 clear the high bits. */
2276 n = dstParts * integerPartWidth - shift;
2277 if (n < srcBits) {
2278 integerPart mask = lowBitMask (srcBits - n);
2279 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2280 << n % integerPartWidth);
2281 } else if (n > srcBits) {
Neil Booth69731ff2007-10-12 15:31:31 +00002282 if (srcBits % integerPartWidth)
2283 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
Neil Bootha0f524a2007-10-08 13:47:12 +00002284 }
2285
2286 /* Clear high parts. */
2287 while (dstParts < dstCount)
2288 dst[dstParts++] = 0;
2289}
2290
Chris Lattner73cde982007-08-16 15:56:55 +00002291/* DST += RHS + C where C is zero or one. Returns the carry flag. */
2292integerPart
2293APInt::tcAdd(integerPart *dst, const integerPart *rhs,
2294 integerPart c, unsigned int parts)
2295{
2296 unsigned int i;
2297
2298 assert(c <= 1);
2299
2300 for(i = 0; i < parts; i++) {
2301 integerPart l;
2302
2303 l = dst[i];
2304 if (c) {
2305 dst[i] += rhs[i] + 1;
2306 c = (dst[i] <= l);
2307 } else {
2308 dst[i] += rhs[i];
2309 c = (dst[i] < l);
2310 }
2311 }
2312
2313 return c;
2314}
2315
2316/* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2317integerPart
2318APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
2319 integerPart c, unsigned int parts)
2320{
2321 unsigned int i;
2322
2323 assert(c <= 1);
2324
2325 for(i = 0; i < parts; i++) {
2326 integerPart l;
2327
2328 l = dst[i];
2329 if (c) {
2330 dst[i] -= rhs[i] + 1;
2331 c = (dst[i] >= l);
2332 } else {
2333 dst[i] -= rhs[i];
2334 c = (dst[i] > l);
2335 }
2336 }
2337
2338 return c;
2339}
2340
2341/* Negate a bignum in-place. */
2342void
2343APInt::tcNegate(integerPart *dst, unsigned int parts)
2344{
2345 tcComplement(dst, parts);
2346 tcIncrement(dst, parts);
2347}
2348
Neil Booth58ffb232007-10-06 00:43:45 +00002349/* DST += SRC * MULTIPLIER + CARRY if add is true
2350 DST = SRC * MULTIPLIER + CARRY if add is false
Chris Lattner73cde982007-08-16 15:56:55 +00002351
2352 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2353 they must start at the same point, i.e. DST == SRC.
2354
2355 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2356 returned. Otherwise DST is filled with the least significant
2357 DSTPARTS parts of the result, and if all of the omitted higher
2358 parts were zero return zero, otherwise overflow occurred and
2359 return one. */
2360int
2361APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
2362 integerPart multiplier, integerPart carry,
2363 unsigned int srcParts, unsigned int dstParts,
2364 bool add)
2365{
2366 unsigned int i, n;
2367
2368 /* Otherwise our writes of DST kill our later reads of SRC. */
2369 assert(dst <= src || dst >= src + srcParts);
2370 assert(dstParts <= srcParts + 1);
2371
2372 /* N loops; minimum of dstParts and srcParts. */
2373 n = dstParts < srcParts ? dstParts: srcParts;
2374
2375 for(i = 0; i < n; i++) {
2376 integerPart low, mid, high, srcPart;
2377
2378 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2379
2380 This cannot overflow, because
2381
2382 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2383
2384 which is less than n^2. */
2385
2386 srcPart = src[i];
2387
2388 if (multiplier == 0 || srcPart == 0) {
2389 low = carry;
2390 high = 0;
2391 } else {
2392 low = lowHalf(srcPart) * lowHalf(multiplier);
2393 high = highHalf(srcPart) * highHalf(multiplier);
2394
2395 mid = lowHalf(srcPart) * highHalf(multiplier);
2396 high += highHalf(mid);
2397 mid <<= integerPartWidth / 2;
2398 if (low + mid < low)
2399 high++;
2400 low += mid;
2401
2402 mid = highHalf(srcPart) * lowHalf(multiplier);
2403 high += highHalf(mid);
2404 mid <<= integerPartWidth / 2;
2405 if (low + mid < low)
2406 high++;
2407 low += mid;
2408
2409 /* Now add carry. */
2410 if (low + carry < low)
2411 high++;
2412 low += carry;
2413 }
2414
2415 if (add) {
2416 /* And now DST[i], and store the new low part there. */
2417 if (low + dst[i] < low)
2418 high++;
2419 dst[i] += low;
2420 } else
2421 dst[i] = low;
2422
2423 carry = high;
2424 }
2425
2426 if (i < dstParts) {
2427 /* Full multiplication, there is no overflow. */
2428 assert(i + 1 == dstParts);
2429 dst[i] = carry;
2430 return 0;
2431 } else {
2432 /* We overflowed if there is carry. */
2433 if (carry)
2434 return 1;
2435
2436 /* We would overflow if any significant unwritten parts would be
2437 non-zero. This is true if any remaining src parts are non-zero
