blob: 512a72136693ca24ee1d59f6192fc3b5a845eccc [file] [log] [blame]
Chris Lattnera960d952003-01-13 01:01:59 +00001//===-- PeepholeOptimizer.cpp - X86 Peephole Optimizer --------------------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattnera960d952003-01-13 01:01:59 +00009//
10// This file contains a peephole optimizer for the X86.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86.h"
15#include "llvm/CodeGen/MachineFunctionPass.h"
16#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner61b08f12004-02-10 21:18:55 +000017#include "llvm/Target/MRegisterInfo.h"
Chris Lattner45370762003-12-01 05:15:28 +000018#include "Support/Statistic.h"
Alkis Evlogimenosf81af212004-02-14 01:18:34 +000019#include "Support/STLExtras.h"
20
Chris Lattnere1cc79f2003-11-30 06:13:25 +000021using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000022
Chris Lattnera960d952003-01-13 01:01:59 +000023namespace {
Chris Lattner45370762003-12-01 05:15:28 +000024 Statistic<> NumPHOpts("x86-peephole",
25 "Number of peephole optimization performed");
Chris Lattnera960d952003-01-13 01:01:59 +000026 struct PH : public MachineFunctionPass {
27 virtual bool runOnMachineFunction(MachineFunction &MF);
28
29 bool PeepholeOptimize(MachineBasicBlock &MBB,
30 MachineBasicBlock::iterator &I);
31
32 virtual const char *getPassName() const { return "X86 Peephole Optimizer"; }
33 };
34}
35
Chris Lattnere1cc79f2003-11-30 06:13:25 +000036FunctionPass *llvm::createX86PeepholeOptimizerPass() { return new PH(); }
Chris Lattnera960d952003-01-13 01:01:59 +000037
38bool PH::runOnMachineFunction(MachineFunction &MF) {
39 bool Changed = false;
40
41 for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI != E; ++BI)
Chris Lattneree3e4352003-01-16 18:07:13 +000042 for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); )
Chris Lattner45370762003-12-01 05:15:28 +000043 if (PeepholeOptimize(*BI, I)) {
Chris Lattnera960d952003-01-13 01:01:59 +000044 Changed = true;
Chris Lattner45370762003-12-01 05:15:28 +000045 ++NumPHOpts;
46 } else
Chris Lattnera960d952003-01-13 01:01:59 +000047 ++I;
48
49 return Changed;
50}
51
52
53bool PH::PeepholeOptimize(MachineBasicBlock &MBB,
54 MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +000055 assert(I != MBB.end());
Alkis Evlogimenosf81af212004-02-14 01:18:34 +000056 MachineBasicBlock::iterator NextI = next(I);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +000057
58 MachineInstr *MI = I;
59 MachineInstr *Next = (NextI != MBB.end()) ? &*NextI : (MachineInstr*)0;
Chris Lattnera960d952003-01-13 01:01:59 +000060 unsigned Size = 0;
61 switch (MI->getOpcode()) {
62 case X86::MOVrr8:
63 case X86::MOVrr16:
64 case X86::MOVrr32: // Destroy X = X copies...
65 if (MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
66 I = MBB.erase(I);
Chris Lattnera960d952003-01-13 01:01:59 +000067 return true;
68 }
69 return false;
70
Chris Lattner43a5ff82003-10-20 05:53:31 +000071 // A large number of X86 instructions have forms which take an 8-bit
72 // immediate despite the fact that the operands are 16 or 32 bits. Because
73 // this can save three bytes of code size (and icache space), we want to
74 // shrink them if possible.
Chris Lattner55b54812004-02-17 04:26:43 +000075 case X86::IMULrri16: case X86::IMULrri32:
Chris Lattner43a5ff82003-10-20 05:53:31 +000076 assert(MI->getNumOperands() == 3 && "These should all have 3 operands!");
77 if (MI->getOperand(2).isImmediate()) {
78 int Val = MI->getOperand(2).getImmedValue();
79 // If the value is the same when signed extended from 8 bits...
