blob: 7901c91abb3bfc449b6c86453af588780fd2dec3 [file] [log] [blame]
Chris Lattnerd28b0d72004-06-25 04:24:22 +00001//===- Andersens.cpp - Andersen's Interprocedural Alias Analysis ----------===//
Chris Lattnere995a2a2004-05-23 21:00:47 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a very simple implementation of Andersen's interprocedural
11// alias analysis. This implementation does not include any of the fancy
12// features that make Andersen's reasonably efficient (like cycle elimination or
13// variable substitution), but it should be useful for getting precision
14// numbers and can be extended in the future.
15//
16// In pointer analysis terms, this is a subset-based, flow-insensitive,
17// field-insensitive, and context-insensitive algorithm pointer algorithm.
18//
19// This algorithm is implemented as three stages:
20// 1. Object identification.
21// 2. Inclusion constraint identification.
22// 3. Inclusion constraint solving.
23//
24// The object identification stage identifies all of the memory objects in the
25// program, which includes globals, heap allocated objects, and stack allocated
26// objects.
27//
28// The inclusion constraint identification stage finds all inclusion constraints
29// in the program by scanning the program, looking for pointer assignments and
30// other statements that effect the points-to graph. For a statement like "A =
31// B", this statement is processed to indicate that A can point to anything that
32// B can point to. Constraints can handle copies, loads, and stores.
33//
34// The inclusion constraint solving phase iteratively propagates the inclusion
35// constraints until a fixed point is reached. This is an O(N^3) algorithm.
36//
37// In the initial pass, all indirect function calls are completely ignored. As
38// the analysis discovers new targets of function pointers, it iteratively
39// resolves a precise (and conservative) call graph. Also related, this
40// analysis initially assumes that all internal functions have known incoming
41// pointers. If we find that an internal function's address escapes outside of
42// the program, we update this assumption.
43//
Chris Lattnerc7ca32b2004-06-05 20:12:36 +000044// Future Improvements:
45// This implementation of Andersen's algorithm is extremely slow. To make it
46// scale reasonably well, the inclusion constraints could be sorted (easy),
47// offline variable substitution would be a huge win (straight-forward), and
48// online cycle elimination (trickier) might help as well.
49//
Chris Lattnere995a2a2004-05-23 21:00:47 +000050//===----------------------------------------------------------------------===//
51
52#define DEBUG_TYPE "anders-aa"
53#include "llvm/Constants.h"
54#include "llvm/DerivedTypes.h"
55#include "llvm/Instructions.h"
56#include "llvm/Module.h"
57#include "llvm/Pass.h"
58#include "llvm/Support/InstIterator.h"
59#include "llvm/Support/InstVisitor.h"
60#include "llvm/Analysis/AliasAnalysis.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000061#include "llvm/Support/Debug.h"
62#include "llvm/ADT/Statistic.h"
Chris Lattnere995a2a2004-05-23 21:00:47 +000063#include <set>
64using namespace llvm;
65
66namespace {
67 Statistic<>
68 NumIters("anders-aa", "Number of iterations to reach convergence");
69 Statistic<>
70 NumConstraints("anders-aa", "Number of constraints");
71 Statistic<>
72 NumNodes("anders-aa", "Number of nodes");
73 Statistic<>
74 NumEscapingFunctions("anders-aa", "Number of internal functions that escape");
75 Statistic<>
76 NumIndirectCallees("anders-aa", "Number of indirect callees found");
77
78 class Andersens : public Pass, public AliasAnalysis,
79 private InstVisitor<Andersens> {
80 /// Node class - This class is used to represent a memory object in the
81 /// program, and is the primitive used to build the points-to graph.
82 class Node {
83 std::vector<Node*> Pointees;
84 Value *Val;
85 public:
86 Node() : Val(0) {}
87 Node *setValue(Value *V) {
88 assert(Val == 0 && "Value already set for this node!");
89 Val = V;
90 return this;
91 }
92
93 /// getValue - Return the LLVM value corresponding to this node.
94 Value *getValue() const { return Val; }
95
96 typedef std::vector<Node*>::const_iterator iterator;
97 iterator begin() const { return Pointees.begin(); }
98 iterator end() const { return Pointees.end(); }
99
100 /// addPointerTo - Add a pointer to the list of pointees of this node,
101 /// returning true if this caused a new pointer to be added, or false if
102 /// we already knew about the points-to relation.
103 bool addPointerTo(Node *N) {
104 std::vector<Node*>::iterator I = std::lower_bound(Pointees.begin(),
105 Pointees.end(),
106 N);
107 if (I != Pointees.end() && *I == N)
108 return false;
109 Pointees.insert(I, N);
110 return true;
111 }
112
113 /// intersects - Return true if the points-to set of this node intersects
114 /// with the points-to set of the specified node.
115 bool intersects(Node *N) const;
116
117 /// intersectsIgnoring - Return true if the points-to set of this node
118 /// intersects with the points-to set of the specified node on any nodes
119 /// except for the specified node to ignore.
120 bool intersectsIgnoring(Node *N, Node *Ignoring) const;
121
122 // Constraint application methods.
