blob: af445666ac1af69aad9719781c1b35d190d189b7 [file] [log] [blame]
Scott Michel564427e2007-12-05 01:24:05 +00001//===- SPUOperands.td - Cell SPU Instruction Operands ------*- tablegen -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by The Aerospace Corporation.
6//
7//===----------------------------------------------------------------------===//
8// Cell SPU Instruction Operands:
9//===----------------------------------------------------------------------===//
10
11def LO16 : SDNodeXForm<imm, [{
12 unsigned val = N->getValue();
13 // Transformation function: get the low 16 bits.
14 return getI32Imm(val & 0xffff);
15}]>;
16
17def LO16_vec : SDNodeXForm<scalar_to_vector, [{
18 SDOperand OpVal(0, 0);
19
20 // Transformation function: get the low 16 bit immediate from a build_vector
21 // node.
22 assert(N->getOpcode() == ISD::BUILD_VECTOR
23 && "LO16_vec got something other than a BUILD_VECTOR");
24
25 // Get first constant operand...
26 for (unsigned i = 0, e = N->getNumOperands(); OpVal.Val == 0 && i != e; ++i) {
27 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
28 if (OpVal.Val == 0)
29 OpVal = N->getOperand(i);
30 }
31
32 assert(OpVal.Val != 0 && "LO16_vec did not locate a <defined> node");
33 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal);
34 return getI32Imm((unsigned)CN->getValue() & 0xffff);
35}]>;
36
37// Transform an immediate, returning the high 16 bits shifted down:
38def HI16 : SDNodeXForm<imm, [{
39 return getI32Imm((unsigned)N->getValue() >> 16);
40}]>;
41
42// Transformation function: shift the high 16 bit immediate from a build_vector
43// node into the low 16 bits, and return a 16-bit constant.
44def HI16_vec : SDNodeXForm<scalar_to_vector, [{
45 SDOperand OpVal(0, 0);
46
47 assert(N->getOpcode() == ISD::BUILD_VECTOR
48 && "HI16_vec got something other than a BUILD_VECTOR");
49
50 // Get first constant operand...
51 for (unsigned i = 0, e = N->getNumOperands(); OpVal.Val == 0 && i != e; ++i) {
52 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
53 if (OpVal.Val == 0)
54 OpVal = N->getOperand(i);
55 }
56
57 assert(OpVal.Val != 0 && "HI16_vec did not locate a <defined> node");
58 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal);
59 return getI32Imm((unsigned)CN->getValue() >> 16);
60}]>;
61
62// simm7 predicate - True if the immediate fits in an 7-bit signed
63// field.
64def simm7: PatLeaf<(imm), [{
65 int sextVal = ((((int) N->getValue()) << 25) >> 25);
66 return (sextVal >= -64 && sextVal <= 63);
67}]>;
68
69// uimm7 predicate - True if the immediate fits in an 7-bit unsigned
70// field.
71def uimm7: PatLeaf<(imm), [{
72 return (N->getValue() <= 0x7f);
73}]>;
74
75// immSExt8 predicate - True if the immediate fits in an 8-bit sign extended
76// field.
77def immSExt8 : PatLeaf<(imm), [{
78 int Value = (int) N->getValue();
79 int Value8 = (Value << 24) >> 24;
80 return (Value < 0xff && (Value8 >= -128 && Value8 < 127));
81}]>;
82
83// immU8: immediate, unsigned 8-bit quantity
84def immU8 : PatLeaf<(imm), [{
85 return (N->getValue() <= 0xff);
86}]>;
87
88// i64ImmSExt10 predicate - True if the i64 immediate fits in a 10-bit sign
89// extended field. Used by RI10Form instructions like 'ldq'.
90def i64ImmSExt10 : PatLeaf<(imm), [{
91 return isI64IntS10Immediate(N);
92}]>;
93
94// i32ImmSExt10 predicate - True if the i32 immediate fits in a 10-bit sign
95// extended field. Used by RI10Form instructions like 'ldq'.
96def i32ImmSExt10 : PatLeaf<(imm), [{
97 return isI32IntS10Immediate(N);
98}]>;
99
100// i16ImmSExt10 predicate - True if the i32 immediate fits in a 10-bit sign
101// extended field. Used by RI10Form instructions like 'ldq'.
102def i16ImmSExt10 : PatLeaf<(imm), [{
103 return isI16IntS10Immediate(N);
104}]>;
105
106def immSExt16 : PatLeaf<(imm), [{
107 // immSExt16 predicate - True if the immediate fits in a 16-bit sign extended
108 // field.
