blob: 04bd9266118bbb01b29c46c2610e881708f9f658 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
6 <title>Writing an LLVM Pass</title>
7 <link rel="stylesheet" href="llvm.css" type="text/css">
8</head>
9<body>
10
11<div class="doc_title">
12 Writing an LLVM Pass
13</div>
14
15<ol>
16 <li><a href="#introduction">Introduction - What is a pass?</a></li>
17 <li><a href="#quickstart">Quick Start - Writing hello world</a>
18 <ul>
19 <li><a href="#makefile">Setting up the build environment</a></li>
20 <li><a href="#basiccode">Basic code required</a></li>
21 <li><a href="#running">Running a pass with <tt>opt</tt></a></li>
22 </ul></li>
23 <li><a href="#passtype">Pass classes and requirements</a>
24 <ul>
25 <li><a href="#ImmutablePass">The <tt>ImmutablePass</tt> class</a></li>
26 <li><a href="#ModulePass">The <tt>ModulePass</tt> class</a>
27 <ul>
28 <li><a href="#runOnModule">The <tt>runOnModule</tt> method</a></li>
29 </ul></li>
30 <li><a href="#CallGraphSCCPass">The <tt>CallGraphSCCPass</tt> class</a>
31 <ul>
32 <li><a href="#doInitialization_scc">The <tt>doInitialization(CallGraph
33 &amp;)</tt> method</a></li>
34 <li><a href="#runOnSCC">The <tt>runOnSCC</tt> method</a></li>
35 <li><a href="#doFinalization_scc">The <tt>doFinalization(CallGraph
36 &amp;)</tt> method</a></li>
37 </ul></li>
38 <li><a href="#FunctionPass">The <tt>FunctionPass</tt> class</a>
39 <ul>
40 <li><a href="#doInitialization_mod">The <tt>doInitialization(Module
41 &amp;)</tt> method</a></li>
42 <li><a href="#runOnFunction">The <tt>runOnFunction</tt> method</a></li>
43 <li><a href="#doFinalization_mod">The <tt>doFinalization(Module
44 &amp;)</tt> method</a></li>
45 </ul></li>
46 <li><a href="#LoopPass">The <tt>LoopPass</tt> class</a>
47 <ul>
48 <li><a href="#doInitialization_loop">The <tt>doInitialization(Loop *,
49 LPPassManager &amp;)</tt> method</a></li>
50 <li><a href="#runOnLoop">The <tt>runOnLoop</tt> method</a></li>
51 <li><a href="#doFinalization_loop">The <tt>doFinalization()
52 </tt> method</a></li>
53 </ul></li>
54 <li><a href="#BasicBlockPass">The <tt>BasicBlockPass</tt> class</a>
55 <ul>
56 <li><a href="#doInitialization_fn">The <tt>doInitialization(Function
57 &amp;)</tt> method</a></li>
58 <li><a href="#runOnBasicBlock">The <tt>runOnBasicBlock</tt>
59 method</a></li>
60 <li><a href="#doFinalization_fn">The <tt>doFinalization(Function
61 &amp;)</tt> method</a></li>
62 </ul></li>
63 <li><a href="#MachineFunctionPass">The <tt>MachineFunctionPass</tt>
64 class</a>
65 <ul>
66 <li><a href="#runOnMachineFunction">The
67 <tt>runOnMachineFunction(MachineFunction &amp;)</tt> method</a></li>
68 </ul></li>
69 </ul>
70 <li><a href="#registration">Pass Registration</a>
71 <ul>
72 <li><a href="#print">The <tt>print</tt> method</a></li>
73 </ul></li>
74 <li><a href="#interaction">Specifying interactions between passes</a>
75 <ul>
76 <li><a href="#getAnalysisUsage">The <tt>getAnalysisUsage</tt>
77 method</a></li>
78 <li><a href="#AU::addRequired">The <tt>AnalysisUsage::addRequired&lt;&gt;</tt> and <tt>AnalysisUsage::addRequiredTransitive&lt;&gt;</tt> methods</a></li>
79 <li><a href="#AU::addPreserved">The <tt>AnalysisUsage::addPreserved&lt;&gt;</tt> method</a></li>
80 <li><a href="#AU::examples">Example implementations of <tt>getAnalysisUsage</tt></a></li>
Duncan Sands4e0d6a72009-01-28 13:14:17 +000081 <li><a href="#getAnalysis">The <tt>getAnalysis&lt;&gt;</tt> and
82<tt>getAnalysisIfAvailable&lt;&gt;</tt> methods</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000083 </ul></li>
84 <li><a href="#analysisgroup">Implementing Analysis Groups</a>
85 <ul>
86 <li><a href="#agconcepts">Analysis Group Concepts</a></li>
87 <li><a href="#registerag">Using <tt>RegisterAnalysisGroup</tt></a></li>
88 </ul></li>
89 <li><a href="#passStatistics">Pass Statistics</a>
90 <li><a href="#passmanager">What PassManager does</a>
91 <ul>
92 <li><a href="#releaseMemory">The <tt>releaseMemory</tt> method</a></li>
93 </ul></li>
94 <li><a href="#registering">Registering dynamically loaded passes</a>
95 <ul>
96 <li><a href="#registering_existing">Using existing registries</a></li>
97 <li><a href="#registering_new">Creating new registries</a></li>
98 </ul></li>
99 <li><a href="#debughints">Using GDB with dynamically loaded passes</a>
100 <ul>
101 <li><a href="#breakpoint">Setting a breakpoint in your pass</a></li>
102 <li><a href="#debugmisc">Miscellaneous Problems</a></li>
103 </ul></li>
104 <li><a href="#future">Future extensions planned</a>
105 <ul>
106 <li><a href="#SMP">Multithreaded LLVM</a></li>
107 </ul></li>
108</ol>
109
110<div class="doc_author">
111 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a> and
112 <a href="mailto:jlaskey@mac.com">Jim Laskey</a></p>
113</div>
114
115<!-- *********************************************************************** -->
116<div class="doc_section">
117 <a name="introduction">Introduction - What is a pass?</a>
118</div>
119<!-- *********************************************************************** -->
120
121<div class="doc_text">
122
123<p>The LLVM Pass Framework is an important part of the LLVM system, because LLVM
124passes are where most of the interesting parts of the compiler exist. Passes
125perform the transformations and optimizations that make up the compiler, they
126build the analysis results that are used by these transformations, and they are,
127above all, a structuring technique for compiler code.</p>
128
129<p>All LLVM passes are subclasses of the <tt><a
130href="http://llvm.org/doxygen/classllvm_1_1Pass.html">Pass</a></tt>
131class, which implement functionality by overriding virtual methods inherited
132from <tt>Pass</tt>. Depending on how your pass works, you should inherit from
133the <tt><a href="#ModulePass">ModulePass</a></tt>, <tt><a
134href="#CallGraphSCCPass">CallGraphSCCPass</a></tt>, <tt><a
135href="#FunctionPass">FunctionPass</a></tt>, or <tt><a
136href="#LoopPass">LoopPass</a></tt>, or <tt><a
137href="#BasicBlockPass">BasicBlockPass</a></tt> classes, which gives the system
138more information about what your pass does, and how it can be combined with
139other passes. One of the main features of the LLVM Pass Framework is that it
140schedules passes to run in an efficient way based on the constraints that your
141pass meets (which are indicated by which class they derive from).</p>
142
143<p>We start by showing you how to construct a pass, everything from setting up
144the code, to compiling, loading, and executing it. After the basics are down,
145more advanced features are discussed.</p>
146
147</div>
148
149<!-- *********************************************************************** -->
150<div class="doc_section">
151 <a name="quickstart">Quick Start - Writing hello world</a>
152</div>
153<!-- *********************************************************************** -->
154
155<div class="doc_text">
156
157<p>Here we describe how to write the "hello world" of passes. The "Hello" pass
158is designed to simply print out the name of non-external functions that exist in
159the program being compiled. It does not modify the program at all, it just
160inspects it. The source code and files for this pass are available in the LLVM
161source tree in the <tt>lib/Transforms/Hello</tt> directory.</p>
162
163</div>
164
165<!-- ======================================================================= -->
166<div class="doc_subsection">
167 <a name="makefile">Setting up the build environment</a>
168</div>
169
170<div class="doc_text">
171
172 <p>First, you need to create a new directory somewhere in the LLVM source
173 base. For this example, we'll assume that you made
174 <tt>lib/Transforms/Hello</tt>. Next, you must set up a build script
175 (Makefile) that will compile the source code for the new pass. To do this,
176 copy the following into <tt>Makefile</tt>:</p>
177 <hr/>
178
179<div class="doc_code"><pre>
180# Makefile for hello pass
181
182# Path to top level of LLVM heirarchy
183LEVEL = ../../..
184
185# Name of the library to build
186LIBRARYNAME = Hello
187
188# Make the shared library become a loadable module so the tools can
189# dlopen/dlsym on the resulting library.
190LOADABLE_MODULE = 1
191
192# Tell the build system which LLVM libraries your pass needs. You'll probably
193# need at least LLVMSystem.a, LLVMSupport.a, LLVMCore.a but possibly several
194# others too.
195LLVMLIBS = LLVMCore.a LLVMSupport.a LLVMSystem.a
196
197# Include the makefile implementation stuff
198include $(LEVEL)/Makefile.common
199</pre></div>
200
201<p>This makefile specifies that all of the <tt>.cpp</tt> files in the current
202directory are to be compiled and linked together into a
203<tt>Debug/lib/Hello.so</tt> shared object that can be dynamically loaded by
204the <tt>opt</tt> or <tt>bugpoint</tt> tools via their <tt>-load</tt> options.
205If your operating system uses a suffix other than .so (such as windows or
206Mac OS/X), the appropriate extension will be used.</p>
207
208<p>Now that we have the build scripts set up, we just need to write the code for
209the pass itself.</p>
210
211</div>
212
213<!-- ======================================================================= -->
214<div class="doc_subsection">
215 <a name="basiccode">Basic code required</a>
216</div>
217
218<div class="doc_text">
219
220<p>Now that we have a way to compile our new pass, we just have to write it.