123 bool copyFrom(Node *N);
124 bool loadFrom(Node *N);
125 bool storeThrough(Node *N);
126 };
127
128 /// GraphNodes - This vector is populated as part of the object
129 /// identification stage of the analysis, which populates this vector with a
130 /// node for each memory object and fills in the ValueNodes map.
131 std::vector<Node> GraphNodes;
132
133 /// ValueNodes - This map indicates the Node that a particular Value* is
134 /// represented by. This contains entries for all pointers.
135 std::map<Value*, unsigned> ValueNodes;
136
137 /// ObjectNodes - This map contains entries for each memory object in the
138 /// program: globals, alloca's and mallocs.
139 std::map<Value*, unsigned> ObjectNodes;
140
141 /// ReturnNodes - This map contains an entry for each function in the
142 /// program that returns a value.
143 std::map<Function*, unsigned> ReturnNodes;
144
145 /// VarargNodes - This map contains the entry used to represent all pointers
146 /// passed through the varargs portion of a function call for a particular
147 /// function. An entry is not present in this map for functions that do not
148 /// take variable arguments.
149 std::map<Function*, unsigned> VarargNodes;
150
151 /// Constraint - Objects of this structure are used to represent the various
152 /// constraints identified by the algorithm. The constraints are 'copy',
153 /// for statements like "A = B", 'load' for statements like "A = *B", and
154 /// 'store' for statements like "*A = B".
155 struct Constraint {
156 enum ConstraintType { Copy, Load, Store } Type;
157 Node *Dest, *Src;
158
159 Constraint(ConstraintType Ty, Node *D, Node *S)
160 : Type(Ty), Dest(D), Src(S) {}
161 };
162
163 /// Constraints - This vector contains a list of all of the constraints
164 /// identified by the program.
165 std::vector<Constraint> Constraints;
166
167 /// EscapingInternalFunctions - This set contains all of the internal
168 /// functions that are found to escape from the program. If the address of
169 /// an internal function is passed to an external function or otherwise
170 /// escapes from the analyzed portion of the program, we must assume that
171 /// any pointer arguments can alias the universal node. This set keeps
172 /// track of those functions we are assuming to escape so far.
173 std::set<Function*> EscapingInternalFunctions;
174
175 /// IndirectCalls - This contains a list of all of the indirect call sites
176 /// in the program. Since the call graph is iteratively discovered, we may
177 /// need to add constraints to our graph as we find new targets of function
178 /// pointers.
179 std::vector<CallSite> IndirectCalls;
180
181 /// IndirectCallees - For each call site in the indirect calls list, keep
182 /// track of the callees that we have discovered so far. As the analysis
183 /// proceeds, more callees are discovered, until the call graph finally
184 /// stabilizes.
185 std::map<CallSite, std::vector<Function*> > IndirectCallees;
186
187 /// This enum defines the GraphNodes indices that correspond to important
188 /// fixed sets.
189 enum {
190 UniversalSet = 0,
191 NullPtr = 1,
192 NullObject = 2,
193 };
194
195 public:
196 bool run(Module &M) {
197 InitializeAliasAnalysis(this);
198 IdentifyObjects(M);
199 CollectConstraints(M);
200 DEBUG(PrintConstraints());
201 SolveConstraints();
202 DEBUG(PrintPointsToGraph());
203
204 // Free the constraints list, as we don't need it to respond to alias
205 // requests.
206 ObjectNodes.clear();
207 ReturnNodes.clear();
208 VarargNodes.clear();
209 EscapingInternalFunctions.clear();
210 std::vector<Constraint>().swap(Constraints);
211 return false;
212 }
213
214 void releaseMemory() {
215 // FIXME: Until we have transitively required passes working correctly,
216 // this cannot be enabled! Otherwise, using -count-aa with the pass
217 // causes memory to be freed too early. :(
218#if 0
219 // The memory objects and ValueNodes data structures at the only ones that
220 // are still live after construction.
221 std::vector<Node>().swap(GraphNodes);
222 ValueNodes.clear();
223#endif
224 }
225
226 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
227 AliasAnalysis::getAnalysisUsage(AU);
228 AU.setPreservesAll(); // Does not transform code
229 }
230
231 //------------------------------------------------
232 // Implement the AliasAnalysis API
233 //
234 AliasResult alias(const Value *V1, unsigned V1Size,
235 const Value *V2, unsigned V2Size);
236 void getMustAliases(Value *P, std::vector<Value*> &RetVals);
237 bool pointsToConstantMemory(const Value *P);
238
239 virtual void deleteValue(Value *V) {
240 ValueNodes.erase(V);
241 getAnalysis<AliasAnalysis>().deleteValue(V);
242 }
243
244 virtual void copyValue(Value *From, Value *To) {
245 ValueNodes[To] = ValueNodes[From];
246 getAnalysis<AliasAnalysis>().copyValue(From, To);
247 }
248
249 private:
250 /// getNode - Return the node corresponding to the specified pointer scalar.
251 ///
252 Node *getNode(Value *V) {
253 if (Constant *C = dyn_cast<Constant>(V))
Chris Lattnerdf9b7bc2004-08-16 05:38:02 +0000254 if (!isa<GlobalValue>(C))
255 return getNodeForConstantPointer(C);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000256
257 std::map<Value*, unsigned>::iterator I = ValueNodes.find(V);
258 if (I == ValueNodes.end()) {
259 V->dump();
260 assert(I != ValueNodes.end() &&
261 "Value does not have a node in the points-to graph!");
262 }
263 return &GraphNodes[I->second];
264 }
265
266 /// getObject - Return the node corresponding to the memory object for the
267 /// specified global or allocation instruction.
