blob: 9cc1af2ed9f3c86a3e043bf358d89841b83cd9e6 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- llvmAsmParser.y - Parser for llvm assembly files --------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the bison parser for LLVM assembly languages files.
11//
12//===----------------------------------------------------------------------===//
13
14%{
15#include "UpgradeInternals.h"
16#include "llvm/CallingConv.h"
17#include "llvm/InlineAsm.h"
18#include "llvm/Instructions.h"
19#include "llvm/Module.h"
20#include "llvm/ParameterAttributes.h"
21#include "llvm/ValueSymbolTable.h"
22#include "llvm/Support/GetElementPtrTypeIterator.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/MathExtras.h"
25#include <algorithm>
26#include <iostream>
27#include <map>
28#include <list>
29#include <utility>
30
31// DEBUG_UPREFS - Define this symbol if you want to enable debugging output
32// relating to upreferences in the input stream.
33//
34//#define DEBUG_UPREFS 1
35#ifdef DEBUG_UPREFS
36#define UR_OUT(X) std::cerr << X
37#else
38#define UR_OUT(X)
39#endif
40
41#define YYERROR_VERBOSE 1
42#define YYINCLUDED_STDLIB_H
43#define YYDEBUG 1
44
45int yylex();
46int yyparse();
47
48int yyerror(const char*);
49static void warning(const std::string& WarningMsg);
50
51namespace llvm {
52
53std::istream* LexInput;
54static std::string CurFilename;
55
56// This bool controls whether attributes are ever added to function declarations
57// definitions and calls.
58static bool AddAttributes = false;
59
60static Module *ParserResult;
61static bool ObsoleteVarArgs;
62static bool NewVarArgs;
63static BasicBlock *CurBB;
64static GlobalVariable *CurGV;
65static unsigned lastCallingConv;
66
67// This contains info used when building the body of a function. It is
68// destroyed when the function is completed.
69//
70typedef std::vector<Value *> ValueList; // Numbered defs
71
72typedef std::pair<std::string,TypeInfo> RenameMapKey;
73typedef std::map<RenameMapKey,std::string> RenameMapType;
74
75static void
76ResolveDefinitions(std::map<const Type *,ValueList> &LateResolvers,
77 std::map<const Type *,ValueList> *FutureLateResolvers = 0);
78
79static struct PerModuleInfo {
80 Module *CurrentModule;
81 std::map<const Type *, ValueList> Values; // Module level numbered definitions
82 std::map<const Type *,ValueList> LateResolveValues;
83 std::vector<PATypeHolder> Types;
84 std::vector<Signedness> TypeSigns;
85 std::map<std::string,Signedness> NamedTypeSigns;
86 std::map<std::string,Signedness> NamedValueSigns;
87 std::map<ValID, PATypeHolder> LateResolveTypes;
88 static Module::Endianness Endian;
89 static Module::PointerSize PointerSize;
90 RenameMapType RenameMap;
91
92 /// PlaceHolderInfo - When temporary placeholder objects are created, remember
93 /// how they were referenced and on which line of the input they came from so
94 /// that we can resolve them later and print error messages as appropriate.
95 std::map<Value*, std::pair<ValID, int> > PlaceHolderInfo;
96
97 // GlobalRefs - This maintains a mapping between <Type, ValID>'s and forward
98 // references to global values. Global values may be referenced before they
99 // are defined, and if so, the temporary object that they represent is held
100 // here. This is used for forward references of GlobalValues.
101 //
102 typedef std::map<std::pair<const PointerType *, ValID>, GlobalValue*>
103 GlobalRefsType;
104 GlobalRefsType GlobalRefs;
105
106 void ModuleDone() {
107 // If we could not resolve some functions at function compilation time
108 // (calls to functions before they are defined), resolve them now... Types
109 // are resolved when the constant pool has been completely parsed.
110 //
111 ResolveDefinitions(LateResolveValues);
112
113 // Check to make sure that all global value forward references have been
114 // resolved!
115 //
116 if (!GlobalRefs.empty()) {
117 std::string UndefinedReferences = "Unresolved global references exist:\n";
118
119 for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end();
120 I != E; ++I) {
121 UndefinedReferences += " " + I->first.first->getDescription() + " " +
122 I->first.second.getName() + "\n";
123 }
124 error(UndefinedReferences);
125 return;
126 }
127
128 if (CurrentModule->getDataLayout().empty()) {
129 std::string dataLayout;
130 if (Endian != Module::AnyEndianness)
131 dataLayout.append(Endian == Module::BigEndian ? "E" : "e");
132 if (PointerSize != Module::AnyPointerSize) {
133 if (!dataLayout.empty())
134 dataLayout += "-";
135 dataLayout.append(PointerSize == Module::Pointer64 ?
136 "p:64:64" : "p:32:32");
137 }
138 CurrentModule->setDataLayout(dataLayout);
139 }
140
141 Values.clear(); // Clear out function local definitions
142 Types.clear();
143 TypeSigns.clear();
144 NamedTypeSigns.clear();
145 NamedValueSigns.clear();
146 CurrentModule = 0;
147 }
148
149 // GetForwardRefForGlobal - Check to see if there is a forward reference
150 // for this global. If so, remove it from the GlobalRefs map and return it.
151 // If not, just return null.
152 GlobalValue *GetForwardRefForGlobal(const PointerType *PTy, ValID ID) {
153 // Check to see if there is a forward reference to this global variable...
154 // if there is, eliminate it and patch the reference to use the new def'n.
155 GlobalRefsType::iterator I = GlobalRefs.find(std::make_pair(PTy, ID));
156 GlobalValue *Ret = 0;
157 if (I != GlobalRefs.end()) {
158 Ret = I->second;
159 GlobalRefs.erase(I);
160 }
161 return Ret;
162 }
163 void setEndianness(Module::Endianness E) { Endian = E; }
164 void setPointerSize(Module::PointerSize sz) { PointerSize = sz; }
165} CurModule;
166
167Module::Endianness PerModuleInfo::Endian = Module::AnyEndianness;
168Module::PointerSize PerModuleInfo::PointerSize = Module::AnyPointerSize;
169
170static struct PerFunctionInfo {
171 Function *CurrentFunction; // Pointer to current function being created
172
173 std::map<const Type*, ValueList> Values; // Keep track of #'d definitions
174 std::map<const Type*, ValueList> LateResolveValues;
175 bool isDeclare; // Is this function a forward declararation?
176 GlobalValue::LinkageTypes Linkage;// Linkage for forward declaration.
177
178 /// BBForwardRefs - When we see forward references to basic blocks, keep
179 /// track of them here.
180 std::map<BasicBlock*, std::pair<ValID, int> > BBForwardRefs;
181 std::vector<BasicBlock*> NumberedBlocks;
182 RenameMapType RenameMap;
183 unsigned NextBBNum;
184
185 inline PerFunctionInfo() {
186 CurrentFunction = 0;
187 isDeclare = false;
188 Linkage = GlobalValue::ExternalLinkage;
189 }
190
191 inline void FunctionStart(Function *M) {
192 CurrentFunction = M;
193 NextBBNum = 0;
194 }
195
196 void FunctionDone() {
197 NumberedBlocks.clear();
198
199 // Any forward referenced blocks left?
200 if (!BBForwardRefs.empty()) {
201 error("Undefined reference to label " +
202 BBForwardRefs.begin()->first->getName());
203 return;
204 }
205
206 // Resolve all forward references now.
207 ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues);
208
209 Values.clear(); // Clear out function local definitions
210 RenameMap.clear();
211 CurrentFunction = 0;
212 isDeclare = false;
213 Linkage = GlobalValue::ExternalLinkage;
214 }
215} CurFun; // Info for the current function...
216
217static bool inFunctionScope() { return CurFun.CurrentFunction != 0; }
218
219/// This function is just a utility to make a Key value for the rename map.
220/// The Key is a combination of the name, type, Signedness of the original
221/// value (global/function). This just constructs the key and ensures that
222/// named Signedness values are resolved to the actual Signedness.
223/// @brief Make a key for the RenameMaps
224static RenameMapKey makeRenameMapKey(const std::string &Name, const Type* Ty,
225 const Signedness &Sign) {
226 TypeInfo TI;
227 TI.T = Ty;
228 if (Sign.isNamed())
229 // Don't allow Named Signedness nodes because they won't match. The actual
230 // Signedness must be looked up in the NamedTypeSigns map.
231 TI.S.copy(CurModule.NamedTypeSigns[Sign.getName()]);
232 else
233 TI.S.copy(Sign);
234 return std::make_pair(Name, TI);
235}
236
237
238//===----------------------------------------------------------------------===//
239// Code to handle definitions of all the types
240//===----------------------------------------------------------------------===//
241
242static int InsertValue(Value *V,
243 std::map<const Type*,ValueList> &ValueTab = CurFun.Values) {
244 if (V->hasName()) return -1; // Is this a numbered definition?
245
246 // Yes, insert the value into the value table...
247 ValueList &List = ValueTab[V->getType()];
248 List.push_back(V);
249 return List.size()-1;
250}
251
252static const Type *getType(const ValID &D, bool DoNotImprovise = false) {
253 switch (D.Type) {
254 case ValID::NumberVal: // Is it a numbered definition?
255 // Module constants occupy the lowest numbered slots...
256 if ((unsigned)D.Num < CurModule.Types.size()) {
257 return CurModule.Types[(unsigned)D.Num];
258 }
259 break;
260 case ValID::NameVal: // Is it a named definition?
261 if (const Type *N = CurModule.CurrentModule->getTypeByName(D.Name)) {
262 return N;
263 }
264 break;
265 default:
266 error("Internal parser error: Invalid symbol type reference");
267 return 0;
268 }
269
270 // If we reached here, we referenced either a symbol that we don't know about
271 // or an id number that hasn't been read yet. We may be referencing something
272 // forward, so just create an entry to be resolved later and get to it...
273 //
274 if (DoNotImprovise) return 0; // Do we just want a null to be returned?
275
276 if (inFunctionScope()) {
277 if (D.Type == ValID::NameVal) {
278 error("Reference to an undefined type: '" + D.getName() + "'");
279 return 0;
280 } else {
281 error("Reference to an undefined type: #" + itostr(D.Num));
282 return 0;
283 }
284 }
285
286 std::map<ValID, PATypeHolder>::iterator I =CurModule.LateResolveTypes.find(D);
287 if (I != CurModule.LateResolveTypes.end())
288 return I->second;
289
290 Type *Typ = OpaqueType::get();
291 CurModule.LateResolveTypes.insert(std::make_pair(D, Typ));
292 return Typ;
293}
294
295/// This is like the getType method except that instead of looking up the type
296/// for a given ID, it looks up that type's sign.
297/// @brief Get the signedness of a referenced type
298static Signedness getTypeSign(const ValID &D) {
299 switch (D.Type) {
300 case ValID::NumberVal: // Is it a numbered definition?
301 // Module constants occupy the lowest numbered slots...
302 if ((unsigned)D.Num < CurModule.TypeSigns.size()) {
303 return CurModule.TypeSigns[(unsigned)D.Num];
304 }
305 break;
306 case ValID::NameVal: { // Is it a named definition?
307 std::map<std::string,Signedness>::const_iterator I =
308 CurModule.NamedTypeSigns.find(D.Name);
309 if (I != CurModule.NamedTypeSigns.end())
310 return I->second;
311 // Perhaps its a named forward .. just cache the name
312 Signedness S;
313 S.makeNamed(D.Name);
314 return S;
315 }
316 default:
317 break;
318 }
319 // If we don't find it, its signless
320 Signedness S;
321 S.makeSignless();
322 return S;
323}
324
325/// This function is analagous to getElementType in LLVM. It provides the same
326/// function except that it looks up the Signedness instead of the type. This is
327/// used when processing GEP instructions that need to extract the type of an
328/// indexed struct/array/ptr member.
329/// @brief Look up an element's sign.
330static Signedness getElementSign(const ValueInfo& VI,
331 const std::vector<Value*> &Indices) {
332 const Type *Ptr = VI.V->getType();
333 assert(isa<PointerType>(Ptr) && "Need pointer type");
334
335 unsigned CurIdx = 0;
336 Signedness S(VI.S);
337 while (const CompositeType *CT = dyn_cast<CompositeType>(Ptr)) {
338 if (CurIdx == Indices.size())
339 break;
340
341 Value *Index = Indices[CurIdx++];
342 assert(!isa<PointerType>(CT) || CurIdx == 1 && "Invalid type");
343 Ptr = CT->getTypeAtIndex(Index);
344 if (const Type* Ty = Ptr->getForwardedType())
345 Ptr = Ty;
346 assert(S.isComposite() && "Bad Signedness type");
347 if (isa<StructType>(CT)) {
348 S = S.get(cast<ConstantInt>(Index)->getZExtValue());
349 } else {
350 S = S.get(0UL);
351 }
352 if (S.isNamed())
353 S = CurModule.NamedTypeSigns[S.getName()];
354 }
355 Signedness Result;
356 Result.makeComposite(S);
357 return Result;
358}
359
360/// This function just translates a ConstantInfo into a ValueInfo and calls
361/// getElementSign(ValueInfo,...). Its just a convenience.
362/// @brief ConstantInfo version of getElementSign.
363static Signedness getElementSign(const ConstInfo& CI,
364 const std::vector<Constant*> &Indices) {
365 ValueInfo VI;
366 VI.V = CI.C;
367 VI.S.copy(CI.S);
368 std::vector<Value*> Idx;
369 for (unsigned i = 0; i < Indices.size(); ++i)
370 Idx.push_back(Indices[i]);
371 Signedness result = getElementSign(VI, Idx);
372 VI.destroy();
373 return result;
374}
375
376/// This function determines if two function types differ only in their use of
377/// the sret parameter attribute in the first argument. If they are identical
378/// in all other respects, it returns true. Otherwise, it returns false.
379static bool FuncTysDifferOnlyBySRet(const FunctionType *F1,
380 const FunctionType *F2) {
381 if (F1->getReturnType() != F2->getReturnType() ||
382 F1->getNumParams() != F2->getNumParams())
383 return false;
384 const ParamAttrsList *PAL1 = F1->getParamAttrs();
385 const ParamAttrsList *PAL2 = F2->getParamAttrs();
386 if (PAL1 && !PAL2 || PAL2 && !PAL1)
387 return false;
388 if (PAL1 && PAL2 && ((PAL1->size() != PAL2->size()) ||
389 (PAL1->getParamAttrs(0) != PAL2->getParamAttrs(0))))
390 return false;
391 unsigned SRetMask = ~unsigned(ParamAttr::StructRet);
392 for (unsigned i = 0; i < F1->getNumParams(); ++i) {
393 if (F1->getParamType(i) != F2->getParamType(i) || (PAL1 && PAL2 &&
394 (unsigned(PAL1->getParamAttrs(i+1)) & SRetMask !=
395 unsigned(PAL2->getParamAttrs(i+1)) & SRetMask)))
396 return false;
397 }
398 return true;
399}
400
401/// This function determines if the type of V and Ty differ only by the SRet
402/// parameter attribute. This is a more generalized case of
403/// FuncTysDIfferOnlyBySRet since it doesn't require FunctionType arguments.
404static bool TypesDifferOnlyBySRet(Value *V, const Type* Ty) {
405 if (V->getType() == Ty)
406 return true;
407 const PointerType *PF1 = dyn_cast<PointerType>(Ty);
408 const PointerType *PF2 = dyn_cast<PointerType>(V->getType());
409 if (PF1 && PF2) {
410 const FunctionType* FT1 = dyn_cast<FunctionType>(PF1->getElementType());
411 const FunctionType* FT2 = dyn_cast<FunctionType>(PF2->getElementType());
412 if (FT1 && FT2)
413 return FuncTysDifferOnlyBySRet(FT1, FT2);
414 }
415 return false;
416}
417
418// The upgrade of csretcc to sret param attribute may have caused a function
419// to not be found because the param attribute changed the type of the called
420// function. This helper function, used in getExistingValue, detects that
421// situation and bitcasts the function to the correct type.
422static Value* handleSRetFuncTypeMerge(Value *V, const Type* Ty) {
423 // Handle degenerate cases
424 if (!V)
425 return 0;
426 if (V->getType() == Ty)
427 return V;
428
429 const PointerType *PF1 = dyn_cast<PointerType>(Ty);
430 const PointerType *PF2 = dyn_cast<PointerType>(V->getType());
431 if (PF1 && PF2) {
432 const FunctionType *FT1 = dyn_cast<FunctionType>(PF1->getElementType());
433 const FunctionType *FT2 = dyn_cast<FunctionType>(PF2->getElementType());
434 if (FT1 && FT2 && FuncTysDifferOnlyBySRet(FT1, FT2)) {
435 const ParamAttrsList *PAL2 = FT2->getParamAttrs();
436 if (PAL2 && PAL2->paramHasAttr(1, ParamAttr::StructRet))
437 return V;
438 else if (Constant *C = dyn_cast<Constant>(V))
439 return ConstantExpr::getBitCast(C, PF1);
440 else
441 return new BitCastInst(V, PF1, "upgrd.cast", CurBB);
442 }
443
444 }
445 return 0;
446}
447
448// getExistingValue - Look up the value specified by the provided type and
449// the provided ValID. If the value exists and has already been defined, return
450// it. Otherwise return null.
451//
452static Value *getExistingValue(const Type *Ty, const ValID &D) {
453 if (isa<FunctionType>(Ty)) {
454 error("Functions are not values and must be referenced as pointers");
455 }
456
457 switch (D.Type) {
458 case ValID::NumberVal: { // Is it a numbered definition?
459 unsigned Num = (unsigned)D.Num;
460
461 // Module constants occupy the lowest numbered slots...
462 std::map<const Type*,ValueList>::iterator VI = CurModule.Values.find(Ty);
463 if (VI != CurModule.Values.end()) {
464 if (Num < VI->second.size())
465 return VI->second[Num];
466 Num -= VI->second.size();
467 }
468
469 // Make sure that our type is within bounds
470 VI = CurFun.Values.find(Ty);
471 if (VI == CurFun.Values.end()) return 0;
472
473 // Check that the number is within bounds...
474 if (VI->second.size() <= Num) return 0;
475
476 return VI->second[Num];
477 }
478
479 case ValID::NameVal: { // Is it a named definition?
480 // Get the name out of the ID
481 RenameMapKey Key = makeRenameMapKey(D.Name, Ty, D.S);
482 Value *V = 0;
483 if (inFunctionScope()) {
484 // See if the name was renamed
485 RenameMapType::const_iterator I = CurFun.RenameMap.find(Key);
486 std::string LookupName;
487 if (I != CurFun.RenameMap.end())
488 LookupName = I->second;
489 else
490 LookupName = D.Name;
491 ValueSymbolTable &SymTab = CurFun.CurrentFunction->getValueSymbolTable();
492 V = SymTab.lookup(LookupName);
493 if (V && V->getType() != Ty)
494 V = handleSRetFuncTypeMerge(V, Ty);
495 assert((!V || TypesDifferOnlyBySRet(V, Ty)) && "Found wrong type");
496 }
497 if (!V) {
498 RenameMapType::const_iterator I = CurModule.RenameMap.find(Key);
499 std::string LookupName;
500 if (I != CurModule.RenameMap.end())
501 LookupName = I->second;
502 else
503 LookupName = D.Name;
504 V = CurModule.CurrentModule->getValueSymbolTable().lookup(LookupName);
505 if (V && V->getType() != Ty)
506 V = handleSRetFuncTypeMerge(V, Ty);
507 assert((!V || TypesDifferOnlyBySRet(V, Ty)) && "Found wrong type");
508 }
509 if (!V)
510 return 0;
511
512 D.destroy(); // Free old strdup'd memory...
513 return V;
514 }
515
516 // Check to make sure that "Ty" is an integral type, and that our
517 // value will fit into the specified type...
518 case ValID::ConstSIntVal: // Is it a constant pool reference??
519 if (!ConstantInt::isValueValidForType(Ty, D.ConstPool64)) {
520 error("Signed integral constant '" + itostr(D.ConstPool64) +
521 "' is invalid for type '" + Ty->getDescription() + "'");
522 }
523 return ConstantInt::get(Ty, D.ConstPool64);
524
525 case ValID::ConstUIntVal: // Is it an unsigned const pool reference?
526 if (!ConstantInt::isValueValidForType(Ty, D.UConstPool64)) {
527 if (!ConstantInt::isValueValidForType(Ty, D.ConstPool64))
528 error("Integral constant '" + utostr(D.UConstPool64) +
529 "' is invalid or out of range");
530 else // This is really a signed reference. Transmogrify.
531 return ConstantInt::get(Ty, D.ConstPool64);
532 } else
533 return ConstantInt::get(Ty, D.UConstPool64);
534
535 case ValID::ConstFPVal: // Is it a floating point const pool reference?
536 if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP))
537 error("FP constant invalid for type");
538 return ConstantFP::get(Ty, D.ConstPoolFP);
539
540 case ValID::ConstNullVal: // Is it a null value?