80 if (Val == (signed int)(signed char)Val) {
81 unsigned Opcode;
82 switch (MI->getOpcode()) {
83 default: assert(0 && "Unknown opcode value!");
Chris Lattner55b54812004-02-17 04:26:43 +000084 case X86::IMULrri16: Opcode = X86::IMULrri16b; break;
85 case X86::IMULrri32: Opcode = X86::IMULrri32b; break;
Alkis Evlogimenos14be6402004-02-04 22:17:40 +000086 }
87 unsigned R0 = MI->getOperand(0).getReg();
88 unsigned R1 = MI->getOperand(1).getReg();
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +000089 I = MBB.insert(MBB.erase(I),
90 BuildMI(Opcode, 2, R0).addReg(R1).addZImm((char)Val));
Alkis Evlogimenos14be6402004-02-04 22:17:40 +000091 return true;
92 }
93 }
94 return false;
95
Chris Lattner55b54812004-02-17 04:26:43 +000096 case X86::IMULrmi16: case X86::IMULrmi32:
97 assert(MI->getNumOperands() == 6 && "These should all have 6 operands!");
98 if (MI->getOperand(5).isImmediate()) {
99 int Val = MI->getOperand(5).getImmedValue();
100 // If the value is the same when signed extended from 8 bits...
101 if (Val == (signed int)(signed char)Val) {
102 unsigned Opcode;
103 switch (MI->getOpcode()) {
104 default: assert(0 && "Unknown opcode value!");
105 case X86::IMULrmi16: Opcode = X86::IMULrmi16b; break;
106 case X86::IMULrmi32: Opcode = X86::IMULrmi32b; break;
107 }
108 unsigned R0 = MI->getOperand(0).getReg();
109 unsigned R1 = MI->getOperand(1).getReg();
110 unsigned Scale = MI->getOperand(2).getImmedValue();
111 unsigned R2 = MI->getOperand(3).getReg();
112 unsigned Offset = MI->getOperand(3).getImmedValue();
113 I = MBB.insert(MBB.erase(I),
114 BuildMI(Opcode, 2, R0).addReg(R1).addZImm(Scale).
115 addReg(R2).addSImm(Offset).addZImm((char)Val));
116 return true;
117 }
118 }
119 return false;
120
Alkis Evlogimenos14be6402004-02-04 22:17:40 +0000121 case X86::ADDri16: case X86::ADDri32:
Alkis Evlogimenos31bbb512004-02-16 23:50:18 +0000122 case X86::ADDmi16: case X86::ADDmi32:
Alkis Evlogimenos14be6402004-02-04 22:17:40 +0000123 case X86::SUBri16: case X86::SUBri32:
124 case X86::ANDri16: case X86::ANDri32:
125 case X86::ORri16: case X86::ORri32:
126 case X86::XORri16: case X86::XORri32:
127 assert(MI->getNumOperands() == 2 && "These should all have 2 operands!");
128 if (MI->getOperand(1).isImmediate()) {
129 int Val = MI->getOperand(1).getImmedValue();
130 // If the value is the same when signed extended from 8 bits...
131 if (Val == (signed int)(signed char)Val) {
132 unsigned Opcode;
133 switch (MI->getOpcode()) {
134 default: assert(0 && "Unknown opcode value!");
Chris Lattner43a5ff82003-10-20 05:53:31 +0000135 case X86::ADDri16: Opcode = X86::ADDri16b; break;
136 case X86::ADDri32: Opcode = X86::ADDri32b; break;
Alkis Evlogimenos31bbb512004-02-16 23:50:18 +0000137 case X86::ADDmi16: Opcode = X86::ADDmi16b; break;
138 case X86::ADDmi32: Opcode = X86::ADDmi32b; break;
Chris Lattner43a5ff82003-10-20 05:53:31 +0000139 case X86::SUBri16: Opcode = X86::SUBri16b; break;
140 case X86::SUBri32: Opcode = X86::SUBri32b; break;
Chris Lattner43a5ff82003-10-20 05:53:31 +0000141 case X86::ANDri16: Opcode = X86::ANDri16b; break;
142 case X86::ANDri32: Opcode = X86::ANDri32b; break;
143 case X86::ORri16: Opcode = X86::ORri16b; break;
144 case X86::ORri32: Opcode = X86::ORri32b; break;
145 case X86::XORri16: Opcode = X86::XORri16b; break;
146 case X86::XORri32: Opcode = X86::XORri32b; break;
147 }
148 unsigned R0 = MI->getOperand(0).getReg();
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000149 I = MBB.insert(MBB.erase(I),
150 BuildMI(Opcode, 1, R0, MOTy::UseAndDef).addZImm((char)Val));
Chris Lattner43a5ff82003-10-20 05:53:31 +0000151 return true;
152 }
153 }
154 return false;
155
Chris Lattnera960d952003-01-13 01:01:59 +0000156#if 0
157 case X86::MOVir32: Size++;
158 case X86::MOVir16: Size++;
159 case X86::MOVir8:
160 // FIXME: We can only do this transformation if we know that flags are not
161 // used here, because XOR clobbers the flags!
