blob: da64b7eb528b749a413e0d440cca3d3418eb5655 [file] [log] [blame]
Erick Tryzelaar31c6c5d2009-09-22 21:15:19 +00001#include "llvm/DerivedTypes.h"
2#include "llvm/ExecutionEngine/ExecutionEngine.h"
Erick Tryzelaar31c6c5d2009-09-22 21:15:19 +00003#include "llvm/ExecutionEngine/JIT.h"
4#include "llvm/LLVMContext.h"
5#include "llvm/Module.h"
Erick Tryzelaar31c6c5d2009-09-22 21:15:19 +00006#include "llvm/PassManager.h"
7#include "llvm/Analysis/Verifier.h"
8#include "llvm/Target/TargetData.h"
9#include "llvm/Target/TargetSelect.h"
10#include "llvm/Transforms/Scalar.h"
11#include "llvm/Support/IRBuilder.h"
12#include <cstdio>
13#include <string>
14#include <map>
15#include <vector>
16using namespace llvm;
17
18//===----------------------------------------------------------------------===//
19// Lexer
20//===----------------------------------------------------------------------===//
21
22// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
23// of these for known things.
24enum Token {
25 tok_eof = -1,
26
27 // commands
28 tok_def = -2, tok_extern = -3,
29
30 // primary
31 tok_identifier = -4, tok_number = -5,
32
33 // control
34 tok_if = -6, tok_then = -7, tok_else = -8,
35 tok_for = -9, tok_in = -10
36};
37
38static std::string IdentifierStr; // Filled in if tok_identifier
39static double NumVal; // Filled in if tok_number
40
41/// gettok - Return the next token from standard input.
42static int gettok() {
43 static int LastChar = ' ';
44
45 // Skip any whitespace.
46 while (isspace(LastChar))
47 LastChar = getchar();
48
49 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
50 IdentifierStr = LastChar;
51 while (isalnum((LastChar = getchar())))
52 IdentifierStr += LastChar;
53
54 if (IdentifierStr == "def") return tok_def;
55 if (IdentifierStr == "extern") return tok_extern;
56 if (IdentifierStr == "if") return tok_if;
57 if (IdentifierStr == "then") return tok_then;
58 if (IdentifierStr == "else") return tok_else;
59 if (IdentifierStr == "for") return tok_for;
60 if (IdentifierStr == "in") return tok_in;
61 return tok_identifier;
62 }
63
64 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
65 std::string NumStr;
66 do {
67 NumStr += LastChar;
68 LastChar = getchar();
69 } while (isdigit(LastChar) || LastChar == '.');
70
71 NumVal = strtod(NumStr.c_str(), 0);
72 return tok_number;
73 }
74
75 if (LastChar == '#') {
76 // Comment until end of line.
77 do LastChar = getchar();
78 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
79
80 if (LastChar != EOF)
81 return gettok();
82 }
83
84 // Check for end of file. Don't eat the EOF.
85 if (LastChar == EOF)
86 return tok_eof;
87
88 // Otherwise, just return the character as its ascii value.
89 int ThisChar = LastChar;
90 LastChar = getchar();
91 return ThisChar;
92}
93
94//===----------------------------------------------------------------------===//
95// Abstract Syntax Tree (aka Parse Tree)
96//===----------------------------------------------------------------------===//
97
98/// ExprAST - Base class for all expression nodes.
99class ExprAST {
100public:
101 virtual ~ExprAST() {}
102 virtual Value *Codegen() = 0;
103};
104
105/// NumberExprAST - Expression class for numeric literals like "1.0".
106class NumberExprAST : public ExprAST {
107 double Val;
108public:
109 NumberExprAST(double val) : Val(val) {}
110 virtual Value *Codegen();
111};
112
113/// VariableExprAST - Expression class for referencing a variable, like "a".
114class VariableExprAST : public ExprAST {
115 std::string Name;
116public:
117 VariableExprAST(const std::string &name) : Name(name) {}
118 virtual Value *Codegen();
119};
120
121/// BinaryExprAST - Expression class for a binary operator.
122class BinaryExprAST : public ExprAST {
123 char Op;
124 ExprAST *LHS, *RHS;
125public:
126 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
127 : Op(op), LHS(lhs), RHS(rhs) {}
128 virtual Value *Codegen();
129};
130
131/// CallExprAST - Expression class for function calls.