541 if (!isa<PointerType>(Ty))
542 error("Cannot create a a non pointer null");
543 return ConstantPointerNull::get(cast<PointerType>(Ty));
544
545 case ValID::ConstUndefVal: // Is it an undef value?
546 return UndefValue::get(Ty);
547
548 case ValID::ConstZeroVal: // Is it a zero value?
549 return Constant::getNullValue(Ty);
550
551 case ValID::ConstantVal: // Fully resolved constant?
552 if (D.ConstantValue->getType() != Ty)
553 error("Constant expression type different from required type");
554 return D.ConstantValue;
555
556 case ValID::InlineAsmVal: { // Inline asm expression
557 const PointerType *PTy = dyn_cast<PointerType>(Ty);
558 const FunctionType *FTy =
559 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
560 if (!FTy || !InlineAsm::Verify(FTy, D.IAD->Constraints))
561 error("Invalid type for asm constraint string");
562 InlineAsm *IA = InlineAsm::get(FTy, D.IAD->AsmString, D.IAD->Constraints,
563 D.IAD->HasSideEffects);
564 D.destroy(); // Free InlineAsmDescriptor.
565 return IA;
566 }
567 default:
568 assert(0 && "Unhandled case");
569 return 0;
570 } // End of switch
571
572 assert(0 && "Unhandled case");
573 return 0;
574}
575
576// getVal - This function is identical to getExistingValue, except that if a
577// value is not already defined, it "improvises" by creating a placeholder var
578// that looks and acts just like the requested variable. When the value is
579// defined later, all uses of the placeholder variable are replaced with the
580// real thing.
581//
582static Value *getVal(const Type *Ty, const ValID &ID) {
583 if (Ty == Type::LabelTy)
584 error("Cannot use a basic block here");
585
586 // See if the value has already been defined.
587 Value *V = getExistingValue(Ty, ID);
588 if (V) return V;
589
590 if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty))
591 error("Invalid use of a composite type");
592
593 // If we reached here, we referenced either a symbol that we don't know about
594 // or an id number that hasn't been read yet. We may be referencing something
595 // forward, so just create an entry to be resolved later and get to it...
596 V = new Argument(Ty);
597
598 // Remember where this forward reference came from. FIXME, shouldn't we try
599 // to recycle these things??
600 CurModule.PlaceHolderInfo.insert(
601 std::make_pair(V, std::make_pair(ID, Upgradelineno)));
602
603 if (inFunctionScope())
604 InsertValue(V, CurFun.LateResolveValues);
605 else
606 InsertValue(V, CurModule.LateResolveValues);
607 return V;
608}
609
610/// @brief This just makes any name given to it unique, up to MAX_UINT times.
611static std::string makeNameUnique(const std::string& Name) {
612 static unsigned UniqueNameCounter = 1;
613 std::string Result(Name);
614 Result += ".upgrd." + llvm::utostr(UniqueNameCounter++);
615 return Result;
616}
617
618/// getBBVal - This is used for two purposes:
619/// * If isDefinition is true, a new basic block with the specified ID is being
620/// defined.
621/// * If isDefinition is true, this is a reference to a basic block, which may
622/// or may not be a forward reference.
623///
624static BasicBlock *getBBVal(const ValID &ID, bool isDefinition = false) {
625 assert(inFunctionScope() && "Can't get basic block at global scope");
626
627 std::string Name;
628 BasicBlock *BB = 0;
629 switch (ID.Type) {
630 default:
631 error("Illegal label reference " + ID.getName());
632 break;
633 case ValID::NumberVal: // Is it a numbered definition?
634 if (unsigned(ID.Num) >= CurFun.NumberedBlocks.size())
635 CurFun.NumberedBlocks.resize(ID.Num+1);
636 BB = CurFun.NumberedBlocks[ID.Num];
637 break;
638 case ValID::NameVal: // Is it a named definition?
639 Name = ID.Name;
640 if (Value *N = CurFun.CurrentFunction->getValueSymbolTable().lookup(Name)) {
641 if (N->getType() != Type::LabelTy) {
642 // Register names didn't use to conflict with basic block names
643 // because of type planes. Now they all have to be unique. So, we just
644 // rename the register and treat this name as if no basic block
645 // had been found.
646 RenameMapKey Key = makeRenameMapKey(ID.Name, N->getType(), ID.S);
647 N->setName(makeNameUnique(N->getName()));
648 CurModule.RenameMap[Key] = N->getName();
649 BB = 0;
650 } else {
651 BB = cast<BasicBlock>(N);
652 }
653 }
654 break;
655 }
656
657 // See if the block has already been defined.
658 if (BB) {
659 // If this is the definition of the block, make sure the existing value was
660 // just a forward reference. If it was a forward reference, there will be
661 // an entry for it in the PlaceHolderInfo map.
662 if (isDefinition && !CurFun.BBForwardRefs.erase(BB))
663 // The existing value was a definition, not a forward reference.
664 error("Redefinition of label " + ID.getName());
665
666 ID.destroy(); // Free strdup'd memory.
667 return BB;
668 }
669
670 // Otherwise this block has not been seen before.
671 BB = new BasicBlock("", CurFun.CurrentFunction);
672 if (ID.Type == ValID::NameVal) {
673 BB->setName(ID.Name);
674 } else {
675 CurFun.NumberedBlocks[ID.Num] = BB;
676 }
677
678 // If this is not a definition, keep track of it so we can use it as a forward
679 // reference.
680 if (!isDefinition) {
681 // Remember where this forward reference came from.
682 CurFun.BBForwardRefs[BB] = std::make_pair(ID, Upgradelineno);
683 } else {
684 // The forward declaration could have been inserted anywhere in the
685 // function: insert it into the correct place now.
686 CurFun.CurrentFunction->getBasicBlockList().remove(BB);
687 CurFun.CurrentFunction->getBasicBlockList().push_back(BB);
688 }
689 ID.destroy();
690 return BB;
691}
692
693
694//===----------------------------------------------------------------------===//
695// Code to handle forward references in instructions
696//===----------------------------------------------------------------------===//
697//
698// This code handles the late binding needed with statements that reference
699// values not defined yet... for example, a forward branch, or the PHI node for
700// a loop body.
701//
702// This keeps a table (CurFun.LateResolveValues) of all such forward references
703// and back patchs after we are done.
704//
705
706// ResolveDefinitions - If we could not resolve some defs at parsing
707// time (forward branches, phi functions for loops, etc...) resolve the
708// defs now...
709//
710static void
711ResolveDefinitions(std::map<const Type*,ValueList> &LateResolvers,
712 std::map<const Type*,ValueList> *FutureLateResolvers) {
713
714 // Loop over LateResolveDefs fixing up stuff that couldn't be resolved
715 for (std::map<const Type*,ValueList>::iterator LRI = LateResolvers.begin(),
716 E = LateResolvers.end(); LRI != E; ++LRI) {
717 const Type* Ty = LRI->first;
718 ValueList &List = LRI->second;
719 while (!List.empty()) {
720 Value *V = List.back();
721 List.pop_back();
722
723 std::map<Value*, std::pair<ValID, int> >::iterator PHI =
724 CurModule.PlaceHolderInfo.find(V);
725 assert(PHI != CurModule.PlaceHolderInfo.end() && "Placeholder error");
726
727 ValID &DID = PHI->second.first;
728
729 Value *TheRealValue = getExistingValue(Ty, DID);
730 if (TheRealValue) {
731 V->replaceAllUsesWith(TheRealValue);
732 delete V;
733 CurModule.PlaceHolderInfo.erase(PHI);
734 } else if (FutureLateResolvers) {
735 // Functions have their unresolved items forwarded to the module late
736 // resolver table
737 InsertValue(V, *FutureLateResolvers);
738 } else {
739 if (DID.Type == ValID::NameVal) {
740 error("Reference to an invalid definition: '" + DID.getName() +
741 "' of type '" + V->getType()->getDescription() + "'",
742 PHI->second.second);
743 return;
744 } else {
745 error("Reference to an invalid definition: #" +
746 itostr(DID.Num) + " of type '" +
747 V->getType()->getDescription() + "'", PHI->second.second);
748 return;
749 }
750 }
751 }
752 }
753
754 LateResolvers.clear();
755}
756
757/// This function is used for type resolution and upref handling. When a type
758/// becomes concrete, this function is called to adjust the signedness for the
759/// concrete type.
760static void ResolveTypeSign(const Type* oldTy, const Signedness &Sign) {
761 std::string TyName = CurModule.CurrentModule->getTypeName(oldTy);
762 if (!TyName.empty())
763 CurModule.NamedTypeSigns[TyName] = Sign;
764}
765
766/// ResolveTypeTo - A brand new type was just declared. This means that (if
767/// name is not null) things referencing Name can be resolved. Otherwise,
768/// things refering to the number can be resolved. Do this now.
769static void ResolveTypeTo(char *Name, const Type *ToTy, const Signedness& Sign){
770 ValID D;
771 if (Name)
772 D = ValID::create(Name);
773 else
774 D = ValID::create((int)CurModule.Types.size());
775 D.S.copy(Sign);
776
777 if (Name)
778 CurModule.NamedTypeSigns[Name] = Sign;
779
780 std::map<ValID, PATypeHolder>::iterator I =
781 CurModule.LateResolveTypes.find(D);
782 if (I != CurModule.LateResolveTypes.end()) {
783 const Type *OldTy = I->second.get();
784 ((DerivedType*)OldTy)->refineAbstractTypeTo(ToTy);
785 CurModule.LateResolveTypes.erase(I);
786 }
787}
788
789/// This is the implementation portion of TypeHasInteger. It traverses the
790/// type given, avoiding recursive types, and returns true as soon as it finds
791/// an integer type. If no integer type is found, it returns false.
792static bool TypeHasIntegerI(const Type *Ty, std::vector<const Type*> Stack) {
793 // Handle some easy cases
794 if (Ty->isPrimitiveType() || (Ty->getTypeID() == Type::OpaqueTyID))
795 return false;
796 if (Ty->isInteger())
797 return true;
798 if (const SequentialType *STy = dyn_cast<SequentialType>(Ty))
799 return STy->getElementType()->isInteger();
800
801 // Avoid type structure recursion
802 for (std::vector<const Type*>::iterator I = Stack.begin(), E = Stack.end();
803 I != E; ++I)
804 if (Ty == *I)
805 return false;
806
807 // Push us on the type stack
808 Stack.push_back(Ty);
809
810 if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
811 if (TypeHasIntegerI(FTy->getReturnType(), Stack))
812 return true;
813 FunctionType::param_iterator I = FTy->param_begin();
814 FunctionType::param_iterator E = FTy->param_end();
815 for (; I != E; ++I)
816 if (TypeHasIntegerI(*I, Stack))
817 return true;
818 return false;
819 } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
820 StructType::element_iterator I = STy->element_begin();
821 StructType::element_iterator E = STy->element_end();
822 for (; I != E; ++I) {
823 if (TypeHasIntegerI(*I, Stack))
824 return true;
825 }
826 return false;
827 }
828 // There shouldn't be anything else, but its definitely not integer
829 assert(0 && "What type is this?");
830 return false;
831}
832
833/// This is the interface to TypeHasIntegerI. It just provides the type stack,
834/// to avoid recursion, and then calls TypeHasIntegerI.
835static inline bool TypeHasInteger(const Type *Ty) {
836 std::vector<const Type*> TyStack;
837 return TypeHasIntegerI(Ty, TyStack);
838}
839
840// setValueName - Set the specified value to the name given. The name may be
841// null potentially, in which case this is a noop. The string passed in is
842// assumed to be a malloc'd string buffer, and is free'd by this function.
843//
844static void setValueName(const ValueInfo &V, char *NameStr) {
845 if (NameStr) {
846 std::string Name(NameStr); // Copy string
847 free(NameStr); // Free old string
848
849 if (V.V->getType() == Type::VoidTy) {
850 error("Can't assign name '" + Name + "' to value with void type");
851 return;
852 }
853
854 assert(inFunctionScope() && "Must be in function scope");
855
856 // Search the function's symbol table for an existing value of this name
857 ValueSymbolTable &ST = CurFun.CurrentFunction->getValueSymbolTable();
858 Value* Existing = ST.lookup(Name);
859 if (Existing) {
860 // An existing value of the same name was found. This might have happened
861 // because of the integer type planes collapsing in LLVM 2.0.
862 if (Existing->getType() == V.V->getType() &&
863 !TypeHasInteger(Existing->getType())) {
864 // If the type does not contain any integers in them then this can't be
865 // a type plane collapsing issue. It truly is a redefinition and we
866 // should error out as the assembly is invalid.
867 error("Redefinition of value named '" + Name + "' of type '" +
868 V.V->getType()->getDescription() + "'");
869 return;
870 }
871 // In LLVM 2.0 we don't allow names to be re-used for any values in a
872 // function, regardless of Type. Previously re-use of names was okay as
873 // long as they were distinct types. With type planes collapsing because
874 // of the signedness change and because of PR411, this can no longer be
875 // supported. We must search the entire symbol table for a conflicting
876 // name and make the name unique. No warning is needed as this can't
877 // cause a problem.
878 std::string NewName = makeNameUnique(Name);
879 // We're changing the name but it will probably be used by other
880 // instructions as operands later on. Consequently we have to retain
881 // a mapping of the renaming that we're doing.
882 RenameMapKey Key = makeRenameMapKey(Name, V.V->getType(), V.S);
883 CurFun.RenameMap[Key] = NewName;
884 Name = NewName;
885 }
886
887 // Set the name.
888 V.V->setName(Name);
889 }
890}
891
892/// ParseGlobalVariable - Handle parsing of a global. If Initializer is null,
893/// this is a declaration, otherwise it is a definition.
894static GlobalVariable *
895ParseGlobalVariable(char *NameStr,GlobalValue::LinkageTypes Linkage,
896 bool isConstantGlobal, const Type *Ty,
897 Constant *Initializer,
898 const Signedness &Sign) {
899 if (isa<FunctionType>(Ty))
900 error("Cannot declare global vars of function type");
901
902 const PointerType *PTy = PointerType::get(Ty);
903
904 std::string Name;
905 if (NameStr) {
906 Name = NameStr; // Copy string
907 free(NameStr); // Free old string
908 }
909
910 // See if this global value was forward referenced. If so, recycle the
911 // object.
912 ValID ID;
913 if (!Name.empty()) {
914 ID = ValID::create((char*)Name.c_str());
915 } else {
916 ID = ValID::create((int)CurModule.Values[PTy].size());
917 }
918 ID.S.makeComposite(Sign);
919
920 if (GlobalValue *FWGV = CurModule.GetForwardRefForGlobal(PTy, ID)) {
921 // Move the global to the end of the list, from whereever it was
922 // previously inserted.
923 GlobalVariable *GV = cast<GlobalVariable>(FWGV);
924 CurModule.CurrentModule->getGlobalList().remove(GV);
925 CurModule.CurrentModule->getGlobalList().push_back(GV);
926 GV->setInitializer(Initializer);
927 GV->setLinkage(Linkage);
928 GV->setConstant(isConstantGlobal);
929 InsertValue(GV, CurModule.Values);
930 return GV;
931 }
932
933 // If this global has a name, check to see if there is already a definition
934 // of this global in the module and emit warnings if there are conflicts.
935 if (!Name.empty()) {
936 // The global has a name. See if there's an existing one of the same name.
937 if (CurModule.CurrentModule->getNamedGlobal(Name) ||
938 CurModule.CurrentModule->getFunction(Name)) {
939 // We found an existing global of the same name. This isn't allowed
940 // in LLVM 2.0. Consequently, we must alter the name of the global so it
941 // can at least compile. This can happen because of type planes
942 // There is alread a global of the same name which means there is a
943 // conflict. Let's see what we can do about it.
944 std::string NewName(makeNameUnique(Name));
945 if (Linkage != GlobalValue::InternalLinkage) {
946 // The linkage of this gval is external so we can't reliably rename
947 // it because it could potentially create a linking problem.
948 // However, we can't leave the name conflict in the output either or
949 // it won't assemble with LLVM 2.0. So, all we can do is rename
950 // this one to something unique and emit a warning about the problem.
951 warning("Renaming global variable '" + Name + "' to '" + NewName +
952 "' may cause linkage errors");
953 }
954
955 // Put the renaming in the global rename map
956 RenameMapKey Key = makeRenameMapKey(Name, PointerType::get(Ty), ID.S);
957 CurModule.RenameMap[Key] = NewName;
958
959 // Rename it
960 Name = NewName;
961 }
962 }
963
964 // Otherwise there is no existing GV to use, create one now.
965 GlobalVariable *GV =
966 new GlobalVariable(Ty, isConstantGlobal, Linkage, Initializer, Name,
967 CurModule.CurrentModule);
968 InsertValue(GV, CurModule.Values);
969 // Remember the sign of this global.
970 CurModule.NamedValueSigns[Name] = ID.S;
971 return GV;
972}
973
974// setTypeName - Set the specified type to the name given. The name may be
975// null potentially, in which case this is a noop. The string passed in is
976// assumed to be a malloc'd string buffer, and is freed by this function.
977//
978// This function returns true if the type has already been defined, but is
979// allowed to be redefined in the specified context. If the name is a new name
980// for the type plane, it is inserted and false is returned.
981static bool setTypeName(const PATypeInfo& TI, char *NameStr) {
982 assert(!inFunctionScope() && "Can't give types function-local names");
983 if (NameStr == 0) return false;
984
985 std::string Name(NameStr); // Copy string
986 free(NameStr); // Free old string
987
988 const Type* Ty = TI.PAT->get();
989
990 // We don't allow assigning names to void type
991 if (Ty == Type::VoidTy) {
992 error("Can't assign name '" + Name + "' to the void type");
993 return false;
994 }
995
996 // Set the type name, checking for conflicts as we do so.
997 bool AlreadyExists = CurModule.CurrentModule->addTypeName(Name, Ty);
998
999 // Save the sign information for later use
1000 CurModule.NamedTypeSigns[Name] = TI.S;
1001
1002 if (AlreadyExists) { // Inserting a name that is already defined???
1003 const Type *Existing = CurModule.CurrentModule->getTypeByName(Name);
1004 assert(Existing && "Conflict but no matching type?");
1005
1006 // There is only one case where this is allowed: when we are refining an
1007 // opaque type. In this case, Existing will be an opaque type.
1008 if (const OpaqueType *OpTy = dyn_cast<OpaqueType>(Existing)) {
1009 // We ARE replacing an opaque type!
1010 const_cast<OpaqueType*>(OpTy)->refineAbstractTypeTo(Ty);
1011 return true;
1012 }
1013
1014 // Otherwise, this is an attempt to redefine a type. That's okay if
1015 // the redefinition is identical to the original. This will be so if
1016 // Existing and T point to the same Type object. In this one case we
1017 // allow the equivalent redefinition.
1018 if (Existing == Ty) return true; // Yes, it's equal.
1019
1020 // Any other kind of (non-equivalent) redefinition is an error.
1021 error("Redefinition of type named '" + Name + "' in the '" +
1022 Ty->getDescription() + "' type plane");
1023 }
1024
1025 return false;
1026}
1027
1028//===----------------------------------------------------------------------===//
1029// Code for handling upreferences in type names...
1030//
1031
1032// TypeContains - Returns true if Ty directly contains E in it.
1033//
1034static bool TypeContains(const Type *Ty, const Type *E) {
1035 return std::find(Ty->subtype_begin(), Ty->subtype_end(),
1036 E) != Ty->subtype_end();
1037}
1038
1039namespace {
1040 struct UpRefRecord {
1041 // NestingLevel - The number of nesting levels that need to be popped before
1042 // this type is resolved.
1043 unsigned NestingLevel;
1044
1045 // LastContainedTy - This is the type at the current binding level for the
1046 // type. Every time we reduce the nesting level, this gets updated.
1047 const Type *LastContainedTy;
1048
1049 // UpRefTy - This is the actual opaque type that the upreference is
1050 // represented with.
1051 OpaqueType *UpRefTy;
1052
1053 UpRefRecord(unsigned NL, OpaqueType *URTy)
1054 : NestingLevel(NL), LastContainedTy(URTy), UpRefTy(URTy) { }
1055 };
1056}
1057
1058// UpRefs - A list of the outstanding upreferences that need to be resolved.
1059static std::vector<UpRefRecord> UpRefs;
1060
1061/// HandleUpRefs - Every time we finish a new layer of types, this function is
1062/// called. It loops through the UpRefs vector, which is a list of the
1063/// currently active types. For each type, if the up reference is contained in
1064/// the newly completed type, we decrement the level count. When the level
1065/// count reaches zero, the upreferenced type is the type that is passed in:
1066/// thus we can complete the cycle.
1067///
1068static PATypeHolder HandleUpRefs(const Type *ty, const Signedness& Sign) {
1069 // If Ty isn't abstract, or if there are no up-references in it, then there is
1070 // nothing to resolve here.