109 short Ignored;
110 return isIntS16Immediate(N, Ignored);
111}]>;
112
113def immZExt16 : PatLeaf<(imm), [{
114 // immZExt16 predicate - True if the immediate fits in a 16-bit zero extended
115 // field.
116 return (uint64_t)N->getValue() == (unsigned short)N->getValue();
117}], LO16>;
118
119def immU16 : PatLeaf<(imm), [{
120 // immU16 predicate- True if the immediate fits into a 16-bit unsigned field.
121 return (uint64_t)N->getValue() == (N->getValue() & 0xffff);
122}]>;
123
124def imm18 : PatLeaf<(imm), [{
125 // imm18 predicate: True if the immediate fits into an 18-bit unsigned field.
126 int Value = (int) N->getValue();
127 return ((Value & ((1 << 19) - 1)) == Value);
128}]>;
129
130def hi16 : PatLeaf<(imm), [{
131 // hi16 predicate - returns true if the immediate has all zeros in the
132 // low order bits and is a 32-bit constant:
133 if (N->getValueType(0) == MVT::i32) {
134 uint32_t val = N->getValue();
135 return ((val & 0xffff0000) == val);
136 }
137
138 return false;
139}], HI16>;
140
141//===----------------------------------------------------------------------===//
142// Floating point operands:
143//===----------------------------------------------------------------------===//
144
145// Transform a float, returning the high 16 bits shifted down, as if
146// the float was really an unsigned integer:
147def HI16_f32 : SDNodeXForm<fpimm, [{
148 const APFloat &apf = N->getValueAPF();
149 float fval = apf.convertToFloat();
150 unsigned val = *((unsigned *) &fval);
151 return getI32Imm(val >> 16);
152}]>;
153
154// Transformation function on floats: get the low 16 bits as if the float was
155// an unsigned integer.
156def LO16_f32 : SDNodeXForm<fpimm, [{
157 const APFloat &apf = N->getValueAPF();
158 float fval = apf.convertToFloat();
159 unsigned val = *((unsigned *) &fval);
160 return getI32Imm(val & 0xffff);
161}]>;
162
163def FPimm_sext16 : SDNodeXForm<fpimm, [{
164 const APFloat &apf = N->getValueAPF();
165 float fval = apf.convertToFloat();
166 unsigned val = *((unsigned *) &fval);
167 return getI32Imm((int) ((val << 16) >> 16));
168}]>;
169
170def FPimm_u18 : SDNodeXForm<fpimm, [{
171 const APFloat &apf = N->getValueAPF();
172 float fval = apf.convertToFloat();
173 unsigned val = *((unsigned *) &fval);
174 return getI32Imm(val & ((1 << 19) - 1));
175}]>;
176
177def fpimmSExt16 : PatLeaf<(fpimm), [{
178 short Ignored;
179 return isFPS16Immediate(N, Ignored);
180}], FPimm_sext16>;
181
182// Does the SFP constant only have upp 16 bits set?
183def hi16_f32 : PatLeaf<(fpimm), [{
184 if (N->getValueType(0) == MVT::f32) {
185 const APFloat &apf = N->getValueAPF();
186 float fval = apf.convertToFloat();
187 uint32_t val = *((unsigned *) &fval);
188 return ((val & 0xffff0000) == val);
189 }
190
191 return false;
192}], HI16_f32>;
193
194// Does the SFP constant fit into 18 bits?
195def fpimm18 : PatLeaf<(fpimm), [{
196 if (N->getValueType(0) == MVT::f32) {
197 const APFloat &apf = N->getValueAPF();
198 float fval = apf.convertToFloat();
199 uint32_t Value = *((uint32_t *) &fval);
200 return ((Value & ((1 << 19) - 1)) == Value);
201 }
202
203 return false;
204}], FPimm_u18>;
205
206//===----------------------------------------------------------------------===//
207// 64-bit operands:
208//===----------------------------------------------------------------------===//
209
210//===----------------------------------------------------------------------===//
211// build_vector operands:
212//===----------------------------------------------------------------------===//
213
214// v16i8SExt8Imm_xform function: convert build_vector to 8-bit sign extended
215// immediate constant load for v16i8 vectors. N.B.: The incoming constant has
216// to be a 16-bit quantity with the upper and lower bytes equal (e.g., 0x2a2a).