132class CallExprAST : public ExprAST {
133 std::string Callee;
134 std::vector<ExprAST*> Args;
135public:
136 CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
137 : Callee(callee), Args(args) {}
138 virtual Value *Codegen();
139};
140
141/// IfExprAST - Expression class for if/then/else.
142class IfExprAST : public ExprAST {
143 ExprAST *Cond, *Then, *Else;
144public:
145 IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
146 : Cond(cond), Then(then), Else(_else) {}
147 virtual Value *Codegen();
148};
149
150/// ForExprAST - Expression class for for/in.
151class ForExprAST : public ExprAST {
152 std::string VarName;
153 ExprAST *Start, *End, *Step, *Body;
154public:
155 ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
156 ExprAST *step, ExprAST *body)
157 : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
158 virtual Value *Codegen();
159};
160
161/// PrototypeAST - This class represents the "prototype" for a function,
162/// which captures its name, and its argument names (thus implicitly the number
163/// of arguments the function takes).
164class PrototypeAST {
165 std::string Name;
166 std::vector<std::string> Args;
167public:
168 PrototypeAST(const std::string &name, const std::vector<std::string> &args)
169 : Name(name), Args(args) {}
170
171 Function *Codegen();
172};
173
174/// FunctionAST - This class represents a function definition itself.
175class FunctionAST {
176 PrototypeAST *Proto;
177 ExprAST *Body;
178public:
179 FunctionAST(PrototypeAST *proto, ExprAST *body)
180 : Proto(proto), Body(body) {}
181
182 Function *Codegen();
183};
184
185//===----------------------------------------------------------------------===//
186// Parser
187//===----------------------------------------------------------------------===//
188
189/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
190/// token the parser is looking at. getNextToken reads another token from the
191/// lexer and updates CurTok with its results.
192static int CurTok;
193static int getNextToken() {
194 return CurTok = gettok();
195}
196
197/// BinopPrecedence - This holds the precedence for each binary operator that is
198/// defined.
199static std::map<char, int> BinopPrecedence;
200
201/// GetTokPrecedence - Get the precedence of the pending binary operator token.
202static int GetTokPrecedence() {
203 if (!isascii(CurTok))
204 return -1;
205
206 // Make sure it's a declared binop.
207 int TokPrec = BinopPrecedence[CurTok];
208 if (TokPrec <= 0) return -1;
209 return TokPrec;
210}
211
212/// Error* - These are little helper functions for error handling.
213ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
214PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
215FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
216
217static ExprAST *ParseExpression();
218
219/// identifierexpr
220/// ::= identifier
221/// ::= identifier '(' expression* ')'
222static ExprAST *ParseIdentifierExpr() {
223 std::string IdName = IdentifierStr;
224
225 getNextToken(); // eat identifier.
226
227 if (CurTok != '(') // Simple variable ref.
228 return new VariableExprAST(IdName);
229
230 // Call.
231 getNextToken(); // eat (
232 std::vector<ExprAST*> Args;
233 if (CurTok != ')') {
234 while (1) {
235 ExprAST *Arg = ParseExpression();
236 if (!Arg) return 0;
237 Args.push_back(Arg);
238
239 if (CurTok == ')') break;
240
241 if (CurTok != ',')
242 return Error("Expected ')' or ',' in argument list");
243 getNextToken();
244 }
245 }
246
247 // Eat the ')'.
248 getNextToken();
249
250 return new CallExprAST(IdName, Args);
251}
252
253/// numberexpr ::= number
254static ExprAST *ParseNumberExpr() {
255 ExprAST *Result = new NumberExprAST(NumVal);
256 getNextToken(); // consume the number
257 return Result;
258}
259
260/// parenexpr ::= '(' expression ')'
261static ExprAST *ParseParenExpr() {
262 getNextToken(); // eat (.
263 ExprAST *V = ParseExpression();
264 if (!V) return 0;
265
266 if (CurTok != ')')
267 return Error("expected ')'");
268 getNextToken(); // eat ).
269 return V;
270}
271
272/// ifexpr ::= 'if' expression 'then' expression 'else' expression
273static ExprAST *ParseIfExpr() {
274 getNextToken(); // eat the if.
275
276 // condition.
277 ExprAST *Cond = ParseExpression();
278 if (!Cond) return 0;
279
280 if (CurTok != tok_then)
281 return Error("expected then");
282 getNextToken(); // eat the then
283
284 ExprAST *Then = ParseExpression();
285 if (Then == 0) return 0;
286
287 if (CurTok != tok_else)
288 return Error("expected else");
289
290 getNextToken();
291
292 ExprAST *Else = ParseExpression();
293 if (!Else) return 0;
294
295 return new IfExprAST(Cond, Then, Else);
296}
297
298/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
299static ExprAST *ParseForExpr() {
300 getNextToken(); // eat the for.