1071 if (!ty->isAbstract() || UpRefs.empty()) return ty;
1072
1073 PATypeHolder Ty(ty);
1074 UR_OUT("Type '" << Ty->getDescription() <<
1075 "' newly formed. Resolving upreferences.\n" <<
1076 UpRefs.size() << " upreferences active!\n");
1077
1078 // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
1079 // to zero), we resolve them all together before we resolve them to Ty. At
1080 // the end of the loop, if there is anything to resolve to Ty, it will be in
1081 // this variable.
1082 OpaqueType *TypeToResolve = 0;
1083
1084 unsigned i = 0;
1085 for (; i != UpRefs.size(); ++i) {
1086 UR_OUT(" UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
1087 << UpRefs[i].UpRefTy->getDescription() << ") = "
1088 << (TypeContains(Ty, UpRefs[i].UpRefTy) ? "true" : "false") << "\n");
1089 if (TypeContains(Ty, UpRefs[i].LastContainedTy)) {
1090 // Decrement level of upreference
1091 unsigned Level = --UpRefs[i].NestingLevel;
1092 UpRefs[i].LastContainedTy = Ty;
1093 UR_OUT(" Uplevel Ref Level = " << Level << "\n");
1094 if (Level == 0) { // Upreference should be resolved!
1095 if (!TypeToResolve) {
1096 TypeToResolve = UpRefs[i].UpRefTy;
1097 } else {
1098 UR_OUT(" * Resolving upreference for "
1099 << UpRefs[i].UpRefTy->getDescription() << "\n";
1100 std::string OldName = UpRefs[i].UpRefTy->getDescription());
1101 ResolveTypeSign(UpRefs[i].UpRefTy, Sign);
1102 UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
1103 UR_OUT(" * Type '" << OldName << "' refined upreference to: "
1104 << (const void*)Ty << ", " << Ty->getDescription() << "\n");
1105 }
1106 UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list...
1107 --i; // Do not skip the next element...
1108 }
1109 }
1110 }
1111
1112 if (TypeToResolve) {
1113 UR_OUT(" * Resolving upreference for "
1114 << UpRefs[i].UpRefTy->getDescription() << "\n";
1115 std::string OldName = TypeToResolve->getDescription());
1116 ResolveTypeSign(TypeToResolve, Sign);
1117 TypeToResolve->refineAbstractTypeTo(Ty);
1118 }
1119
1120 return Ty;
1121}
1122
1123bool Signedness::operator<(const Signedness &that) const {
1124 if (isNamed()) {
1125 if (that.isNamed())
1126 return *(this->name) < *(that.name);
1127 else
1128 return CurModule.NamedTypeSigns[*name] < that;
1129 } else if (that.isNamed()) {
1130 return *this < CurModule.NamedTypeSigns[*that.name];
1131 }
1132
1133 if (isComposite() && that.isComposite()) {
1134 if (sv->size() == that.sv->size()) {
1135 SignVector::const_iterator thisI = sv->begin(), thisE = sv->end();
1136 SignVector::const_iterator thatI = that.sv->begin(),
1137 thatE = that.sv->end();
1138 for (; thisI != thisE; ++thisI, ++thatI) {
1139 if (*thisI < *thatI)
1140 return true;
1141 else if (!(*thisI == *thatI))
1142 return false;
1143 }
1144 return false;
1145 }
1146 return sv->size() < that.sv->size();
1147 }
1148 return kind < that.kind;
1149}
1150
1151bool Signedness::operator==(const Signedness &that) const {
1152 if (isNamed())
1153 if (that.isNamed())
1154 return *(this->name) == *(that.name);
1155 else
1156 return CurModule.NamedTypeSigns[*(this->name)] == that;
1157 else if (that.isNamed())
1158 return *this == CurModule.NamedTypeSigns[*(that.name)];
1159 if (isComposite() && that.isComposite()) {
1160 if (sv->size() == that.sv->size()) {
1161 SignVector::const_iterator thisI = sv->begin(), thisE = sv->end();
1162 SignVector::const_iterator thatI = that.sv->begin(),
1163 thatE = that.sv->end();
1164 for (; thisI != thisE; ++thisI, ++thatI) {
1165 if (!(*thisI == *thatI))
1166 return false;
1167 }
1168 return true;
1169 }
1170 return false;
1171 }
1172 return kind == that.kind;
1173}
1174
1175void Signedness::copy(const Signedness &that) {
1176 if (that.isNamed()) {
1177 kind = Named;
1178 name = new std::string(*that.name);
1179 } else if (that.isComposite()) {
1180 kind = Composite;
1181 sv = new SignVector();
1182 *sv = *that.sv;
1183 } else {
1184 kind = that.kind;
1185 sv = 0;
1186 }
1187}
1188
1189void Signedness::destroy() {
1190 if (isNamed()) {
1191 delete name;
1192 } else if (isComposite()) {
1193 delete sv;
1194 }
1195}
1196
1197#ifndef NDEBUG
1198void Signedness::dump() const {
1199 if (isComposite()) {
1200 if (sv->size() == 1) {
1201 (*sv)[0].dump();
1202 std::cerr << "*";
1203 } else {
1204 std::cerr << "{ " ;
1205 for (unsigned i = 0; i < sv->size(); ++i) {
1206 if (i != 0)
1207 std::cerr << ", ";
1208 (*sv)[i].dump();
1209 }
1210 std::cerr << "} " ;
1211 }
1212 } else if (isNamed()) {
1213 std::cerr << *name;
1214 } else if (isSigned()) {
1215 std::cerr << "S";
1216 } else if (isUnsigned()) {
1217 std::cerr << "U";
1218 } else
1219 std::cerr << ".";
1220}
1221#endif
1222
1223static inline Instruction::TermOps
1224getTermOp(TermOps op) {
1225 switch (op) {
1226 default : assert(0 && "Invalid OldTermOp");
1227 case RetOp : return Instruction::Ret;
1228 case BrOp : return Instruction::Br;
1229 case SwitchOp : return Instruction::Switch;
1230 case InvokeOp : return Instruction::Invoke;
1231 case UnwindOp : return Instruction::Unwind;
1232 case UnreachableOp: return Instruction::Unreachable;
1233 }
1234}
1235
1236static inline Instruction::BinaryOps
1237getBinaryOp(BinaryOps op, const Type *Ty, const Signedness& Sign) {
1238 switch (op) {
1239 default : assert(0 && "Invalid OldBinaryOps");
1240 case SetEQ :
1241 case SetNE :
1242 case SetLE :
1243 case SetGE :
1244 case SetLT :
1245 case SetGT : assert(0 && "Should use getCompareOp");
1246 case AddOp : return Instruction::Add;
1247 case SubOp : return Instruction::Sub;
1248 case MulOp : return Instruction::Mul;
1249 case DivOp : {
1250 // This is an obsolete instruction so we must upgrade it based on the
1251 // types of its operands.
1252 bool isFP = Ty->isFloatingPoint();
1253 if (const VectorType* PTy = dyn_cast<VectorType>(Ty))
1254 // If its a vector type we want to use the element type
1255 isFP = PTy->getElementType()->isFloatingPoint();
1256 if (isFP)
1257 return Instruction::FDiv;
1258 else if (Sign.isSigned())
1259 return Instruction::SDiv;
1260 return Instruction::UDiv;
1261 }
1262 case UDivOp : return Instruction::UDiv;
1263 case SDivOp : return Instruction::SDiv;
1264 case FDivOp : return Instruction::FDiv;
1265 case RemOp : {
1266 // This is an obsolete instruction so we must upgrade it based on the
1267 // types of its operands.
1268 bool isFP = Ty->isFloatingPoint();
1269 if (const VectorType* PTy = dyn_cast<VectorType>(Ty))
1270 // If its a vector type we want to use the element type
1271 isFP = PTy->getElementType()->isFloatingPoint();
1272 // Select correct opcode
1273 if (isFP)
1274 return Instruction::FRem;
1275 else if (Sign.isSigned())
1276 return Instruction::SRem;
1277 return Instruction::URem;
1278 }
1279 case URemOp : return Instruction::URem;
1280 case SRemOp : return Instruction::SRem;
1281 case FRemOp : return Instruction::FRem;
1282 case LShrOp : return Instruction::LShr;
1283 case AShrOp : return Instruction::AShr;
1284 case ShlOp : return Instruction::Shl;
1285 case ShrOp :
1286 if (Sign.isSigned())
1287 return Instruction::AShr;
1288 return Instruction::LShr;
1289 case AndOp : return Instruction::And;
1290 case OrOp : return Instruction::Or;
1291 case XorOp : return Instruction::Xor;
1292 }
1293}
1294
1295static inline Instruction::OtherOps
1296getCompareOp(BinaryOps op, unsigned short &predicate, const Type* &Ty,
1297 const Signedness &Sign) {
1298 bool isSigned = Sign.isSigned();
1299 bool isFP = Ty->isFloatingPoint();
1300 switch (op) {
1301 default : assert(0 && "Invalid OldSetCC");
1302 case SetEQ :
1303 if (isFP) {
1304 predicate = FCmpInst::FCMP_OEQ;
1305 return Instruction::FCmp;
1306 } else {
1307 predicate = ICmpInst::ICMP_EQ;
1308 return Instruction::ICmp;
1309 }
1310 case SetNE :
1311 if (isFP) {
1312 predicate = FCmpInst::FCMP_UNE;
1313 return Instruction::FCmp;
1314 } else {
1315 predicate = ICmpInst::ICMP_NE;
1316 return Instruction::ICmp;
1317 }
1318 case SetLE :
1319 if (isFP) {
1320 predicate = FCmpInst::FCMP_OLE;
1321 return Instruction::FCmp;
1322 } else {
1323 if (isSigned)
1324 predicate = ICmpInst::ICMP_SLE;
1325 else
1326 predicate = ICmpInst::ICMP_ULE;
1327 return Instruction::ICmp;
1328 }
1329 case SetGE :
1330 if (isFP) {
1331 predicate = FCmpInst::FCMP_OGE;
1332 return Instruction::FCmp;
1333 } else {
1334 if (isSigned)
1335 predicate = ICmpInst::ICMP_SGE;
1336 else
1337 predicate = ICmpInst::ICMP_UGE;
1338 return Instruction::ICmp;
1339 }
1340 case SetLT :
1341 if (isFP) {
1342 predicate = FCmpInst::FCMP_OLT;
1343 return Instruction::FCmp;
1344 } else {
1345 if (isSigned)
1346 predicate = ICmpInst::ICMP_SLT;
1347 else
1348 predicate = ICmpInst::ICMP_ULT;
1349 return Instruction::ICmp;
1350 }
1351 case SetGT :
1352 if (isFP) {
1353 predicate = FCmpInst::FCMP_OGT;
1354 return Instruction::FCmp;
1355 } else {
1356 if (isSigned)
1357 predicate = ICmpInst::ICMP_SGT;
1358 else
1359 predicate = ICmpInst::ICMP_UGT;
1360 return Instruction::ICmp;
1361 }
1362 }
1363}
1364
1365static inline Instruction::MemoryOps getMemoryOp(MemoryOps op) {
1366 switch (op) {
1367 default : assert(0 && "Invalid OldMemoryOps");
1368 case MallocOp : return Instruction::Malloc;
1369 case FreeOp : return Instruction::Free;
1370 case AllocaOp : return Instruction::Alloca;
1371 case LoadOp : return Instruction::Load;
1372 case StoreOp : return Instruction::Store;
1373 case GetElementPtrOp : return Instruction::GetElementPtr;
1374 }
1375}
1376
1377static inline Instruction::OtherOps
1378getOtherOp(OtherOps op, const Signedness &Sign) {
1379 switch (op) {
1380 default : assert(0 && "Invalid OldOtherOps");
1381 case PHIOp : return Instruction::PHI;
1382 case CallOp : return Instruction::Call;
1383 case SelectOp : return Instruction::Select;
1384 case UserOp1 : return Instruction::UserOp1;
1385 case UserOp2 : return Instruction::UserOp2;
1386 case VAArg : return Instruction::VAArg;
1387 case ExtractElementOp : return Instruction::ExtractElement;
1388 case InsertElementOp : return Instruction::InsertElement;
1389 case ShuffleVectorOp : return Instruction::ShuffleVector;
1390 case ICmpOp : return Instruction::ICmp;
1391 case FCmpOp : return Instruction::FCmp;
1392 };
1393}
1394
1395static inline Value*
1396getCast(CastOps op, Value *Src, const Signedness &SrcSign, const Type *DstTy,
1397 const Signedness &DstSign, bool ForceInstruction = false) {
1398 Instruction::CastOps Opcode;
1399 const Type* SrcTy = Src->getType();
1400 if (op == CastOp) {
1401 if (SrcTy->isFloatingPoint() && isa<PointerType>(DstTy)) {
1402 // fp -> ptr cast is no longer supported but we must upgrade this
1403 // by doing a double cast: fp -> int -> ptr
1404 SrcTy = Type::Int64Ty;
1405 Opcode = Instruction::IntToPtr;
1406 if (isa<Constant>(Src)) {
1407 Src = ConstantExpr::getCast(Instruction::FPToUI,
1408 cast<Constant>(Src), SrcTy);
1409 } else {
1410 std::string NewName(makeNameUnique(Src->getName()));
1411 Src = new FPToUIInst(Src, SrcTy, NewName, CurBB);
1412 }
1413 } else if (isa<IntegerType>(DstTy) &&
1414 cast<IntegerType>(DstTy)->getBitWidth() == 1) {
1415 // cast type %x to bool was previously defined as setne type %x, null
1416 // The cast semantic is now to truncate, not compare so we must retain
1417 // the original intent by replacing the cast with a setne
1418 Constant* Null = Constant::getNullValue(SrcTy);
1419 Instruction::OtherOps Opcode = Instruction::ICmp;
1420 unsigned short predicate = ICmpInst::ICMP_NE;
1421 if (SrcTy->isFloatingPoint()) {
1422 Opcode = Instruction::FCmp;
1423 predicate = FCmpInst::FCMP_ONE;
1424 } else if (!SrcTy->isInteger() && !isa<PointerType>(SrcTy)) {
1425 error("Invalid cast to bool");
1426 }
1427 if (isa<Constant>(Src) && !ForceInstruction)
1428 return ConstantExpr::getCompare(predicate, cast<Constant>(Src), Null);
1429 else
1430 return CmpInst::create(Opcode, predicate, Src, Null);
1431 }
1432 // Determine the opcode to use by calling CastInst::getCastOpcode
1433 Opcode =
1434 CastInst::getCastOpcode(Src, SrcSign.isSigned(), DstTy,
1435 DstSign.isSigned());
1436
1437 } else switch (op) {
1438 default: assert(0 && "Invalid cast token");
1439 case TruncOp: Opcode = Instruction::Trunc; break;
1440 case ZExtOp: Opcode = Instruction::ZExt; break;
1441 case SExtOp: Opcode = Instruction::SExt; break;
1442 case FPTruncOp: Opcode = Instruction::FPTrunc; break;
1443 case FPExtOp: Opcode = Instruction::FPExt; break;
1444 case FPToUIOp: Opcode = Instruction::FPToUI; break;
1445 case FPToSIOp: Opcode = Instruction::FPToSI; break;
1446 case UIToFPOp: Opcode = Instruction::UIToFP; break;
1447 case SIToFPOp: Opcode = Instruction::SIToFP; break;
1448 case PtrToIntOp: Opcode = Instruction::PtrToInt; break;
1449 case IntToPtrOp: Opcode = Instruction::IntToPtr; break;
1450 case BitCastOp: Opcode = Instruction::BitCast; break;
1451 }
1452
1453 if (isa<Constant>(Src) && !ForceInstruction)
1454 return ConstantExpr::getCast(Opcode, cast<Constant>(Src), DstTy);
1455 return CastInst::create(Opcode, Src, DstTy);
1456}
1457
1458static Instruction *
1459upgradeIntrinsicCall(const Type* RetTy, const ValID &ID,
1460 std::vector<Value*>& Args) {
1461
1462 std::string Name = ID.Type == ValID::NameVal ? ID.Name : "";
1463 if (Name.length() <= 5 || Name[0] != 'l' || Name[1] != 'l' ||
1464 Name[2] != 'v' || Name[3] != 'm' || Name[4] != '.')
1465 return 0;
1466
1467 switch (Name[5]) {
1468 case 'i':
1469 if (Name == "llvm.isunordered.f32" || Name == "llvm.isunordered.f64") {
1470 if (Args.size() != 2)
1471 error("Invalid prototype for " + Name);
1472 return new FCmpInst(FCmpInst::FCMP_UNO, Args[0], Args[1]);
1473 }
1474 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001475
1476 case 'v' : {
1477 const Type* PtrTy = PointerType::get(Type::Int8Ty);
1478 std::vector<const Type*> Params;
1479 if (Name == "llvm.va_start" || Name == "llvm.va_end") {
1480 if (Args.size() != 1)
1481 error("Invalid prototype for " + Name + " prototype");
1482 Params.push_back(PtrTy);
1483 const FunctionType *FTy =
1484 FunctionType::get(Type::VoidTy, Params, false);
1485 const PointerType *PFTy = PointerType::get(FTy);
1486 Value* Func = getVal(PFTy, ID);
1487 Args[0] = new BitCastInst(Args[0], PtrTy, makeNameUnique("va"), CurBB);
David Greene9145dd22007-08-01 03:59:32 +00001488 return new CallInst(Func, Args.begin(), Args.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001489 } else if (Name == "llvm.va_copy") {
1490 if (Args.size() != 2)
1491 error("Invalid prototype for " + Name + " prototype");
1492 Params.push_back(PtrTy);
1493 Params.push_back(PtrTy);
1494 const FunctionType *FTy =
1495 FunctionType::get(Type::VoidTy, Params, false);
1496 const PointerType *PFTy = PointerType::get(FTy);
1497 Value* Func = getVal(PFTy, ID);
1498 std::string InstName0(makeNameUnique("va0"));
1499 std::string InstName1(makeNameUnique("va1"));
1500 Args[0] = new BitCastInst(Args[0], PtrTy, InstName0, CurBB);
1501 Args[1] = new BitCastInst(Args[1], PtrTy, InstName1, CurBB);
David Greene9145dd22007-08-01 03:59:32 +00001502 return new CallInst(Func, Args.begin(), Args.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001503 }
1504 }
1505 }
1506 return 0;
1507}
1508
1509const Type* upgradeGEPCEIndices(const Type* PTy,
1510 std::vector<ValueInfo> *Indices,
1511 std::vector<Constant*> &Result) {
1512 const Type *Ty = PTy;
1513 Result.clear();
1514 for (unsigned i = 0, e = Indices->size(); i != e ; ++i) {
1515 Constant *Index = cast<Constant>((*Indices)[i].V);
1516
1517 if (ConstantInt *CI = dyn_cast<ConstantInt>(Index)) {
1518 // LLVM 1.2 and earlier used ubyte struct indices. Convert any ubyte
1519 // struct indices to i32 struct indices with ZExt for compatibility.
1520 if (CI->getBitWidth() < 32)
1521 Index = ConstantExpr::getCast(Instruction::ZExt, CI, Type::Int32Ty);
1522 }
1523
1524 if (isa<SequentialType>(Ty)) {
1525 // Make sure that unsigned SequentialType indices are zext'd to
1526 // 64-bits if they were smaller than that because LLVM 2.0 will sext
1527 // all indices for SequentialType elements. We must retain the same
1528 // semantic (zext) for unsigned types.
1529 if (const IntegerType *Ity = dyn_cast<IntegerType>(Index->getType())) {
1530 if (Ity->getBitWidth() < 64 && (*Indices)[i].S.isUnsigned()) {
1531 Index = ConstantExpr::getCast(Instruction::ZExt, Index,Type::Int64Ty);
1532 }
1533 }
1534 }
1535 Result.push_back(Index);
David Greene48556392007-09-04 18:46:50 +00001536 Ty = GetElementPtrInst::getIndexedType(PTy, Result.begin(),
1537 Result.end(),true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001538 if (!Ty)
1539 error("Index list invalid for constant getelementptr");
1540 }
1541 return Ty;
1542}
1543
1544const Type* upgradeGEPInstIndices(const Type* PTy,
1545 std::vector<ValueInfo> *Indices,
1546 std::vector<Value*> &Result) {
1547 const Type *Ty = PTy;
1548 Result.clear();
1549 for (unsigned i = 0, e = Indices->size(); i != e ; ++i) {
1550 Value *Index = (*Indices)[i].V;
1551
1552 if (ConstantInt *CI = dyn_cast<ConstantInt>(Index)) {
1553 // LLVM 1.2 and earlier used ubyte struct indices. Convert any ubyte
1554 // struct indices to i32 struct indices with ZExt for compatibility.
1555 if (CI->getBitWidth() < 32)
1556 Index = ConstantExpr::getCast(Instruction::ZExt, CI, Type::Int32Ty);
1557 }
1558
1559
1560 if (isa<StructType>(Ty)) { // Only change struct indices
1561 if (!isa<Constant>(Index)) {
1562 error("Invalid non-constant structure index");
1563 return 0;
1564 }
1565 } else {
1566 // Make sure that unsigned SequentialType indices are zext'd to
1567 // 64-bits if they were smaller than that because LLVM 2.0 will sext
1568 // all indices for SequentialType elements. We must retain the same
1569 // semantic (zext) for unsigned types.