268 Node *getObject(Value *V) {
269 std::map<Value*, unsigned>::iterator I = ObjectNodes.find(V);
270 assert(I != ObjectNodes.end() &&
271 "Value does not have an object in the points-to graph!");
272 return &GraphNodes[I->second];
273 }
274
275 /// getReturnNode - Return the node representing the return value for the
276 /// specified function.
277 Node *getReturnNode(Function *F) {
278 std::map<Function*, unsigned>::iterator I = ReturnNodes.find(F);
279 assert(I != ReturnNodes.end() && "Function does not return a value!");
280 return &GraphNodes[I->second];
281 }
282
283 /// getVarargNode - Return the node representing the variable arguments
284 /// formal for the specified function.
285 Node *getVarargNode(Function *F) {
286 std::map<Function*, unsigned>::iterator I = VarargNodes.find(F);
287 assert(I != VarargNodes.end() && "Function does not take var args!");
288 return &GraphNodes[I->second];
289 }
290
291 /// getNodeValue - Get the node for the specified LLVM value and set the
292 /// value for it to be the specified value.
293 Node *getNodeValue(Value &V) {
294 return getNode(&V)->setValue(&V);
295 }
296
297 void IdentifyObjects(Module &M);
298 void CollectConstraints(Module &M);
299 void SolveConstraints();
300
301 Node *getNodeForConstantPointer(Constant *C);
302 Node *getNodeForConstantPointerTarget(Constant *C);
303 void AddGlobalInitializerConstraints(Node *N, Constant *C);
304 void AddConstraintsForNonInternalLinkage(Function *F);
305 void AddConstraintsForCall(CallSite CS, Function *F);
306
307
308 void PrintNode(Node *N);
309 void PrintConstraints();
310 void PrintPointsToGraph();
311
312 //===------------------------------------------------------------------===//
313 // Instruction visitation methods for adding constraints
314 //
315 friend class InstVisitor<Andersens>;
316 void visitReturnInst(ReturnInst &RI);
317 void visitInvokeInst(InvokeInst &II) { visitCallSite(CallSite(&II)); }
318 void visitCallInst(CallInst &CI) { visitCallSite(CallSite(&CI)); }
319 void visitCallSite(CallSite CS);
320 void visitAllocationInst(AllocationInst &AI);
321 void visitLoadInst(LoadInst &LI);
322 void visitStoreInst(StoreInst &SI);
323 void visitGetElementPtrInst(GetElementPtrInst &GEP);
324 void visitPHINode(PHINode &PN);
325 void visitCastInst(CastInst &CI);
326 void visitSelectInst(SelectInst &SI);
327 void visitVANext(VANextInst &I);
328 void visitVAArg(VAArgInst &I);
329 void visitInstruction(Instruction &I);
330 };
331
332 RegisterOpt<Andersens> X("anders-aa",
333 "Andersen's Interprocedural Alias Analysis");
334 RegisterAnalysisGroup<AliasAnalysis, Andersens> Y;
335}
336
337//===----------------------------------------------------------------------===//
338// AliasAnalysis Interface Implementation
339//===----------------------------------------------------------------------===//
340
341AliasAnalysis::AliasResult Andersens::alias(const Value *V1, unsigned V1Size,
342 const Value *V2, unsigned V2Size) {
343 Node *N1 = getNode((Value*)V1);
344 Node *N2 = getNode((Value*)V2);
345
346 // Check to see if the two pointers are known to not alias. They don't alias
347 // if their points-to sets do not intersect.
348 if (!N1->intersectsIgnoring(N2, &GraphNodes[NullObject]))
349 return NoAlias;
350
351 return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
352}
353
354/// getMustAlias - We can provide must alias information if we know that a
355/// pointer can only point to a specific function or the null pointer.
356/// Unfortunately we cannot determine must-alias information for global
357/// variables or any other memory memory objects because we do not track whether
358/// a pointer points to the beginning of an object or a field of it.
359void Andersens::getMustAliases(Value *P, std::vector<Value*> &RetVals) {
360 Node *N = getNode(P);
361 Node::iterator I = N->begin();
362 if (I != N->end()) {
363 // If there is exactly one element in the points-to set for the object...
364 ++I;
365 if (I == N->end()) {
366 Node *Pointee = *N->begin();
367
368 // If a function is the only object in the points-to set, then it must be
369 // the destination. Note that we can't handle global variables here,
370 // because we don't know if the pointer is actually pointing to a field of
371 // the global or to the beginning of it.
372 if (Value *V = Pointee->getValue()) {
373 if (Function *F = dyn_cast<Function>(V))
374 RetVals.push_back(F);
375 } else {
376 // If the object in the points-to set is the null object, then the null
377 // pointer is a must alias.