2438 and the multiplier is non-zero. */
2439 if (multiplier)
2440 for(; i < srcParts; i++)
2441 if (src[i])
2442 return 1;
2443
2444 /* We fitted in the narrow destination. */
2445 return 0;
2446 }
2447}
2448
2449/* DST = LHS * RHS, where DST has the same width as the operands and
2450 is filled with the least significant parts of the result. Returns
2451 one if overflow occurred, otherwise zero. DST must be disjoint
2452 from both operands. */
2453int
2454APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
2455 const integerPart *rhs, unsigned int parts)
2456{
2457 unsigned int i;
2458 int overflow;
2459
2460 assert(dst != lhs && dst != rhs);
2461
2462 overflow = 0;
2463 tcSet(dst, 0, parts);
2464
2465 for(i = 0; i < parts; i++)
2466 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2467 parts - i, true);
2468
2469 return overflow;
2470}
2471
Neil Booth004e9f42007-10-06 00:24:48 +00002472/* DST = LHS * RHS, where DST has width the sum of the widths of the
2473 operands. No overflow occurs. DST must be disjoint from both
2474 operands. Returns the number of parts required to hold the
2475 result. */
2476unsigned int
Chris Lattner73cde982007-08-16 15:56:55 +00002477APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
Neil Booth004e9f42007-10-06 00:24:48 +00002478 const integerPart *rhs, unsigned int lhsParts,
2479 unsigned int rhsParts)
Chris Lattner73cde982007-08-16 15:56:55 +00002480{
Neil Booth004e9f42007-10-06 00:24:48 +00002481 /* Put the narrower number on the LHS for less loops below. */
2482 if (lhsParts > rhsParts) {
2483 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2484 } else {
2485 unsigned int n;
Chris Lattner73cde982007-08-16 15:56:55 +00002486
Neil Booth004e9f42007-10-06 00:24:48 +00002487 assert(dst != lhs && dst != rhs);
Chris Lattner73cde982007-08-16 15:56:55 +00002488
Neil Booth004e9f42007-10-06 00:24:48 +00002489 tcSet(dst, 0, rhsParts);
Chris Lattner73cde982007-08-16 15:56:55 +00002490
Neil Booth004e9f42007-10-06 00:24:48 +00002491 for(n = 0; n < lhsParts; n++)
2492 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
Chris Lattner73cde982007-08-16 15:56:55 +00002493
Neil Booth004e9f42007-10-06 00:24:48 +00002494 n = lhsParts + rhsParts;
2495
2496 return n - (dst[n - 1] == 0);
2497 }
Chris Lattner73cde982007-08-16 15:56:55 +00002498}
2499
2500/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2501 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2502 set REMAINDER to the remainder, return zero. i.e.
2503
2504 OLD_LHS = RHS * LHS + REMAINDER
2505
2506 SCRATCH is a bignum of the same size as the operands and result for
2507 use by the routine; its contents need not be initialized and are
2508 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2509*/
2510int
2511APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
2512 integerPart *remainder, integerPart *srhs,
2513 unsigned int parts)
2514{
2515 unsigned int n, shiftCount;
2516 integerPart mask;
2517
2518 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2519
Chris Lattnerdb80e212007-08-20 22:49:32 +00002520 shiftCount = tcMSB(rhs, parts) + 1;
2521 if (shiftCount == 0)
Chris Lattner73cde982007-08-16 15:56:55 +00002522 return true;
2523
Chris Lattnerdb80e212007-08-20 22:49:32 +00002524 shiftCount = parts * integerPartWidth - shiftCount;
Chris Lattner73cde982007-08-16 15:56:55 +00002525 n = shiftCount / integerPartWidth;
2526 mask = (integerPart) 1 << (shiftCount % integerPartWidth);
2527
2528 tcAssign(srhs, rhs, parts);
2529 tcShiftLeft(srhs, parts, shiftCount);
2530 tcAssign(remainder, lhs, parts);
2531 tcSet(lhs, 0, parts);
2532
2533 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2534 the total. */
2535 for(;;) {
2536 int compare;
2537
2538 compare = tcCompare(remainder, srhs, parts);
2539 if (compare >= 0) {
2540 tcSubtract(remainder, srhs, 0, parts);
2541 lhs[n] |= mask;
2542 }
2543
2544 if (shiftCount == 0)
2545 break;
2546 shiftCount--;
2547 tcShiftRight(srhs, parts, 1);
2548 if ((mask >>= 1) == 0)
2549 mask = (integerPart) 1 << (integerPartWidth - 1), n--;
2550 }
2551
2552 return false;
2553}
2554
2555/* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
2556 There are no restrictions on COUNT. */
2557void
2558APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
2559{
Neil Bootha0f524a2007-10-08 13:47:12 +00002560 if (count) {
2561 unsigned int jump, shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002562