1570 if (const IntegerType *Ity = dyn_cast<IntegerType>(Index->getType())) {
1571 if (Ity->getBitWidth() < 64 && (*Indices)[i].S.isUnsigned()) {
1572 if (isa<Constant>(Index))
1573 Index = ConstantExpr::getCast(Instruction::ZExt,
1574 cast<Constant>(Index), Type::Int64Ty);
1575 else
1576 Index = CastInst::create(Instruction::ZExt, Index, Type::Int64Ty,
1577 makeNameUnique("gep"), CurBB);
1578 }
1579 }
1580 }
1581 Result.push_back(Index);
David Greene48556392007-09-04 18:46:50 +00001582 Ty = GetElementPtrInst::getIndexedType(PTy, Result.begin(),
1583 Result.end(),true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001584 if (!Ty)
1585 error("Index list invalid for constant getelementptr");
1586 }
1587 return Ty;
1588}
1589
1590unsigned upgradeCallingConv(unsigned CC) {
1591 switch (CC) {
1592 case OldCallingConv::C : return CallingConv::C;
1593 case OldCallingConv::CSRet : return CallingConv::C;
1594 case OldCallingConv::Fast : return CallingConv::Fast;
1595 case OldCallingConv::Cold : return CallingConv::Cold;
1596 case OldCallingConv::X86_StdCall : return CallingConv::X86_StdCall;
1597 case OldCallingConv::X86_FastCall: return CallingConv::X86_FastCall;
1598 default:
1599 return CC;
1600 }
1601}
1602
1603Module* UpgradeAssembly(const std::string &infile, std::istream& in,
1604 bool debug, bool addAttrs)
1605{
1606 Upgradelineno = 1;
1607 CurFilename = infile;
1608 LexInput = &in;
1609 yydebug = debug;
1610 AddAttributes = addAttrs;
1611 ObsoleteVarArgs = false;
1612 NewVarArgs = false;
1613
1614 CurModule.CurrentModule = new Module(CurFilename);
1615
1616 // Check to make sure the parser succeeded
1617 if (yyparse()) {
1618 if (ParserResult)
1619 delete ParserResult;
1620 std::cerr << "llvm-upgrade: parse failed.\n";
1621 return 0;
1622 }
1623
1624 // Check to make sure that parsing produced a result
1625 if (!ParserResult) {
1626 std::cerr << "llvm-upgrade: no parse result.\n";
1627 return 0;
1628 }
1629
1630 // Reset ParserResult variable while saving its value for the result.
1631 Module *Result = ParserResult;
1632 ParserResult = 0;
1633
1634 //Not all functions use vaarg, so make a second check for ObsoleteVarArgs
1635 {
1636 Function* F;
1637 if ((F = Result->getFunction("llvm.va_start"))
1638 && F->getFunctionType()->getNumParams() == 0)
1639 ObsoleteVarArgs = true;
1640 if((F = Result->getFunction("llvm.va_copy"))
1641 && F->getFunctionType()->getNumParams() == 1)
1642 ObsoleteVarArgs = true;
1643 }
1644
1645 if (ObsoleteVarArgs && NewVarArgs) {
1646 error("This file is corrupt: it uses both new and old style varargs");
1647 return 0;
1648 }
1649
1650 if(ObsoleteVarArgs) {
1651 if(Function* F = Result->getFunction("llvm.va_start")) {
1652 if (F->arg_size() != 0) {
1653 error("Obsolete va_start takes 0 argument");
1654 return 0;
1655 }
1656
1657 //foo = va_start()
1658 // ->
1659 //bar = alloca typeof(foo)
1660 //va_start(bar)
1661 //foo = load bar
1662
1663 const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID);
1664 const Type* ArgTy = F->getFunctionType()->getReturnType();
1665 const Type* ArgTyPtr = PointerType::get(ArgTy);
1666 Function* NF = cast<Function>(Result->getOrInsertFunction(
1667 "llvm.va_start", RetTy, ArgTyPtr, (Type *)0));
1668
1669 while (!F->use_empty()) {
1670 CallInst* CI = cast<CallInst>(F->use_back());
1671 AllocaInst* bar = new AllocaInst(ArgTy, 0, "vastart.fix.1", CI);
1672 new CallInst(NF, bar, "", CI);
1673 Value* foo = new LoadInst(bar, "vastart.fix.2", CI);
1674 CI->replaceAllUsesWith(foo);
1675 CI->getParent()->getInstList().erase(CI);
1676 }
1677 Result->getFunctionList().erase(F);
1678 }
1679
1680 if(Function* F = Result->getFunction("llvm.va_end")) {
1681 if(F->arg_size() != 1) {
1682 error("Obsolete va_end takes 1 argument");
1683 return 0;
1684 }
1685
1686 //vaend foo
1687 // ->
1688 //bar = alloca 1 of typeof(foo)
1689 //vaend bar
1690 const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID);
1691 const Type* ArgTy = F->getFunctionType()->getParamType(0);
1692 const Type* ArgTyPtr = PointerType::get(ArgTy);
1693 Function* NF = cast<Function>(Result->getOrInsertFunction(
1694 "llvm.va_end", RetTy, ArgTyPtr, (Type *)0));
1695
1696 while (!F->use_empty()) {
1697 CallInst* CI = cast<CallInst>(F->use_back());
1698 AllocaInst* bar = new AllocaInst(ArgTy, 0, "vaend.fix.1", CI);
1699 new StoreInst(CI->getOperand(1), bar, CI);
1700 new CallInst(NF, bar, "", CI);
1701 CI->getParent()->getInstList().erase(CI);
1702 }
1703 Result->getFunctionList().erase(F);
1704 }
1705
1706 if(Function* F = Result->getFunction("llvm.va_copy")) {
1707 if(F->arg_size() != 1) {
1708 error("Obsolete va_copy takes 1 argument");
1709 return 0;
1710 }
1711 //foo = vacopy(bar)
1712 // ->
1713 //a = alloca 1 of typeof(foo)
1714 //b = alloca 1 of typeof(foo)
1715 //store bar -> b
1716 //vacopy(a, b)
1717 //foo = load a
1718
1719 const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID);
1720 const Type* ArgTy = F->getFunctionType()->getReturnType();
1721 const Type* ArgTyPtr = PointerType::get(ArgTy);
1722 Function* NF = cast<Function>(Result->getOrInsertFunction(
1723 "llvm.va_copy", RetTy, ArgTyPtr, ArgTyPtr, (Type *)0));
1724
1725 while (!F->use_empty()) {
1726 CallInst* CI = cast<CallInst>(F->use_back());
David Greene26b36332007-08-15 17:58:51 +00001727 Value *Args[2] = {
1728 new AllocaInst(ArgTy, 0, "vacopy.fix.1", CI),
1729 new AllocaInst(ArgTy, 0, "vacopy.fix.2", CI)
1730 };
David Greene9145dd22007-08-01 03:59:32 +00001731 new StoreInst(CI->getOperand(1), Args[1], CI);
David Greene26b36332007-08-15 17:58:51 +00001732 new CallInst(NF, Args, Args + 2, "", CI);
David Greene9145dd22007-08-01 03:59:32 +00001733 Value* foo = new LoadInst(Args[0], "vacopy.fix.3", CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001734 CI->replaceAllUsesWith(foo);
1735 CI->getParent()->getInstList().erase(CI);
1736 }
1737 Result->getFunctionList().erase(F);
1738 }
1739 }
1740
1741 return Result;
1742}
1743
1744} // end llvm namespace
1745
1746using namespace llvm;
1747
1748%}
1749
1750%union {
1751 llvm::Module *ModuleVal;
1752 llvm::Function *FunctionVal;
1753 std::pair<llvm::PATypeInfo, char*> *ArgVal;
1754 llvm::BasicBlock *BasicBlockVal;
1755 llvm::TermInstInfo TermInstVal;
1756 llvm::InstrInfo InstVal;
1757 llvm::ConstInfo ConstVal;
1758 llvm::ValueInfo ValueVal;
1759 llvm::PATypeInfo TypeVal;
1760 llvm::TypeInfo PrimType;
1761 llvm::PHIListInfo PHIList;
1762 std::list<llvm::PATypeInfo> *TypeList;
1763 std::vector<llvm::ValueInfo> *ValueList;
1764 std::vector<llvm::ConstInfo> *ConstVector;
1765
1766
1767 std::vector<std::pair<llvm::PATypeInfo,char*> > *ArgList;
1768 // Represent the RHS of PHI node
1769 std::vector<std::pair<llvm::Constant*, llvm::BasicBlock*> > *JumpTable;
1770
1771 llvm::GlobalValue::LinkageTypes Linkage;
1772 int64_t SInt64Val;
1773 uint64_t UInt64Val;
1774 int SIntVal;
1775 unsigned UIntVal;
1776 double FPVal;
1777 bool BoolVal;
1778
1779 char *StrVal; // This memory is strdup'd!
1780 llvm::ValID ValIDVal; // strdup'd memory maybe!
1781
1782 llvm::BinaryOps BinaryOpVal;
1783 llvm::TermOps TermOpVal;
1784 llvm::MemoryOps MemOpVal;
1785 llvm::OtherOps OtherOpVal;
1786 llvm::CastOps CastOpVal;
1787 llvm::ICmpInst::Predicate IPred;
1788 llvm::FCmpInst::Predicate FPred;
1789 llvm::Module::Endianness Endianness;
1790}
1791
1792%type <ModuleVal> Module FunctionList
1793%type <FunctionVal> Function FunctionProto FunctionHeader BasicBlockList
1794%type <BasicBlockVal> BasicBlock InstructionList
1795%type <TermInstVal> BBTerminatorInst
1796%type <InstVal> Inst InstVal MemoryInst
1797%type <ConstVal> ConstVal ConstExpr
1798%type <ConstVector> ConstVector
1799%type <ArgList> ArgList ArgListH
1800%type <ArgVal> ArgVal
1801%type <PHIList> PHIList
1802%type <ValueList> ValueRefList ValueRefListE // For call param lists
1803%type <ValueList> IndexList // For GEP derived indices
1804%type <TypeList> TypeListI ArgTypeListI
1805%type <JumpTable> JumpTable
1806%type <BoolVal> GlobalType // GLOBAL or CONSTANT?
1807%type <BoolVal> OptVolatile // 'volatile' or not
1808%type <BoolVal> OptTailCall // TAIL CALL or plain CALL.
1809%type <BoolVal> OptSideEffect // 'sideeffect' or not.
1810%type <Linkage> OptLinkage FnDeclareLinkage
1811%type <Endianness> BigOrLittle
1812
1813// ValueRef - Unresolved reference to a definition or BB
1814%type <ValIDVal> ValueRef ConstValueRef SymbolicValueRef
1815%type <ValueVal> ResolvedVal // <type> <valref> pair
1816
1817// Tokens and types for handling constant integer values
1818//
1819// ESINT64VAL - A negative number within long long range
1820%token <SInt64Val> ESINT64VAL
1821
1822// EUINT64VAL - A positive number within uns. long long range
1823%token <UInt64Val> EUINT64VAL
1824%type <SInt64Val> EINT64VAL
1825
1826%token <SIntVal> SINTVAL // Signed 32 bit ints...
1827%token <UIntVal> UINTVAL // Unsigned 32 bit ints...
1828%type <SIntVal> INTVAL
1829%token <FPVal> FPVAL // Float or Double constant
1830
1831// Built in types...
1832%type <TypeVal> Types TypesV UpRTypes UpRTypesV
1833%type <PrimType> SIntType UIntType IntType FPType PrimType // Classifications
1834%token <PrimType> VOID BOOL SBYTE UBYTE SHORT USHORT INT UINT LONG ULONG
1835%token <PrimType> FLOAT DOUBLE TYPE LABEL
1836
1837%token <StrVal> VAR_ID LABELSTR STRINGCONSTANT
1838%type <StrVal> Name OptName OptAssign
1839%type <UIntVal> OptAlign OptCAlign
1840%type <StrVal> OptSection SectionString
1841
1842%token IMPLEMENTATION ZEROINITIALIZER TRUETOK FALSETOK BEGINTOK ENDTOK
1843%token DECLARE GLOBAL CONSTANT SECTION VOLATILE
1844%token TO DOTDOTDOT NULL_TOK UNDEF CONST INTERNAL LINKONCE WEAK APPENDING
1845%token DLLIMPORT DLLEXPORT EXTERN_WEAK
1846%token OPAQUE NOT EXTERNAL TARGET TRIPLE ENDIAN POINTERSIZE LITTLE BIG ALIGN
1847%token DEPLIBS CALL TAIL ASM_TOK MODULE SIDEEFFECT
1848%token CC_TOK CCC_TOK CSRETCC_TOK FASTCC_TOK COLDCC_TOK
1849%token X86_STDCALLCC_TOK X86_FASTCALLCC_TOK
1850%token DATALAYOUT
1851%type <UIntVal> OptCallingConv
1852
1853// Basic Block Terminating Operators
1854%token <TermOpVal> RET BR SWITCH INVOKE UNREACHABLE
1855%token UNWIND EXCEPT
1856
1857// Binary Operators
1858%type <BinaryOpVal> ArithmeticOps LogicalOps SetCondOps // Binops Subcatagories
1859%type <BinaryOpVal> ShiftOps
1860%token <BinaryOpVal> ADD SUB MUL DIV UDIV SDIV FDIV REM UREM SREM FREM
1861%token <BinaryOpVal> AND OR XOR SHL SHR ASHR LSHR
1862%token <BinaryOpVal> SETLE SETGE SETLT SETGT SETEQ SETNE // Binary Comparators
1863%token <OtherOpVal> ICMP FCMP
1864
1865// Memory Instructions
1866%token <MemOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR
1867
1868// Other Operators
1869%token <OtherOpVal> PHI_TOK SELECT VAARG
1870%token <OtherOpVal> EXTRACTELEMENT INSERTELEMENT SHUFFLEVECTOR
1871%token VAARG_old VANEXT_old //OBSOLETE
1872
1873// Support for ICmp/FCmp Predicates, which is 1.9++ but not 2.0
1874%type <IPred> IPredicates
1875%type <FPred> FPredicates
1876%token EQ NE SLT SGT SLE SGE ULT UGT ULE UGE
1877%token OEQ ONE OLT OGT OLE OGE ORD UNO UEQ UNE
1878
1879%token <CastOpVal> CAST TRUNC ZEXT SEXT FPTRUNC FPEXT FPTOUI FPTOSI
1880%token <CastOpVal> UITOFP SITOFP PTRTOINT INTTOPTR BITCAST
1881%type <CastOpVal> CastOps
1882
1883%start Module
1884
1885%%
1886
1887// Handle constant integer size restriction and conversion...
1888//
1889INTVAL
1890 : SINTVAL
1891 | UINTVAL {
1892 if ($1 > (uint32_t)INT32_MAX) // Outside of my range!
1893 error("Value too large for type");
1894 $$ = (int32_t)$1;
1895 }
1896 ;
1897
1898EINT64VAL
1899 : ESINT64VAL // These have same type and can't cause problems...
1900 | EUINT64VAL {
1901 if ($1 > (uint64_t)INT64_MAX) // Outside of my range!
1902 error("Value too large for type");
1903 $$ = (int64_t)$1;
1904 };
1905
1906// Operations that are notably excluded from this list include:
1907// RET, BR, & SWITCH because they end basic blocks and are treated specially.
1908//
1909ArithmeticOps
1910 : ADD | SUB | MUL | DIV | UDIV | SDIV | FDIV | REM | UREM | SREM | FREM
1911 ;
1912
1913LogicalOps
1914 : AND | OR | XOR
1915 ;
1916
1917SetCondOps
1918 : SETLE | SETGE | SETLT | SETGT | SETEQ | SETNE
1919 ;
1920
1921IPredicates
1922 : EQ { $$ = ICmpInst::ICMP_EQ; } | NE { $$ = ICmpInst::ICMP_NE; }
1923 | SLT { $$ = ICmpInst::ICMP_SLT; } | SGT { $$ = ICmpInst::ICMP_SGT; }
1924 | SLE { $$ = ICmpInst::ICMP_SLE; } | SGE { $$ = ICmpInst::ICMP_SGE; }
1925 | ULT { $$ = ICmpInst::ICMP_ULT; } | UGT { $$ = ICmpInst::ICMP_UGT; }
1926 | ULE { $$ = ICmpInst::ICMP_ULE; } | UGE { $$ = ICmpInst::ICMP_UGE; }
1927 ;
1928
1929FPredicates
1930 : OEQ { $$ = FCmpInst::FCMP_OEQ; } | ONE { $$ = FCmpInst::FCMP_ONE; }
1931 | OLT { $$ = FCmpInst::FCMP_OLT; } | OGT { $$ = FCmpInst::FCMP_OGT; }
1932 | OLE { $$ = FCmpInst::FCMP_OLE; } | OGE { $$ = FCmpInst::FCMP_OGE; }
1933 | ORD { $$ = FCmpInst::FCMP_ORD; } | UNO { $$ = FCmpInst::FCMP_UNO; }
1934 | UEQ { $$ = FCmpInst::FCMP_UEQ; } | UNE { $$ = FCmpInst::FCMP_UNE; }
1935 | ULT { $$ = FCmpInst::FCMP_ULT; } | UGT { $$ = FCmpInst::FCMP_UGT; }
1936 | ULE { $$ = FCmpInst::FCMP_ULE; } | UGE { $$ = FCmpInst::FCMP_UGE; }
1937 | TRUETOK { $$ = FCmpInst::FCMP_TRUE; }
1938 | FALSETOK { $$ = FCmpInst::FCMP_FALSE; }
1939 ;
1940ShiftOps
1941 : SHL | SHR | ASHR | LSHR
1942 ;
1943
1944CastOps
1945 : TRUNC | ZEXT | SEXT | FPTRUNC | FPEXT | FPTOUI | FPTOSI
1946 | UITOFP | SITOFP | PTRTOINT | INTTOPTR | BITCAST | CAST
1947 ;
1948
1949// These are some types that allow classification if we only want a particular
1950// thing... for example, only a signed, unsigned, or integral type.
1951SIntType
1952 : LONG | INT | SHORT | SBYTE
1953 ;
1954
1955UIntType
1956 : ULONG | UINT | USHORT | UBYTE
1957 ;
1958
1959IntType
1960 : SIntType | UIntType
1961 ;
1962
1963FPType
1964 : FLOAT | DOUBLE
1965 ;
1966
1967// OptAssign - Value producing statements have an optional assignment component
1968OptAssign
1969 : Name '=' {
1970 $$ = $1;
1971 }
1972 | /*empty*/ {
1973 $$ = 0;
1974 };
1975
1976OptLinkage
1977 : INTERNAL { $$ = GlobalValue::InternalLinkage; }
1978 | LINKONCE { $$ = GlobalValue::LinkOnceLinkage; }
1979 | WEAK { $$ = GlobalValue::WeakLinkage; }
1980 | APPENDING { $$ = GlobalValue::AppendingLinkage; }
1981 | DLLIMPORT { $$ = GlobalValue::DLLImportLinkage; }
1982 | DLLEXPORT { $$ = GlobalValue::DLLExportLinkage; }
1983 | EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; }
1984 | /*empty*/ { $$ = GlobalValue::ExternalLinkage; }
1985 ;
1986
1987OptCallingConv
1988 : /*empty*/ { $$ = lastCallingConv = OldCallingConv::C; }
1989 | CCC_TOK { $$ = lastCallingConv = OldCallingConv::C; }
1990 | CSRETCC_TOK { $$ = lastCallingConv = OldCallingConv::CSRet; }
1991 | FASTCC_TOK { $$ = lastCallingConv = OldCallingConv::Fast; }
1992 | COLDCC_TOK { $$ = lastCallingConv = OldCallingConv::Cold; }
1993 | X86_STDCALLCC_TOK { $$ = lastCallingConv = OldCallingConv::X86_StdCall; }
1994 | X86_FASTCALLCC_TOK { $$ = lastCallingConv = OldCallingConv::X86_FastCall; }
1995 | CC_TOK EUINT64VAL {
1996 if ((unsigned)$2 != $2)
1997 error("Calling conv too large");
1998 $$ = lastCallingConv = $2;
1999 }
2000 ;
2001
2002// OptAlign/OptCAlign - An optional alignment, and an optional alignment with
2003// a comma before it.