378 if (Pointee == &GraphNodes[NullObject])
379 RetVals.push_back(Constant::getNullValue(P->getType()));
380 }
381 }
382 }
383
384 AliasAnalysis::getMustAliases(P, RetVals);
385}
386
387/// pointsToConstantMemory - If we can determine that this pointer only points
388/// to constant memory, return true. In practice, this means that if the
389/// pointer can only point to constant globals, functions, or the null pointer,
390/// return true.
391///
392bool Andersens::pointsToConstantMemory(const Value *P) {
393 Node *N = getNode((Value*)P);
394 for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I) {
395 if (Value *V = (*I)->getValue()) {
396 if (!isa<GlobalValue>(V) || (isa<GlobalVariable>(V) &&
397 !cast<GlobalVariable>(V)->isConstant()))
398 return AliasAnalysis::pointsToConstantMemory(P);
399 } else {
400 if (*I != &GraphNodes[NullObject])
401 return AliasAnalysis::pointsToConstantMemory(P);
402 }
403 }
404
405 return true;
406}
407
408//===----------------------------------------------------------------------===//
409// Object Identification Phase
410//===----------------------------------------------------------------------===//
411
412/// IdentifyObjects - This stage scans the program, adding an entry to the
413/// GraphNodes list for each memory object in the program (global stack or
414/// heap), and populates the ValueNodes and ObjectNodes maps for these objects.
415///
416void Andersens::IdentifyObjects(Module &M) {
417 unsigned NumObjects = 0;
418
419 // Object #0 is always the universal set: the object that we don't know
420 // anything about.
421 assert(NumObjects == UniversalSet && "Something changed!");
422 ++NumObjects;
423
424 // Object #1 always represents the null pointer.
425 assert(NumObjects == NullPtr && "Something changed!");
426 ++NumObjects;
427
428 // Object #2 always represents the null object (the object pointed to by null)
429 assert(NumObjects == NullObject && "Something changed!");
430 ++NumObjects;
431
432 // Add all the globals first.
433 for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I) {
434 ObjectNodes[I] = NumObjects++;
435 ValueNodes[I] = NumObjects++;
436 }
437
438 // Add nodes for all of the functions and the instructions inside of them.
439 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
440 // The function itself is a memory object.
441 ValueNodes[F] = NumObjects++;
442 ObjectNodes[F] = NumObjects++;
443 if (isa<PointerType>(F->getFunctionType()->getReturnType()))
444 ReturnNodes[F] = NumObjects++;
445 if (F->getFunctionType()->isVarArg())
446 VarargNodes[F] = NumObjects++;
447
448 // Add nodes for all of the incoming pointer arguments.
449 for (Function::aiterator I = F->abegin(), E = F->aend(); I != E; ++I)
450 if (isa<PointerType>(I->getType()))
451 ValueNodes[I] = NumObjects++;
452
453 // Scan the function body, creating a memory object for each heap/stack
454 // allocation in the body of the function and a node to represent all
455 // pointer values defined by instructions and used as operands.
456 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
457 // If this is an heap or stack allocation, create a node for the memory
458 // object.
459 if (isa<PointerType>(II->getType())) {
460 ValueNodes[&*II] = NumObjects++;
461 if (AllocationInst *AI = dyn_cast<AllocationInst>(&*II))
462 ObjectNodes[AI] = NumObjects++;
463 }
464 }
465 }
466
467 // Now that we know how many objects to create, make them all now!
468 GraphNodes.resize(NumObjects);
469 NumNodes += NumObjects;
470}
471
472//===----------------------------------------------------------------------===//
473// Constraint Identification Phase
474//===----------------------------------------------------------------------===//
475
476/// getNodeForConstantPointer - Return the node corresponding to the constant
477/// pointer itself.
478Andersens::Node *Andersens::getNodeForConstantPointer(Constant *C) {
479 assert(isa<PointerType>(C->getType()) && "Not a constant pointer!");
480
481 if (isa<ConstantPointerNull>(C))
482 return &GraphNodes[NullPtr];
Reid Spencere8404342004-07-18 00:18:30 +0000483 else if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
484 return getNode(GV);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000485 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
486 switch (CE->getOpcode()) {
487 case Instruction::GetElementPtr:
488 return getNodeForConstantPointer(CE->getOperand(0));
489 case Instruction::Cast:
490 if (isa<PointerType>(CE->getOperand(0)->getType()))
491 return getNodeForConstantPointer(CE->getOperand(0));
492 else
493 return &GraphNodes[UniversalSet];
494 default:
495 std::cerr << "Constant Expr not yet handled: " << *CE << "\n";
496 assert(0);
497 }
498 } else {
499 assert(0 && "Unknown constant pointer!");
500 }
Chris Lattner1fc37392004-05-27 20:57:01 +0000501 return 0;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000502}
503
504/// getNodeForConstantPointerTarget - Return the node POINTED TO by the
505/// specified constant pointer.