Neil Bootha0f524a2007-10-08 13:47:12 +00002563 /* Jump is the inter-part jump; shift is is intra-part shift. */
2564 jump = count / integerPartWidth;
2565 shift = count % integerPartWidth;
Chris Lattner73cde982007-08-16 15:56:55 +00002566
Neil Bootha0f524a2007-10-08 13:47:12 +00002567 while (parts > jump) {
2568 integerPart part;
Chris Lattner73cde982007-08-16 15:56:55 +00002569
Neil Bootha0f524a2007-10-08 13:47:12 +00002570 parts--;
Chris Lattner73cde982007-08-16 15:56:55 +00002571
Neil Bootha0f524a2007-10-08 13:47:12 +00002572 /* dst[i] comes from the two parts src[i - jump] and, if we have
2573 an intra-part shift, src[i - jump - 1]. */
2574 part = dst[parts - jump];
2575 if (shift) {
2576 part <<= shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002577 if (parts >= jump + 1)
2578 part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
2579 }
2580
Neil Bootha0f524a2007-10-08 13:47:12 +00002581 dst[parts] = part;
2582 }
Chris Lattner73cde982007-08-16 15:56:55 +00002583
Neil Bootha0f524a2007-10-08 13:47:12 +00002584 while (parts > 0)
2585 dst[--parts] = 0;
2586 }
Chris Lattner73cde982007-08-16 15:56:55 +00002587}
2588
2589/* Shift a bignum right COUNT bits in-place. Shifted in bits are
2590 zero. There are no restrictions on COUNT. */
2591void
2592APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
2593{
Neil Bootha0f524a2007-10-08 13:47:12 +00002594 if (count) {
2595 unsigned int i, jump, shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002596
Neil Bootha0f524a2007-10-08 13:47:12 +00002597 /* Jump is the inter-part jump; shift is is intra-part shift. */
2598 jump = count / integerPartWidth;
2599 shift = count % integerPartWidth;
Chris Lattner73cde982007-08-16 15:56:55 +00002600
Neil Bootha0f524a2007-10-08 13:47:12 +00002601 /* Perform the shift. This leaves the most significant COUNT bits
2602 of the result at zero. */
2603 for(i = 0; i < parts; i++) {
2604 integerPart part;
Chris Lattner73cde982007-08-16 15:56:55 +00002605
Neil Bootha0f524a2007-10-08 13:47:12 +00002606 if (i + jump >= parts) {
2607 part = 0;
2608 } else {
2609 part = dst[i + jump];
2610 if (shift) {
2611 part >>= shift;
2612 if (i + jump + 1 < parts)
2613 part |= dst[i + jump + 1] << (integerPartWidth - shift);
2614 }
Chris Lattner73cde982007-08-16 15:56:55 +00002615 }
Chris Lattner73cde982007-08-16 15:56:55 +00002616
Neil Bootha0f524a2007-10-08 13:47:12 +00002617 dst[i] = part;
2618 }
Chris Lattner73cde982007-08-16 15:56:55 +00002619 }
2620}
2621
2622/* Bitwise and of two bignums. */
2623void
2624APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
2625{
2626 unsigned int i;
2627
2628 for(i = 0; i < parts; i++)
2629 dst[i] &= rhs[i];
2630}
2631
2632/* Bitwise inclusive or of two bignums. */
2633void
2634APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
2635{
2636 unsigned int i;
2637
2638 for(i = 0; i < parts; i++)
2639 dst[i] |= rhs[i];
2640}
2641
2642/* Bitwise exclusive or of two bignums. */
2643void
2644APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
2645{
2646 unsigned int i;
2647
2648 for(i = 0; i < parts; i++)
2649 dst[i] ^= rhs[i];
2650}
2651
2652/* Complement a bignum in-place. */
2653void
2654APInt::tcComplement(integerPart *dst, unsigned int parts)
2655{
2656 unsigned int i;
2657
2658 for(i = 0; i < parts; i++)
2659 dst[i] = ~dst[i];
2660}
2661
2662/* Comparison (unsigned) of two bignums. */
2663int
2664APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
2665 unsigned int parts)
2666{
2667 while (parts) {
2668 parts--;
2669 if (lhs[parts] == rhs[parts])
2670 continue;
2671
2672 if (lhs[parts] > rhs[parts])
2673 return 1;
2674 else
2675 return -1;
2676 }
2677
2678 return 0;
2679}
2680
2681/* Increment a bignum in-place, return the carry flag. */
2682integerPart
2683APInt::tcIncrement(integerPart *dst, unsigned int parts)
2684{
2685 unsigned int i;
2686
2687 for(i = 0; i < parts; i++)
2688 if (++dst[i] != 0)
2689 break;
2690
2691 return i == parts;
2692}
2693
2694/* Set the least significant BITS bits of a bignum, clear the
2695 rest. */
2696void
2697APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
2698 unsigned int bits)
2699{
2700 unsigned int i;
2701
2702 i = 0;
2703 while (bits > integerPartWidth) {
2704 dst[i++] = ~(integerPart) 0;
2705 bits -= integerPartWidth;
2706 }
2707
2708 if (bits)
2709 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
2710
2711 while (i < parts)
2712 dst[i++] = 0;
2713}