2004OptAlign
2005 : /*empty*/ { $$ = 0; }
2006 | ALIGN EUINT64VAL {
2007 $$ = $2;
2008 if ($$ != 0 && !isPowerOf2_32($$))
2009 error("Alignment must be a power of two");
2010 }
2011 ;
2012
2013OptCAlign
2014 : /*empty*/ { $$ = 0; }
2015 | ',' ALIGN EUINT64VAL {
2016 $$ = $3;
2017 if ($$ != 0 && !isPowerOf2_32($$))
2018 error("Alignment must be a power of two");
2019 }
2020 ;
2021
2022SectionString
2023 : SECTION STRINGCONSTANT {
2024 for (unsigned i = 0, e = strlen($2); i != e; ++i)
2025 if ($2[i] == '"' || $2[i] == '\\')
2026 error("Invalid character in section name");
2027 $$ = $2;
2028 }
2029 ;
2030
2031OptSection
2032 : /*empty*/ { $$ = 0; }
2033 | SectionString { $$ = $1; }
2034 ;
2035
2036// GlobalVarAttributes - Used to pass the attributes string on a global. CurGV
2037// is set to be the global we are processing.
2038//
2039GlobalVarAttributes
2040 : /* empty */ {}
2041 | ',' GlobalVarAttribute GlobalVarAttributes {}
2042 ;
2043
2044GlobalVarAttribute
2045 : SectionString {
2046 CurGV->setSection($1);
2047 free($1);
2048 }
2049 | ALIGN EUINT64VAL {
2050 if ($2 != 0 && !isPowerOf2_32($2))
2051 error("Alignment must be a power of two");
2052 CurGV->setAlignment($2);
2053
2054 }
2055 ;
2056
2057//===----------------------------------------------------------------------===//
2058// Types includes all predefined types... except void, because it can only be
2059// used in specific contexts (function returning void for example). To have
2060// access to it, a user must explicitly use TypesV.
2061//
2062
2063// TypesV includes all of 'Types', but it also includes the void type.
2064TypesV
2065 : Types
2066 | VOID {
2067 $$.PAT = new PATypeHolder($1.T);
2068 $$.S.makeSignless();
2069 }
2070 ;
2071
2072UpRTypesV
2073 : UpRTypes
2074 | VOID {
2075 $$.PAT = new PATypeHolder($1.T);
2076 $$.S.makeSignless();
2077 }
2078 ;
2079
2080Types
2081 : UpRTypes {
2082 if (!UpRefs.empty())
2083 error("Invalid upreference in type: " + (*$1.PAT)->getDescription());
2084 $$ = $1;
2085 }
2086 ;
2087
2088PrimType
2089 : BOOL | SBYTE | UBYTE | SHORT | USHORT | INT | UINT
2090 | LONG | ULONG | FLOAT | DOUBLE | LABEL
2091 ;
2092
2093// Derived types are added later...
2094UpRTypes
2095 : PrimType {
2096 $$.PAT = new PATypeHolder($1.T);
2097 $$.S.copy($1.S);
2098 }
2099 | OPAQUE {
2100 $$.PAT = new PATypeHolder(OpaqueType::get());
2101 $$.S.makeSignless();
2102 }
2103 | SymbolicValueRef { // Named types are also simple types...
2104 $$.S.copy(getTypeSign($1));
2105 const Type* tmp = getType($1);
2106 $$.PAT = new PATypeHolder(tmp);
2107 }
2108 | '\\' EUINT64VAL { // Type UpReference
2109 if ($2 > (uint64_t)~0U)
2110 error("Value out of range");
2111 OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder
2112 UpRefs.push_back(UpRefRecord((unsigned)$2, OT)); // Add to vector...
2113 $$.PAT = new PATypeHolder(OT);
2114 $$.S.makeSignless();
2115 UR_OUT("New Upreference!\n");
2116 }
2117 | UpRTypesV '(' ArgTypeListI ')' { // Function derived type?
2118 $$.S.makeComposite($1.S);
2119 std::vector<const Type*> Params;
2120 for (std::list<llvm::PATypeInfo>::iterator I = $3->begin(),
2121 E = $3->end(); I != E; ++I) {
2122 Params.push_back(I->PAT->get());
2123 $$.S.add(I->S);
2124 }
2125 bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
2126 if (isVarArg) Params.pop_back();
2127
2128 ParamAttrsList *PAL = 0;
2129 if (lastCallingConv == OldCallingConv::CSRet) {
2130 ParamAttrsVector Attrs;
2131 ParamAttrsWithIndex PAWI;
2132 PAWI.index = 1; PAWI.attrs = ParamAttr::StructRet; // first arg
2133 Attrs.push_back(PAWI);
2134 PAL = ParamAttrsList::get(Attrs);
2135 }
2136
2137 const FunctionType *FTy =
2138 FunctionType::get($1.PAT->get(), Params, isVarArg, PAL);
2139
2140 $$.PAT = new PATypeHolder( HandleUpRefs(FTy, $$.S) );
2141 delete $1.PAT; // Delete the return type handle
2142 delete $3; // Delete the argument list
2143 }
2144 | '[' EUINT64VAL 'x' UpRTypes ']' { // Sized array type?
2145 $$.S.makeComposite($4.S);
2146 $$.PAT = new PATypeHolder(HandleUpRefs(ArrayType::get($4.PAT->get(),
2147 (unsigned)$2), $$.S));
2148 delete $4.PAT;
2149 }
2150 | '<' EUINT64VAL 'x' UpRTypes '>' { // Vector type?
2151 const llvm::Type* ElemTy = $4.PAT->get();
2152 if ((unsigned)$2 != $2)
2153 error("Unsigned result not equal to signed result");
2154 if (!(ElemTy->isInteger() || ElemTy->isFloatingPoint()))
2155 error("Elements of a VectorType must be integer or floating point");
2156 if (!isPowerOf2_32($2))
2157 error("VectorType length should be a power of 2");
2158 $$.S.makeComposite($4.S);
2159 $$.PAT = new PATypeHolder(HandleUpRefs(VectorType::get(ElemTy,
2160 (unsigned)$2), $$.S));
2161 delete $4.PAT;
2162 }
2163 | '{' TypeListI '}' { // Structure type?
2164 std::vector<const Type*> Elements;
2165 $$.S.makeComposite();
2166 for (std::list<llvm::PATypeInfo>::iterator I = $2->begin(),
2167 E = $2->end(); I != E; ++I) {
2168 Elements.push_back(I->PAT->get());
2169 $$.S.add(I->S);
2170 }
2171 $$.PAT = new PATypeHolder(HandleUpRefs(StructType::get(Elements), $$.S));
2172 delete $2;
2173 }
2174 | '{' '}' { // Empty structure type?
2175 $$.PAT = new PATypeHolder(StructType::get(std::vector<const Type*>()));
2176 $$.S.makeComposite();
2177 }
2178 | '<' '{' TypeListI '}' '>' { // Packed Structure type?
2179 $$.S.makeComposite();
2180 std::vector<const Type*> Elements;
2181 for (std::list<llvm::PATypeInfo>::iterator I = $3->begin(),
2182 E = $3->end(); I != E; ++I) {
2183 Elements.push_back(I->PAT->get());
2184 $$.S.add(I->S);
2185 delete I->PAT;
2186 }
2187 $$.PAT = new PATypeHolder(HandleUpRefs(StructType::get(Elements, true),
2188 $$.S));
2189 delete $3;
2190 }
2191 | '<' '{' '}' '>' { // Empty packed structure type?
2192 $$.PAT = new PATypeHolder(StructType::get(std::vector<const Type*>(),true));
2193 $$.S.makeComposite();
2194 }
2195 | UpRTypes '*' { // Pointer type?
2196 if ($1.PAT->get() == Type::LabelTy)
2197 error("Cannot form a pointer to a basic block");
2198 $$.S.makeComposite($1.S);
2199 $$.PAT = new PATypeHolder(HandleUpRefs(PointerType::get($1.PAT->get()),
2200 $$.S));
2201 delete $1.PAT;
2202 }
2203 ;
2204
2205// TypeList - Used for struct declarations and as a basis for function type
2206// declaration type lists
2207//
2208TypeListI
2209 : UpRTypes {
2210 $$ = new std::list<PATypeInfo>();
2211 $$->push_back($1);
2212 }
2213 | TypeListI ',' UpRTypes {
2214 ($$=$1)->push_back($3);
2215 }
2216 ;
2217
2218// ArgTypeList - List of types for a function type declaration...
2219ArgTypeListI
2220 : TypeListI
2221 | TypeListI ',' DOTDOTDOT {
2222 PATypeInfo VoidTI;
2223 VoidTI.PAT = new PATypeHolder(Type::VoidTy);
2224 VoidTI.S.makeSignless();
2225 ($$=$1)->push_back(VoidTI);
2226 }
2227 | DOTDOTDOT {
2228 $$ = new std::list<PATypeInfo>();
2229 PATypeInfo VoidTI;
2230 VoidTI.PAT = new PATypeHolder(Type::VoidTy);
2231 VoidTI.S.makeSignless();
2232 $$->push_back(VoidTI);
2233 }
2234 | /*empty*/ {
2235 $$ = new std::list<PATypeInfo>();
2236 }
2237 ;
2238
2239// ConstVal - The various declarations that go into the constant pool. This
2240// production is used ONLY to represent constants that show up AFTER a 'const',
2241// 'constant' or 'global' token at global scope. Constants that can be inlined
2242// into other expressions (such as integers and constexprs) are handled by the
2243// ResolvedVal, ValueRef and ConstValueRef productions.
2244//
2245ConstVal
2246 : Types '[' ConstVector ']' { // Nonempty unsized arr
2247 const ArrayType *ATy = dyn_cast<ArrayType>($1.PAT->get());
2248 if (ATy == 0)
2249 error("Cannot make array constant with type: '" +
2250 $1.PAT->get()->getDescription() + "'");
2251 const Type *ETy = ATy->getElementType();
2252 int NumElements = ATy->getNumElements();
2253
2254 // Verify that we have the correct size...
2255 if (NumElements != -1 && NumElements != (int)$3->size())
2256 error("Type mismatch: constant sized array initialized with " +
2257 utostr($3->size()) + " arguments, but has size of " +
2258 itostr(NumElements) + "");
2259
2260 // Verify all elements are correct type!
2261 std::vector<Constant*> Elems;
2262 for (unsigned i = 0; i < $3->size(); i++) {
2263 Constant *C = (*$3)[i].C;
2264 const Type* ValTy = C->getType();
2265 if (ETy != ValTy)
2266 error("Element #" + utostr(i) + " is not of type '" +
2267 ETy->getDescription() +"' as required!\nIt is of type '"+
2268 ValTy->getDescription() + "'");
2269 Elems.push_back(C);
2270 }
2271 $$.C = ConstantArray::get(ATy, Elems);
2272 $$.S.copy($1.S);
2273 delete $1.PAT;
2274 delete $3;
2275 }
2276 | Types '[' ']' {
2277 const ArrayType *ATy = dyn_cast<ArrayType>($1.PAT->get());
2278 if (ATy == 0)
2279 error("Cannot make array constant with type: '" +
2280 $1.PAT->get()->getDescription() + "'");
2281 int NumElements = ATy->getNumElements();
2282 if (NumElements != -1 && NumElements != 0)
2283 error("Type mismatch: constant sized array initialized with 0"
2284 " arguments, but has size of " + itostr(NumElements) +"");
2285 $$.C = ConstantArray::get(ATy, std::vector<Constant*>());
2286 $$.S.copy($1.S);
2287 delete $1.PAT;
2288 }
2289 | Types 'c' STRINGCONSTANT {
2290 const ArrayType *ATy = dyn_cast<ArrayType>($1.PAT->get());
2291 if (ATy == 0)
2292 error("Cannot make array constant with type: '" +
2293 $1.PAT->get()->getDescription() + "'");
2294 int NumElements = ATy->getNumElements();
2295 const Type *ETy = dyn_cast<IntegerType>(ATy->getElementType());
2296 if (!ETy || cast<IntegerType>(ETy)->getBitWidth() != 8)
2297 error("String arrays require type i8, not '" + ETy->getDescription() +
2298 "'");
2299 char *EndStr = UnEscapeLexed($3, true);
2300 if (NumElements != -1 && NumElements != (EndStr-$3))
2301 error("Can't build string constant of size " +
2302 itostr((int)(EndStr-$3)) + " when array has size " +
2303 itostr(NumElements) + "");
2304 std::vector<Constant*> Vals;
2305 for (char *C = (char *)$3; C != (char *)EndStr; ++C)
2306 Vals.push_back(ConstantInt::get(ETy, *C));
2307 free($3);
2308 $$.C = ConstantArray::get(ATy, Vals);
2309 $$.S.copy($1.S);
2310 delete $1.PAT;
2311 }
2312 | Types '<' ConstVector '>' { // Nonempty unsized arr
2313 const VectorType *PTy = dyn_cast<VectorType>($1.PAT->get());
2314 if (PTy == 0)
2315 error("Cannot make packed constant with type: '" +
2316 $1.PAT->get()->getDescription() + "'");
2317 const Type *ETy = PTy->getElementType();
2318 int NumElements = PTy->getNumElements();
2319 // Verify that we have the correct size...
2320 if (NumElements != -1 && NumElements != (int)$3->size())
2321 error("Type mismatch: constant sized packed initialized with " +
2322 utostr($3->size()) + " arguments, but has size of " +
2323 itostr(NumElements) + "");
2324 // Verify all elements are correct type!
2325 std::vector<Constant*> Elems;
2326 for (unsigned i = 0; i < $3->size(); i++) {
2327 Constant *C = (*$3)[i].C;
2328 const Type* ValTy = C->getType();
2329 if (ETy != ValTy)
2330 error("Element #" + utostr(i) + " is not of type '" +
2331 ETy->getDescription() +"' as required!\nIt is of type '"+
2332 ValTy->getDescription() + "'");
2333 Elems.push_back(C);
2334 }
2335 $$.C = ConstantVector::get(PTy, Elems);
2336 $$.S.copy($1.S);
2337 delete $1.PAT;
2338 delete $3;
2339 }
2340 | Types '{' ConstVector '}' {
2341 const StructType *STy = dyn_cast<StructType>($1.PAT->get());
2342 if (STy == 0)
2343 error("Cannot make struct constant with type: '" +
2344 $1.PAT->get()->getDescription() + "'");
2345 if ($3->size() != STy->getNumContainedTypes())
2346 error("Illegal number of initializers for structure type");
2347
2348 // Check to ensure that constants are compatible with the type initializer!
2349 std::vector<Constant*> Fields;
2350 for (unsigned i = 0, e = $3->size(); i != e; ++i) {
2351 Constant *C = (*$3)[i].C;
2352 if (C->getType() != STy->getElementType(i))
2353 error("Expected type '" + STy->getElementType(i)->getDescription() +
2354 "' for element #" + utostr(i) + " of structure initializer");
2355 Fields.push_back(C);
2356 }
2357 $$.C = ConstantStruct::get(STy, Fields);
2358 $$.S.copy($1.S);
2359 delete $1.PAT;
2360 delete $3;
2361 }
2362 | Types '{' '}' {
2363 const StructType *STy = dyn_cast<StructType>($1.PAT->get());
2364 if (STy == 0)
2365 error("Cannot make struct constant with type: '" +
2366 $1.PAT->get()->getDescription() + "'");
2367 if (STy->getNumContainedTypes() != 0)
2368 error("Illegal number of initializers for structure type");
2369 $$.C = ConstantStruct::get(STy, std::vector<Constant*>());
2370 $$.S.copy($1.S);
2371 delete $1.PAT;
2372 }
2373 | Types '<' '{' ConstVector '}' '>' {
2374 const StructType *STy = dyn_cast<StructType>($1.PAT->get());
2375 if (STy == 0)
2376 error("Cannot make packed struct constant with type: '" +
2377 $1.PAT->get()->getDescription() + "'");
2378 if ($4->size() != STy->getNumContainedTypes())
2379 error("Illegal number of initializers for packed structure type");
2380
2381 // Check to ensure that constants are compatible with the type initializer!
2382 std::vector<Constant*> Fields;
2383 for (unsigned i = 0, e = $4->size(); i != e; ++i) {
2384 Constant *C = (*$4)[i].C;
2385 if (C->getType() != STy->getElementType(i))
2386 error("Expected type '" + STy->getElementType(i)->getDescription() +
2387 "' for element #" + utostr(i) + " of packed struct initializer");
2388 Fields.push_back(C);
2389 }
2390 $$.C = ConstantStruct::get(STy, Fields);
2391 $$.S.copy($1.S);
2392 delete $1.PAT;
2393 delete $4;
2394 }
2395 | Types '<' '{' '}' '>' {
2396 const StructType *STy = dyn_cast<StructType>($1.PAT->get());
2397 if (STy == 0)
2398 error("Cannot make packed struct constant with type: '" +
2399 $1.PAT->get()->getDescription() + "'");
2400 if (STy->getNumContainedTypes() != 0)
2401 error("Illegal number of initializers for packed structure type");
2402 $$.C = ConstantStruct::get(STy, std::vector<Constant*>());
2403 $$.S.copy($1.S);
2404 delete $1.PAT;
2405 }
2406 | Types NULL_TOK {
2407 const PointerType *PTy = dyn_cast<PointerType>($1.PAT->get());
2408 if (PTy == 0)
2409 error("Cannot make null pointer constant with type: '" +
2410 $1.PAT->get()->getDescription() + "'");
2411 $$.C = ConstantPointerNull::get(PTy);
2412 $$.S.copy($1.S);
2413 delete $1.PAT;
2414 }
2415 | Types UNDEF {
2416 $$.C = UndefValue::get($1.PAT->get());
2417 $$.S.copy($1.S);
2418 delete $1.PAT;
2419 }
2420 | Types SymbolicValueRef {
2421 const PointerType *Ty = dyn_cast<PointerType>($1.PAT->get());
2422 if (Ty == 0)
2423 error("Global const reference must be a pointer type, not" +
2424 $1.PAT->get()->getDescription());
2425
2426 // ConstExprs can exist in the body of a function, thus creating
2427 // GlobalValues whenever they refer to a variable. Because we are in
2428 // the context of a function, getExistingValue will search the functions
2429 // symbol table instead of the module symbol table for the global symbol,
2430 // which throws things all off. To get around this, we just tell
2431 // getExistingValue that we are at global scope here.
2432 //
2433 Function *SavedCurFn = CurFun.CurrentFunction;
2434 CurFun.CurrentFunction = 0;
2435 $2.S.copy($1.S);
2436 Value *V = getExistingValue(Ty, $2);
2437 CurFun.CurrentFunction = SavedCurFn;
2438
2439 // If this is an initializer for a constant pointer, which is referencing a
2440 // (currently) undefined variable, create a stub now that shall be replaced
2441 // in the future with the right type of variable.
2442 //
2443 if (V == 0) {
2444 assert(isa<PointerType>(Ty) && "Globals may only be used as pointers");
2445 const PointerType *PT = cast<PointerType>(Ty);
2446
2447 // First check to see if the forward references value is already created!
2448 PerModuleInfo::GlobalRefsType::iterator I =
2449 CurModule.GlobalRefs.find(std::make_pair(PT, $2));
2450
2451 if (I != CurModule.GlobalRefs.end()) {
2452 V = I->second; // Placeholder already exists, use it...
2453 $2.destroy();
2454 } else {
2455 std::string Name;
2456 if ($2.Type == ValID::NameVal) Name = $2.Name;
2457
2458 // Create the forward referenced global.