506Andersens::Node *Andersens::getNodeForConstantPointerTarget(Constant *C) {
507 assert(isa<PointerType>(C->getType()) && "Not a constant pointer!");
508
509 if (isa<ConstantPointerNull>(C))
510 return &GraphNodes[NullObject];
Reid Spencere8404342004-07-18 00:18:30 +0000511 else if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
512 return getObject(GV);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000513 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
514 switch (CE->getOpcode()) {
515 case Instruction::GetElementPtr:
516 return getNodeForConstantPointerTarget(CE->getOperand(0));
517 case Instruction::Cast:
518 if (isa<PointerType>(CE->getOperand(0)->getType()))
519 return getNodeForConstantPointerTarget(CE->getOperand(0));
520 else
521 return &GraphNodes[UniversalSet];
522 default:
523 std::cerr << "Constant Expr not yet handled: " << *CE << "\n";
524 assert(0);
525 }
526 } else {
527 assert(0 && "Unknown constant pointer!");
528 }
Chris Lattner1fc37392004-05-27 20:57:01 +0000529 return 0;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000530}
531
532/// AddGlobalInitializerConstraints - Add inclusion constraints for the memory
533/// object N, which contains values indicated by C.
534void Andersens::AddGlobalInitializerConstraints(Node *N, Constant *C) {
535 if (C->getType()->isFirstClassType()) {
536 if (isa<PointerType>(C->getType()))
537 N->addPointerTo(getNodeForConstantPointer(C));
538 } else if (C->isNullValue()) {
539 N->addPointerTo(&GraphNodes[NullObject]);
540 return;
541 } else {
542 // If this is an array or struct, include constraints for each element.
543 assert(isa<ConstantArray>(C) || isa<ConstantStruct>(C));
544 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
545 AddGlobalInitializerConstraints(N, cast<Constant>(C->getOperand(i)));
546 }
547}
548
549void Andersens::AddConstraintsForNonInternalLinkage(Function *F) {
550 for (Function::aiterator I = F->abegin(), E = F->aend(); I != E; ++I)
551 if (isa<PointerType>(I->getType()))
552 // If this is an argument of an externally accessible function, the
553 // incoming pointer might point to anything.
554 Constraints.push_back(Constraint(Constraint::Copy, getNode(I),
555 &GraphNodes[UniversalSet]));
556}
557
558
559/// CollectConstraints - This stage scans the program, adding a constraint to
560/// the Constraints list for each instruction in the program that induces a
561/// constraint, and setting up the initial points-to graph.
562///
563void Andersens::CollectConstraints(Module &M) {
564 // First, the universal set points to itself.
565 GraphNodes[UniversalSet].addPointerTo(&GraphNodes[UniversalSet]);
566
567 // Next, the null pointer points to the null object.
568 GraphNodes[NullPtr].addPointerTo(&GraphNodes[NullObject]);
569
570 // Next, add any constraints on global variables and their initializers.
571 for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I) {
572 // Associate the address of the global object as pointing to the memory for
573 // the global: &G = <G memory>
574 Node *Object = getObject(I);
575 Object->setValue(I);
576 getNodeValue(*I)->addPointerTo(Object);
577
578 if (I->hasInitializer()) {
579 AddGlobalInitializerConstraints(Object, I->getInitializer());
580 } else {
581 // If it doesn't have an initializer (i.e. it's defined in another
582 // translation unit), it points to the universal set.
583 Constraints.push_back(Constraint(Constraint::Copy, Object,
584 &GraphNodes[UniversalSet]));
585 }
586 }
587
588 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
589 // Make the function address point to the function object.
590 getNodeValue(*F)->addPointerTo(getObject(F)->setValue(F));
591
592 // Set up the return value node.
593 if (isa<PointerType>(F->getFunctionType()->getReturnType()))
594 getReturnNode(F)->setValue(F);
595 if (F->getFunctionType()->isVarArg())
596 getVarargNode(F)->setValue(F);
597
598 // Set up incoming argument nodes.
599 for (Function::aiterator I = F->abegin(), E = F->aend(); I != E; ++I)
600 if (isa<PointerType>(I->getType()))
601 getNodeValue(*I);
602
603 if (!F->hasInternalLinkage())
604 AddConstraintsForNonInternalLinkage(F);
605
606 if (!F->isExternal()) {
607 // Scan the function body, creating a memory object for each heap/stack
608 // allocation in the body of the function and a node to represent all
609 // pointer values defined by instructions and used as operands.
610 visit(F);
611 } else {
612 // External functions that return pointers return the universal set.
613 if (isa<PointerType>(F->getFunctionType()->getReturnType()))
614 Constraints.push_back(Constraint(Constraint::Copy,
615 getReturnNode(F),
616 &GraphNodes[UniversalSet]));
617
618 // Any pointers that are passed into the function have the universal set
619 // stored into them.
620 for (Function::aiterator I = F->abegin(), E = F->aend(); I != E; ++I)
621 if (isa<PointerType>(I->getType())) {
622 // Pointers passed into external functions could have anything stored
623 // through them.
624 Constraints.push_back(Constraint(Constraint::Store, getNode(I),
625 &GraphNodes[UniversalSet]));
626 // Memory objects passed into external function calls can have the
627 // universal set point to them.
628 Constraints.push_back(Constraint(Constraint::Copy,
629 &GraphNodes[UniversalSet],
630 getNode(I)));
631 }
632
633 // If this is an external varargs function, it can also store pointers
634 // into any pointers passed through the varargs section.
