Evan Cheng | b1290a6 | 2008-10-02 18:29:27 +0000 | [diff] [blame] | 1 | //===---------------- PBQP.cpp --------- PBQP Solver ------------*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // Developed by: Bernhard Scholz |
Evan Cheng | 17a82ea | 2008-10-03 17:11:58 +0000 | [diff] [blame] | 11 | // The University of Sydney |
Evan Cheng | b1290a6 | 2008-10-02 18:29:27 +0000 | [diff] [blame] | 12 | // http://www.it.usyd.edu.au/~scholz |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | // TODO: |
| 16 | // |
| 17 | // * Default to null costs on vector initialisation? |
| 18 | // * C++-ify the rest of the solver. |
| 19 | |
| 20 | #ifndef LLVM_CODEGEN_PBQPSOLVER_H |
| 21 | #define LLVM_CODEGEN_PBQPSOLVER_H |
| 22 | |
| 23 | #include <cassert> |
| 24 | #include <algorithm> |
| 25 | #include <functional> |
| 26 | |
| 27 | namespace llvm { |
| 28 | |
| 29 | //! \brief Floating point type to use in PBQP solver. |
| 30 | typedef double PBQPNum; |
| 31 | |
| 32 | //! \brief PBQP Vector class. |
| 33 | class PBQPVector { |
| 34 | public: |
| 35 | |
| 36 | //! \brief Construct a PBQP vector of the given size. |
| 37 | explicit PBQPVector(unsigned length) : |
| 38 | length(length), data(new PBQPNum[length]) { |
| 39 | std::fill(data, data + length, 0); |
| 40 | } |
| 41 | |
| 42 | //! \brief Copy construct a PBQP vector. |
| 43 | PBQPVector(const PBQPVector &v) : |
| 44 | length(v.length), data(new PBQPNum[length]) { |
| 45 | std::copy(v.data, v.data + length, data); |
| 46 | } |
| 47 | |
| 48 | ~PBQPVector() { delete[] data; } |
| 49 | |
| 50 | //! \brief Assignment operator. |
| 51 | PBQPVector& operator=(const PBQPVector &v) { |
| 52 | delete[] data; |
| 53 | length = v.length; |
| 54 | data = new PBQPNum[length]; |
| 55 | std::copy(v.data, v.data + length, data); |
| 56 | return *this; |
| 57 | } |
| 58 | |
| 59 | //! \brief Return the length of the vector |
| 60 | unsigned getLength() const throw () { |
| 61 | return length; |
| 62 | } |
| 63 | |
| 64 | //! \brief Element access. |
| 65 | PBQPNum& operator[](unsigned index) { |
| 66 | assert(index < length && "PBQPVector element access out of bounds."); |
| 67 | return data[index]; |
| 68 | } |
| 69 | |
| 70 | //! \brief Const element access. |
| 71 | const PBQPNum& operator[](unsigned index) const { |
| 72 | assert(index < length && "PBQPVector element access out of bounds."); |
| 73 | return data[index]; |
| 74 | } |
| 75 | |
| 76 | //! \brief Add another vector to this one. |
| 77 | PBQPVector& operator+=(const PBQPVector &v) { |
| 78 | assert(length == v.length && "PBQPVector length mismatch."); |
| 79 | std::transform(data, data + length, v.data, data, std::plus<PBQPNum>()); |
| 80 | return *this; |
| 81 | } |
| 82 | |
| 83 | //! \brief Subtract another vector from this one. |
| 84 | PBQPVector& operator-=(const PBQPVector &v) { |
| 85 | assert(length == v.length && "PBQPVector length mismatch."); |
| 86 | std::transform(data, data + length, v.data, data, std::minus<PBQPNum>()); |
| 87 | return *this; |
| 88 | } |
| 89 | |
| 90 | //! \brief Returns the index of the minimum value in this vector |
| 91 | unsigned minIndex() const { |
| 92 | return std::min_element(data, data + length) - data; |
| 93 | } |
| 94 | |
| 95 | private: |