162 if (MI->getOperand(1).isImmediate()) { // avoid mov EAX, <value>
163 int Val = MI->getOperand(1).getImmedValue();
164 if (Val == 0) { // mov EAX, 0 -> xor EAX, EAX
165 static const unsigned Opcode[] ={X86::XORrr8,X86::XORrr16,X86::XORrr32};
166 unsigned Reg = MI->getOperand(0).getReg();
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000167 I = MBB.insert(MBB.erase(I),
168 BuildMI(Opcode[Size], 2, Reg).addReg(Reg).addReg(Reg));
Chris Lattnera960d952003-01-13 01:01:59 +0000169 return true;
170 } else if (Val == -1) { // mov EAX, -1 -> or EAX, -1
171 // TODO: 'or Reg, -1' has a smaller encoding than 'mov Reg, -1'
172 }
173 }
174 return false;
175#endif
176 case X86::BSWAPr32: // Change bswap EAX, bswap EAX into nothing
177 if (Next->getOpcode() == X86::BSWAPr32 &&
178 MI->getOperand(0).getReg() == Next->getOperand(0).getReg()) {
179 I = MBB.erase(MBB.erase(I));
Chris Lattnera960d952003-01-13 01:01:59 +0000180 return true;
181 }
182 return false;
183 default:
184 return false;
185 }
186}
Brian Gaeked0fde302003-11-11 22:41:34 +0000187
Chris Lattner45370762003-12-01 05:15:28 +0000188namespace {
189 class UseDefChains : public MachineFunctionPass {
190 std::vector<MachineInstr*> DefiningInst;
191 public:
192 // getDefinition - Return the machine instruction that defines the specified
193 // SSA virtual register.
194 MachineInstr *getDefinition(unsigned Reg) {
Alkis Evlogimenos859a18b2004-02-15 21:37:17 +0000195 assert(MRegisterInfo::isVirtualRegister(Reg) &&
Chris Lattner45370762003-12-01 05:15:28 +0000196 "use-def chains only exist for SSA registers!");
197 assert(Reg - MRegisterInfo::FirstVirtualRegister < DefiningInst.size() &&
198 "Unknown register number!");
199 assert(DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister] &&
200 "Unknown register number!");
201 return DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister];
202 }
203
204 // setDefinition - Update the use-def chains to indicate that MI defines
205 // register Reg.
206 void setDefinition(unsigned Reg, MachineInstr *MI) {
207 if (Reg-MRegisterInfo::FirstVirtualRegister >= DefiningInst.size())
208 DefiningInst.resize(Reg-MRegisterInfo::FirstVirtualRegister+1);
209 DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister] = MI;
210 }
211
212 // removeDefinition - Update the use-def chains to forget about Reg
213 // entirely.
214 void removeDefinition(unsigned Reg) {
215 assert(getDefinition(Reg)); // Check validity
216 DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister] = 0;
217 }
218
219 virtual bool runOnMachineFunction(MachineFunction &MF) {
220 for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI!=E; ++BI)
221 for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); ++I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000222 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
223 MachineOperand &MO = I->getOperand(i);
Chris Lattnerc31ecb92004-02-10 20:55:47 +0000224 if (MO.isRegister() && MO.isDef() && !MO.isUse() &&
225 MRegisterInfo::isVirtualRegister(MO.getReg()))
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000226 setDefinition(MO.getReg(), I);
Chris Lattner45370762003-12-01 05:15:28 +0000227 }
228 }
229 return false;
230 }
231
232 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
233 AU.setPreservesAll();
234 MachineFunctionPass::getAnalysisUsage(AU);
235 }
236
237 virtual void releaseMemory() {
238 std::vector<MachineInstr*>().swap(DefiningInst);
239 }
240 };
241
242 RegisterAnalysis<UseDefChains> X("use-def-chains",
243 "use-def chain construction for machine code");
244}
245
246
247namespace {
248 Statistic<> NumSSAPHOpts("x86-ssa-peephole",
249 "Number of SSA peephole optimization performed");
250
251 /// SSAPH - This pass is an X86-specific, SSA-based, peephole optimizer. This
252 /// pass is really a bad idea: a better instruction selector should completely
253 /// supersume it. However, that will take some time to develop, and the
254 /// simple things this can do are important now.