221Start out with:</p>
222
223<div class="doc_code"><pre>
224<b>#include</b> "<a href="http://llvm.org/doxygen/Pass_8h-source.html">llvm/Pass.h</a>"
225<b>#include</b> "<a href="http://llvm.org/doxygen/Function_8h-source.html">llvm/Function.h</a>"
226</pre></div>
227
228<p>Which are needed because we are writing a <tt><a
229href="http://llvm.org/doxygen/classllvm_1_1Pass.html">Pass</a></tt>, and
230we are operating on <tt><a
231href="http://llvm.org/doxygen/classllvm_1_1Function.html">Function</a></tt>'s.</p>
232
233<p>Next we have:</p>
234<div class="doc_code"><pre>
235<b>using namespace llvm;</b>
236</pre></div>
237<p>... which is required because the functions from the include files
238live in the llvm namespace.
239</p>
240
241<p>Next we have:</p>
242
243<div class="doc_code"><pre>
244<b>namespace</b> {
245</pre></div>
246
247<p>... which starts out an anonymous namespace. Anonymous namespaces are to C++
248what the "<tt>static</tt>" keyword is to C (at global scope). It makes the
249things declared inside of the anonymous namespace only visible to the current
250file. If you're not familiar with them, consult a decent C++ book for more
251information.</p>
252
253<p>Next, we declare our pass itself:</p>
254
255<div class="doc_code"><pre>
256 <b>struct</b> Hello : <b>public</b> <a href="#FunctionPass">FunctionPass</a> {
257</pre></div><p>
258
259<p>This declares a "<tt>Hello</tt>" class that is a subclass of <tt><a
260href="http://llvm.org/doxygen/classllvm_1_1FunctionPass.html">FunctionPass</a></tt>.
261The different builtin pass subclasses are described in detail <a
262href="#passtype">later</a>, but for now, know that <a
263href="#FunctionPass"><tt>FunctionPass</tt></a>'s operate a function at a
264time.</p>
265
266<div class="doc_code"><pre>
267 static char ID;
268 Hello() : FunctionPass((intptr_t)&amp;ID) {}
269</pre></div><p>
270
271<p> This declares pass identifier used by LLVM to identify pass. This allows LLVM to
272avoid using expensive C++ runtime information.</p>
273
274<div class="doc_code"><pre>
275 <b>virtual bool</b> <a href="#runOnFunction">runOnFunction</a>(Function &amp;F) {
276 llvm::cerr &lt;&lt; "<i>Hello: </i>" &lt;&lt; F.getName() &lt;&lt; "\n";
277 <b>return false</b>;
278 }
279 }; <i>// end of struct Hello</i>
280</pre></div>
281
282<p>We declare a "<a href="#runOnFunction"><tt>runOnFunction</tt></a>" method,
283which overloads an abstract virtual method inherited from <a
284href="#FunctionPass"><tt>FunctionPass</tt></a>. This is where we are supposed
285to do our thing, so we just print out our message with the name of each
286function.</p>
287
288<div class="doc_code"><pre>
289 char Hello::ID = 0;
290</pre></div>
291
292<p> We initialize pass ID here. LLVM uses ID's address to identify pass so
293initialization value is not important.</p>
294
295<div class="doc_code"><pre>
Devang Patel3aab76e2008-03-19 21:56:59 +0000296 RegisterPass&lt;Hello&gt; X("<i>hello</i>", "<i>Hello World Pass</i>",
297 false /* Only looks at CFG */,
298 false /* Analysis Pass */);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000299} <i>// end of anonymous namespace</i>
300</pre></div>
301
302<p>Lastly, we <a href="#registration">register our class</a> <tt>Hello</tt>,
303giving it a command line
Devang Patel3aab76e2008-03-19 21:56:59 +0000304argument "<tt>hello</tt>", and a name "<tt>Hello World Pass</tt>".
305Last two RegisterPass arguments are optional. Their default value is false.
306If a pass walks CFG without modifying it then third argument is set to true.
307If a pass is an analysis pass, for example dominator tree pass, then true
308is supplied as fourth argument. </p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000309
310<p>As a whole, the <tt>.cpp</tt> file looks like:</p>
311
312<div class="doc_code"><pre>
313<b>#include</b> "<a href="http://llvm.org/doxygen/Pass_8h-source.html">llvm/Pass.h</a>"
314<b>#include</b> "<a href="http://llvm.org/doxygen/Function_8h-source.html">llvm/Function.h</a>"
315
316<b>using namespace llvm;</b>
317
318<b>namespace</b> {
319 <b>struct Hello</b> : <b>public</b> <a href="#FunctionPass">FunctionPass</a> {
320
321 static char ID;
322 Hello() : FunctionPass((intptr_t)&amp;ID) {}
323
324 <b>virtual bool</b> <a href="#runOnFunction">runOnFunction</a>(Function &amp;F) {
325 llvm::cerr &lt;&lt; "<i>Hello: </i>" &lt;&lt; F.getName() &lt;&lt; "\n";
326 <b>return false</b>;
327 }
328 };
329
Devang Patel8e46f052007-07-25 21:05:39 +0000330 char Hello::ID = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000331 RegisterPass&lt;Hello&gt; X("<i>hello</i>", "<i>Hello World Pass</i>");
332}
333</pre></div>
334
335<p>Now that it's all together, compile the file with a simple "<tt>gmake</tt>"
336command in the local directory and you should get a new
337"<tt>Debug/lib/Hello.so</tt> file. Note that everything in this file is
338contained in an anonymous namespace: this reflects the fact that passes are self
339contained units that do not need external interfaces (although they can have
340them) to be useful.</p>
341
342</div>
343
344<!-- ======================================================================= -->
345<div class="doc_subsection">
346 <a name="running">Running a pass with <tt>opt</tt></a>
347</div>
348
349<div class="doc_text">
350
351<p>Now that you have a brand new shiny shared object file, we can use the
352<tt>opt</tt> command to run an LLVM program through your pass. Because you
353registered your pass with the <tt>RegisterPass</tt> template, you will be able to
354use the <tt>opt</tt> tool to access it, once loaded.</p>
355
356<p>To test it, follow the example at the end of the <a
357href="GettingStarted.html">Getting Started Guide</a> to compile "Hello World" to
358LLVM. We can now run the bitcode file (<tt>hello.bc</tt>) for the program
359through our transformation like this (or course, any bitcode file will
360work):</p>
361
362<div class="doc_code"><pre>
363$ opt -load ../../../Debug/lib/Hello.so -hello &lt; hello.bc &gt; /dev/null
364Hello: __main
365Hello: puts
366Hello: main
367</pre></div>
368
369<p>The '<tt>-load</tt>' option specifies that '<tt>opt</tt>' should load your
370pass as a shared object, which makes '<tt>-hello</tt>' a valid command line
371argument (which is one reason you need to <a href="#registration">register your
372pass</a>). Because the hello pass does not modify the program in any
373interesting way, we just throw away the result of <tt>opt</tt> (sending it to
374<tt>/dev/null</tt>).</p>
375
376<p>To see what happened to the other string you registered, try running
377<tt>opt</tt> with the <tt>--help</tt> option:</p>
378
379<div class="doc_code"><pre>
380$ opt -load ../../../Debug/lib/Hello.so --help
381OVERVIEW: llvm .bc -&gt; .bc modular optimizer
382
383USAGE: opt [options] &lt;input bitcode&gt;
384
385OPTIONS:
386 Optimizations available:
387...
388 -funcresolve - Resolve Functions
389 -gcse - Global Common Subexpression Elimination
390 -globaldce - Dead Global Elimination
391 <b>-hello - Hello World Pass</b>
392 -indvars - Canonicalize Induction Variables
393 -inline - Function Integration/Inlining
394 -instcombine - Combine redundant instructions
395...
396</pre></div>
397
398<p>The pass name get added as the information string for your pass, giving some
399documentation to users of <tt>opt</tt>. Now that you have a working pass, you
400would go ahead and make it do the cool transformations you want. Once you get
401it all working and tested, it may become useful to find out how fast your pass
402is. The <a href="#passManager"><tt>PassManager</tt></a> provides a nice command
403line option (<tt>--time-passes</tt>) that allows you to get information about
404the execution time of your pass along with the other passes you queue up. For
405example:</p>
406
407<div class="doc_code"><pre>
408$ opt -load ../../../Debug/lib/Hello.so -hello -time-passes &lt; hello.bc &gt; /dev/null
409Hello: __main
410Hello: puts
411Hello: main
412===============================================================================
413 ... Pass execution timing report ...