2459 GlobalValue *GV;
2460 if (const FunctionType *FTy =
2461 dyn_cast<FunctionType>(PT->getElementType())) {
2462 GV = new Function(FTy, GlobalValue::ExternalLinkage, Name,
2463 CurModule.CurrentModule);
2464 } else {
2465 GV = new GlobalVariable(PT->getElementType(), false,
2466 GlobalValue::ExternalLinkage, 0,
2467 Name, CurModule.CurrentModule);
2468 }
2469
2470 // Keep track of the fact that we have a forward ref to recycle it
2471 CurModule.GlobalRefs.insert(std::make_pair(std::make_pair(PT, $2), GV));
2472 V = GV;
2473 }
2474 }
2475 $$.C = cast<GlobalValue>(V);
2476 $$.S.copy($1.S);
2477 delete $1.PAT; // Free the type handle
2478 }
2479 | Types ConstExpr {
2480 if ($1.PAT->get() != $2.C->getType())
2481 error("Mismatched types for constant expression");
2482 $$ = $2;
2483 $$.S.copy($1.S);
2484 delete $1.PAT;
2485 }
2486 | Types ZEROINITIALIZER {
2487 const Type *Ty = $1.PAT->get();
2488 if (isa<FunctionType>(Ty) || Ty == Type::LabelTy || isa<OpaqueType>(Ty))
2489 error("Cannot create a null initialized value of this type");
2490 $$.C = Constant::getNullValue(Ty);
2491 $$.S.copy($1.S);
2492 delete $1.PAT;
2493 }
2494 | SIntType EINT64VAL { // integral constants
2495 const Type *Ty = $1.T;
2496 if (!ConstantInt::isValueValidForType(Ty, $2))
2497 error("Constant value doesn't fit in type");
2498 $$.C = ConstantInt::get(Ty, $2);
2499 $$.S.makeSigned();
2500 }
2501 | UIntType EUINT64VAL { // integral constants
2502 const Type *Ty = $1.T;
2503 if (!ConstantInt::isValueValidForType(Ty, $2))
2504 error("Constant value doesn't fit in type");
2505 $$.C = ConstantInt::get(Ty, $2);
2506 $$.S.makeUnsigned();
2507 }
2508 | BOOL TRUETOK { // Boolean constants
2509 $$.C = ConstantInt::get(Type::Int1Ty, true);
2510 $$.S.makeUnsigned();
2511 }
2512 | BOOL FALSETOK { // Boolean constants
2513 $$.C = ConstantInt::get(Type::Int1Ty, false);
2514 $$.S.makeUnsigned();
2515 }
2516 | FPType FPVAL { // Float & Double constants
2517 if (!ConstantFP::isValueValidForType($1.T, $2))
2518 error("Floating point constant invalid for type");
2519 $$.C = ConstantFP::get($1.T, $2);
2520 $$.S.makeSignless();
2521 }
2522 ;
2523
2524ConstExpr
2525 : CastOps '(' ConstVal TO Types ')' {
2526 const Type* SrcTy = $3.C->getType();
2527 const Type* DstTy = $5.PAT->get();
2528 Signedness SrcSign($3.S);
2529 Signedness DstSign($5.S);
2530 if (!SrcTy->isFirstClassType())
2531 error("cast constant expression from a non-primitive type: '" +
2532 SrcTy->getDescription() + "'");
2533 if (!DstTy->isFirstClassType())
2534 error("cast constant expression to a non-primitive type: '" +
2535 DstTy->getDescription() + "'");
2536 $$.C = cast<Constant>(getCast($1, $3.C, SrcSign, DstTy, DstSign));
2537 $$.S.copy(DstSign);
2538 delete $5.PAT;
2539 }
2540 | GETELEMENTPTR '(' ConstVal IndexList ')' {
2541 const Type *Ty = $3.C->getType();
2542 if (!isa<PointerType>(Ty))
2543 error("GetElementPtr requires a pointer operand");
2544
2545 std::vector<Constant*> CIndices;
2546 upgradeGEPCEIndices($3.C->getType(), $4, CIndices);
2547
2548 delete $4;
2549 $$.C = ConstantExpr::getGetElementPtr($3.C, &CIndices[0], CIndices.size());
2550 $$.S.copy(getElementSign($3, CIndices));
2551 }
2552 | SELECT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
2553 if (!$3.C->getType()->isInteger() ||
2554 cast<IntegerType>($3.C->getType())->getBitWidth() != 1)
2555 error("Select condition must be bool type");
2556 if ($5.C->getType() != $7.C->getType())
2557 error("Select operand types must match");
2558 $$.C = ConstantExpr::getSelect($3.C, $5.C, $7.C);
2559 $$.S.copy($5.S);
2560 }
2561 | ArithmeticOps '(' ConstVal ',' ConstVal ')' {
2562 const Type *Ty = $3.C->getType();
2563 if (Ty != $5.C->getType())
2564 error("Binary operator types must match");
2565 // First, make sure we're dealing with the right opcode by upgrading from
2566 // obsolete versions.
2567 Instruction::BinaryOps Opcode = getBinaryOp($1, Ty, $3.S);
2568
2569 // HACK: llvm 1.3 and earlier used to emit invalid pointer constant exprs.
2570 // To retain backward compatibility with these early compilers, we emit a
2571 // cast to the appropriate integer type automatically if we are in the
2572 // broken case. See PR424 for more information.
2573 if (!isa<PointerType>(Ty)) {
2574 $$.C = ConstantExpr::get(Opcode, $3.C, $5.C);
2575 } else {
2576 const Type *IntPtrTy = 0;
2577 switch (CurModule.CurrentModule->getPointerSize()) {
2578 case Module::Pointer32: IntPtrTy = Type::Int32Ty; break;
2579 case Module::Pointer64: IntPtrTy = Type::Int64Ty; break;
2580 default: error("invalid pointer binary constant expr");
2581 }
2582 $$.C = ConstantExpr::get(Opcode,
2583 ConstantExpr::getCast(Instruction::PtrToInt, $3.C, IntPtrTy),
2584 ConstantExpr::getCast(Instruction::PtrToInt, $5.C, IntPtrTy));
2585 $$.C = ConstantExpr::getCast(Instruction::IntToPtr, $$.C, Ty);
2586 }
2587 $$.S.copy($3.S);
2588 }
2589 | LogicalOps '(' ConstVal ',' ConstVal ')' {
2590 const Type* Ty = $3.C->getType();
2591 if (Ty != $5.C->getType())
2592 error("Logical operator types must match");
2593 if (!Ty->isInteger()) {
2594 if (!isa<VectorType>(Ty) ||
2595 !cast<VectorType>(Ty)->getElementType()->isInteger())
2596 error("Logical operator requires integer operands");
2597 }
2598 Instruction::BinaryOps Opcode = getBinaryOp($1, Ty, $3.S);
2599 $$.C = ConstantExpr::get(Opcode, $3.C, $5.C);
2600 $$.S.copy($3.S);
2601 }
2602 | SetCondOps '(' ConstVal ',' ConstVal ')' {
2603 const Type* Ty = $3.C->getType();
2604 if (Ty != $5.C->getType())
2605 error("setcc operand types must match");
2606 unsigned short pred;
2607 Instruction::OtherOps Opcode = getCompareOp($1, pred, Ty, $3.S);
2608 $$.C = ConstantExpr::getCompare(Opcode, $3.C, $5.C);
2609 $$.S.makeUnsigned();
2610 }
2611 | ICMP IPredicates '(' ConstVal ',' ConstVal ')' {
2612 if ($4.C->getType() != $6.C->getType())
2613 error("icmp operand types must match");
2614 $$.C = ConstantExpr::getCompare($2, $4.C, $6.C);
2615 $$.S.makeUnsigned();
2616 }
2617 | FCMP FPredicates '(' ConstVal ',' ConstVal ')' {
2618 if ($4.C->getType() != $6.C->getType())
2619 error("fcmp operand types must match");
2620 $$.C = ConstantExpr::getCompare($2, $4.C, $6.C);
2621 $$.S.makeUnsigned();
2622 }
2623 | ShiftOps '(' ConstVal ',' ConstVal ')' {
2624 if (!$5.C->getType()->isInteger() ||
2625 cast<IntegerType>($5.C->getType())->getBitWidth() != 8)
2626 error("Shift count for shift constant must be unsigned byte");
2627 const Type* Ty = $3.C->getType();
2628 if (!$3.C->getType()->isInteger())
2629 error("Shift constant expression requires integer operand");
2630 Constant *ShiftAmt = ConstantExpr::getZExt($5.C, Ty);
2631 $$.C = ConstantExpr::get(getBinaryOp($1, Ty, $3.S), $3.C, ShiftAmt);
2632 $$.S.copy($3.S);
2633 }
2634 | EXTRACTELEMENT '(' ConstVal ',' ConstVal ')' {
2635 if (!ExtractElementInst::isValidOperands($3.C, $5.C))
2636 error("Invalid extractelement operands");
2637 $$.C = ConstantExpr::getExtractElement($3.C, $5.C);
2638 $$.S.copy($3.S.get(0));
2639 }
2640 | INSERTELEMENT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
2641 if (!InsertElementInst::isValidOperands($3.C, $5.C, $7.C))
2642 error("Invalid insertelement operands");
2643 $$.C = ConstantExpr::getInsertElement($3.C, $5.C, $7.C);
2644 $$.S.copy($3.S);
2645 }
2646 | SHUFFLEVECTOR '(' ConstVal ',' ConstVal ',' ConstVal ')' {
2647 if (!ShuffleVectorInst::isValidOperands($3.C, $5.C, $7.C))
2648 error("Invalid shufflevector operands");
2649 $$.C = ConstantExpr::getShuffleVector($3.C, $5.C, $7.C);
2650 $$.S.copy($3.S);
2651 }
2652 ;
2653
2654
2655// ConstVector - A list of comma separated constants.
2656ConstVector
2657 : ConstVector ',' ConstVal { ($$ = $1)->push_back($3); }
2658 | ConstVal {
2659 $$ = new std::vector<ConstInfo>();
2660 $$->push_back($1);
2661 }
2662 ;
2663
2664
2665// GlobalType - Match either GLOBAL or CONSTANT for global declarations...
2666GlobalType
2667 : GLOBAL { $$ = false; }
2668 | CONSTANT { $$ = true; }
2669 ;
2670
2671
2672//===----------------------------------------------------------------------===//
2673// Rules to match Modules
2674//===----------------------------------------------------------------------===//
2675
2676// Module rule: Capture the result of parsing the whole file into a result
2677// variable...
2678//
2679Module
2680 : FunctionList {
2681 $$ = ParserResult = $1;
2682 CurModule.ModuleDone();
2683 }
2684 ;
2685
2686// FunctionList - A list of functions, preceeded by a constant pool.
2687//
2688FunctionList
2689 : FunctionList Function { $$ = $1; CurFun.FunctionDone(); }
2690 | FunctionList FunctionProto { $$ = $1; }
2691 | FunctionList MODULE ASM_TOK AsmBlock { $$ = $1; }
2692 | FunctionList IMPLEMENTATION { $$ = $1; }
2693 | ConstPool {
2694 $$ = CurModule.CurrentModule;
2695 // Emit an error if there are any unresolved types left.
2696 if (!CurModule.LateResolveTypes.empty()) {
2697 const ValID &DID = CurModule.LateResolveTypes.begin()->first;
2698 if (DID.Type == ValID::NameVal) {
2699 error("Reference to an undefined type: '"+DID.getName() + "'");
2700 } else {
2701 error("Reference to an undefined type: #" + itostr(DID.Num));
2702 }
2703 }
2704 }
2705 ;
2706
2707// ConstPool - Constants with optional names assigned to them.
2708ConstPool
2709 : ConstPool OptAssign TYPE TypesV {
2710 // Eagerly resolve types. This is not an optimization, this is a
2711 // requirement that is due to the fact that we could have this:
2712 //
2713 // %list = type { %list * }
2714 // %list = type { %list * } ; repeated type decl
2715 //
2716 // If types are not resolved eagerly, then the two types will not be
2717 // determined to be the same type!
2718 //
2719 ResolveTypeTo($2, $4.PAT->get(), $4.S);
2720
2721 if (!setTypeName($4, $2) && !$2) {
2722 // If this is a numbered type that is not a redefinition, add it to the
2723 // slot table.
2724 CurModule.Types.push_back($4.PAT->get());
2725 CurModule.TypeSigns.push_back($4.S);
2726 }
2727 delete $4.PAT;
2728 }
2729 | ConstPool FunctionProto { // Function prototypes can be in const pool
2730 }
2731 | ConstPool MODULE ASM_TOK AsmBlock { // Asm blocks can be in the const pool
2732 }
2733 | ConstPool OptAssign OptLinkage GlobalType ConstVal {
2734 if ($5.C == 0)
2735 error("Global value initializer is not a constant");
2736 CurGV = ParseGlobalVariable($2, $3, $4, $5.C->getType(), $5.C, $5.S);
2737 } GlobalVarAttributes {
2738 CurGV = 0;
2739 }
2740 | ConstPool OptAssign EXTERNAL GlobalType Types {
2741 const Type *Ty = $5.PAT->get();
2742 CurGV = ParseGlobalVariable($2, GlobalValue::ExternalLinkage, $4, Ty, 0,
2743 $5.S);
2744 delete $5.PAT;
2745 } GlobalVarAttributes {
2746 CurGV = 0;
2747 }
2748 | ConstPool OptAssign DLLIMPORT GlobalType Types {
2749 const Type *Ty = $5.PAT->get();
2750 CurGV = ParseGlobalVariable($2, GlobalValue::DLLImportLinkage, $4, Ty, 0,
2751 $5.S);
2752 delete $5.PAT;
2753 } GlobalVarAttributes {
2754 CurGV = 0;
2755 }
2756 | ConstPool OptAssign EXTERN_WEAK GlobalType Types {
2757 const Type *Ty = $5.PAT->get();
2758 CurGV =
2759 ParseGlobalVariable($2, GlobalValue::ExternalWeakLinkage, $4, Ty, 0,
2760 $5.S);
2761 delete $5.PAT;
2762 } GlobalVarAttributes {
2763 CurGV = 0;
2764 }
2765 | ConstPool TARGET TargetDefinition {
2766 }
2767 | ConstPool DEPLIBS '=' LibrariesDefinition {
2768 }
2769 | /* empty: end of list */ {
2770 }
2771 ;
2772
2773AsmBlock
2774 : STRINGCONSTANT {
2775 const std::string &AsmSoFar = CurModule.CurrentModule->getModuleInlineAsm();
2776 char *EndStr = UnEscapeLexed($1, true);
2777 std::string NewAsm($1, EndStr);
2778 free($1);
2779
2780 if (AsmSoFar.empty())
2781 CurModule.CurrentModule->setModuleInlineAsm(NewAsm);
2782 else
2783 CurModule.CurrentModule->setModuleInlineAsm(AsmSoFar+"\n"+NewAsm);
2784 }
2785 ;
2786
2787BigOrLittle
2788 : BIG { $$ = Module::BigEndian; }
2789 | LITTLE { $$ = Module::LittleEndian; }
2790 ;
2791
2792TargetDefinition
2793 : ENDIAN '=' BigOrLittle {
2794 CurModule.setEndianness($3);
2795 }
2796 | POINTERSIZE '=' EUINT64VAL {
2797 if ($3 == 32)
2798 CurModule.setPointerSize(Module::Pointer32);
2799 else if ($3 == 64)
2800 CurModule.setPointerSize(Module::Pointer64);
2801 else
2802 error("Invalid pointer size: '" + utostr($3) + "'");
2803 }
2804 | TRIPLE '=' STRINGCONSTANT {
2805 CurModule.CurrentModule->setTargetTriple($3);
2806 free($3);
2807 }
2808 | DATALAYOUT '=' STRINGCONSTANT {
2809 CurModule.CurrentModule->setDataLayout($3);
2810 free($3);
2811 }
2812 ;
2813
2814LibrariesDefinition
2815 : '[' LibList ']'
2816 ;
2817
2818LibList
2819 : LibList ',' STRINGCONSTANT {
2820 CurModule.CurrentModule->addLibrary($3);
2821 free($3);
2822 }
2823 | STRINGCONSTANT {
2824 CurModule.CurrentModule->addLibrary($1);
2825 free($1);
2826 }
2827 | /* empty: end of list */ { }
2828 ;
2829
2830//===----------------------------------------------------------------------===//
2831// Rules to match Function Headers
2832//===----------------------------------------------------------------------===//
2833
2834Name
2835 : VAR_ID | STRINGCONSTANT
2836 ;
2837
2838OptName
2839 : Name
2840 | /*empty*/ { $$ = 0; }
2841 ;
2842
2843ArgVal
2844 : Types OptName {
2845 if ($1.PAT->get() == Type::VoidTy)
2846 error("void typed arguments are invalid");
2847 $$ = new std::pair<PATypeInfo, char*>($1, $2);
2848 }
2849 ;
2850
2851ArgListH
2852 : ArgListH ',' ArgVal {
2853 $$ = $1;
2854 $$->push_back(*$3);
2855 delete $3;
2856 }
2857 | ArgVal {
2858 $$ = new std::vector<std::pair<PATypeInfo,char*> >();
2859 $$->push_back(*$1);
2860 delete $1;
2861 }
2862 ;
2863
2864ArgList
2865 : ArgListH { $$ = $1; }
2866 | ArgListH ',' DOTDOTDOT {
2867 $$ = $1;
2868 PATypeInfo VoidTI;
2869 VoidTI.PAT = new PATypeHolder(Type::VoidTy);
2870 VoidTI.S.makeSignless();
2871 $$->push_back(std::pair<PATypeInfo, char*>(VoidTI, 0));
2872 }
2873 | DOTDOTDOT {
2874 $$ = new std::vector<std::pair<PATypeInfo,char*> >();
2875 PATypeInfo VoidTI;
2876 VoidTI.PAT = new PATypeHolder(Type::VoidTy);
2877 VoidTI.S.makeSignless();
2878 $$->push_back(std::pair<PATypeInfo, char*>(VoidTI, 0));
2879 }
2880 | /* empty */ { $$ = 0; }
2881 ;
2882
2883FunctionHeaderH
2884 : OptCallingConv TypesV Name '(' ArgList ')' OptSection OptAlign {
2885 UnEscapeLexed($3);
2886 std::string FunctionName($3);
2887 free($3); // Free strdup'd memory!
2888
2889 const Type* RetTy = $2.PAT->get();
2890
2891 if (!RetTy->isFirstClassType() && RetTy != Type::VoidTy)
2892 error("LLVM functions cannot return aggregate types");
2893
2894 Signedness FTySign;
2895 FTySign.makeComposite($2.S);
2896 std::vector<const Type*> ParamTyList;
2897
2898 // In LLVM 2.0 the signatures of three varargs intrinsics changed to take
2899 // i8*. We check here for those names and override the parameter list
2900 // types to ensure the prototype is correct.
2901 if (FunctionName == "llvm.va_start" || FunctionName == "llvm.va_end") {
2902 ParamTyList.push_back(PointerType::get(Type::Int8Ty));
2903 } else if (FunctionName == "llvm.va_copy") {
2904 ParamTyList.push_back(PointerType::get(Type::Int8Ty));
2905 ParamTyList.push_back(PointerType::get(Type::Int8Ty));
2906 } else if ($5) { // If there are arguments...
2907 for (std::vector<std::pair<PATypeInfo,char*> >::iterator
2908 I = $5->begin(), E = $5->end(); I != E; ++I) {
2909 const Type *Ty = I->first.PAT->get();
2910 ParamTyList.push_back(Ty);
2911 FTySign.add(I->first.S);
2912 }
2913 }
2914
2915 bool isVarArg = ParamTyList.size() && ParamTyList.back() == Type::VoidTy;
2916 if (isVarArg)
2917 ParamTyList.pop_back();
2918
2919 // Convert the CSRet calling convention into the corresponding parameter
2920 // attribute.
2921 ParamAttrsList *PAL = 0;
2922 if ($1 == OldCallingConv::CSRet) {
2923 ParamAttrsVector Attrs;
2924 ParamAttrsWithIndex PAWI;
2925 PAWI.index = 1; PAWI.attrs = ParamAttr::StructRet; // first arg
2926 Attrs.push_back(PAWI);
2927 PAL = ParamAttrsList::get(Attrs);
2928 }
2929
2930 const FunctionType *FT =
2931 FunctionType::get(RetTy, ParamTyList, isVarArg, PAL);
2932 const PointerType *PFT = PointerType::get(FT);
2933 delete $2.PAT;
2934
2935 ValID ID;
2936 if (!FunctionName.empty()) {
2937 ID = ValID::create((char*)FunctionName.c_str());
2938 } else {
2939 ID = ValID::create((int)CurModule.Values[PFT].size());
2940 }
2941 ID.S.makeComposite(FTySign);
2942
2943 Function *Fn = 0;
2944 Module* M = CurModule.CurrentModule;
2945
2946 // See if this function was forward referenced. If so, recycle the object.
2947 if (GlobalValue *FWRef = CurModule.GetForwardRefForGlobal(PFT, ID)) {
2948 // Move the function to the end of the list, from whereever it was
2949 // previously inserted.
2950 Fn = cast<Function>(FWRef);
2951 M->getFunctionList().remove(Fn);
2952 M->getFunctionList().push_back(Fn);
2953 } else if (!FunctionName.empty()) {
2954 GlobalValue *Conflict = M->getFunction(FunctionName);
2955 if (!Conflict)
2956 Conflict = M->getNamedGlobal(FunctionName);
2957 if (Conflict && PFT == Conflict->getType()) {
2958 if (!CurFun.isDeclare && !Conflict->isDeclaration()) {
2959 // We have two function definitions that conflict, same type, same
2960 // name. We should really check to make sure that this is the result
2961 // of integer type planes collapsing and generate an error if it is
2962 // not, but we'll just rename on the assumption that it is. However,
2963 // let's do it intelligently and rename the internal linkage one
2964 // if there is one.
2965 std::string NewName(makeNameUnique(FunctionName));
2966 if (Conflict->hasInternalLinkage()) {
2967 Conflict->setName(NewName);
2968 RenameMapKey Key =
2969 makeRenameMapKey(FunctionName, Conflict->getType(), ID.S);
2970 CurModule.RenameMap[Key] = NewName;
2971 Fn = new Function(FT, CurFun.Linkage, FunctionName, M);
2972 InsertValue(Fn, CurModule.Values);
2973 } else {
2974 Fn = new Function(FT, CurFun.Linkage, NewName, M);
2975 InsertValue(Fn, CurModule.Values);
2976 RenameMapKey Key =
2977 makeRenameMapKey(FunctionName, PFT, ID.S);
2978 CurModule.RenameMap[Key] = NewName;
2979 }
2980 } else {
2981 // If they are not both definitions, then just use the function we
2982 // found since the types are the same.