301
302 if (CurTok != tok_identifier)
303 return Error("expected identifier after for");
304
305 std::string IdName = IdentifierStr;
306 getNextToken(); // eat identifier.
307
308 if (CurTok != '=')
309 return Error("expected '=' after for");
310 getNextToken(); // eat '='.
311
312
313 ExprAST *Start = ParseExpression();
314 if (Start == 0) return 0;
315 if (CurTok != ',')
316 return Error("expected ',' after for start value");
317 getNextToken();
318
319 ExprAST *End = ParseExpression();
320 if (End == 0) return 0;
321
322 // The step value is optional.
323 ExprAST *Step = 0;
324 if (CurTok == ',') {
325 getNextToken();
326 Step = ParseExpression();
327 if (Step == 0) return 0;
328 }
329
330 if (CurTok != tok_in)
331 return Error("expected 'in' after for");
332 getNextToken(); // eat 'in'.
333
334 ExprAST *Body = ParseExpression();
335 if (Body == 0) return 0;
336
337 return new ForExprAST(IdName, Start, End, Step, Body);
338}
339
340/// primary
341/// ::= identifierexpr
342/// ::= numberexpr
343/// ::= parenexpr
344/// ::= ifexpr
345/// ::= forexpr
346static ExprAST *ParsePrimary() {
347 switch (CurTok) {
348 default: return Error("unknown token when expecting an expression");
349 case tok_identifier: return ParseIdentifierExpr();
350 case tok_number: return ParseNumberExpr();
351 case '(': return ParseParenExpr();
352 case tok_if: return ParseIfExpr();
353 case tok_for: return ParseForExpr();
354 }
355}
356
357/// binoprhs
358/// ::= ('+' primary)*
359static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
360 // If this is a binop, find its precedence.
361 while (1) {
362 int TokPrec = GetTokPrecedence();
363
364 // If this is a binop that binds at least as tightly as the current binop,
365 // consume it, otherwise we are done.
366 if (TokPrec < ExprPrec)
367 return LHS;
368
369 // Okay, we know this is a binop.
370 int BinOp = CurTok;
371 getNextToken(); // eat binop
372
373 // Parse the primary expression after the binary operator.
374 ExprAST *RHS = ParsePrimary();
375 if (!RHS) return 0;
376
377 // If BinOp binds less tightly with RHS than the operator after RHS, let
378 // the pending operator take RHS as its LHS.
379 int NextPrec = GetTokPrecedence();
380 if (TokPrec < NextPrec) {
381 RHS = ParseBinOpRHS(TokPrec+1, RHS);
382 if (RHS == 0) return 0;
383 }
384
385 // Merge LHS/RHS.
386 LHS = new BinaryExprAST(BinOp, LHS, RHS);
387 }
388}
389
390/// expression
391/// ::= primary binoprhs
392///
393static ExprAST *ParseExpression() {
394 ExprAST *LHS = ParsePrimary();
395 if (!LHS) return 0;
396
397 return ParseBinOpRHS(0, LHS);
398}
399
400/// prototype
401/// ::= id '(' id* ')'
402static PrototypeAST *ParsePrototype() {
403 if (CurTok != tok_identifier)
404 return ErrorP("Expected function name in prototype");
405
406 std::string FnName = IdentifierStr;
407 getNextToken();
408
409 if (CurTok != '(')
410 return ErrorP("Expected '(' in prototype");
411
412 std::vector<std::string> ArgNames;
413 while (getNextToken() == tok_identifier)
414 ArgNames.push_back(IdentifierStr);
415 if (CurTok != ')')
416 return ErrorP("Expected ')' in prototype");
417
418 // success.
419 getNextToken(); // eat ')'.
420
421 return new PrototypeAST(FnName, ArgNames);
422}
423
424/// definition ::= 'def' prototype expression
425static FunctionAST *ParseDefinition() {
426 getNextToken(); // eat def.
427 PrototypeAST *Proto = ParsePrototype();
428 if (Proto == 0) return 0;
429
430 if (ExprAST *E = ParseExpression())
431 return new FunctionAST(Proto, E);
432 return 0;
433}
434
435/// toplevelexpr ::= expression
436static FunctionAST *ParseTopLevelExpr() {
437 if (ExprAST *E = ParseExpression()) {
438 // Make an anonymous proto.