414===============================================================================
415 Total Execution Time: 0.02 seconds (0.0479059 wall clock)
416
417 ---User Time--- --System Time-- --User+System-- ---Wall Time--- --- Pass Name ---
418 0.0100 (100.0%) 0.0000 ( 0.0%) 0.0100 ( 50.0%) 0.0402 ( 84.0%) Bitcode Writer
419 0.0000 ( 0.0%) 0.0100 (100.0%) 0.0100 ( 50.0%) 0.0031 ( 6.4%) Dominator Set Construction
420 0.0000 ( 0.0%) 0.0000 ( 0.0%) 0.0000 ( 0.0%) 0.0013 ( 2.7%) Module Verifier
421 <b> 0.0000 ( 0.0%) 0.0000 ( 0.0%) 0.0000 ( 0.0%) 0.0033 ( 6.9%) Hello World Pass</b>
422 0.0100 (100.0%) 0.0100 (100.0%) 0.0200 (100.0%) 0.0479 (100.0%) TOTAL
423</pre></div>
424
425<p>As you can see, our implementation above is pretty fast :). The additional
426passes listed are automatically inserted by the '<tt>opt</tt>' tool to verify
427that the LLVM emitted by your pass is still valid and well formed LLVM, which
428hasn't been broken somehow.</p>
429
430<p>Now that you have seen the basics of the mechanics behind passes, we can talk
431about some more details of how they work and how to use them.</p>
432
433</div>
434
435<!-- *********************************************************************** -->
436<div class="doc_section">
437 <a name="passtype">Pass classes and requirements</a>
438</div>
439<!-- *********************************************************************** -->
440
441<div class="doc_text">
442
443<p>One of the first things that you should do when designing a new pass is to
444decide what class you should subclass for your pass. The <a
445href="#basiccode">Hello World</a> example uses the <tt><a
446href="#FunctionPass">FunctionPass</a></tt> class for its implementation, but we
447did not discuss why or when this should occur. Here we talk about the classes
448available, from the most general to the most specific.</p>
449
450<p>When choosing a superclass for your Pass, you should choose the <b>most
451specific</b> class possible, while still being able to meet the requirements
452listed. This gives the LLVM Pass Infrastructure information necessary to
453optimize how passes are run, so that the resultant compiler isn't unneccesarily
454slow.</p>
455
456</div>
457
458<!-- ======================================================================= -->
459<div class="doc_subsection">
460 <a name="ImmutablePass">The <tt>ImmutablePass</tt> class</a>
461</div>
462
463<div class="doc_text">
464
465<p>The most plain and boring type of pass is the "<tt><a
466href="http://llvm.org/doxygen/classllvm_1_1ImmutablePass.html">ImmutablePass</a></tt>"
467class. This pass type is used for passes that do not have to be run, do not
468change state, and never need to be updated. This is not a normal type of
469transformation or analysis, but can provide information about the current
470compiler configuration.</p>
471
472<p>Although this pass class is very infrequently used, it is important for
473providing information about the current target machine being compiled for, and
474other static information that can affect the various transformations.</p>
475
476<p><tt>ImmutablePass</tt>es never invalidate other transformations, are never
477invalidated, and are never "run".</p>
478
479</div>
480
481<!-- ======================================================================= -->
482<div class="doc_subsection">
483 <a name="ModulePass">The <tt>ModulePass</tt> class</a>
484</div>
485
486<div class="doc_text">
487
488<p>The "<tt><a
489href="http://llvm.org/doxygen/classllvm_1_1ModulePass.html">ModulePass</a></tt>"
490class is the most general of all superclasses that you can use. Deriving from
491<tt>ModulePass</tt> indicates that your pass uses the entire program as a unit,
492refering to function bodies in no predictable order, or adding and removing
493functions. Because nothing is known about the behavior of <tt>ModulePass</tt>
494subclasses, no optimization can be done for their execution. A module pass
495can use function level passes (e.g. dominators) using getAnalysis interface
Devang Patel7a9a48f2008-11-06 19:47:49 +0000496<tt> getAnalysis&lt;DominatorTree&gt;(Function)</tt>, if the function pass
497does not require any module passes. </p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000498
499<p>To write a correct <tt>ModulePass</tt> subclass, derive from
500<tt>ModulePass</tt> and overload the <tt>runOnModule</tt> method with the
501following signature:</p>
502
503</div>
504
505<!-- _______________________________________________________________________ -->
506<div class="doc_subsubsection">
507 <a name="runOnModule">The <tt>runOnModule</tt> method</a>
508</div>
509
510<div class="doc_text">
511
512<div class="doc_code"><pre>
513 <b>virtual bool</b> runOnModule(Module &amp;M) = 0;
514</pre></div>
515
516<p>The <tt>runOnModule</tt> method performs the interesting work of the pass.
517It should return true if the module was modified by the transformation and
518false otherwise.</p>
519
520</div>
521
522<!-- ======================================================================= -->
523<div class="doc_subsection">
524 <a name="CallGraphSCCPass">The <tt>CallGraphSCCPass</tt> class</a>
525</div>
526
527<div class="doc_text">
528
529<p>The "<tt><a
530href="http://llvm.org/doxygen/classllvm_1_1CallGraphSCCPass.html">CallGraphSCCPass</a></tt>"
531is used by passes that need to traverse the program bottom-up on the call graph
532(callees before callers). Deriving from CallGraphSCCPass provides some
533mechanics for building and traversing the CallGraph, but also allows the system
534to optimize execution of CallGraphSCCPass's. If your pass meets the
535requirements outlined below, and doesn't meet the requirements of a <tt><a
536href="#FunctionPass">FunctionPass</a></tt> or <tt><a
537href="#BasicBlockPass">BasicBlockPass</a></tt>, you should derive from
538<tt>CallGraphSCCPass</tt>.</p>
539
540<p><b>TODO</b>: explain briefly what SCC, Tarjan's algo, and B-U mean.</p>
541
542<p>To be explicit, <tt>CallGraphSCCPass</tt> subclasses are:</p>
543
544<ol>
545
546<li>... <em>not allowed</em> to modify any <tt>Function</tt>s that are not in
547the current SCC.</li>
548
549<li>... <em>not allowed</em> to inspect any Function's other than those in the
550current SCC and the direct callees of the SCC.</li>
551
552<li>... <em>required</em> to preserve the current CallGraph object, updating it
553to reflect any changes made to the program.</li>
554
555<li>... <em>not allowed</em> to add or remove SCC's from the current Module,
556though they may change the contents of an SCC.</li>
557
558<li>... <em>allowed</em> to add or remove global variables from the current
559Module.</li>
560
561<li>... <em>allowed</em> to maintain state across invocations of
562 <a href="#runOnSCC"><tt>runOnSCC</tt></a> (including global data).</li>
563</ol>
564
565<p>Implementing a <tt>CallGraphSCCPass</tt> is slightly tricky in some cases
566because it has to handle SCCs with more than one node in it. All of the virtual
567methods described below should return true if they modified the program, or
568false if they didn't.</p>
569
570</div>
571
572<!-- _______________________________________________________________________ -->
573<div class="doc_subsubsection">
574 <a name="doInitialization_scc">The <tt>doInitialization(CallGraph &amp;)</tt>
575 method</a>
576</div>
577
578<div class="doc_text">
579
580<div class="doc_code"><pre>
581 <b>virtual bool</b> doInitialization(CallGraph &amp;CG);
582</pre></div>
583
584<p>The <tt>doIninitialize</tt> method is allowed to do most of the things that
585<tt>CallGraphSCCPass</tt>'s are not allowed to do. They can add and remove
586functions, get pointers to functions, etc. The <tt>doInitialization</tt> method
587is designed to do simple initialization type of stuff that does not depend on
588the SCCs being processed. The <tt>doInitialization</tt> method call is not
589scheduled to overlap with any other pass executions (thus it should be very
590fast).</p>
591
592</div>
593
594<!-- _______________________________________________________________________ -->
595<div class="doc_subsubsection">
596 <a name="runOnSCC">The <tt>runOnSCC</tt> method</a>
597</div>
598
599<div class="doc_text">
600
601<div class="doc_code"><pre>
602 <b>virtual bool</b> runOnSCC(const std::vector&lt;CallGraphNode *&gt; &amp;SCCM) = 0;
603</pre></div>
604
605<p>The <tt>runOnSCC</tt> method performs the interesting work of the pass, and
606should return true if the module was modified by the transformation, false
607otherwise.</p>
608
609</div>
610
611<!-- _______________________________________________________________________ -->
612<div class="doc_subsubsection">
613 <a name="doFinalization_scc">The <tt>doFinalization(CallGraph
614 &amp;)</tt> method</a>
615</div>
616
617<div class="doc_text">
618
619<div class="doc_code"><pre>
620 <b>virtual bool</b> doFinalization(CallGraph &amp;CG);
621</pre></div>
622
623<p>The <tt>doFinalization</tt> method is an infrequently used method that is
624called when the pass framework has finished calling <a
625href="#runOnFunction"><tt>runOnFunction</tt></a> for every function in the
626program being compiled.</p>
627
628</div>
629
630<!-- ======================================================================= -->
631<div class="doc_subsection">
632 <a name="FunctionPass">The <tt>FunctionPass</tt> class</a>
633</div>
634
635<div class="doc_text">
636
637<p>In contrast to <tt>ModulePass</tt> subclasses, <tt><a
638href="http://llvm.org/doxygen/classllvm_1_1Pass.html">FunctionPass</a></tt>
639subclasses do have a predictable, local behavior that can be expected by the
640system. All <tt>FunctionPass</tt> execute on each function in the program
641independent of all of the other functions in the program.