635 if (F->getFunctionType()->isVarArg())
636 Constraints.push_back(Constraint(Constraint::Store, getVarargNode(F),
637 &GraphNodes[UniversalSet]));
638 }
639 }
640 NumConstraints += Constraints.size();
641}
642
643
644void Andersens::visitInstruction(Instruction &I) {
645#ifdef NDEBUG
646 return; // This function is just a big assert.
647#endif
648 if (isa<BinaryOperator>(I))
649 return;
650 // Most instructions don't have any effect on pointer values.
651 switch (I.getOpcode()) {
652 case Instruction::Br:
653 case Instruction::Switch:
654 case Instruction::Unwind:
655 case Instruction::Free:
656 case Instruction::Shl:
657 case Instruction::Shr:
658 return;
659 default:
660 // Is this something we aren't handling yet?
661 std::cerr << "Unknown instruction: " << I;
662 abort();
663 }
664}
665
666void Andersens::visitAllocationInst(AllocationInst &AI) {
667 getNodeValue(AI)->addPointerTo(getObject(&AI)->setValue(&AI));
668}
669
670void Andersens::visitReturnInst(ReturnInst &RI) {
671 if (RI.getNumOperands() && isa<PointerType>(RI.getOperand(0)->getType()))
672 // return V --> <Copy/retval{F}/v>
673 Constraints.push_back(Constraint(Constraint::Copy,
674 getReturnNode(RI.getParent()->getParent()),
675 getNode(RI.getOperand(0))));
676}
677
678void Andersens::visitLoadInst(LoadInst &LI) {
679 if (isa<PointerType>(LI.getType()))
680 // P1 = load P2 --> <Load/P1/P2>
681 Constraints.push_back(Constraint(Constraint::Load, getNodeValue(LI),
682 getNode(LI.getOperand(0))));
683}
684
685void Andersens::visitStoreInst(StoreInst &SI) {
686 if (isa<PointerType>(SI.getOperand(0)->getType()))
687 // store P1, P2 --> <Store/P2/P1>
688 Constraints.push_back(Constraint(Constraint::Store,
689 getNode(SI.getOperand(1)),
690 getNode(SI.getOperand(0))));
691}
692
693void Andersens::visitGetElementPtrInst(GetElementPtrInst &GEP) {
694 // P1 = getelementptr P2, ... --> <Copy/P1/P2>
695 Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(GEP),
696 getNode(GEP.getOperand(0))));
697}
698
699void Andersens::visitPHINode(PHINode &PN) {
700 if (isa<PointerType>(PN.getType())) {
701 Node *PNN = getNodeValue(PN);
702 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
703 // P1 = phi P2, P3 --> <Copy/P1/P2>, <Copy/P1/P3>, ...
704 Constraints.push_back(Constraint(Constraint::Copy, PNN,
705 getNode(PN.getIncomingValue(i))));
706 }
707}
708
709void Andersens::visitCastInst(CastInst &CI) {
710 Value *Op = CI.getOperand(0);
711 if (isa<PointerType>(CI.getType())) {
712 if (isa<PointerType>(Op->getType())) {
713 // P1 = cast P2 --> <Copy/P1/P2>
714 Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI),
715 getNode(CI.getOperand(0))));
716 } else {
717 // P1 = cast int --> <Copy/P1/Univ>
718 Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI),
719 &GraphNodes[UniversalSet]));
720 }
721 } else if (isa<PointerType>(Op->getType())) {
722 // int = cast P1 --> <Copy/Univ/P1>
723 Constraints.push_back(Constraint(Constraint::Copy,
724 &GraphNodes[UniversalSet],
725 getNode(CI.getOperand(0))));
726 }
727}
728
729void Andersens::visitSelectInst(SelectInst &SI) {
730 if (isa<PointerType>(SI.getType())) {
731 Node *SIN = getNodeValue(SI);
732 // P1 = select C, P2, P3 ---> <Copy/P1/P2>, <Copy/P1/P3>
733 Constraints.push_back(Constraint(Constraint::Copy, SIN,
734 getNode(SI.getOperand(1))));
735 Constraints.push_back(Constraint(Constraint::Copy, SIN,
736 getNode(SI.getOperand(2))));
737 }
738}
739
740void Andersens::visitVANext(VANextInst &I) {
741 // FIXME: Implement
742 assert(0 && "vanext not handled yet!");
743}
744void Andersens::visitVAArg(VAArgInst &I) {
745 assert(0 && "vaarg not handled yet!");
746}
747
748/// AddConstraintsForCall - Add constraints for a call with actual arguments
749/// specified by CS to the function specified by F. Note that the types of
750/// arguments might not match up in the case where this is an indirect call and
751/// the function pointer has been casted. If this is the case, do something
752/// reasonable.
753void Andersens::AddConstraintsForCall(CallSite CS, Function *F) {
754 if (isa<PointerType>(CS.getType())) {
755 Node *CSN = getNode(CS.getInstruction());
756 if (isa<PointerType>(F->getFunctionType()->getReturnType())) {
757 Constraints.push_back(Constraint(Constraint::Copy, CSN,
758 getReturnNode(F)));
759 } else {
760 // If the function returns a non-pointer value, handle this just like we
761 // treat a nonpointer cast to pointer.