2983 Fn = cast<Function>(Conflict);
2984
2985 // Make sure to strip off any argument names so we can't get
2986 // conflicts.
2987 if (Fn->isDeclaration())
2988 for (Function::arg_iterator AI = Fn->arg_begin(),
2989 AE = Fn->arg_end(); AI != AE; ++AI)
2990 AI->setName("");
2991 }
2992 } else if (Conflict) {
2993 // We have two globals with the same name and different types.
2994 // Previously, this was permitted because the symbol table had
2995 // "type planes" and names only needed to be distinct within a
2996 // type plane. After PR411 was fixed, this is no loner the case.
2997 // To resolve this we must rename one of the two.
2998 if (Conflict->hasInternalLinkage()) {
2999 // We can safely rename the Conflict.
3000 RenameMapKey Key =
3001 makeRenameMapKey(Conflict->getName(), Conflict->getType(),
3002 CurModule.NamedValueSigns[Conflict->getName()]);
3003 Conflict->setName(makeNameUnique(Conflict->getName()));
3004 CurModule.RenameMap[Key] = Conflict->getName();
3005 Fn = new Function(FT, CurFun.Linkage, FunctionName, M);
3006 InsertValue(Fn, CurModule.Values);
3007 } else {
3008 // We can't quietly rename either of these things, but we must
3009 // rename one of them. Only if the function's linkage is internal can
3010 // we forgo a warning message about the renamed function.
3011 std::string NewName = makeNameUnique(FunctionName);
3012 if (CurFun.Linkage != GlobalValue::InternalLinkage) {
3013 warning("Renaming function '" + FunctionName + "' as '" + NewName +
3014 "' may cause linkage errors");
3015 }
3016 // Elect to rename the thing we're now defining.
3017 Fn = new Function(FT, CurFun.Linkage, NewName, M);
3018 InsertValue(Fn, CurModule.Values);
3019 RenameMapKey Key = makeRenameMapKey(FunctionName, PFT, ID.S);
3020 CurModule.RenameMap[Key] = NewName;
3021 }
3022 } else {
3023 // There's no conflict, just define the function
3024 Fn = new Function(FT, CurFun.Linkage, FunctionName, M);
3025 InsertValue(Fn, CurModule.Values);
3026 }
3027 } else {
3028 // There's no conflict, just define the function
3029 Fn = new Function(FT, CurFun.Linkage, FunctionName, M);
3030 InsertValue(Fn, CurModule.Values);
3031 }
3032
3033
3034 CurFun.FunctionStart(Fn);
3035
3036 if (CurFun.isDeclare) {
3037 // If we have declaration, always overwrite linkage. This will allow us
3038 // to correctly handle cases, when pointer to function is passed as
3039 // argument to another function.
3040 Fn->setLinkage(CurFun.Linkage);
3041 }
3042 Fn->setCallingConv(upgradeCallingConv($1));
3043 Fn->setAlignment($8);
3044 if ($7) {
3045 Fn->setSection($7);
3046 free($7);
3047 }
3048
3049 // Add all of the arguments we parsed to the function...
3050 if ($5) { // Is null if empty...
3051 if (isVarArg) { // Nuke the last entry
3052 assert($5->back().first.PAT->get() == Type::VoidTy &&
3053 $5->back().second == 0 && "Not a varargs marker");
3054 delete $5->back().first.PAT;
3055 $5->pop_back(); // Delete the last entry
3056 }
3057 Function::arg_iterator ArgIt = Fn->arg_begin();
3058 Function::arg_iterator ArgEnd = Fn->arg_end();
3059 std::vector<std::pair<PATypeInfo,char*> >::iterator I = $5->begin();
3060 std::vector<std::pair<PATypeInfo,char*> >::iterator E = $5->end();
3061 for ( ; I != E && ArgIt != ArgEnd; ++I, ++ArgIt) {
3062 delete I->first.PAT; // Delete the typeholder...
3063 ValueInfo VI; VI.V = ArgIt; VI.S.copy(I->first.S);
3064 setValueName(VI, I->second); // Insert arg into symtab...
3065 InsertValue(ArgIt);
3066 }
3067 delete $5; // We're now done with the argument list
3068 }
3069 lastCallingConv = OldCallingConv::C;
3070 }
3071 ;
3072
3073BEGIN
3074 : BEGINTOK | '{' // Allow BEGIN or '{' to start a function
3075 ;
3076
3077FunctionHeader
3078 : OptLinkage { CurFun.Linkage = $1; } FunctionHeaderH BEGIN {
3079 $$ = CurFun.CurrentFunction;
3080
3081 // Make sure that we keep track of the linkage type even if there was a
3082 // previous "declare".
3083 $$->setLinkage($1);
3084 }
3085 ;
3086
3087END
3088 : ENDTOK | '}' // Allow end of '}' to end a function
3089 ;
3090
3091Function
3092 : BasicBlockList END {
3093 $$ = $1;
3094 };
3095
3096FnDeclareLinkage
3097 : /*default*/ { $$ = GlobalValue::ExternalLinkage; }
3098 | DLLIMPORT { $$ = GlobalValue::DLLImportLinkage; }
3099 | EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; }
3100 ;
3101
3102FunctionProto
3103 : DECLARE { CurFun.isDeclare = true; }
3104 FnDeclareLinkage { CurFun.Linkage = $3; } FunctionHeaderH {
3105 $$ = CurFun.CurrentFunction;
3106 CurFun.FunctionDone();
3107
3108 }
3109 ;
3110
3111//===----------------------------------------------------------------------===//
3112// Rules to match Basic Blocks
3113//===----------------------------------------------------------------------===//
3114
3115OptSideEffect
3116 : /* empty */ { $$ = false; }
3117 | SIDEEFFECT { $$ = true; }
3118 ;
3119
3120ConstValueRef
3121 // A reference to a direct constant
3122 : ESINT64VAL { $$ = ValID::create($1); }
3123 | EUINT64VAL { $$ = ValID::create($1); }
3124 | FPVAL { $$ = ValID::create($1); }
3125 | TRUETOK {
3126 $$ = ValID::create(ConstantInt::get(Type::Int1Ty, true));
3127 $$.S.makeUnsigned();
3128 }
3129 | FALSETOK {
3130 $$ = ValID::create(ConstantInt::get(Type::Int1Ty, false));
3131 $$.S.makeUnsigned();
3132 }
3133 | NULL_TOK { $$ = ValID::createNull(); }
3134 | UNDEF { $$ = ValID::createUndef(); }
3135 | ZEROINITIALIZER { $$ = ValID::createZeroInit(); }
3136 | '<' ConstVector '>' { // Nonempty unsized packed vector
3137 const Type *ETy = (*$2)[0].C->getType();
3138 int NumElements = $2->size();
3139 VectorType* pt = VectorType::get(ETy, NumElements);
3140 $$.S.makeComposite((*$2)[0].S);
3141 PATypeHolder* PTy = new PATypeHolder(HandleUpRefs(pt, $$.S));
3142
3143 // Verify all elements are correct type!
3144 std::vector<Constant*> Elems;
3145 for (unsigned i = 0; i < $2->size(); i++) {
3146 Constant *C = (*$2)[i].C;
3147 const Type *CTy = C->getType();
3148 if (ETy != CTy)
3149 error("Element #" + utostr(i) + " is not of type '" +
3150 ETy->getDescription() +"' as required!\nIt is of type '" +
3151 CTy->getDescription() + "'");
3152 Elems.push_back(C);
3153 }
3154 $$ = ValID::create(ConstantVector::get(pt, Elems));
3155 delete PTy; delete $2;
3156 }
3157 | ConstExpr {
3158 $$ = ValID::create($1.C);
3159 $$.S.copy($1.S);
3160 }
3161 | ASM_TOK OptSideEffect STRINGCONSTANT ',' STRINGCONSTANT {
3162 char *End = UnEscapeLexed($3, true);
3163 std::string AsmStr = std::string($3, End);
3164 End = UnEscapeLexed($5, true);
3165 std::string Constraints = std::string($5, End);
3166 $$ = ValID::createInlineAsm(AsmStr, Constraints, $2);
3167 free($3);
3168 free($5);
3169 }
3170 ;
3171
3172// SymbolicValueRef - Reference to one of two ways of symbolically refering to // another value.
3173//
3174SymbolicValueRef
3175 : INTVAL { $$ = ValID::create($1); $$.S.makeSignless(); }
3176 | Name { $$ = ValID::create($1); $$.S.makeSignless(); }
3177 ;
3178
3179// ValueRef - A reference to a definition... either constant or symbolic
3180ValueRef
3181 : SymbolicValueRef | ConstValueRef
3182 ;
3183
3184
3185// ResolvedVal - a <type> <value> pair. This is used only in cases where the
3186// type immediately preceeds the value reference, and allows complex constant
3187// pool references (for things like: 'ret [2 x int] [ int 12, int 42]')
3188ResolvedVal
3189 : Types ValueRef {
3190 const Type *Ty = $1.PAT->get();
3191 $2.S.copy($1.S);
3192 $$.V = getVal(Ty, $2);
3193 $$.S.copy($1.S);
3194 delete $1.PAT;
3195 }
3196 ;
3197
3198BasicBlockList
3199 : BasicBlockList BasicBlock {
3200 $$ = $1;
3201 }
3202 | FunctionHeader BasicBlock { // Do not allow functions with 0 basic blocks
3203 $$ = $1;
3204 };
3205
3206
3207// Basic blocks are terminated by branching instructions:
3208// br, br/cc, switch, ret
3209//
3210BasicBlock
3211 : InstructionList OptAssign BBTerminatorInst {
3212 ValueInfo VI; VI.V = $3.TI; VI.S.copy($3.S);
3213 setValueName(VI, $2);
3214 InsertValue($3.TI);
3215 $1->getInstList().push_back($3.TI);
3216 InsertValue($1);
3217 $$ = $1;
3218 }
3219 ;
3220
3221InstructionList
3222 : InstructionList Inst {
3223 if ($2.I)
3224 $1->getInstList().push_back($2.I);
3225 $$ = $1;
3226 }
3227 | /* empty */ {
3228 $$ = CurBB = getBBVal(ValID::create((int)CurFun.NextBBNum++),true);
3229 // Make sure to move the basic block to the correct location in the
3230 // function, instead of leaving it inserted wherever it was first
3231 // referenced.
3232 Function::BasicBlockListType &BBL =
3233 CurFun.CurrentFunction->getBasicBlockList();
3234 BBL.splice(BBL.end(), BBL, $$);
3235 }
3236 | LABELSTR {
3237 $$ = CurBB = getBBVal(ValID::create($1), true);
3238 // Make sure to move the basic block to the correct location in the
3239 // function, instead of leaving it inserted wherever it was first
3240 // referenced.
3241 Function::BasicBlockListType &BBL =
3242 CurFun.CurrentFunction->getBasicBlockList();
3243 BBL.splice(BBL.end(), BBL, $$);
3244 }
3245 ;
3246
3247Unwind : UNWIND | EXCEPT;
3248
3249BBTerminatorInst
3250 : RET ResolvedVal { // Return with a result...
3251 $$.TI = new ReturnInst($2.V);
3252 $$.S.makeSignless();
3253 }
3254 | RET VOID { // Return with no result...
3255 $$.TI = new ReturnInst();
3256 $$.S.makeSignless();
3257 }
3258 | BR LABEL ValueRef { // Unconditional Branch...
3259 BasicBlock* tmpBB = getBBVal($3);
3260 $$.TI = new BranchInst(tmpBB);
3261 $$.S.makeSignless();
3262 } // Conditional Branch...
3263 | BR BOOL ValueRef ',' LABEL ValueRef ',' LABEL ValueRef {
3264 $6.S.makeSignless();
3265 $9.S.makeSignless();
3266 BasicBlock* tmpBBA = getBBVal($6);
3267 BasicBlock* tmpBBB = getBBVal($9);
3268 $3.S.makeUnsigned();
3269 Value* tmpVal = getVal(Type::Int1Ty, $3);
3270 $$.TI = new BranchInst(tmpBBA, tmpBBB, tmpVal);
3271 $$.S.makeSignless();
3272 }
3273 | SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' {
3274 $3.S.copy($2.S);
3275 Value* tmpVal = getVal($2.T, $3);
3276 $6.S.makeSignless();
3277 BasicBlock* tmpBB = getBBVal($6);
3278 SwitchInst *S = new SwitchInst(tmpVal, tmpBB, $8->size());
3279 $$.TI = S;
3280 $$.S.makeSignless();
3281 std::vector<std::pair<Constant*,BasicBlock*> >::iterator I = $8->begin(),
3282 E = $8->end();
3283 for (; I != E; ++I) {
3284 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->first))
3285 S->addCase(CI, I->second);
3286 else
3287 error("Switch case is constant, but not a simple integer");
3288 }
3289 delete $8;
3290 }
3291 | SWITCH IntType ValueRef ',' LABEL ValueRef '[' ']' {
3292 $3.S.copy($2.S);
3293 Value* tmpVal = getVal($2.T, $3);
3294 $6.S.makeSignless();
3295 BasicBlock* tmpBB = getBBVal($6);
3296 SwitchInst *S = new SwitchInst(tmpVal, tmpBB, 0);
3297 $$.TI = S;
3298 $$.S.makeSignless();
3299 }
3300 | INVOKE OptCallingConv TypesV ValueRef '(' ValueRefListE ')'
3301 TO LABEL ValueRef Unwind LABEL ValueRef {
3302 const PointerType *PFTy;
3303 const FunctionType *Ty;
3304 Signedness FTySign;
3305
3306 if (!(PFTy = dyn_cast<PointerType>($3.PAT->get())) ||
3307 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3308 // Pull out the types of all of the arguments...
3309 std::vector<const Type*> ParamTypes;
3310 FTySign.makeComposite($3.S);
3311 if ($6) {
3312 for (std::vector<ValueInfo>::iterator I = $6->begin(), E = $6->end();
3313 I != E; ++I) {
3314 ParamTypes.push_back((*I).V->getType());
3315 FTySign.add(I->S);
3316 }
3317 }
3318 ParamAttrsList *PAL = 0;
3319 if ($2 == OldCallingConv::CSRet) {
3320 ParamAttrsVector Attrs;
3321 ParamAttrsWithIndex PAWI;
3322 PAWI.index = 1; PAWI.attrs = ParamAttr::StructRet; // first arg
3323 Attrs.push_back(PAWI);
3324 PAL = ParamAttrsList::get(Attrs);
3325 }
3326 bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
3327 if (isVarArg) ParamTypes.pop_back();
3328 Ty = FunctionType::get($3.PAT->get(), ParamTypes, isVarArg, PAL);
3329 PFTy = PointerType::get(Ty);
3330 $$.S.copy($3.S);
3331 } else {
3332 FTySign = $3.S;
3333 // Get the signedness of the result type. $3 is the pointer to the
3334 // function type so we get the 0th element to extract the function type,
3335 // and then the 0th element again to get the result type.
3336 $$.S.copy($3.S.get(0).get(0));
3337 }
3338
3339 $4.S.makeComposite(FTySign);
3340 Value *V = getVal(PFTy, $4); // Get the function we're calling...
3341 BasicBlock *Normal = getBBVal($10);
3342 BasicBlock *Except = getBBVal($13);
3343
3344 // Create the call node...
3345 if (!$6) { // Has no arguments?
David Greene48556392007-09-04 18:46:50 +00003346 std::vector<Value*> Args;
3347 $$.TI = new InvokeInst(V, Normal, Except, Args.begin(), Args.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003348 } else { // Has arguments?
3349 // Loop through FunctionType's arguments and ensure they are specified
3350 // correctly!
3351 //
3352 FunctionType::param_iterator I = Ty->param_begin();
3353 FunctionType::param_iterator E = Ty->param_end();
3354 std::vector<ValueInfo>::iterator ArgI = $6->begin(), ArgE = $6->end();
3355
3356 std::vector<Value*> Args;
3357 for (; ArgI != ArgE && I != E; ++ArgI, ++I) {
3358 if ((*ArgI).V->getType() != *I)
3359 error("Parameter " +(*ArgI).V->getName()+ " is not of type '" +
3360 (*I)->getDescription() + "'");
3361 Args.push_back((*ArgI).V);
3362 }
3363
3364 if (I != E || (ArgI != ArgE && !Ty->isVarArg()))
3365 error("Invalid number of parameters detected");
3366
David Greene48556392007-09-04 18:46:50 +00003367 $$.TI = new InvokeInst(V, Normal, Except, Args.begin(), Args.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003368 }
3369 cast<InvokeInst>($$.TI)->setCallingConv(upgradeCallingConv($2));
3370 delete $3.PAT;
3371 delete $6;
3372 lastCallingConv = OldCallingConv::C;
3373 }
3374 | Unwind {
3375 $$.TI = new UnwindInst();
3376 $$.S.makeSignless();
3377 }
3378 | UNREACHABLE {
3379 $$.TI = new UnreachableInst();
3380 $$.S.makeSignless();
3381 }
3382 ;
3383
3384JumpTable
3385 : JumpTable IntType ConstValueRef ',' LABEL ValueRef {
3386 $$ = $1;
3387 $3.S.copy($2.S);
3388 Constant *V = cast<Constant>(getExistingValue($2.T, $3));
3389
3390 if (V == 0)
3391 error("May only switch on a constant pool value");
3392
3393 $6.S.makeSignless();
3394 BasicBlock* tmpBB = getBBVal($6);
3395 $$->push_back(std::make_pair(V, tmpBB));
3396 }
3397 | IntType ConstValueRef ',' LABEL ValueRef {
3398 $$ = new std::vector<std::pair<Constant*, BasicBlock*> >();
3399 $2.S.copy($1.S);
3400 Constant *V = cast<Constant>(getExistingValue($1.T, $2));
3401
3402 if (V == 0)
3403 error("May only switch on a constant pool value");
3404
3405 $5.S.makeSignless();
3406 BasicBlock* tmpBB = getBBVal($5);
3407 $$->push_back(std::make_pair(V, tmpBB));
3408 }
3409 ;
3410
3411Inst
3412 : OptAssign InstVal {
3413 bool omit = false;
3414 if ($1)
3415 if (BitCastInst *BCI = dyn_cast<BitCastInst>($2.I))
3416 if (BCI->getSrcTy() == BCI->getDestTy() &&
3417 BCI->getOperand(0)->getName() == $1)
3418 // This is a useless bit cast causing a name redefinition. It is
3419 // a bit cast from a type to the same type of an operand with the
3420 // same name as the name we would give this instruction. Since this
3421 // instruction results in no code generation, it is safe to omit
3422 // the instruction. This situation can occur because of collapsed
3423 // type planes. For example:
3424 // %X = add int %Y, %Z
3425 // %X = cast int %Y to uint
3426 // After upgrade, this looks like:
3427 // %X = add i32 %Y, %Z
3428 // %X = bitcast i32 to i32
3429 // The bitcast is clearly useless so we omit it.
3430 omit = true;
3431 if (omit) {
3432 $$.I = 0;
3433 $$.S.makeSignless();
3434 } else {
3435 ValueInfo VI; VI.V = $2.I; VI.S.copy($2.S);
3436 setValueName(VI, $1);
3437 InsertValue($2.I);
3438 $$ = $2;
3439 }
3440 };
3441
3442PHIList : Types '[' ValueRef ',' ValueRef ']' { // Used for PHI nodes
3443 $$.P = new std::list<std::pair<Value*, BasicBlock*> >();
3444 $$.S.copy($1.S);
3445 $3.S.copy($1.S);
3446 Value* tmpVal = getVal($1.PAT->get(), $3);
3447 $5.S.makeSignless();
3448 BasicBlock* tmpBB = getBBVal($5);
3449 $$.P->push_back(std::make_pair(tmpVal, tmpBB));
3450 delete $1.PAT;
3451 }
3452 | PHIList ',' '[' ValueRef ',' ValueRef ']' {
3453 $$ = $1;
3454 $4.S.copy($1.S);
3455 Value* tmpVal = getVal($1.P->front().first->getType(), $4);
3456 $6.S.makeSignless();
3457 BasicBlock* tmpBB = getBBVal($6);
3458 $1.P->push_back(std::make_pair(tmpVal, tmpBB));
3459 }
3460 ;
3461
3462ValueRefList : ResolvedVal { // Used for call statements, and memory insts...
3463 $$ = new std::vector<ValueInfo>();
3464 $$->push_back($1);
3465 }
3466 | ValueRefList ',' ResolvedVal {
3467 $$ = $1;
3468 $1->push_back($3);
3469 };
3470
3471// ValueRefListE - Just like ValueRefList, except that it may also be empty!