439 PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
440 return new FunctionAST(Proto, E);
441 }
442 return 0;
443}
444
445/// external ::= 'extern' prototype
446static PrototypeAST *ParseExtern() {
447 getNextToken(); // eat extern.
448 return ParsePrototype();
449}
450
451//===----------------------------------------------------------------------===//
452// Code Generation
453//===----------------------------------------------------------------------===//
454
455static Module *TheModule;
456static IRBuilder<> Builder(getGlobalContext());
457static std::map<std::string, Value*> NamedValues;
458static FunctionPassManager *TheFPM;
459
460Value *ErrorV(const char *Str) { Error(Str); return 0; }
461
462Value *NumberExprAST::Codegen() {
463 return ConstantFP::get(getGlobalContext(), APFloat(Val));
464}
465
466Value *VariableExprAST::Codegen() {
467 // Look this variable up in the function.
468 Value *V = NamedValues[Name];
469 return V ? V : ErrorV("Unknown variable name");
470}
471
472Value *BinaryExprAST::Codegen() {
473 Value *L = LHS->Codegen();
474 Value *R = RHS->Codegen();
475 if (L == 0 || R == 0) return 0;
476
477 switch (Op) {
478 case '+': return Builder.CreateAdd(L, R, "addtmp");
479 case '-': return Builder.CreateSub(L, R, "subtmp");
480 case '*': return Builder.CreateMul(L, R, "multmp");
481 case '<':
482 L = Builder.CreateFCmpULT(L, R, "cmptmp");
483 // Convert bool 0/1 to double 0.0 or 1.0
484 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
485 "booltmp");
486 default: return ErrorV("invalid binary operator");
487 }
488}
489
490Value *CallExprAST::Codegen() {
491 // Look up the name in the global module table.
492 Function *CalleeF = TheModule->getFunction(Callee);
493 if (CalleeF == 0)
494 return ErrorV("Unknown function referenced");
495
496 // If argument mismatch error.
497 if (CalleeF->arg_size() != Args.size())
498 return ErrorV("Incorrect # arguments passed");
499
500 std::vector<Value*> ArgsV;
501 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
502 ArgsV.push_back(Args[i]->Codegen());
503 if (ArgsV.back() == 0) return 0;
504 }
505
506 return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp");
507}
508
509Value *IfExprAST::Codegen() {
510 Value *CondV = Cond->Codegen();
511 if (CondV == 0) return 0;
512
513 // Convert condition to a bool by comparing equal to 0.0.
514 CondV = Builder.CreateFCmpONE(CondV,
515 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
516 "ifcond");
517
518 Function *TheFunction = Builder.GetInsertBlock()->getParent();
519
520 // Create blocks for the then and else cases. Insert the 'then' block at the
521 // end of the function.
522 BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
523 BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
524 BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
525
526 Builder.CreateCondBr(CondV, ThenBB, ElseBB);
527
528 // Emit then value.
529 Builder.SetInsertPoint(ThenBB);
530
531 Value *ThenV = Then->Codegen();
532 if (ThenV == 0) return 0;
533
534 Builder.CreateBr(MergeBB);
535 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
536 ThenBB = Builder.GetInsertBlock();
537
538 // Emit else block.
539 TheFunction->getBasicBlockList().push_back(ElseBB);
540 Builder.SetInsertPoint(ElseBB);
541
542 Value *ElseV = Else->Codegen();
543 if (ElseV == 0) return 0;
544
545 Builder.CreateBr(MergeBB);
546 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
547 ElseBB = Builder.GetInsertBlock();
548
549 // Emit merge block.
550 TheFunction->getBasicBlockList().push_back(MergeBB);
551 Builder.SetInsertPoint(MergeBB);
552 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()),
553 "iftmp");
554
555 PN->addIncoming(ThenV, ThenBB);
556 PN->addIncoming(ElseV, ElseBB);
557 return PN;
558}
559
560Value *ForExprAST::Codegen() {
561 // Output this as:
562 // ...
563 // start = startexpr
564 // goto loop
565 // loop:
566 // variable = phi [start, loopheader], [nextvariable, loopend]
567 // ...
568 // bodyexpr
569 // ...
570 // loopend:
571 // step = stepexpr
572 // nextvariable = variable + step
573 // endcond = endexpr
574 // br endcond, loop, endloop
575 // outloop:
576
577 // Emit the start code first, without 'variable' in scope.