| 96 | unsigned length; |
| 97 | PBQPNum *data; |
| 98 | }; |
| 99 | |
| 100 | |
| 101 | //! \brief PBQP Matrix class |
| 102 | class PBQPMatrix { |
| 103 | public: |
| 104 | |
| 105 | //! \brief Construct a PBQP Matrix with the given dimensions. |
| 106 | PBQPMatrix(unsigned rows, unsigned cols) : |
| 107 | rows(rows), cols(cols), data(new PBQPNum[rows * cols]) { |
| 108 | std::fill(data, data + (rows * cols), 0); |
| 109 | } |
| 110 | |
| 111 | //! \brief Copy construct a PBQP matrix. |
| 112 | PBQPMatrix(const PBQPMatrix &m) : |
| 113 | rows(m.rows), cols(m.cols), data(new PBQPNum[rows * cols]) { |
| 114 | std::copy(m.data, m.data + (rows * cols), data); |
| 115 | } |
| 116 | |
| 117 | ~PBQPMatrix() { delete[] data; } |
| 118 | |
| 119 | //! \brief Assignment operator. |
| 120 | PBQPMatrix& operator=(const PBQPMatrix &m) { |
| 121 | delete[] data; |
| 122 | rows = m.rows; cols = m.cols; |
| 123 | data = new PBQPNum[rows * cols]; |
| 124 | std::copy(m.data, m.data + (rows * cols), data); |
| 125 | return *this; |
| 126 | } |
| 127 | |
| 128 | //! \brief Return the number of rows in this matrix. |
| 129 | unsigned getRows() const throw () { return rows; } |
| 130 | |
| 131 | //! \brief Return the number of cols in this matrix. |
| 132 | unsigned getCols() const throw () { return cols; } |
| 133 | |
| 134 | //! \brief Matrix element access. |
| 135 | PBQPNum* operator[](unsigned r) { |
| 136 | assert(r < rows && "Row out of bounds."); |
| 137 | return data + (r * cols); |
| 138 | } |
| 139 | |
| 140 | //! \brief Matrix element access. |
| 141 | const PBQPNum* operator[](unsigned r) const { |
| 142 | assert(r < rows && "Row out of bounds."); |
| 143 | return data + (r * cols); |
| 144 | } |
| 145 | |
| 146 | //! \brief Returns the given row as a vector. |
| 147 | PBQPVector getRowAsVector(unsigned r) const { |
| 148 | PBQPVector v(cols); |
| 149 | for (unsigned c = 0; c < cols; ++c) |
| 150 | v[c] = (*this)[r][c]; |
| 151 | return v; |
| 152 | } |
| 153 | |
| 154 | //! \brief Reset the matrix to the given value. |
| 155 | PBQPMatrix& reset(PBQPNum val = 0) { |
| 156 | std::fill(data, data + (rows * cols), val); |
| 157 | return *this; |
| 158 | } |
| 159 | |
| 160 | //! \brief Set a single row of this matrix to the given value. |
| 161 | PBQPMatrix& setRow(unsigned r, PBQPNum val) { |
| 162 | assert(r < rows && "Row out of bounds."); |
| 163 | std::fill(data + (r * cols), data + ((r + 1) * cols), val); |
| 164 | return *this; |
| 165 | } |
| 166 | |
| 167 | //! \brief Set a single column of this matrix to the given value. |
| 168 | PBQPMatrix& setCol(unsigned c, PBQPNum val) { |
| 169 | assert(c < cols && "Column out of bounds."); |
| 170 | for (unsigned r = 0; r < rows; ++r) |
| 171 | (*this)[r][c] = val; |
| 172 | return *this; |
| 173 | } |
| 174 | |
| 175 | //! \brief Matrix transpose. |
| 176 | PBQPMatrix transpose() const { |
| 177 | PBQPMatrix m(cols, rows); |
| 178 | for (unsigned r = 0; r < rows; ++r) |
| 179 | for (unsigned c = 0; c < cols; ++c) |
| 180 | m[c][r] = (*this)[r][c]; |
| 181 | return m; |
| 182 | } |
| 183 | |
| 184 | //! \brief Returns the diagonal of the matrix as a vector. |
| 185 | //! |
| 186 | //! Matrix must be square. |
| 187 | PBQPVector diagonalize() const { |