762 Constraints.push_back(Constraint(Constraint::Copy, CSN,
763 &GraphNodes[UniversalSet]));
764 }
765 } else if (isa<PointerType>(F->getFunctionType()->getReturnType())) {
766 Constraints.push_back(Constraint(Constraint::Copy,
767 &GraphNodes[UniversalSet],
768 getReturnNode(F)));
769 }
770
771 Function::aiterator AI = F->abegin(), AE = F->aend();
772 CallSite::arg_iterator ArgI = CS.arg_begin(), ArgE = CS.arg_end();
773 for (; AI != AE && ArgI != ArgE; ++AI, ++ArgI)
774 if (isa<PointerType>(AI->getType())) {
775 if (isa<PointerType>((*ArgI)->getType())) {
776 // Copy the actual argument into the formal argument.
777 Constraints.push_back(Constraint(Constraint::Copy, getNode(AI),
778 getNode(*ArgI)));
779 } else {
780 Constraints.push_back(Constraint(Constraint::Copy, getNode(AI),
781 &GraphNodes[UniversalSet]));
782 }
783 } else if (isa<PointerType>((*ArgI)->getType())) {
784 Constraints.push_back(Constraint(Constraint::Copy,
785 &GraphNodes[UniversalSet],
786 getNode(*ArgI)));
787 }
788
789 // Copy all pointers passed through the varargs section to the varargs node.
790 if (F->getFunctionType()->isVarArg())
791 for (; ArgI != ArgE; ++ArgI)
792 if (isa<PointerType>((*ArgI)->getType()))
793 Constraints.push_back(Constraint(Constraint::Copy, getVarargNode(F),
794 getNode(*ArgI)));
795 // If more arguments are passed in than we track, just drop them on the floor.
796}
797
798void Andersens::visitCallSite(CallSite CS) {
799 if (isa<PointerType>(CS.getType()))
800 getNodeValue(*CS.getInstruction());
801
802 if (Function *F = CS.getCalledFunction()) {
803 AddConstraintsForCall(CS, F);
804 } else {
805 // We don't handle indirect call sites yet. Keep track of them for when we
806 // discover the call graph incrementally.
807 IndirectCalls.push_back(CS);
808 }
809}
810
811//===----------------------------------------------------------------------===//
812// Constraint Solving Phase
813//===----------------------------------------------------------------------===//
814
815/// intersects - Return true if the points-to set of this node intersects
816/// with the points-to set of the specified node.
817bool Andersens::Node::intersects(Node *N) const {
818 iterator I1 = begin(), I2 = N->begin(), E1 = end(), E2 = N->end();
819 while (I1 != E1 && I2 != E2) {
820 if (*I1 == *I2) return true;
821 if (*I1 < *I2)
822 ++I1;
823 else
824 ++I2;
825 }
826 return false;
827}
828
829/// intersectsIgnoring - Return true if the points-to set of this node
830/// intersects with the points-to set of the specified node on any nodes
831/// except for the specified node to ignore.
832bool Andersens::Node::intersectsIgnoring(Node *N, Node *Ignoring) const {
833 iterator I1 = begin(), I2 = N->begin(), E1 = end(), E2 = N->end();
834 while (I1 != E1 && I2 != E2) {
835 if (*I1 == *I2) {
836 if (*I1 != Ignoring) return true;
837 ++I1; ++I2;
838 } else if (*I1 < *I2)
839 ++I1;
840 else
841 ++I2;
842 }
843 return false;
844}
845
846// Copy constraint: all edges out of the source node get copied to the
847// destination node. This returns true if a change is made.
848bool Andersens::Node::copyFrom(Node *N) {
849 // Use a mostly linear-time merge since both of the lists are sorted.
850 bool Changed = false;
851 iterator I = N->begin(), E = N->end();
852 unsigned i = 0;
853 while (I != E && i != Pointees.size()) {
854 if (Pointees[i] < *I) {
855 ++i;
856 } else if (Pointees[i] == *I) {
857 ++i; ++I;
858 } else {
859 // We found a new element to copy over.
860 Changed = true;
861 Pointees.insert(Pointees.begin()+i, *I);
862 ++i; ++I;
863 }
864 }
865
866 if (I != E) {
867 Pointees.insert(Pointees.end(), I, E);
868 Changed = true;
869 }
870
871 return Changed;
872}
873
874bool Andersens::Node::loadFrom(Node *N) {
875 bool Changed = false;
876 for (iterator I = N->begin(), E = N->end(); I != E; ++I)
877 Changed |= copyFrom(*I);
878 return Changed;
879}
880
881bool Andersens::Node::storeThrough(Node *N) {
882 bool Changed = false;
883 for (iterator I = begin(), E = end(); I != E; ++I)
884 Changed |= (*I)->copyFrom(N);
885 return Changed;
886}
887
888
889/// SolveConstraints - This stage iteratively processes the constraints list
890/// propagating constraints (adding edges to the Nodes in the points-to graph)
891/// until a fixed point is reached.
892///
893void Andersens::SolveConstraints() {
894 bool Changed = true;
895 unsigned Iteration = 0;
896 while (Changed) {
897 Changed = false;
898 ++NumIters;
899 DEBUG(std::cerr << "Starting iteration #" << Iteration++ << "!\n");
900
901 // Loop over all of the constraints, applying them in turn.