578 Value *StartVal = Start->Codegen();
579 if (StartVal == 0) return 0;
580
581 // Make the new basic block for the loop header, inserting after current
582 // block.
583 Function *TheFunction = Builder.GetInsertBlock()->getParent();
584 BasicBlock *PreheaderBB = Builder.GetInsertBlock();
585 BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
586
587 // Insert an explicit fall through from the current block to the LoopBB.
588 Builder.CreateBr(LoopBB);
589
590 // Start insertion in LoopBB.
591 Builder.SetInsertPoint(LoopBB);
592
593 // Start the PHI node with an entry for Start.
594 PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), VarName.c_str());
595 Variable->addIncoming(StartVal, PreheaderBB);
596
597 // Within the loop, the variable is defined equal to the PHI node. If it
598 // shadows an existing variable, we have to restore it, so save it now.
599 Value *OldVal = NamedValues[VarName];
600 NamedValues[VarName] = Variable;
601
602 // Emit the body of the loop. This, like any other expr, can change the
603 // current BB. Note that we ignore the value computed by the body, but don't
604 // allow an error.
605 if (Body->Codegen() == 0)
606 return 0;
607
608 // Emit the step value.
609 Value *StepVal;
610 if (Step) {
611 StepVal = Step->Codegen();
612 if (StepVal == 0) return 0;
613 } else {
614 // If not specified, use 1.0.
615 StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
616 }
617
618 Value *NextVar = Builder.CreateAdd(Variable, StepVal, "nextvar");
619
620 // Compute the end condition.
621 Value *EndCond = End->Codegen();
622 if (EndCond == 0) return EndCond;
623
624 // Convert condition to a bool by comparing equal to 0.0.
625 EndCond = Builder.CreateFCmpONE(EndCond,
626 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
627 "loopcond");
628
629 // Create the "after loop" block and insert it.
630 BasicBlock *LoopEndBB = Builder.GetInsertBlock();
631 BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
632
633 // Insert the conditional branch into the end of LoopEndBB.
634 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
635
636 // Any new code will be inserted in AfterBB.
637 Builder.SetInsertPoint(AfterBB);
638
639 // Add a new entry to the PHI node for the backedge.
640 Variable->addIncoming(NextVar, LoopEndBB);
641
642 // Restore the unshadowed variable.
643 if (OldVal)
644 NamedValues[VarName] = OldVal;
645 else
646 NamedValues.erase(VarName);
647
648
649 // for expr always returns 0.0.
650 return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
651}
652
653Function *PrototypeAST::Codegen() {
654 // Make the function type: double(double,double) etc.
655 std::vector<const Type*> Doubles(Args.size(),
656 Type::getDoubleTy(getGlobalContext()));
657 FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
658 Doubles, false);
659
660 Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
661
662 // If F conflicted, there was already something named 'Name'. If it has a
663 // body, don't allow redefinition or reextern.
664 if (F->getName() != Name) {
665 // Delete the one we just made and get the existing one.
666 F->eraseFromParent();
667 F = TheModule->getFunction(Name);
668
669 // If F already has a body, reject this.
670 if (!F->empty()) {
671 ErrorF("redefinition of function");
672 return 0;
673 }
674
675 // If F took a different number of args, reject.
676 if (F->arg_size() != Args.size()) {
677 ErrorF("redefinition of function with different # args");
678 return 0;
679 }
680 }
681
682 // Set names for all arguments.
683 unsigned Idx = 0;
684 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
685 ++AI, ++Idx) {
686 AI->setName(Args[Idx]);
687
688 // Add arguments to variable symbol table.
689 NamedValues[Args[Idx]] = AI;
690 }
691
692 return F;
693}
694
695Function *FunctionAST::Codegen() {
696 NamedValues.clear();
697
698 Function *TheFunction = Proto->Codegen();
699 if (TheFunction == 0)
700 return 0;
701
702 // Create a new basic block to start insertion into.
703 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
704 Builder.SetInsertPoint(BB);
705
706 if (Value *RetVal = Body->Codegen()) {
707 // Finish off the function.
708 Builder.CreateRet(RetVal);
709
710 // Validate the generated code, checking for consistency.
711 verifyFunction(*TheFunction);
712
713 // Optimize the function.
714 TheFPM->run(*TheFunction);
715
716 return TheFunction;
717 }
718
719 // Error reading body, remove function.