255 class SSAPH : public MachineFunctionPass {
256 UseDefChains *UDC;
257 public:
258 virtual bool runOnMachineFunction(MachineFunction &MF);
259
260 bool PeepholeOptimize(MachineBasicBlock &MBB,
261 MachineBasicBlock::iterator &I);
262
263 virtual const char *getPassName() const {
264 return "X86 SSA-based Peephole Optimizer";
265 }
266
267 /// Propagate - Set MI[DestOpNo] = Src[SrcOpNo], optionally change the
268 /// opcode of the instruction, then return true.
269 bool Propagate(MachineInstr *MI, unsigned DestOpNo,
270 MachineInstr *Src, unsigned SrcOpNo, unsigned NewOpcode = 0){
271 MI->getOperand(DestOpNo) = Src->getOperand(SrcOpNo);
272 if (NewOpcode) MI->setOpcode(NewOpcode);
273 return true;
274 }
275
276 /// OptimizeAddress - If we can fold the addressing arithmetic for this
277 /// memory instruction into the instruction itself, do so and return true.
278 bool OptimizeAddress(MachineInstr *MI, unsigned OpNo);
279
280 /// getDefininingInst - If the specified operand is a read of an SSA
281 /// register, return the machine instruction defining it, otherwise, return
282 /// null.
283 MachineInstr *getDefiningInst(MachineOperand &MO) {
Chris Lattnerc31ecb92004-02-10 20:55:47 +0000284 if (MO.isDef() || !MO.isRegister() ||
285 !MRegisterInfo::isVirtualRegister(MO.getReg())) return 0;
Chris Lattner45370762003-12-01 05:15:28 +0000286 return UDC->getDefinition(MO.getReg());
287 }
288
289 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
290 AU.addRequired<UseDefChains>();
291 AU.addPreserved<UseDefChains>();
292 MachineFunctionPass::getAnalysisUsage(AU);
293 }
294 };
295}
296
297FunctionPass *llvm::createX86SSAPeepholeOptimizerPass() { return new SSAPH(); }
298
299bool SSAPH::runOnMachineFunction(MachineFunction &MF) {
300 bool Changed = false;
301 bool LocalChanged;
302
303 UDC = &getAnalysis<UseDefChains>();
304
305 do {
306 LocalChanged = false;
307
308 for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI != E; ++BI)
309 for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); )
310 if (PeepholeOptimize(*BI, I)) {
311 LocalChanged = true;
312 ++NumSSAPHOpts;
313 } else
314 ++I;
315 Changed |= LocalChanged;
316 } while (LocalChanged);
317
318 return Changed;
319}
320
321static bool isValidScaleAmount(unsigned Scale) {
322 return Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8;
323}
324
325/// OptimizeAddress - If we can fold the addressing arithmetic for this
326/// memory instruction into the instruction itself, do so and return true.
327bool SSAPH::OptimizeAddress(MachineInstr *MI, unsigned OpNo) {
328 MachineOperand &BaseRegOp = MI->getOperand(OpNo+0);
329 MachineOperand &ScaleOp = MI->getOperand(OpNo+1);
330 MachineOperand &IndexRegOp = MI->getOperand(OpNo+2);
331 MachineOperand &DisplacementOp = MI->getOperand(OpNo+3);
332
333 unsigned BaseReg = BaseRegOp.hasAllocatedReg() ? BaseRegOp.getReg() : 0;
334 unsigned Scale = ScaleOp.getImmedValue();
335 unsigned IndexReg = IndexRegOp.hasAllocatedReg() ? IndexRegOp.getReg() : 0;
336
337 bool Changed = false;
338
339 // If the base register is unset, and the index register is set with a scale
340 // of 1, move it to be the base register.
341 if (BaseRegOp.hasAllocatedReg() && BaseReg == 0 &&
342 Scale == 1 && IndexReg != 0) {
343 BaseRegOp.setReg(IndexReg);
344 IndexRegOp.setReg(0);
345 return true;
346 }
347
348 // Attempt to fold instructions used by the base register into the instruction
349 if (MachineInstr *DefInst = getDefiningInst(BaseRegOp)) {
350 switch (DefInst->getOpcode()) {
351 case X86::MOVir32:
352 // If there is no displacement set for this instruction set one now.
353 // FIXME: If we can fold two immediates together, we should do so!
354 if (DisplacementOp.isImmediate() && !DisplacementOp.getImmedValue()) {
355 if (DefInst->getOperand(1).isImmediate()) {
356 BaseRegOp.setReg(0);
357 return Propagate(MI, OpNo+3, DefInst, 1);
358 }
359 }
360 break;
361
362 case X86::ADDrr32:
363 // If the source is a register-register add, and we do not yet have an
364 // index register, fold the add into the memory address.