902 for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
903 Constraint &C = Constraints[i];
904 switch (C.Type) {
905 case Constraint::Copy:
906 Changed |= C.Dest->copyFrom(C.Src);
907 break;
908 case Constraint::Load:
909 Changed |= C.Dest->loadFrom(C.Src);
910 break;
911 case Constraint::Store:
912 Changed |= C.Dest->storeThrough(C.Src);
913 break;
914 default:
915 assert(0 && "Unknown constraint!");
916 }
917 }
918
919 if (Changed) {
920 // Check to see if any internal function's addresses have been passed to
921 // external functions. If so, we have to assume that their incoming
922 // arguments could be anything. If there are any internal functions in
923 // the universal node that we don't know about, we must iterate.
924 for (Node::iterator I = GraphNodes[UniversalSet].begin(),
925 E = GraphNodes[UniversalSet].end(); I != E; ++I)
926 if (Function *F = dyn_cast_or_null<Function>((*I)->getValue()))
927 if (F->hasInternalLinkage() &&
928 EscapingInternalFunctions.insert(F).second) {
929 // We found a function that is just now escaping. Mark it as if it
930 // didn't have internal linkage.
931 AddConstraintsForNonInternalLinkage(F);
932 DEBUG(std::cerr << "Found escaping internal function: "
933 << F->getName() << "\n");
934 ++NumEscapingFunctions;
935 }
936
937 // Check to see if we have discovered any new callees of the indirect call
938 // sites. If so, add constraints to the analysis.
939 for (unsigned i = 0, e = IndirectCalls.size(); i != e; ++i) {
940 CallSite CS = IndirectCalls[i];
941 std::vector<Function*> &KnownCallees = IndirectCallees[CS];
942 Node *CN = getNode(CS.getCalledValue());
943
944 for (Node::iterator NI = CN->begin(), E = CN->end(); NI != E; ++NI)
945 if (Function *F = dyn_cast_or_null<Function>((*NI)->getValue())) {
946 std::vector<Function*>::iterator IP =
947 std::lower_bound(KnownCallees.begin(), KnownCallees.end(), F);
948 if (IP == KnownCallees.end() || *IP != F) {
949 // Add the constraints for the call now.
950 AddConstraintsForCall(CS, F);
951 DEBUG(std::cerr << "Found actual callee '"
952 << F->getName() << "' for call: "
953 << *CS.getInstruction() << "\n");
954 ++NumIndirectCallees;
955 KnownCallees.insert(IP, F);
956 }
957 }
958 }
959 }
960 }
961}
962
963
964
965//===----------------------------------------------------------------------===//
966// Debugging Output
967//===----------------------------------------------------------------------===//
968
969void Andersens::PrintNode(Node *N) {
970 if (N == &GraphNodes[UniversalSet]) {
971 std::cerr << "<universal>";
972 return;
973 } else if (N == &GraphNodes[NullPtr]) {
974 std::cerr << "<nullptr>";
975 return;
976 } else if (N == &GraphNodes[NullObject]) {
977 std::cerr << "<null>";
978 return;
979 }
980
981 assert(N->getValue() != 0 && "Never set node label!");
982 Value *V = N->getValue();
983 if (Function *F = dyn_cast<Function>(V)) {
984 if (isa<PointerType>(F->getFunctionType()->getReturnType()) &&
985 N == getReturnNode(F)) {
986 std::cerr << F->getName() << ":retval";
987 return;
988 } else if (F->getFunctionType()->isVarArg() && N == getVarargNode(F)) {
989 std::cerr << F->getName() << ":vararg";
990 return;
991 }
992 }
993
994 if (Instruction *I = dyn_cast<Instruction>(V))
995 std::cerr << I->getParent()->getParent()->getName() << ":";
996 else if (Argument *Arg = dyn_cast<Argument>(V))
997 std::cerr << Arg->getParent()->getName() << ":";
998
999 if (V->hasName())
1000 std::cerr << V->getName();
1001 else
1002 std::cerr << "(unnamed)";
1003
1004 if (isa<GlobalValue>(V) || isa<AllocationInst>(V))
1005 if (N == getObject(V))
1006 std::cerr << "<mem>";
1007}
1008
1009void Andersens::PrintConstraints() {
1010 std::cerr << "Constraints:\n";
1011 for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
1012 std::cerr << " #" << i << ": ";
1013 Constraint &C = Constraints[i];
1014 if (C.Type == Constraint::Store)
1015 std::cerr << "*";
1016 PrintNode(C.Dest);
1017 std::cerr << " = ";
1018 if (C.Type == Constraint::Load)
1019 std::cerr << "*";
1020 PrintNode(C.Src);
1021 std::cerr << "\n";
1022 }
1023}
1024
1025void Andersens::PrintPointsToGraph() {
1026 std::cerr << "Points-to graph:\n";
1027 for (unsigned i = 0, e = GraphNodes.size(); i != e; ++i) {
1028 Node *N = &GraphNodes[i];
1029 std::cerr << "[" << (N->end() - N->begin()) << "] ";
1030 PrintNode(N);
1031 std::cerr << "\t--> ";
1032 for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I) {
1033 if (I != N->begin()) std::cerr << ", ";
1034 PrintNode(*I);
1035 }
1036 std::cerr << "\n";
1037 }
1038}