3472ValueRefListE
3473 : ValueRefList
3474 | /*empty*/ { $$ = 0; }
3475 ;
3476
3477OptTailCall
3478 : TAIL CALL {
3479 $$ = true;
3480 }
3481 | CALL {
3482 $$ = false;
3483 }
3484 ;
3485
3486InstVal
3487 : ArithmeticOps Types ValueRef ',' ValueRef {
3488 $3.S.copy($2.S);
3489 $5.S.copy($2.S);
3490 const Type* Ty = $2.PAT->get();
3491 if (!Ty->isInteger() && !Ty->isFloatingPoint() && !isa<VectorType>(Ty))
3492 error("Arithmetic operator requires integer, FP, or packed operands");
3493 if (isa<VectorType>(Ty) &&
3494 ($1 == URemOp || $1 == SRemOp || $1 == FRemOp || $1 == RemOp))
3495 error("Remainder not supported on vector types");
3496 // Upgrade the opcode from obsolete versions before we do anything with it.
3497 Instruction::BinaryOps Opcode = getBinaryOp($1, Ty, $2.S);
3498 Value* val1 = getVal(Ty, $3);
3499 Value* val2 = getVal(Ty, $5);
3500 $$.I = BinaryOperator::create(Opcode, val1, val2);
3501 if ($$.I == 0)
3502 error("binary operator returned null");
3503 $$.S.copy($2.S);
3504 delete $2.PAT;
3505 }
3506 | LogicalOps Types ValueRef ',' ValueRef {
3507 $3.S.copy($2.S);
3508 $5.S.copy($2.S);
3509 const Type *Ty = $2.PAT->get();
3510 if (!Ty->isInteger()) {
3511 if (!isa<VectorType>(Ty) ||
3512 !cast<VectorType>(Ty)->getElementType()->isInteger())
3513 error("Logical operator requires integral operands");
3514 }
3515 Instruction::BinaryOps Opcode = getBinaryOp($1, Ty, $2.S);
3516 Value* tmpVal1 = getVal(Ty, $3);
3517 Value* tmpVal2 = getVal(Ty, $5);
3518 $$.I = BinaryOperator::create(Opcode, tmpVal1, tmpVal2);
3519 if ($$.I == 0)
3520 error("binary operator returned null");
3521 $$.S.copy($2.S);
3522 delete $2.PAT;
3523 }
3524 | SetCondOps Types ValueRef ',' ValueRef {
3525 $3.S.copy($2.S);
3526 $5.S.copy($2.S);
3527 const Type* Ty = $2.PAT->get();
3528 if(isa<VectorType>(Ty))
3529 error("VectorTypes currently not supported in setcc instructions");
3530 unsigned short pred;
3531 Instruction::OtherOps Opcode = getCompareOp($1, pred, Ty, $2.S);
3532 Value* tmpVal1 = getVal(Ty, $3);
3533 Value* tmpVal2 = getVal(Ty, $5);
3534 $$.I = CmpInst::create(Opcode, pred, tmpVal1, tmpVal2);
3535 if ($$.I == 0)
3536 error("binary operator returned null");
3537 $$.S.makeUnsigned();
3538 delete $2.PAT;
3539 }
3540 | ICMP IPredicates Types ValueRef ',' ValueRef {
3541 $4.S.copy($3.S);
3542 $6.S.copy($3.S);
3543 const Type *Ty = $3.PAT->get();
3544 if (isa<VectorType>(Ty))
3545 error("VectorTypes currently not supported in icmp instructions");
3546 else if (!Ty->isInteger() && !isa<PointerType>(Ty))
3547 error("icmp requires integer or pointer typed operands");
3548 Value* tmpVal1 = getVal(Ty, $4);
3549 Value* tmpVal2 = getVal(Ty, $6);
3550 $$.I = new ICmpInst($2, tmpVal1, tmpVal2);
3551 $$.S.makeUnsigned();
3552 delete $3.PAT;
3553 }
3554 | FCMP FPredicates Types ValueRef ',' ValueRef {
3555 $4.S.copy($3.S);
3556 $6.S.copy($3.S);
3557 const Type *Ty = $3.PAT->get();
3558 if (isa<VectorType>(Ty))
3559 error("VectorTypes currently not supported in fcmp instructions");
3560 else if (!Ty->isFloatingPoint())
3561 error("fcmp instruction requires floating point operands");
3562 Value* tmpVal1 = getVal(Ty, $4);
3563 Value* tmpVal2 = getVal(Ty, $6);
3564 $$.I = new FCmpInst($2, tmpVal1, tmpVal2);
3565 $$.S.makeUnsigned();
3566 delete $3.PAT;
3567 }
3568 | NOT ResolvedVal {
3569 warning("Use of obsolete 'not' instruction: Replacing with 'xor");
3570 const Type *Ty = $2.V->getType();
3571 Value *Ones = ConstantInt::getAllOnesValue(Ty);
3572 if (Ones == 0)
3573 error("Expected integral type for not instruction");
3574 $$.I = BinaryOperator::create(Instruction::Xor, $2.V, Ones);
3575 if ($$.I == 0)
3576 error("Could not create a xor instruction");
3577 $$.S.copy($2.S);
3578 }
3579 | ShiftOps ResolvedVal ',' ResolvedVal {
3580 if (!$4.V->getType()->isInteger() ||
3581 cast<IntegerType>($4.V->getType())->getBitWidth() != 8)
3582 error("Shift amount must be int8");
3583 const Type* Ty = $2.V->getType();
3584 if (!Ty->isInteger())
3585 error("Shift constant expression requires integer operand");
3586 Value* ShiftAmt = 0;
3587 if (cast<IntegerType>(Ty)->getBitWidth() > Type::Int8Ty->getBitWidth())
3588 if (Constant *C = dyn_cast<Constant>($4.V))
3589 ShiftAmt = ConstantExpr::getZExt(C, Ty);
3590 else
3591 ShiftAmt = new ZExtInst($4.V, Ty, makeNameUnique("shift"), CurBB);
3592 else
3593 ShiftAmt = $4.V;
3594 $$.I = BinaryOperator::create(getBinaryOp($1, Ty, $2.S), $2.V, ShiftAmt);
3595 $$.S.copy($2.S);
3596 }
3597 | CastOps ResolvedVal TO Types {
3598 const Type *DstTy = $4.PAT->get();
3599 if (!DstTy->isFirstClassType())
3600 error("cast instruction to a non-primitive type: '" +
3601 DstTy->getDescription() + "'");
3602 $$.I = cast<Instruction>(getCast($1, $2.V, $2.S, DstTy, $4.S, true));
3603 $$.S.copy($4.S);
3604 delete $4.PAT;
3605 }
3606 | SELECT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
3607 if (!$2.V->getType()->isInteger() ||
3608 cast<IntegerType>($2.V->getType())->getBitWidth() != 1)
3609 error("select condition must be bool");
3610 if ($4.V->getType() != $6.V->getType())
3611 error("select value types should match");
3612 $$.I = new SelectInst($2.V, $4.V, $6.V);
3613 $$.S.copy($4.S);
3614 }
3615 | VAARG ResolvedVal ',' Types {
3616 const Type *Ty = $4.PAT->get();
3617 NewVarArgs = true;
3618 $$.I = new VAArgInst($2.V, Ty);
3619 $$.S.copy($4.S);
3620 delete $4.PAT;
3621 }
3622 | VAARG_old ResolvedVal ',' Types {
3623 const Type* ArgTy = $2.V->getType();
3624 const Type* DstTy = $4.PAT->get();
3625 ObsoleteVarArgs = true;
3626 Function* NF = cast<Function>(CurModule.CurrentModule->
3627 getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy, (Type *)0));
3628
3629 //b = vaarg a, t ->
3630 //foo = alloca 1 of t
3631 //bar = vacopy a
3632 //store bar -> foo
3633 //b = vaarg foo, t
3634 AllocaInst* foo = new AllocaInst(ArgTy, 0, "vaarg.fix");
3635 CurBB->getInstList().push_back(foo);
3636 CallInst* bar = new CallInst(NF, $2.V);
3637 CurBB->getInstList().push_back(bar);
3638 CurBB->getInstList().push_back(new StoreInst(bar, foo));
3639 $$.I = new VAArgInst(foo, DstTy);
3640 $$.S.copy($4.S);
3641 delete $4.PAT;
3642 }
3643 | VANEXT_old ResolvedVal ',' Types {
3644 const Type* ArgTy = $2.V->getType();
3645 const Type* DstTy = $4.PAT->get();
3646 ObsoleteVarArgs = true;
3647 Function* NF = cast<Function>(CurModule.CurrentModule->
3648 getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy, (Type *)0));
3649
3650 //b = vanext a, t ->
3651 //foo = alloca 1 of t
3652 //bar = vacopy a
3653 //store bar -> foo
3654 //tmp = vaarg foo, t
3655 //b = load foo
3656 AllocaInst* foo = new AllocaInst(ArgTy, 0, "vanext.fix");
3657 CurBB->getInstList().push_back(foo);
3658 CallInst* bar = new CallInst(NF, $2.V);
3659 CurBB->getInstList().push_back(bar);
3660 CurBB->getInstList().push_back(new StoreInst(bar, foo));
3661 Instruction* tmp = new VAArgInst(foo, DstTy);
3662 CurBB->getInstList().push_back(tmp);
3663 $$.I = new LoadInst(foo);
3664 $$.S.copy($4.S);
3665 delete $4.PAT;
3666 }
3667 | EXTRACTELEMENT ResolvedVal ',' ResolvedVal {
3668 if (!ExtractElementInst::isValidOperands($2.V, $4.V))
3669 error("Invalid extractelement operands");
3670 $$.I = new ExtractElementInst($2.V, $4.V);
3671 $$.S.copy($2.S.get(0));
3672 }
3673 | INSERTELEMENT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
3674 if (!InsertElementInst::isValidOperands($2.V, $4.V, $6.V))
3675 error("Invalid insertelement operands");
3676 $$.I = new InsertElementInst($2.V, $4.V, $6.V);
3677 $$.S.copy($2.S);
3678 }
3679 | SHUFFLEVECTOR ResolvedVal ',' ResolvedVal ',' ResolvedVal {
3680 if (!ShuffleVectorInst::isValidOperands($2.V, $4.V, $6.V))
3681 error("Invalid shufflevector operands");
3682 $$.I = new ShuffleVectorInst($2.V, $4.V, $6.V);
3683 $$.S.copy($2.S);
3684 }
3685 | PHI_TOK PHIList {
3686 const Type *Ty = $2.P->front().first->getType();
3687 if (!Ty->isFirstClassType())
3688 error("PHI node operands must be of first class type");
3689 PHINode *PHI = new PHINode(Ty);
3690 PHI->reserveOperandSpace($2.P->size());
3691 while ($2.P->begin() != $2.P->end()) {
3692 if ($2.P->front().first->getType() != Ty)
3693 error("All elements of a PHI node must be of the same type");
3694 PHI->addIncoming($2.P->front().first, $2.P->front().second);
3695 $2.P->pop_front();
3696 }
3697 $$.I = PHI;
3698 $$.S.copy($2.S);
3699 delete $2.P; // Free the list...
3700 }
3701 | OptTailCall OptCallingConv TypesV ValueRef '(' ValueRefListE ')' {
3702 // Handle the short call syntax
3703 const PointerType *PFTy;
3704 const FunctionType *FTy;
3705 Signedness FTySign;
3706 if (!(PFTy = dyn_cast<PointerType>($3.PAT->get())) ||
3707 !(FTy = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3708 // Pull out the types of all of the arguments...
3709 std::vector<const Type*> ParamTypes;
3710 FTySign.makeComposite($3.S);
3711 if ($6) {
3712 for (std::vector<ValueInfo>::iterator I = $6->begin(), E = $6->end();
3713 I != E; ++I) {
3714 ParamTypes.push_back((*I).V->getType());
3715 FTySign.add(I->S);
3716 }
3717 }
3718
3719 bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
3720 if (isVarArg) ParamTypes.pop_back();
3721
3722 const Type *RetTy = $3.PAT->get();
3723 if (!RetTy->isFirstClassType() && RetTy != Type::VoidTy)
3724 error("Functions cannot return aggregate types");
3725
3726 // Deal with CSRetCC
3727 ParamAttrsList *PAL = 0;
3728 if ($2 == OldCallingConv::CSRet) {
3729 ParamAttrsVector Attrs;
3730 ParamAttrsWithIndex PAWI;
3731 PAWI.index = 1; PAWI.attrs = ParamAttr::StructRet; // first arg
3732 Attrs.push_back(PAWI);
3733 PAL = ParamAttrsList::get(Attrs);
3734 }
3735
3736 FTy = FunctionType::get(RetTy, ParamTypes, isVarArg, PAL);
3737 PFTy = PointerType::get(FTy);
3738 $$.S.copy($3.S);
3739 } else {
3740 FTySign = $3.S;
3741 // Get the signedness of the result type. $3 is the pointer to the
3742 // function type so we get the 0th element to extract the function type,
3743 // and then the 0th element again to get the result type.
3744 $$.S.copy($3.S.get(0).get(0));
3745 }
3746 $4.S.makeComposite(FTySign);
3747
3748 // First upgrade any intrinsic calls.
3749 std::vector<Value*> Args;
3750 if ($6)
3751 for (unsigned i = 0, e = $6->size(); i < e; ++i)
3752 Args.push_back((*$6)[i].V);
3753 Instruction *Inst = upgradeIntrinsicCall(FTy->getReturnType(), $4, Args);
3754
3755 // If we got an upgraded intrinsic
3756 if (Inst) {
3757 $$.I = Inst;
3758 } else {
3759 // Get the function we're calling
3760 Value *V = getVal(PFTy, $4);
3761
3762 // Check the argument values match
3763 if (!$6) { // Has no arguments?
3764 // Make sure no arguments is a good thing!
3765 if (FTy->getNumParams() != 0)
3766 error("No arguments passed to a function that expects arguments");
3767 } else { // Has arguments?
3768 // Loop through FunctionType's arguments and ensure they are specified
3769 // correctly!
3770 //
3771 FunctionType::param_iterator I = FTy->param_begin();
3772 FunctionType::param_iterator E = FTy->param_end();
3773 std::vector<ValueInfo>::iterator ArgI = $6->begin(), ArgE = $6->end();
3774
3775 for (; ArgI != ArgE && I != E; ++ArgI, ++I)
3776 if ((*ArgI).V->getType() != *I)
3777 error("Parameter " +(*ArgI).V->getName()+ " is not of type '" +
3778 (*I)->getDescription() + "'");
3779
3780 if (I != E || (ArgI != ArgE && !FTy->isVarArg()))
3781 error("Invalid number of parameters detected");
3782 }
3783
3784 // Create the call instruction
David Greene9145dd22007-08-01 03:59:32 +00003785 CallInst *CI = new CallInst(V, Args.begin(), Args.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003786 CI->setTailCall($1);
3787 CI->setCallingConv(upgradeCallingConv($2));
3788 $$.I = CI;
3789 }
3790 delete $3.PAT;
3791 delete $6;
3792 lastCallingConv = OldCallingConv::C;
3793 }
3794 | MemoryInst {
3795 $$ = $1;
3796 }
3797 ;
3798
3799
3800// IndexList - List of indices for GEP based instructions...
3801IndexList
3802 : ',' ValueRefList { $$ = $2; }
3803 | /* empty */ { $$ = new std::vector<ValueInfo>(); }
3804 ;
3805
3806OptVolatile
3807 : VOLATILE { $$ = true; }
3808 | /* empty */ { $$ = false; }
3809 ;
3810
3811MemoryInst
3812 : MALLOC Types OptCAlign {
3813 const Type *Ty = $2.PAT->get();
3814 $$.S.makeComposite($2.S);
3815 $$.I = new MallocInst(Ty, 0, $3);
3816 delete $2.PAT;
3817 }
3818 | MALLOC Types ',' UINT ValueRef OptCAlign {
3819 const Type *Ty = $2.PAT->get();
3820 $5.S.makeUnsigned();
3821 $$.S.makeComposite($2.S);
3822 $$.I = new MallocInst(Ty, getVal($4.T, $5), $6);
3823 delete $2.PAT;
3824 }
3825 | ALLOCA Types OptCAlign {
3826 const Type *Ty = $2.PAT->get();
3827 $$.S.makeComposite($2.S);
3828 $$.I = new AllocaInst(Ty, 0, $3);
3829 delete $2.PAT;
3830 }
3831 | ALLOCA Types ',' UINT ValueRef OptCAlign {
3832 const Type *Ty = $2.PAT->get();
3833 $5.S.makeUnsigned();
3834 $$.S.makeComposite($4.S);
3835 $$.I = new AllocaInst(Ty, getVal($4.T, $5), $6);
3836 delete $2.PAT;
3837 }
3838 | FREE ResolvedVal {
3839 const Type *PTy = $2.V->getType();
3840 if (!isa<PointerType>(PTy))
3841 error("Trying to free nonpointer type '" + PTy->getDescription() + "'");
3842 $$.I = new FreeInst($2.V);
3843 $$.S.makeSignless();
3844 }
3845 | OptVolatile LOAD Types ValueRef {
3846 const Type* Ty = $3.PAT->get();
3847 $4.S.copy($3.S);
3848 if (!isa<PointerType>(Ty))
3849 error("Can't load from nonpointer type: " + Ty->getDescription());
3850 if (!cast<PointerType>(Ty)->getElementType()->isFirstClassType())
3851 error("Can't load from pointer of non-first-class type: " +
3852 Ty->getDescription());
3853 Value* tmpVal = getVal(Ty, $4);
3854 $$.I = new LoadInst(tmpVal, "", $1);
3855 $$.S.copy($3.S.get(0));
3856 delete $3.PAT;
3857 }
3858 | OptVolatile STORE ResolvedVal ',' Types ValueRef {
3859 $6.S.copy($5.S);
3860 const PointerType *PTy = dyn_cast<PointerType>($5.PAT->get());
3861 if (!PTy)
3862 error("Can't store to a nonpointer type: " +
3863 $5.PAT->get()->getDescription());
3864 const Type *ElTy = PTy->getElementType();
3865 Value *StoreVal = $3.V;
3866 Value* tmpVal = getVal(PTy, $6);
3867 if (ElTy != $3.V->getType()) {
3868 StoreVal = handleSRetFuncTypeMerge($3.V, ElTy);
3869 if (!StoreVal)
3870 error("Can't store '" + $3.V->getType()->getDescription() +
3871 "' into space of type '" + ElTy->getDescription() + "'");
3872 else {
3873 PTy = PointerType::get(StoreVal->getType());
3874 if (Constant *C = dyn_cast<Constant>(tmpVal))
3875 tmpVal = ConstantExpr::getBitCast(C, PTy);
3876 else
3877 tmpVal = new BitCastInst(tmpVal, PTy, "upgrd.cast", CurBB);
3878 }
3879 }
3880 $$.I = new StoreInst(StoreVal, tmpVal, $1);
3881 $$.S.makeSignless();
3882 delete $5.PAT;
3883 }
3884 | GETELEMENTPTR Types ValueRef IndexList {
3885 $3.S.copy($2.S);
3886 const Type* Ty = $2.PAT->get();
3887 if (!isa<PointerType>(Ty))
3888 error("getelementptr insn requires pointer operand");
3889
3890 std::vector<Value*> VIndices;
3891 upgradeGEPInstIndices(Ty, $4, VIndices);
3892
3893 Value* tmpVal = getVal(Ty, $3);
David Greene48556392007-09-04 18:46:50 +00003894 $$.I = new GetElementPtrInst(tmpVal, VIndices.begin(), VIndices.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003895 ValueInfo VI; VI.V = tmpVal; VI.S.copy($2.S);
3896 $$.S.copy(getElementSign(VI, VIndices));
3897 delete $2.PAT;
3898 delete $4;
3899 };
3900
3901
3902%%
3903
3904int yyerror(const char *ErrorMsg) {
3905 std::string where
3906 = std::string((CurFilename == "-") ? std::string("<stdin>") : CurFilename)
3907 + ":" + llvm::utostr((unsigned) Upgradelineno) + ": ";
3908 std::string errMsg = where + "error: " + std::string(ErrorMsg);
3909 if (yychar != YYEMPTY && yychar != 0)
3910 errMsg += " while reading token '" + std::string(Upgradetext, Upgradeleng) +
3911 "'.";
3912 std::cerr << "llvm-upgrade: " << errMsg << '\n';
3913 std::cout << "llvm-upgrade: parse failed.\n";
3914 exit(1);
3915}
3916
3917void warning(const std::string& ErrorMsg) {
3918 std::string where
3919 = std::string((CurFilename == "-") ? std::string("<stdin>") : CurFilename)
3920 + ":" + llvm::utostr((unsigned) Upgradelineno) + ": ";
3921 std::string errMsg = where + "warning: " + std::string(ErrorMsg);
3922 if (yychar != YYEMPTY && yychar != 0)
3923 errMsg += " while reading token '" + std::string(Upgradetext, Upgradeleng) +
3924 "'.";
3925 std::cerr << "llvm-upgrade: " << errMsg << '\n';
3926}
3927
3928void error(const std::string& ErrorMsg, int LineNo) {
3929 if (LineNo == -1) LineNo = Upgradelineno;
3930 Upgradelineno = LineNo;
3931 yyerror(ErrorMsg.c_str());
3932}
3933