642<tt>FunctionPass</tt>'s do not require that they are executed in a particular
643order, and <tt>FunctionPass</tt>'s do not modify external functions.</p>
644
645<p>To be explicit, <tt>FunctionPass</tt> subclasses are not allowed to:</p>
646
647<ol>
648<li>Modify a Function other than the one currently being processed.</li>
649<li>Add or remove Function's from the current Module.</li>
650<li>Add or remove global variables from the current Module.</li>
651<li>Maintain state across invocations of
652 <a href="#runOnFunction"><tt>runOnFunction</tt></a> (including global data)</li>
653</ol>
654
655<p>Implementing a <tt>FunctionPass</tt> is usually straightforward (See the <a
656href="#basiccode">Hello World</a> pass for example). <tt>FunctionPass</tt>'s
657may overload three virtual methods to do their work. All of these methods
658should return true if they modified the program, or false if they didn't.</p>
659
660</div>
661
662<!-- _______________________________________________________________________ -->
663<div class="doc_subsubsection">
664 <a name="doInitialization_mod">The <tt>doInitialization(Module &amp;)</tt>
665 method</a>
666</div>
667
668<div class="doc_text">
669
670<div class="doc_code"><pre>
671 <b>virtual bool</b> doInitialization(Module &amp;M);
672</pre></div>
673
674<p>The <tt>doIninitialize</tt> method is allowed to do most of the things that
675<tt>FunctionPass</tt>'s are not allowed to do. They can add and remove
676functions, get pointers to functions, etc. The <tt>doInitialization</tt> method
677is designed to do simple initialization type of stuff that does not depend on
678the functions being processed. The <tt>doInitialization</tt> method call is not
679scheduled to overlap with any other pass executions (thus it should be very
680fast).</p>
681
682<p>A good example of how this method should be used is the <a
683href="http://llvm.org/doxygen/LowerAllocations_8cpp-source.html">LowerAllocations</a>
684pass. This pass converts <tt>malloc</tt> and <tt>free</tt> instructions into
685platform dependent <tt>malloc()</tt> and <tt>free()</tt> function calls. It
686uses the <tt>doInitialization</tt> method to get a reference to the malloc and
687free functions that it needs, adding prototypes to the module if necessary.</p>
688
689</div>
690
691<!-- _______________________________________________________________________ -->
692<div class="doc_subsubsection">
693 <a name="runOnFunction">The <tt>runOnFunction</tt> method</a>
694</div>
695
696<div class="doc_text">
697
698<div class="doc_code"><pre>
699 <b>virtual bool</b> runOnFunction(Function &amp;F) = 0;
700</pre></div><p>
701
702<p>The <tt>runOnFunction</tt> method must be implemented by your subclass to do
703the transformation or analysis work of your pass. As usual, a true value should
704be returned if the function is modified.</p>
705
706</div>
707
708<!-- _______________________________________________________________________ -->
709<div class="doc_subsubsection">
710 <a name="doFinalization_mod">The <tt>doFinalization(Module
711 &amp;)</tt> method</a>
712</div>
713
714<div class="doc_text">
715
716<div class="doc_code"><pre>
717 <b>virtual bool</b> doFinalization(Module &amp;M);
718</pre></div>
719
720<p>The <tt>doFinalization</tt> method is an infrequently used method that is
721called when the pass framework has finished calling <a
722href="#runOnFunction"><tt>runOnFunction</tt></a> for every function in the
723program being compiled.</p>
724
725</div>
726
727<!-- ======================================================================= -->
728<div class="doc_subsection">
729 <a name="LoopPass">The <tt>LoopPass</tt> class </a>
730</div>
731
732<div class="doc_text">
733
734<p> All <tt>LoopPass</tt> execute on each loop in the function independent of
735all of the other loops in the function. <tt>LoopPass</tt> processes loops in
736loop nest order such that outer most loop is processed last. </p>
737
738<p> <tt>LoopPass</tt> subclasses are allowed to update loop nest using
739<tt>LPPassManager</tt> interface. Implementing a loop pass is usually
740straightforward. <tt>Looppass</tt>'s may overload three virtual methods to
741do their work. All these methods should return true if they modified the
742program, or false if they didn't. </p>
743</div>
744
745<!-- _______________________________________________________________________ -->
746<div class="doc_subsubsection">
747 <a name="doInitialization_loop">The <tt>doInitialization(Loop *,
748 LPPassManager &amp;)</tt>
749 method</a>
750</div>
751
752<div class="doc_text">
753
754<div class="doc_code"><pre>
755 <b>virtual bool</b> doInitialization(Loop *, LPPassManager &amp;LPM);
756</pre></div>
757
758<p>The <tt>doInitialization</tt> method is designed to do simple initialization
759type of stuff that does not depend on the functions being processed. The
760<tt>doInitialization</tt> method call is not scheduled to overlap with any
761other pass executions (thus it should be very fast). LPPassManager
762interface should be used to access Function or Module level analysis
763information.</p>
764
765</div>
766
767
768<!-- _______________________________________________________________________ -->
769<div class="doc_subsubsection">
770 <a name="runOnLoop">The <tt>runOnLoop</tt> method</a>
771</div>
772
773<div class="doc_text">
774
775<div class="doc_code"><pre>
776 <b>virtual bool</b> runOnLoop(Loop *, LPPassManager &amp;LPM) = 0;
777</pre></div><p>
778
779<p>The <tt>runOnLoop</tt> method must be implemented by your subclass to do
780the transformation or analysis work of your pass. As usual, a true value should
781be returned if the function is modified. <tt>LPPassManager</tt> interface
782should be used to update loop nest.</p>
783
784</div>
785
786<!-- _______________________________________________________________________ -->
787<div class="doc_subsubsection">
788 <a name="doFinalization_loop">The <tt>doFinalization()</tt> method</a>
789</div>
790
791<div class="doc_text">
792
793<div class="doc_code"><pre>
794 <b>virtual bool</b> doFinalization();
795</pre></div>
796
797<p>The <tt>doFinalization</tt> method is an infrequently used method that is
798called when the pass framework has finished calling <a
799href="#runOnLoop"><tt>runOnLoop</tt></a> for every loop in the
800program being compiled. </p>
801
802</div>
803
804
805
806<!-- ======================================================================= -->
807<div class="doc_subsection">
808 <a name="BasicBlockPass">The <tt>BasicBlockPass</tt> class</a>
809</div>
810
811<div class="doc_text">
812
813<p><tt>BasicBlockPass</tt>'s are just like <a
814href="#FunctionPass"><tt>FunctionPass</tt></a>'s, except that they must limit
815their scope of inspection and modification to a single basic block at a time.
816As such, they are <b>not</b> allowed to do any of the following:</p>
817
818<ol>
819<li>Modify or inspect any basic blocks outside of the current one</li>
820<li>Maintain state across invocations of
821 <a href="#runOnBasicBlock"><tt>runOnBasicBlock</tt></a></li>
822<li>Modify the control flow graph (by altering terminator instructions)</li>
823<li>Any of the things forbidden for
824 <a href="#FunctionPass"><tt>FunctionPass</tt></a>es.</li>
825</ol>
826
827<p><tt>BasicBlockPass</tt>es are useful for traditional local and "peephole"
828optimizations. They may override the same <a
829href="#doInitialization_mod"><tt>doInitialization(Module &amp;)</tt></a> and <a
830href="#doFinalization_mod"><tt>doFinalization(Module &amp;)</tt></a> methods that <a
831href="#FunctionPass"><tt>FunctionPass</tt></a>'s have, but also have the following virtual methods that may also be implemented:</p>
832
833</div>
834
835<!-- _______________________________________________________________________ -->
836<div class="doc_subsubsection">
837 <a name="doInitialization_fn">The <tt>doInitialization(Function
838 &amp;)</tt> method</a>
839</div>
840
841<div class="doc_text">
842
843<div class="doc_code"><pre>
844 <b>virtual bool</b> doInitialization(Function &amp;F);
845</pre></div>
846
847<p>The <tt>doIninitialize</tt> method is allowed to do most of the things that
848<tt>BasicBlockPass</tt>'s are not allowed to do, but that
849<tt>FunctionPass</tt>'s can. The <tt>doInitialization</tt> method is designed
850to do simple initialization that does not depend on the
851BasicBlocks being processed. The <tt>doInitialization</tt> method call is not
852scheduled to overlap with any other pass executions (thus it should be very
853fast).</p>
854
855</div>
856
857<!-- _______________________________________________________________________ -->
858<div class="doc_subsubsection">
859 <a name="runOnBasicBlock">The <tt>runOnBasicBlock</tt> method</a>
860</div>
861
862<div class="doc_text">
863
864<div class="doc_code"><pre>
865 <b>virtual bool</b> runOnBasicBlock(BasicBlock &amp;BB) = 0;
866</pre></div>
867
868<p>Override this function to do the work of the <tt>BasicBlockPass</tt>. This
869function is not allowed to inspect or modify basic blocks other than the
870parameter, and are not allowed to modify the CFG. A true value must be returned
871if the basic block is modified.</p>
872
873</div>
874
875<!-- _______________________________________________________________________ -->
876<div class="doc_subsubsection">
877 <a name="doFinalization_fn">The <tt>doFinalization(Function &amp;)</tt>
878 method</a>
879</div>
880
881<div class="doc_text">
882
883<div class="doc_code"><pre>
884 <b>virtual bool</b> doFinalization(Function &amp;F);
885</pre></div>
886
887<p>The <tt>doFinalization</tt> method is an infrequently used method that is
888called when the pass framework has finished calling <a
889href="#runOnBasicBlock"><tt>runOnBasicBlock</tt></a> for every BasicBlock in the
890program being compiled. This can be used to perform per-function
891finalization.</p>
892
893</div>
894
895<!-- ======================================================================= -->
896<div class="doc_subsection">
897 <a name="MachineFunctionPass">The <tt>MachineFunctionPass</tt> class</a>
898</div>
899
900<div class="doc_text">
901
902<p>A <tt>MachineFunctionPass</tt> is a part of the LLVM code generator that
903executes on the machine-dependent representation of each LLVM function in the
904program. A <tt>MachineFunctionPass</tt> is also a <tt>FunctionPass</tt>, so all
905the restrictions that apply to a <tt>FunctionPass</tt> also apply to it.