365 if (IndexReg == 0) {
366 BaseRegOp = DefInst->getOperand(1);
367 IndexRegOp = DefInst->getOperand(2);
368 ScaleOp.setImmedValue(1);
369 return true;
370 }
371 break;
372
373 case X86::SHLir32:
374 // If this shift could be folded into the index portion of the address if
375 // it were the index register, move it to the index register operand now,
376 // so it will be folded in below.
377 if ((Scale == 1 || (IndexReg == 0 && IndexRegOp.hasAllocatedReg())) &&
378 DefInst->getOperand(2).getImmedValue() < 4) {
379 std::swap(BaseRegOp, IndexRegOp);
380 ScaleOp.setImmedValue(1); Scale = 1;
381 std::swap(IndexReg, BaseReg);
382 Changed = true;
383 break;
384 }
385 }
386 }
387
388 // Attempt to fold instructions used by the index into the instruction
389 if (MachineInstr *DefInst = getDefiningInst(IndexRegOp)) {
390 switch (DefInst->getOpcode()) {
391 case X86::SHLir32: {
392 // Figure out what the resulting scale would be if we folded this shift.
393 unsigned ResScale = Scale * (1 << DefInst->getOperand(2).getImmedValue());
394 if (isValidScaleAmount(ResScale)) {
395 IndexRegOp = DefInst->getOperand(1);
396 ScaleOp.setImmedValue(ResScale);
397 return true;
398 }
399 break;
400 }
401 }
402 }
403
404 return Changed;
405}
406
407bool SSAPH::PeepholeOptimize(MachineBasicBlock &MBB,
408 MachineBasicBlock::iterator &I) {
Alkis Evlogimenosf81af212004-02-14 01:18:34 +0000409 MachineBasicBlock::iterator NextI = next(I);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000410
411 MachineInstr *MI = I;
412 MachineInstr *Next = (NextI != MBB.end()) ? &*NextI : (MachineInstr*)0;
Chris Lattner45370762003-12-01 05:15:28 +0000413
414 bool Changed = false;
415
416 // Scan the operands of this instruction. If any operands are
417 // register-register copies, replace the operand with the source.
418 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
419 // Is this an SSA register use?
420 if (MachineInstr *DefInst = getDefiningInst(MI->getOperand(i)))
421 // If the operand is a vreg-vreg copy, it is always safe to replace the
422 // source value with the input operand.
423 if (DefInst->getOpcode() == X86::MOVrr8 ||
424 DefInst->getOpcode() == X86::MOVrr16 ||
425 DefInst->getOpcode() == X86::MOVrr32) {
426 // Don't propagate physical registers into PHI nodes...
427 if (MI->getOpcode() != X86::PHI ||
Chris Lattnerc31ecb92004-02-10 20:55:47 +0000428 (DefInst->getOperand(1).isRegister() &&
429 MRegisterInfo::isVirtualRegister(DefInst->getOperand(1).getReg())))
Chris Lattner45370762003-12-01 05:15:28 +0000430 Changed = Propagate(MI, i, DefInst, 1);
431 }
432
433
434 // Perform instruction specific optimizations.
435 switch (MI->getOpcode()) {
436
437 // Register to memory stores. Format: <base,scale,indexreg,immdisp>, srcreg
438 case X86::MOVrm32: case X86::MOVrm16: case X86::MOVrm8:
439 case X86::MOVim32: case X86::MOVim16: case X86::MOVim8:
440 // Check to see if we can fold the source instruction into this one...
441 if (MachineInstr *SrcInst = getDefiningInst(MI->getOperand(4))) {
442 switch (SrcInst->getOpcode()) {
443 // Fold the immediate value into the store, if possible.
444 case X86::MOVir8: return Propagate(MI, 4, SrcInst, 1, X86::MOVim8);
445 case X86::MOVir16: return Propagate(MI, 4, SrcInst, 1, X86::MOVim16);
446 case X86::MOVir32: return Propagate(MI, 4, SrcInst, 1, X86::MOVim32);
447 default: break;
448 }
449 }
450
451 // If we can optimize the addressing expression, do so now.
452 if (OptimizeAddress(MI, 0))
453 return true;
454 break;
455
456 case X86::MOVmr32:
457 case X86::MOVmr16:
458 case X86::MOVmr8:
459 // If we can optimize the addressing expression, do so now.
460 if (OptimizeAddress(MI, 1))
461 return true;
462 break;
463
464 default: break;
465 }
466
467 return Changed;
468}