217def v16i8SExt8Imm_xform: SDNodeXForm<build_vector, [{
218 return SPU::get_vec_i8imm(N, *CurDAG, MVT::i8);
219}]>;
220
221// v16i8SExt8Imm: Predicate test for 8-bit sign extended immediate constant
222// load, works in conjunction with its transform function. N.B.: This relies the
223// incoming constant being a 16-bit quantity, where the upper and lower bytes
224// are EXACTLY the same (e.g., 0x2a2a)
225def v16i8SExt8Imm: PatLeaf<(build_vector), [{
226 return SPU::get_vec_i8imm(N, *CurDAG, MVT::i8).Val != 0;
227}], v16i8SExt8Imm_xform>;
228
229// v16i8U8Imm_xform function: convert build_vector to unsigned 8-bit
230// immediate constant load for v16i8 vectors. N.B.: The incoming constant has
231// to be a 16-bit quantity with the upper and lower bytes equal (e.g., 0x2a2a).
232def v16i8U8Imm_xform: SDNodeXForm<build_vector, [{
233 return SPU::get_vec_i8imm(N, *CurDAG, MVT::i8);
234}]>;
235
236// v16i8U8Imm: Predicate test for unsigned 8-bit immediate constant
237// load, works in conjunction with its transform function. N.B.: This relies the
238// incoming constant being a 16-bit quantity, where the upper and lower bytes
239// are EXACTLY the same (e.g., 0x2a2a)
240def v16i8U8Imm: PatLeaf<(build_vector), [{
241 return SPU::get_vec_i8imm(N, *CurDAG, MVT::i8).Val != 0;
242}], v16i8U8Imm_xform>;
243
244// v8i16SExt8Imm_xform function: convert build_vector to 8-bit sign extended
245// immediate constant load for v8i16 vectors.
246def v8i16SExt8Imm_xform: SDNodeXForm<build_vector, [{
247 return SPU::get_vec_i8imm(N, *CurDAG, MVT::i16);
248}]>;
249
250// v8i16SExt8Imm: Predicate test for 8-bit sign extended immediate constant
251// load, works in conjunction with its transform function.
252def v8i16SExt8Imm: PatLeaf<(build_vector), [{
253 return SPU::get_vec_i8imm(N, *CurDAG, MVT::i16).Val != 0;
254}], v8i16SExt8Imm_xform>;
255
256// v8i16SExt10Imm_xform function: convert build_vector to 16-bit sign extended
257// immediate constant load for v8i16 vectors.
258def v8i16SExt10Imm_xform: SDNodeXForm<build_vector, [{
259 return SPU::get_vec_i10imm(N, *CurDAG, MVT::i16);
260}]>;
261
262// v8i16SExt10Imm: Predicate test for 16-bit sign extended immediate constant
263// load, works in conjunction with its transform function.
264def v8i16SExt10Imm: PatLeaf<(build_vector), [{
265 return SPU::get_vec_i10imm(N, *CurDAG, MVT::i16).Val != 0;
266}], v8i16SExt10Imm_xform>;
267
268// v8i16SExt16Imm_xform function: convert build_vector to 16-bit sign extended
269// immediate constant load for v8i16 vectors.
270def v8i16SExt16Imm_xform: SDNodeXForm<build_vector, [{
271 return SPU::get_vec_i16imm(N, *CurDAG, MVT::i16);
272}]>;
273
274// v8i16SExt16Imm: Predicate test for 16-bit sign extended immediate constant
275// load, works in conjunction with its transform function.
276def v8i16SExt16Imm: PatLeaf<(build_vector), [{
277 return SPU::get_vec_i16imm(N, *CurDAG, MVT::i16).Val != 0;
278}], v8i16SExt16Imm_xform>;
279
280// v4i32SExt10Imm_xform function: convert build_vector to 10-bit sign extended
281// immediate constant load for v4i32 vectors.
282def v4i32SExt10Imm_xform: SDNodeXForm<build_vector, [{
283 return SPU::get_vec_i10imm(N, *CurDAG, MVT::i32);
284}]>;
285
286// v4i32SExt10Imm: Predicate test for 10-bit sign extended immediate constant
287// load, works in conjunction with its transform function.
288def v4i32SExt10Imm: PatLeaf<(build_vector), [{
289 return SPU::get_vec_i10imm(N, *CurDAG, MVT::i32).Val != 0;
290}], v4i32SExt10Imm_xform>;
291
292// v4i32SExt16Imm_xform function: convert build_vector to 16-bit sign extended
293// immediate constant load for v4i32 vectors.