906<tt>MachineFunctionPass</tt>es also have additional restrictions. In particular,
907<tt>MachineFunctionPass</tt>es are not allowed to do any of the following:</p>
908
909<ol>
910<li>Modify any LLVM Instructions, BasicBlocks or Functions.</li>
911<li>Modify a MachineFunction other than the one currently being processed.</li>
912<li>Add or remove MachineFunctions from the current Module.</li>
913<li>Add or remove global variables from the current Module.</li>
914<li>Maintain state across invocations of <a
915href="#runOnMachineFunction"><tt>runOnMachineFunction</tt></a> (including global
916data)</li>
917</ol>
918
919</div>
920
921<!-- _______________________________________________________________________ -->
922<div class="doc_subsubsection">
923 <a name="runOnMachineFunction">The <tt>runOnMachineFunction(MachineFunction
924 &amp;MF)</tt> method</a>
925</div>
926
927<div class="doc_text">
928
929<div class="doc_code"><pre>
930 <b>virtual bool</b> runOnMachineFunction(MachineFunction &amp;MF) = 0;
931</pre></div>
932
933<p><tt>runOnMachineFunction</tt> can be considered the main entry point of a
934<tt>MachineFunctionPass</tt>; that is, you should override this method to do the
935work of your <tt>MachineFunctionPass</tt>.</p>
936
937<p>The <tt>runOnMachineFunction</tt> method is called on every
938<tt>MachineFunction</tt> in a <tt>Module</tt>, so that the
939<tt>MachineFunctionPass</tt> may perform optimizations on the machine-dependent
940representation of the function. If you want to get at the LLVM <tt>Function</tt>
941for the <tt>MachineFunction</tt> you're working on, use
942<tt>MachineFunction</tt>'s <tt>getFunction()</tt> accessor method -- but
943remember, you may not modify the LLVM <tt>Function</tt> or its contents from a
944<tt>MachineFunctionPass</tt>.</p>
945
946</div>
947
948<!-- *********************************************************************** -->
949<div class="doc_section">
950 <a name="registration">Pass registration</a>
951</div>
952<!-- *********************************************************************** -->
953
954<div class="doc_text">
955
956<p>In the <a href="#basiccode">Hello World</a> example pass we illustrated how
957pass registration works, and discussed some of the reasons that it is used and
958what it does. Here we discuss how and why passes are registered.</p>
959
960<p>As we saw above, passes are registered with the <b><tt>RegisterPass</tt></b>
961template, which requires you to pass at least two
962parameters. The first parameter is the name of the pass that is to be used on
963the command line to specify that the pass should be added to a program (for
964example, with <tt>opt</tt> or <tt>bugpoint</tt>). The second argument is the
965name of the pass, which is to be used for the <tt>--help</tt> output of
966programs, as
967well as for debug output generated by the <tt>--debug-pass</tt> option.</p>
968
969<p>If you want your pass to be easily dumpable, you should
970implement the virtual <tt>print</tt> method:</p>
971
972</div>
973
974<!-- _______________________________________________________________________ -->
975<div class="doc_subsubsection">
976 <a name="print">The <tt>print</tt> method</a>
977</div>
978
979<div class="doc_text">
980
981<div class="doc_code"><pre>
Edwin Török72a8fd22008-10-28 17:29:23 +0000982 <b>virtual void</b> print(std::ostream &amp;O, <b>const</b> Module *M) <b>const</b>;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000983</pre></div>
984
985<p>The <tt>print</tt> method must be implemented by "analyses" in order to print
986a human readable version of the analysis results. This is useful for debugging
987an analysis itself, as well as for other people to figure out how an analysis
988works. Use the <tt>opt -analyze</tt> argument to invoke this method.</p>
989
990<p>The <tt>llvm::OStream</tt> parameter specifies the stream to write the results on,
991and the <tt>Module</tt> parameter gives a pointer to the top level module of the
992program that has been analyzed. Note however that this pointer may be null in
993certain circumstances (such as calling the <tt>Pass::dump()</tt> from a
994debugger), so it should only be used to enhance debug output, it should not be
995depended on.</p>
996
997</div>
998
999<!-- *********************************************************************** -->
1000<div class="doc_section">
1001 <a name="interaction">Specifying interactions between passes</a>
1002</div>
1003<!-- *********************************************************************** -->
1004
1005<div class="doc_text">
1006
John Criswella99e43f2007-12-03 19:34:25 +00001007<p>One of the main responsibilities of the <tt>PassManager</tt> is to make sure
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001008that passes interact with each other correctly. Because <tt>PassManager</tt>
1009tries to <a href="#passmanager">optimize the execution of passes</a> it must
1010know how the passes interact with each other and what dependencies exist between
1011the various passes. To track this, each pass can declare the set of passes that
1012are required to be executed before the current pass, and the passes which are
1013invalidated by the current pass.</p>
1014
1015<p>Typically this functionality is used to require that analysis results are
1016computed before your pass is run. Running arbitrary transformation passes can
1017invalidate the computed analysis results, which is what the invalidation set
1018specifies. If a pass does not implement the <tt><a
1019href="#getAnalysisUsage">getAnalysisUsage</a></tt> method, it defaults to not
1020having any prerequisite passes, and invalidating <b>all</b> other passes.</p>
1021
1022</div>
1023
1024<!-- _______________________________________________________________________ -->
1025<div class="doc_subsubsection">
1026 <a name="getAnalysisUsage">The <tt>getAnalysisUsage</tt> method</a>
1027</div>
1028
1029<div class="doc_text">
1030
1031<div class="doc_code"><pre>
1032 <b>virtual void</b> getAnalysisUsage(AnalysisUsage &amp;Info) <b>const</b>;
1033</pre></div>
1034
1035<p>By implementing the <tt>getAnalysisUsage</tt> method, the required and
1036invalidated sets may be specified for your transformation. The implementation
1037should fill in the <tt><a
1038href="http://llvm.org/doxygen/classllvm_1_1AnalysisUsage.html">AnalysisUsage</a></tt>
1039object with information about which passes are required and not invalidated. To
1040do this, a pass may call any of the following methods on the AnalysisUsage
1041object:</p>
1042</div>
1043
1044<!-- _______________________________________________________________________ -->
1045<div class="doc_subsubsection">
1046 <a name="AU::addRequired">The <tt>AnalysisUsage::addRequired&lt;&gt;</tt> and <tt>AnalysisUsage::addRequiredTransitive&lt;&gt;</tt> methods</a>
1047</div>
1048
1049<div class="doc_text">
1050<p>
1051If your pass requires a previous pass to be executed (an analysis for example),
1052it can use one of these methods to arrange for it to be run before your pass.
1053LLVM has many different types of analyses and passes that can be required,
1054spanning the range from <tt>DominatorSet</tt> to <tt>BreakCriticalEdges</tt>.
1055Requiring <tt>BreakCriticalEdges</tt>, for example, guarantees that there will
1056be no critical edges in the CFG when your pass has been run.
1057</p>
1058
1059<p>
1060Some analyses chain to other analyses to do their job. For example, an <a
1061href="AliasAnalysis.html">AliasAnalysis</a> implementation is required to <a
1062href="AliasAnalysis.html#chaining">chain</a> to other alias analysis passes. In
1063cases where analyses chain, the <tt>addRequiredTransitive</tt> method should be
1064used instead of the <tt>addRequired</tt> method. This informs the PassManager
1065that the transitively required pass should be alive as long as the requiring
1066pass is.
1067</p>
1068</div>
1069
1070<!-- _______________________________________________________________________ -->
1071<div class="doc_subsubsection">
1072 <a name="AU::addPreserved">The <tt>AnalysisUsage::addPreserved&lt;&gt;</tt> method</a>
1073</div>
1074
1075<div class="doc_text">
1076<p>
1077One of the jobs of the PassManager is to optimize how and when analyses are run.
1078In particular, it attempts to avoid recomputing data unless it needs to. For
1079this reason, passes are allowed to declare that they preserve (i.e., they don't
1080invalidate) an existing analysis if it's available. For example, a simple
1081constant folding pass would not modify the CFG, so it can't possibly affect the
1082results of dominator analysis. By default, all passes are assumed to invalidate
1083all others.
1084</p>
1085
1086<p>
1087The <tt>AnalysisUsage</tt> class provides several methods which are useful in
1088certain circumstances that are related to <tt>addPreserved</tt>. In particular,
1089the <tt>setPreservesAll</tt> method can be called to indicate that the pass does
1090not modify the LLVM program at all (which is true for analyses), and the
1091<tt>setPreservesCFG</tt> method can be used by transformations that change
1092instructions in the program but do not modify the CFG or terminator instructions
1093(note that this property is implicitly set for <a
1094href="#BasicBlockPass">BasicBlockPass</a>'s).
1095</p>
1096
1097<p>
1098<tt>addPreserved</tt> is particularly useful for transformations like
1099<tt>BreakCriticalEdges</tt>. This pass knows how to update a small set of loop
1100and dominator related analyses if they exist, so it can preserve them, despite
1101the fact that it hacks on the CFG.
1102</p>
1103</div>
1104
1105<!-- _______________________________________________________________________ -->
1106<div class="doc_subsubsection">
1107 <a name="AU::examples">Example implementations of <tt>getAnalysisUsage</tt></a>
1108</div>
1109
1110<div class="doc_text">
1111
1112<div class="doc_code"><pre>
1113 <i>// This is an example implementation from an analysis, which does not modify
1114 // the program at all, yet has a prerequisite.</i>
1115 <b>void</b> <a href="http://llvm.org/doxygen/classllvm_1_1PostDominanceFrontier.html">PostDominanceFrontier</a>::getAnalysisUsage(AnalysisUsage &amp;AU) <b>const</b> {
1116 AU.setPreservesAll();
1117 AU.addRequired&lt;<a href="http://llvm.org/doxygen/classllvm_1_1PostDominatorTree.html">PostDominatorTree</a>&gt;();
1118 }
1119</pre></div>
1120
1121<p>and:</p>
1122
1123<div class="doc_code"><pre>
1124 <i>// This example modifies the program, but does not modify the CFG</i>
1125 <b>void</b> <a href="http://llvm.org/doxygen/structLICM.html">LICM</a>::getAnalysisUsage(AnalysisUsage &amp;AU) <b>const</b> {
1126 AU.setPreservesCFG();
1127 AU.addRequired&lt;<a href="http://llvm.org/doxygen/classllvm_1_1LoopInfo.html">LoopInfo</a>&gt;();
1128 }
1129</pre></div>
1130
1131</div>
1132
1133<!-- _______________________________________________________________________ -->
1134<div class="doc_subsubsection">
Duncan Sands4e0d6a72009-01-28 13:14:17 +00001135 <a name="getAnalysis">The <tt>getAnalysis&lt;&gt;</tt> and
1136<tt>getAnalysisIfAvailable&lt;&gt;</tt> methods</a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001137</div>
1138
1139<div class="doc_text">
1140
1141<p>The <tt>Pass::getAnalysis&lt;&gt;</tt> method is automatically inherited by
1142your class, providing you with access to the passes that you declared that you
1143required with the <a href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a>
1144method. It takes a single template argument that specifies which pass class you
1145want, and returns a reference to that pass. For example:</p>
1146
1147<div class="doc_code"><pre>
1148 bool LICM::runOnFunction(Function &amp;F) {
1149 LoopInfo &amp;LI = getAnalysis&lt;LoopInfo&gt;();
1150 ...