720 TheFunction->eraseFromParent();
721 return 0;
722}
723
724//===----------------------------------------------------------------------===//
725// Top-Level parsing and JIT Driver
726//===----------------------------------------------------------------------===//
727
728static ExecutionEngine *TheExecutionEngine;
729
730static void HandleDefinition() {
731 if (FunctionAST *F = ParseDefinition()) {
732 if (Function *LF = F->Codegen()) {
733 fprintf(stderr, "Read function definition:");
734 LF->dump();
735 }
736 } else {
737 // Skip token for error recovery.
738 getNextToken();
739 }
740}
741
742static void HandleExtern() {
743 if (PrototypeAST *P = ParseExtern()) {
744 if (Function *F = P->Codegen()) {
745 fprintf(stderr, "Read extern: ");
746 F->dump();
747 }
748 } else {
749 // Skip token for error recovery.
750 getNextToken();
751 }
752}
753
754static void HandleTopLevelExpression() {
755 // Evaluate a top-level expression into an anonymous function.
756 if (FunctionAST *F = ParseTopLevelExpr()) {
757 if (Function *LF = F->Codegen()) {
758 // JIT the function, returning a function pointer.
759 void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
760
761 // Cast it to the right type (takes no arguments, returns a double) so we
762 // can call it as a native function.
763 double (*FP)() = (double (*)())(intptr_t)FPtr;
764 fprintf(stderr, "Evaluated to %f\n", FP());
765 }
766 } else {
767 // Skip token for error recovery.
768 getNextToken();
769 }
770}
771
772/// top ::= definition | external | expression | ';'
773static void MainLoop() {
774 while (1) {
775 fprintf(stderr, "ready> ");
776 switch (CurTok) {
777 case tok_eof: return;
778 case ';': getNextToken(); break; // ignore top-level semicolons.
779 case tok_def: HandleDefinition(); break;
780 case tok_extern: HandleExtern(); break;
781 default: HandleTopLevelExpression(); break;
782 }
783 }
784}
785
786//===----------------------------------------------------------------------===//
787// "Library" functions that can be "extern'd" from user code.
788//===----------------------------------------------------------------------===//
789
790/// putchard - putchar that takes a double and returns 0.
791extern "C"
792double putchard(double X) {
793 putchar((char)X);
794 return 0;
795}
796
797//===----------------------------------------------------------------------===//
798// Main driver code.
799//===----------------------------------------------------------------------===//
800
801int main() {
802 InitializeNativeTarget();
803 LLVMContext &Context = getGlobalContext();
804
805 // Install standard binary operators.
806 // 1 is lowest precedence.
807 BinopPrecedence['<'] = 10;
808 BinopPrecedence['+'] = 20;
809 BinopPrecedence['-'] = 20;
810 BinopPrecedence['*'] = 40; // highest.
811
812 // Prime the first token.
813 fprintf(stderr, "ready> ");
814 getNextToken();
815
816 // Make the module, which holds all the code.
817 TheModule = new Module("my cool jit", Context);
818
Jeffrey Yasskinf0356fe2010-01-27 20:34:15 +0000819 // Create the JIT. This takes ownership of the module.
Jeffrey Yasskin42fc5582010-02-11 19:15:20 +0000820 std::string ErrStr;
821 TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
822 if (!TheExecutionEngine) {
823 fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
824 exit(1);
825 }
Erick Tryzelaar31c6c5d2009-09-22 21:15:19 +0000826
Jeffrey Yasskinf0356fe2010-01-27 20:34:15 +0000827 FunctionPassManager OurFPM(TheModule);
Erick Tryzelaar31c6c5d2009-09-22 21:15:19 +0000828
829 // Set up the optimizer pipeline. Start with registering info about how the
830 // target lays out data structures.
831 OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData()));
832 // Do simple "peephole" optimizations and bit-twiddling optzns.
833 OurFPM.add(createInstructionCombiningPass());
834 // Reassociate expressions.
835 OurFPM.add(createReassociatePass());
836 // Eliminate Common SubExpressions.
837 OurFPM.add(createGVNPass());
838 // Simplify the control flow graph (deleting unreachable blocks, etc).
839 OurFPM.add(createCFGSimplificationPass());
840
841 OurFPM.doInitialization();
842
843 // Set the global so the code gen can use this.
844 TheFPM = &OurFPM;
845
846 // Run the main "interpreter loop" now.
847 MainLoop();
848
849 TheFPM = 0;
850
851 // Print out all of the generated code.
852 TheModule->dump();
853
854 return 0;
855}