294def v4i32SExt16Imm_xform: SDNodeXForm<build_vector, [{
295 return SPU::get_vec_i16imm(N, *CurDAG, MVT::i32);
296}]>;
297
298// v4i32SExt16Imm: Predicate test for 16-bit sign extended immediate constant
299// load, works in conjunction with its transform function.
300def v4i32SExt16Imm: PatLeaf<(build_vector), [{
301 return SPU::get_vec_i16imm(N, *CurDAG, MVT::i32).Val != 0;
302}], v4i32SExt16Imm_xform>;
303
304// v4i32Uns18Imm_xform function: convert build_vector to 18-bit unsigned
305// immediate constant load for v4i32 vectors.
306def v4i32Uns18Imm_xform: SDNodeXForm<build_vector, [{
307 return SPU::get_vec_u18imm(N, *CurDAG, MVT::i32);
308}]>;
309
310// v4i32Uns18Imm: Predicate test for 18-bit unsigned immediate constant load,
311// works in conjunction with its transform function.
312def v4i32Uns18Imm: PatLeaf<(build_vector), [{
313 return SPU::get_vec_u18imm(N, *CurDAG, MVT::i32).Val != 0;
314}], v4i32Uns18Imm_xform>;
315
316// ILHUvec_get_imm xform function: convert build_vector to ILHUvec imm constant
317// load.
318def ILHUvec_get_imm: SDNodeXForm<build_vector, [{
319 return SPU::get_ILHUvec_imm(N, *CurDAG, MVT::i32);
320}]>;
321
322/// immILHUvec: Predicate test for a ILHU constant vector.
323def immILHUvec: PatLeaf<(build_vector), [{
324 return SPU::get_ILHUvec_imm(N, *CurDAG, MVT::i32).Val != 0;
325}], ILHUvec_get_imm>;
326
327// Catch-all for any other i32 vector constants
328def v4i32_get_imm: SDNodeXForm<build_vector, [{
329 return SPU::get_v4i32_imm(N, *CurDAG);
330}]>;
331
332def v4i32Imm: PatLeaf<(build_vector), [{
333 return SPU::get_v4i32_imm(N, *CurDAG).Val != 0;
334}], v4i32_get_imm>;
335
336// v2i64SExt10Imm_xform function: convert build_vector to 10-bit sign extended
337// immediate constant load for v2i64 vectors.
338def v2i64SExt10Imm_xform: SDNodeXForm<build_vector, [{
339 return SPU::get_vec_i10imm(N, *CurDAG, MVT::i64);
340}]>;
341
342// v2i64SExt10Imm: Predicate test for 10-bit sign extended immediate constant
343// load, works in conjunction with its transform function.
344def v2i64SExt10Imm: PatLeaf<(build_vector), [{
345 return SPU::get_vec_i10imm(N, *CurDAG, MVT::i64).Val != 0;
346}], v2i64SExt10Imm_xform>;
347
348// v2i64SExt16Imm_xform function: convert build_vector to 16-bit sign extended
349// immediate constant load for v2i64 vectors.
350def v2i64SExt16Imm_xform: SDNodeXForm<build_vector, [{
351 return SPU::get_vec_i16imm(N, *CurDAG, MVT::i64);
352}]>;
353
354// v2i64SExt16Imm: Predicate test for 16-bit sign extended immediate constant
355// load, works in conjunction with its transform function.
356def v2i64SExt16Imm: PatLeaf<(build_vector), [{
357 return SPU::get_vec_i16imm(N, *CurDAG, MVT::i64).Val != 0;
358}], v2i64SExt16Imm_xform>;
359
360// v2i64Uns18Imm_xform function: convert build_vector to 18-bit unsigned
361// immediate constant load for v2i64 vectors.
362def v2i64Uns18Imm_xform: SDNodeXForm<build_vector, [{
363 return SPU::get_vec_u18imm(N, *CurDAG, MVT::i64);
364}]>;
365
366// v2i64Uns18Imm: Predicate test for 18-bit unsigned immediate constant load,
367// works in conjunction with its transform function.
368def v2i64Uns18Imm: PatLeaf<(build_vector), [{
369 return SPU::get_vec_u18imm(N, *CurDAG, MVT::i64).Val != 0;
370}], v2i64Uns18Imm_xform>;
371
372/// immILHUvec: Predicate test for a ILHU constant vector.