1151 }
1152</pre></div>
1153
1154<p>This method call returns a reference to the pass desired. You may get a
1155runtime assertion failure if you attempt to get an analysis that you did not
1156declare as required in your <a
1157href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a> implementation. This
1158method can be called by your <tt>run*</tt> method implementation, or by any
1159other local method invoked by your <tt>run*</tt> method.
1160
1161A module level pass can use function level analysis info using this interface.
1162For example:</p>
1163
1164<div class="doc_code"><pre>
1165 bool ModuleLevelPass::runOnModule(Module &amp;M) {
1166 ...
1167 DominatorTree &amp;DT = getAnalysis&lt;DominatorTree&gt;(Func);
1168 ...
1169 }
1170</pre></div>
1171
1172<p>In above example, runOnFunction for DominatorTree is called by pass manager
1173before returning a reference to the desired pass.</p>
1174
1175<p>
1176If your pass is capable of updating analyses if they exist (e.g.,
1177<tt>BreakCriticalEdges</tt>, as described above), you can use the
Duncan Sands4e0d6a72009-01-28 13:14:17 +00001178<tt>getAnalysisIfAvailable</tt> method, which returns a pointer to the analysis
1179if it is active. For example:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001180
1181<div class="doc_code"><pre>
1182 ...
Duncan Sands4e0d6a72009-01-28 13:14:17 +00001183 if (DominatorSet *DS = getAnalysisIfAvailable&lt;DominatorSet&gt;()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001184 <i>// A DominatorSet is active. This code will update it.</i>
1185 }
1186 ...
1187</pre></div>
1188
1189</div>
1190
1191<!-- *********************************************************************** -->
1192<div class="doc_section">
1193 <a name="analysisgroup">Implementing Analysis Groups</a>
1194</div>
1195<!-- *********************************************************************** -->
1196
1197<div class="doc_text">
1198
Chris Lattner942c3952007-11-16 05:32:05 +00001199<p>Now that we understand the basics of how passes are defined, how they are
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001200used, and how they are required from other passes, it's time to get a little bit
1201fancier. All of the pass relationships that we have seen so far are very
1202simple: one pass depends on one other specific pass to be run before it can run.
1203For many applications, this is great, for others, more flexibility is
1204required.</p>
1205
1206<p>In particular, some analyses are defined such that there is a single simple
1207interface to the analysis results, but multiple ways of calculating them.
1208Consider alias analysis for example. The most trivial alias analysis returns
1209"may alias" for any alias query. The most sophisticated analysis a
1210flow-sensitive, context-sensitive interprocedural analysis that can take a
1211significant amount of time to execute (and obviously, there is a lot of room
1212between these two extremes for other implementations). To cleanly support
1213situations like this, the LLVM Pass Infrastructure supports the notion of
1214Analysis Groups.</p>
1215
1216</div>
1217
1218<!-- _______________________________________________________________________ -->
1219<div class="doc_subsubsection">
1220 <a name="agconcepts">Analysis Group Concepts</a>
1221</div>
1222
1223<div class="doc_text">
1224
1225<p>An Analysis Group is a single simple interface that may be implemented by
1226multiple different passes. Analysis Groups can be given human readable names
1227just like passes, but unlike passes, they need not derive from the <tt>Pass</tt>
1228class. An analysis group may have one or more implementations, one of which is
1229the "default" implementation.</p>
1230
1231<p>Analysis groups are used by client passes just like other passes are: the
1232<tt>AnalysisUsage::addRequired()</tt> and <tt>Pass::getAnalysis()</tt> methods.
1233In order to resolve this requirement, the <a href="#passmanager">PassManager</a>
1234scans the available passes to see if any implementations of the analysis group
1235are available. If none is available, the default implementation is created for
1236the pass to use. All standard rules for <A href="#interaction">interaction
1237between passes</a> still apply.</p>
1238
1239<p>Although <a href="#registration">Pass Registration</a> is optional for normal
1240passes, all analysis group implementations must be registered, and must use the
1241<A href="#registerag"><tt>RegisterAnalysisGroup</tt></a> template to join the
1242implementation pool. Also, a default implementation of the interface
1243<b>must</b> be registered with <A
1244href="#registerag"><tt>RegisterAnalysisGroup</tt></a>.</p>
1245
1246<p>As a concrete example of an Analysis Group in action, consider the <a
1247href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>
1248analysis group. The default implementation of the alias analysis interface (the
1249<tt><a
1250href="http://llvm.org/doxygen/structBasicAliasAnalysis.html">basicaa</a></tt>
1251pass) just does a few simple checks that don't require significant analysis to
1252compute (such as: two different globals can never alias each other, etc).
1253Passes that use the <tt><a
1254href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a></tt>
1255interface (for example the <tt><a
1256href="http://llvm.org/doxygen/structGCSE.html">gcse</a></tt> pass), do
1257not care which implementation of alias analysis is actually provided, they just
1258use the designated interface.</p>
1259
1260<p>From the user's perspective, commands work just like normal. Issuing the
1261command '<tt>opt -gcse ...</tt>' will cause the <tt>basicaa</tt> class to be
1262instantiated and added to the pass sequence. Issuing the command '<tt>opt
1263-somefancyaa -gcse ...</tt>' will cause the <tt>gcse</tt> pass to use the
1264<tt>somefancyaa</tt> alias analysis (which doesn't actually exist, it's just a
1265hypothetical example) instead.</p>
1266
1267</div>
1268
1269<!-- _______________________________________________________________________ -->
1270<div class="doc_subsubsection">
1271 <a name="registerag">Using <tt>RegisterAnalysisGroup</tt></a>
1272</div>
1273
1274<div class="doc_text">
1275
1276<p>The <tt>RegisterAnalysisGroup</tt> template is used to register the analysis
1277group itself as well as add pass implementations to the analysis group. First,
1278an analysis should be registered, with a human readable name provided for it.
1279Unlike registration of passes, there is no command line argument to be specified
1280for the Analysis Group Interface itself, because it is "abstract":</p>
1281
1282<div class="doc_code"><pre>
1283 <b>static</b> RegisterAnalysisGroup&lt;<a href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>&gt; A("<i>Alias Analysis</i>");
1284</pre></div>
1285
1286<p>Once the analysis is registered, passes can declare that they are valid
1287implementations of the interface by using the following code:</p>
1288
1289<div class="doc_code"><pre>
1290<b>namespace</b> {
1291 //<i> Analysis Group implementations <b>must</b> be registered normally...</i>
1292 RegisterPass&lt;FancyAA&gt;
1293 B("<i>somefancyaa</i>", "<i>A more complex alias analysis implementation</i>");
1294
1295 //<i> Declare that we implement the AliasAnalysis interface</i>
1296 RegisterAnalysisGroup&lt;<a href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>&gt; C(B);
1297}
1298</pre></div>
1299
1300<p>This just shows a class <tt>FancyAA</tt> that is registered normally, then
1301uses the <tt>RegisterAnalysisGroup</tt> template to "join" the <tt><a
1302href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a></tt>
1303analysis group. Every implementation of an analysis group should join using
1304this template. A single pass may join multiple different analysis groups with
1305no problem.</p>
1306
1307<div class="doc_code"><pre>
1308<b>namespace</b> {
1309 //<i> Analysis Group implementations <b>must</b> be registered normally...</i>
1310 RegisterPass&lt;<a href="http://llvm.org/doxygen/structBasicAliasAnalysis.html">BasicAliasAnalysis</a>&gt;
1311 D("<i>basicaa</i>", "<i>Basic Alias Analysis (default AA impl)</i>");
1312
1313 //<i> Declare that we implement the AliasAnalysis interface</i>
1314 RegisterAnalysisGroup&lt;<a href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>, <b>true</b>&gt; E(D);
1315}
1316</pre></div>
1317
1318<p>Here we show how the default implementation is specified (using the extra
1319argument to the <tt>RegisterAnalysisGroup</tt> template). There must be exactly
1320one default implementation available at all times for an Analysis Group to be
1321used. Only default implementation can derive from <tt>ImmutablePass</tt>.
1322Here we declare that the
1323 <tt><a href="http://llvm.org/doxygen/structBasicAliasAnalysis.html">BasicAliasAnalysis</a></tt>
1324pass is the default implementation for the interface.</p>
1325
1326</div>
1327
1328<!-- *********************************************************************** -->
1329<div class="doc_section">
1330 <a name="passStatistics">Pass Statistics</a>
1331</div>
1332<!-- *********************************************************************** -->
1333
1334<div class="doc_text">
1335<p>The <a
1336href="http://llvm.org/doxygen/Statistic_8h-source.html"><tt>Statistic</tt></a>
1337class is designed to be an easy way to expose various success
1338metrics from passes. These statistics are printed at the end of a
1339run, when the -stats command line option is enabled on the command
1340line. See the <a href="http://llvm.org/docs/ProgrammersManual.html#Statistic">Statistics section</a> in the Programmer's Manual for details.