| 188 | assert(rows == cols && "Attempt to diagonalize non-square matrix."); |
| 189 | |
| 190 | PBQPVector v(rows); |
| 191 | for (unsigned r = 0; r < rows; ++r) |
| 192 | v[r] = (*this)[r][r]; |
| 193 | return v; |
| 194 | } |
| 195 | |
| 196 | //! \brief Add the given matrix to this one. |
| 197 | PBQPMatrix& operator+=(const PBQPMatrix &m) { |
| 198 | assert(rows == m.rows && cols == m.cols && |
| 199 | "Matrix dimensions mismatch."); |
| 200 | std::transform(data, data + (rows * cols), m.data, data, |
| 201 | std::plus<PBQPNum>()); |
| 202 | return *this; |
| 203 | } |
| 204 | |
| 205 | //! \brief Returns the minimum of the given row |
| 206 | PBQPNum getRowMin(unsigned r) const { |
| 207 | assert(r < rows && "Row out of bounds"); |
| 208 | return *std::min_element(data + (r * cols), data + ((r + 1) * cols)); |
| 209 | } |
| 210 | |
| 211 | //! \brief Returns the minimum of the given column |
| 212 | PBQPNum getColMin(unsigned c) const { |
| 213 | PBQPNum minElem = (*this)[0][c]; |
| 214 | for (unsigned r = 1; r < rows; ++r) |
| 215 | if ((*this)[r][c] < minElem) minElem = (*this)[r][c]; |
| 216 | return minElem; |
| 217 | } |
| 218 | |
| 219 | //! \brief Subtracts the given scalar from the elements of the given row. |
| 220 | PBQPMatrix& subFromRow(unsigned r, PBQPNum val) { |
| 221 | assert(r < rows && "Row out of bounds"); |
| 222 | std::transform(data + (r * cols), data + ((r + 1) * cols), |
| 223 | data + (r * cols), |
| 224 | std::bind2nd(std::minus<PBQPNum>(), val)); |
| 225 | return *this; |
| 226 | } |
| 227 | |
| 228 | //! \brief Subtracts the given scalar from the elements of the given column. |
| 229 | PBQPMatrix& subFromCol(unsigned c, PBQPNum val) { |
| 230 | for (unsigned r = 0; r < rows; ++r) |
| 231 | (*this)[r][c] -= val; |
| 232 | return *this; |
| 233 | } |
| 234 | |
| 235 | //! \brief Returns true if this is a zero matrix. |
| 236 | bool isZero() const { |
| 237 | return find_if(data, data + (rows * cols), |
| 238 | std::bind2nd(std::not_equal_to<PBQPNum>(), 0)) == |
| 239 | data + (rows * cols); |
| 240 | } |
| 241 | |
| 242 | private: |
| 243 | unsigned rows, cols; |
| 244 | PBQPNum *data; |
| 245 | }; |
| 246 | |
| 247 | #define EPS (1E-8) |
| 248 | |
| 249 | #ifndef PBQP_TYPE |
| 250 | #define PBQP_TYPE |
| 251 | struct pbqp; |
| 252 | typedef struct pbqp pbqp; |
| 253 | #endif |
| 254 | |
| 255 | /***************** |
| 256 | * PBQP routines * |
| 257 | *****************/ |
| 258 | |
| 259 | /* allocate pbqp problem */ |
| 260 | pbqp *alloc_pbqp(int num); |
| 261 | |
| 262 | /* add node costs */ |
| 263 | void add_pbqp_nodecosts(pbqp *this_,int u, PBQPVector *costs); |
| 264 | |
| 265 | /* add edge mat */ |
| 266 | void add_pbqp_edgecosts(pbqp *this_,int u,int v,PBQPMatrix *costs); |
| 267 | |
| 268 | /* solve PBQP problem */ |
| 269 | void solve_pbqp(pbqp *this_); |
| 270 | |
| 271 | /* get solution of a node */ |
| 272 | int get_pbqp_solution(pbqp *this_,int u); |
| 273 | |
| 274 | /* alloc PBQP */ |
| 275 | pbqp *alloc_pbqp(int num); |
| 276 | |
| 277 | /* free PBQP */ |
| 278 | void free_pbqp(pbqp *this_); |
| 279 | |
| 280 | /* is optimal */ |
| 281 | bool is_pbqp_optimal(pbqp *this_); |
| 282 | |
| 283 | } |
| 284 | #endif |