1341
1342</div>
1343
1344
1345<!-- *********************************************************************** -->
1346<div class="doc_section">
1347 <a name="passmanager">What PassManager does</a>
1348</div>
1349<!-- *********************************************************************** -->
1350
1351<div class="doc_text">
1352
1353<p>The <a
1354href="http://llvm.org/doxygen/PassManager_8h-source.html"><tt>PassManager</tt></a>
1355<a
1356href="http://llvm.org/doxygen/classllvm_1_1PassManager.html">class</a>
1357takes a list of passes, ensures their <a href="#interaction">prerequisites</a>
1358are set up correctly, and then schedules passes to run efficiently. All of the
1359LLVM tools that run passes use the <tt>PassManager</tt> for execution of these
1360passes.</p>
1361
1362<p>The <tt>PassManager</tt> does two main things to try to reduce the execution
1363time of a series of passes:</p>
1364
1365<ol>
1366<li><b>Share analysis results</b> - The PassManager attempts to avoid
1367recomputing analysis results as much as possible. This means keeping track of
1368which analyses are available already, which analyses get invalidated, and which
1369analyses are needed to be run for a pass. An important part of work is that the
1370<tt>PassManager</tt> tracks the exact lifetime of all analysis results, allowing
1371it to <a href="#releaseMemory">free memory</a> allocated to holding analysis
1372results as soon as they are no longer needed.</li>
1373
1374<li><b>Pipeline the execution of passes on the program</b> - The
1375<tt>PassManager</tt> attempts to get better cache and memory usage behavior out
1376of a series of passes by pipelining the passes together. This means that, given
1377a series of consequtive <a href="#FunctionPass"><tt>FunctionPass</tt></a>'s, it
1378will execute all of the <a href="#FunctionPass"><tt>FunctionPass</tt></a>'s on
1379the first function, then all of the <a
1380href="#FunctionPass"><tt>FunctionPass</tt></a>es on the second function,
1381etc... until the entire program has been run through the passes.
1382
1383<p>This improves the cache behavior of the compiler, because it is only touching
1384the LLVM program representation for a single function at a time, instead of
1385traversing the entire program. It reduces the memory consumption of compiler,
1386because, for example, only one <a
1387href="http://llvm.org/doxygen/classllvm_1_1DominatorSet.html"><tt>DominatorSet</tt></a>
John Criswell8a726152007-12-10 20:26:29 +00001388needs to be calculated at a time. This also makes it possible to implement
1389some <a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001390href="#SMP">interesting enhancements</a> in the future.</p></li>
1391
1392</ol>
1393
1394<p>The effectiveness of the <tt>PassManager</tt> is influenced directly by how
1395much information it has about the behaviors of the passes it is scheduling. For
1396example, the "preserved" set is intentionally conservative in the face of an
1397unimplemented <a href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a> method.
1398Not implementing when it should be implemented will have the effect of not
1399allowing any analysis results to live across the execution of your pass.</p>
1400
1401<p>The <tt>PassManager</tt> class exposes a <tt>--debug-pass</tt> command line
1402options that is useful for debugging pass execution, seeing how things work, and
1403diagnosing when you should be preserving more analyses than you currently are
1404(To get information about all of the variants of the <tt>--debug-pass</tt>
1405option, just type '<tt>opt --help-hidden</tt>').</p>
1406
1407<p>By using the <tt>--debug-pass=Structure</tt> option, for example, we can see
1408how our <a href="#basiccode">Hello World</a> pass interacts with other passes.
1409Lets try it out with the <tt>gcse</tt> and <tt>licm</tt> passes:</p>
1410
1411<div class="doc_code"><pre>
1412$ opt -load ../../../Debug/lib/Hello.so -gcse -licm --debug-pass=Structure &lt; hello.bc &gt; /dev/null
1413Module Pass Manager
1414 Function Pass Manager
1415 Dominator Set Construction
1416 Immediate Dominators Construction
1417 Global Common Subexpression Elimination
1418-- Immediate Dominators Construction
1419-- Global Common Subexpression Elimination
1420 Natural Loop Construction
1421 Loop Invariant Code Motion
1422-- Natural Loop Construction
1423-- Loop Invariant Code Motion
1424 Module Verifier
1425-- Dominator Set Construction
1426-- Module Verifier
1427 Bitcode Writer
1428--Bitcode Writer
1429</pre></div>
1430
1431<p>This output shows us when passes are constructed and when the analysis
1432results are known to be dead (prefixed with '<tt>--</tt>'). Here we see that
1433GCSE uses dominator and immediate dominator information to do its job. The LICM
1434pass uses natural loop information, which uses dominator sets, but not immediate
1435dominators. Because immediate dominators are no longer useful after the GCSE
1436pass, it is immediately destroyed. The dominator sets are then reused to
1437compute natural loop information, which is then used by the LICM pass.</p>
1438
1439<p>After the LICM pass, the module verifier runs (which is automatically added
1440by the '<tt>opt</tt>' tool), which uses the dominator set to check that the
1441resultant LLVM code is well formed. After it finishes, the dominator set
1442information is destroyed, after being computed once, and shared by three
1443passes.</p>
1444
1445<p>Lets see how this changes when we run the <a href="#basiccode">Hello
1446World</a> pass in between the two passes:</p>
1447
1448<div class="doc_code"><pre>
1449$ opt -load ../../../Debug/lib/Hello.so -gcse -hello -licm --debug-pass=Structure &lt; hello.bc &gt; /dev/null
1450Module Pass Manager
1451 Function Pass Manager
1452 Dominator Set Construction
1453 Immediate Dominators Construction
1454 Global Common Subexpression Elimination
1455<b>-- Dominator Set Construction</b>
1456-- Immediate Dominators Construction
1457-- Global Common Subexpression Elimination
1458<b> Hello World Pass
1459-- Hello World Pass
1460 Dominator Set Construction</b>
1461 Natural Loop Construction
1462 Loop Invariant Code Motion
1463-- Natural Loop Construction
1464-- Loop Invariant Code Motion
1465 Module Verifier
1466-- Dominator Set Construction
1467-- Module Verifier
1468 Bitcode Writer
1469--Bitcode Writer
1470Hello: __main
1471Hello: puts
1472Hello: main
1473</pre></div>
1474
1475<p>Here we see that the <a href="#basiccode">Hello World</a> pass has killed the
1476Dominator Set pass, even though it doesn't modify the code at all! To fix this,
1477we need to add the following <a
1478href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a> method to our pass:</p>
1479
1480<div class="doc_code"><pre>
1481 <i>// We don't modify the program, so we preserve all analyses</i>
1482 <b>virtual void</b> getAnalysisUsage(AnalysisUsage &amp;AU) <b>const</b> {
1483 AU.setPreservesAll();
1484 }
1485</pre></div>
1486
1487<p>Now when we run our pass, we get this output:</p>
1488
1489<div class="doc_code"><pre>
1490$ opt -load ../../../Debug/lib/Hello.so -gcse -hello -licm --debug-pass=Structure &lt; hello.bc &gt; /dev/null
1491Pass Arguments: -gcse -hello -licm
1492Module Pass Manager
1493 Function Pass Manager
1494 Dominator Set Construction
1495 Immediate Dominators Construction
1496 Global Common Subexpression Elimination
1497-- Immediate Dominators Construction
1498-- Global Common Subexpression Elimination
1499 Hello World Pass
1500-- Hello World Pass
1501 Natural Loop Construction
1502 Loop Invariant Code Motion
1503-- Loop Invariant Code Motion
1504-- Natural Loop Construction
1505 Module Verifier
1506-- Dominator Set Construction
1507-- Module Verifier
1508 Bitcode Writer
1509--Bitcode Writer
1510Hello: __main
1511Hello: puts
1512Hello: main
1513</pre></div>
1514
1515<p>Which shows that we don't accidentally invalidate dominator information
1516anymore, and therefore do not have to compute it twice.</p>
1517
1518</div>
1519
1520<!-- _______________________________________________________________________ -->
1521<div class="doc_subsubsection">
1522 <a name="releaseMemory">The <tt>releaseMemory</tt> method</a>
1523</div>
1524
1525<div class="doc_text">
1526
1527<div class="doc_code"><pre>
1528 <b>virtual void</b> releaseMemory();
1529</pre></div>
1530
1531<p>The <tt>PassManager</tt> automatically determines when to compute analysis
1532results, and how long to keep them around for. Because the lifetime of the pass
1533object itself is effectively the entire duration of the compilation process, we
1534need some way to free analysis results when they are no longer useful. The
1535<tt>releaseMemory</tt> virtual method is the way to do this.</p>
1536
1537<p>If you are writing an analysis or any other pass that retains a significant
1538amount of state (for use by another pass which "requires" your pass and uses the
1539<a href="#getAnalysis">getAnalysis</a> method) you should implement
1540<tt>releaseMEmory</tt> to, well, release the memory allocated to maintain this
1541internal state. This method is called after the <tt>run*</tt> method for the
1542class, before the next call of <tt>run*</tt> in your pass.</p>
1543
1544</div>
1545
1546<!-- *********************************************************************** -->
1547<div class="doc_section">
1548 <a name="registering">Registering dynamically loaded passes</a>
1549</div>
1550<!-- *********************************************************************** -->
1551
1552<div class="doc_text">
1553
1554<p><i>Size matters</i> when constructing production quality tools using llvm,
1555both for the purposes of distribution, and for regulating the resident code size
1556when running on the target system. Therefore, it becomes desirable to
1557selectively use some passes, while omitting others and maintain the flexibility
1558to change configurations later on. You want to be able to do all this, and,
1559provide feedback to the user. This is where pass registration comes into
1560play.</p>
1561
1562<p>The fundamental mechanisms for pass registration are the
1563<tt>MachinePassRegistry</tt> class and subclasses of
1564<tt>MachinePassRegistryNode</tt>.</p>
1565
1566<p>An instance of <tt>MachinePassRegistry</tt> is used to maintain a list of
1567<tt>MachinePassRegistryNode</tt> objects. This instance maintains the list and
1568communicates additions and deletions to the command line interface.</p>
1569
1570<p>An instance of <tt>MachinePassRegistryNode</tt> subclass is used to maintain
1571information provided about a particular pass. This information includes the
1572command line name, the command help string and the address of the function used
1573to create an instance of the pass. A global static constructor of one of these
1574instances <i>registers</i> with a corresponding <tt>MachinePassRegistry</tt>,
1575the static destructor <i>unregisters</i>. Thus a pass that is statically linked
1576in the tool will be registered at start up. A dynamically loaded pass will
1577register on load and unregister at unload.</p>
1578
1579</div>
1580
1581<!-- _______________________________________________________________________ -->
1582<div class="doc_subsection">
1583 <a name="registering_existing">Using existing registries</a>
1584</div>
1585
1586<div class="doc_text">
1587
1588<p>There are predefined registries to track instruction scheduling
1589(<tt>RegisterScheduler</tt>) and register allocation (<tt>RegisterRegAlloc</tt>)
1590machine passes. Here we will describe how to <i>register</i> a register
1591allocator machine pass.</p>
1592
1593<p>Implement your register allocator machine pass. In your register allocator
1594.cpp file add the following include;</p>
1595
1596<div class="doc_code"><pre>
1597 #include "llvm/CodeGen/RegAllocRegistry.h"
1598</pre></div>
1599
1600<p>Also in your register allocator .cpp file, define a creator function in the
1601form; </p>
1602
1603<div class="doc_code"><pre>
1604 FunctionPass *createMyRegisterAllocator() {
1605 return new MyRegisterAllocator();
1606 }
1607</pre></div>
1608
1609<p>Note that the signature of this function should match the type of
1610<tt>RegisterRegAlloc::FunctionPassCtor</tt>. In the same file add the
1611"installing" declaration, in the form;</p>
1612
1613<div class="doc_code"><pre>
1614 static RegisterRegAlloc myRegAlloc("myregalloc",
1615 " my register allocator help string",
1616 createMyRegisterAllocator);
1617</pre></div>
1618
1619<p>Note the two spaces prior to the help string produces a tidy result on the
1620--help query.</p>
1621
1622<div class="doc_code"><pre>
1623$ llc --help
1624 ...
1625 -regalloc - Register allocator to use: (default = linearscan)
1626 =linearscan - linear scan register allocator
1627 =local - local register allocator
1628 =simple - simple register allocator
1629 =myregalloc - my register allocator help string
1630 ...
1631</pre></div>
1632
1633<p>And that's it. The user is now free to use <tt>-regalloc=myregalloc</tt> as
1634an option. Registering instruction schedulers is similar except use the
1635<tt>RegisterScheduler</tt> class. Note that the
1636<tt>RegisterScheduler::FunctionPassCtor</tt> is significantly different from
1637<tt>RegisterRegAlloc::FunctionPassCtor</tt>.</p>
1638
1639<p>To force the load/linking of your register allocator into the llc/lli tools,
1640add your creator function's global declaration to "Passes.h" and add a "pseudo"
1641call line to <tt>llvm/Codegen/LinkAllCodegenComponents.h</tt>.</p>
1642
1643</div>
1644
1645
1646<!-- _______________________________________________________________________ -->
1647<div class="doc_subsection">
1648 <a name="registering_new">Creating new registries</a>
1649</div>
1650
1651<div class="doc_text">
1652
1653<p>The easiest way to get started is to clone one of the existing registries; we
1654recommend <tt>llvm/CodeGen/RegAllocRegistry.h</tt>. The key things to modify
1655are the class name and the <tt>FunctionPassCtor</tt> type.</p>
1656
1657<p>Then you need to declare the registry. Example: if your pass registry is
1658<tt>RegisterMyPasses</tt> then define;</p>
1659
1660<div class="doc_code"><pre>
1661MachinePassRegistry RegisterMyPasses::Registry;
1662</pre></div>
1663
1664<p>And finally, declare the command line option for your passes. Example:</p>
1665
1666<div class="doc_code"><pre>
1667 cl::opt&lt;RegisterMyPasses::FunctionPassCtor, false,
Dan Gohman8e58bc52008-10-14 17:00:38 +00001668 RegisterPassParser&lt;RegisterMyPasses&gt; &gt;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001669 MyPassOpt("mypass",
1670 cl::init(&amp;createDefaultMyPass),
1671 cl::desc("my pass option help"));
1672</pre></div>
1673
1674<p>Here the command option is "mypass", with createDefaultMyPass as the default
1675creator.</p>
1676
1677</div>
1678
1679<!-- *********************************************************************** -->
1680<div class="doc_section">
1681 <a name="debughints">Using GDB with dynamically loaded passes</a>
1682</div>
1683<!-- *********************************************************************** -->
1684
1685<div class="doc_text">
1686
1687<p>Unfortunately, using GDB with dynamically loaded passes is not as easy as it
1688should be. First of all, you can't set a breakpoint in a shared object that has
1689not been loaded yet, and second of all there are problems with inlined functions
1690in shared objects. Here are some suggestions to debugging your pass with
1691GDB.</p>
1692
1693<p>For sake of discussion, I'm going to assume that you are debugging a
1694transformation invoked by <tt>opt</tt>, although nothing described here depends
1695on that.</p>
1696
1697</div>
1698
1699<!-- _______________________________________________________________________ -->
1700<div class="doc_subsubsection">
1701 <a name="breakpoint">Setting a breakpoint in your pass</a>
1702</div>
1703
1704<div class="doc_text">
1705
1706<p>First thing you do is start <tt>gdb</tt> on the <tt>opt</tt> process:</p>
1707
1708<div class="doc_code"><pre>
1709$ <b>gdb opt</b>
1710GNU gdb 5.0
1711Copyright 2000 Free Software Foundation, Inc.
1712GDB is free software, covered by the GNU General Public License, and you are
1713welcome to change it and/or distribute copies of it under certain conditions.
1714Type "show copying" to see the conditions.
1715There is absolutely no warranty for GDB. Type "show warranty" for details.
1716This GDB was configured as "sparc-sun-solaris2.6"...
1717(gdb)
1718</pre></div>
1719
1720<p>Note that <tt>opt</tt> has a lot of debugging information in it, so it takes
1721time to load. Be patient. Since we cannot set a breakpoint in our pass yet
1722(the shared object isn't loaded until runtime), we must execute the process, and
1723have it stop before it invokes our pass, but after it has loaded the shared
1724object. The most foolproof way of doing this is to set a breakpoint in
1725<tt>PassManager::run</tt> and then run the process with the arguments you
1726want:</p>
1727
1728<div class="doc_code"><pre>
1729(gdb) <b>break llvm::PassManager::run</b>
1730Breakpoint 1 at 0x2413bc: file Pass.cpp, line 70.
1731(gdb) <b>run test.bc -load $(LLVMTOP)/llvm/Debug/lib/[libname].so -[passoption]</b>
1732Starting program: opt test.bc -load $(LLVMTOP)/llvm/Debug/lib/[libname].so -[passoption]
1733Breakpoint 1, PassManager::run (this=0xffbef174, M=@0x70b298) at Pass.cpp:70
173470 bool PassManager::run(Module &amp;M) { return PM-&gt;run(M); }
1735(gdb)
1736</pre></div>
1737
1738<p>Once the <tt>opt</tt> stops in the <tt>PassManager::run</tt> method you are
1739now free to set breakpoints in your pass so that you can trace through execution
1740or do other standard debugging stuff.</p>
1741
1742</div>
1743
1744<!-- _______________________________________________________________________ -->
1745<div class="doc_subsubsection">
1746 <a name="debugmisc">Miscellaneous Problems</a>
1747</div>
1748
1749<div class="doc_text">
1750
1751<p>Once you have the basics down, there are a couple of problems that GDB has,
1752some with solutions, some without.</p>
1753
1754<ul>
1755<li>Inline functions have bogus stack information. In general, GDB does a
1756pretty good job getting stack traces and stepping through inline functions.
1757When a pass is dynamically loaded however, it somehow completely loses this
1758capability. The only solution I know of is to de-inline a function (move it
1759from the body of a class to a .cpp file).</li>
1760
1761<li>Restarting the program breaks breakpoints. After following the information
1762above, you have succeeded in getting some breakpoints planted in your pass. Nex
1763thing you know, you restart the program (i.e., you type '<tt>run</tt>' again),
1764and you start getting errors about breakpoints being unsettable. The only way I
1765have found to "fix" this problem is to <tt>delete</tt> the breakpoints that are
1766already set in your pass, run the program, and re-set the breakpoints once
1767execution stops in <tt>PassManager::run</tt>.</li>
1768
1769</ul>
1770
1771<p>Hopefully these tips will help with common case debugging situations. If
1772you'd like to contribute some tips of your own, just contact <a
1773href="mailto:sabre@nondot.org">Chris</a>.</p>
1774
1775</div>
1776
1777<!-- *********************************************************************** -->
1778<div class="doc_section">
1779 <a name="future">Future extensions planned</a>
1780</div>
1781<!-- *********************************************************************** -->
1782
1783<div class="doc_text">
1784
1785<p>Although the LLVM Pass Infrastructure is very capable as it stands, and does
1786some nifty stuff, there are things we'd like to add in the future. Here is
1787where we are going:</p>
1788
1789</div>
1790
1791<!-- _______________________________________________________________________ -->
1792<div class="doc_subsubsection">
1793 <a name="SMP">Multithreaded LLVM</a>
1794</div>
1795
1796<div class="doc_text">
1797
1798<p>Multiple CPU machines are becoming more common and compilation can never be
1799fast enough: obviously we should allow for a multithreaded compiler. Because of
1800the semantics defined for passes above (specifically they cannot maintain state
1801across invocations of their <tt>run*</tt> methods), a nice clean way to
1802implement a multithreaded compiler would be for the <tt>PassManager</tt> class
1803to create multiple instances of each pass object, and allow the separate
1804instances to be hacking on different parts of the program at the same time.</p>
1805
1806<p>This implementation would prevent each of the passes from having to implement
1807multithreaded constructs, requiring only the LLVM core to have locking in a few
1808places (for global resources). Although this is a simple extension, we simply
1809haven't had time (or multiprocessor machines, thus a reason) to implement this.
1810Despite that, we have kept the LLVM passes SMP ready, and you should too.</p>
1811
1812</div>
1813
1814<!-- *********************************************************************** -->
1815<hr>
1816<address>
1817 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman947321d2008-12-11 17:34:48 +00001818 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001819 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman5c1cc642008-12-11 18:23:24 +00001820 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001821
1822 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
1823 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
1824 Last modified: $Date$
1825</address>
1826
1827</body>
1828</html>