373def immILHUvec_i64: PatLeaf<(build_vector), [{
374 return SPU::get_ILHUvec_imm(N, *CurDAG, MVT::i64).Val != 0;
375}], ILHUvec_get_imm>;
376
377// Catch-all for any other i32 vector constants
378def v2i64_get_imm: SDNodeXForm<build_vector, [{
379 return SPU::get_v2i64_imm(N, *CurDAG);
380}]>;
381
382def v2i64Imm: PatLeaf<(build_vector), [{
383 return SPU::get_v2i64_imm(N, *CurDAG).Val != 0;
384}], v2i64_get_imm>;
385
386//===----------------------------------------------------------------------===//
387// Operand Definitions.
388
389def s7imm: Operand<i16> {
390 let PrintMethod = "printS7ImmOperand";
391}
392
393def u7imm: Operand<i16> {
394 let PrintMethod = "printU7ImmOperand";
395}
396
397def u7imm_i32: Operand<i32> {
398 let PrintMethod = "printU7ImmOperand";
399}
400
401// Halfword, signed 10-bit constant
402def s10imm : Operand<i16> {
403 let PrintMethod = "printS10ImmOperand";
404}
405
406def s10imm_i32: Operand<i32> {
407 let PrintMethod = "printS10ImmOperand";
408}
409
410def s10imm_i64: Operand<i64> {
411 let PrintMethod = "printS10ImmOperand";
412}
413
414// Unsigned 10-bit integers:
415def u10imm: Operand<i16> {
416 let PrintMethod = "printU10ImmOperand";
417}
418
419def u10imm_i32: Operand<i32> {
420 let PrintMethod = "printU10ImmOperand";
421}
422
423def s16imm : Operand<i16> {
424 let PrintMethod = "printS16ImmOperand";
425}
426
427def s16imm_i32: Operand<i32> {
428 let PrintMethod = "printS16ImmOperand";
429}
430
431def s16imm_i64: Operand<i64> {
432 let PrintMethod = "printS16ImmOperand";
433}
434
435def s16imm_f32: Operand<f32> {
436 let PrintMethod = "printS16ImmOperand";
437}
438
439def s16imm_f64: Operand<f64> {
440 let PrintMethod = "printS16ImmOperand";
441}
442
443def u16imm : Operand<i32> {
444 let PrintMethod = "printU16ImmOperand";
445}
446
447def f16imm : Operand<f32> {
448 let PrintMethod = "printU16ImmOperand";
449}
450
451def s18imm : Operand<i32> {
452 let PrintMethod = "printS18ImmOperand";
453}
454
455def u18imm : Operand<i32> {
456 let PrintMethod = "printU18ImmOperand";
457}
458
459def u18imm_i64 : Operand<i64> {
460 let PrintMethod = "printU18ImmOperand";
461}
462
463def f18imm : Operand<f32> {
464 let PrintMethod = "printU18ImmOperand";
465}
466
467def f18imm_f64 : Operand<f64> {
468 let PrintMethod = "printU18ImmOperand";
469}
470
471// Negated 7-bit halfword rotate immediate operands
472def rothNeg7imm : Operand<i32> {
473 let PrintMethod = "printROTHNeg7Imm";
474}
475
476def rothNeg7imm_i16 : Operand<i16> {
477 let PrintMethod = "printROTHNeg7Imm";
478}
479
480// Negated 7-bit word rotate immediate operands
481def rotNeg7imm : Operand<i32> {
482 let PrintMethod = "printROTNeg7Imm";
483}
484
485def rotNeg7imm_i16 : Operand<i16> {
486 let PrintMethod = "printROTNeg7Imm";
487}
488
489// Floating point immediate operands
490def f32imm : Operand<f32>;
491
492def target : Operand<OtherVT> {
493 let PrintMethod = "printBranchOperand";
494}
495
496// Absolute address call target
497def calltarget : Operand<iPTR> {
498 let PrintMethod = "printCallOperand";
499 let MIOperandInfo = (ops u18imm:$calldest);
500}
501
502// Relative call target
503def relcalltarget : Operand<iPTR> {
504 let PrintMethod = "printPCRelativeOperand";
505 let MIOperandInfo = (ops s16imm:$calldest);
506}
507
508// Branch targets:
509def brtarget : Operand<OtherVT> {
510 let PrintMethod = "printPCRelativeOperand";
511}
512
513// Indirect call target
514def indcalltarget : Operand<iPTR> {
515 let PrintMethod = "printCallOperand";
516 let MIOperandInfo = (ops ptr_rc:$calldest);
517}
518
519def symbolHi: Operand<i32> {
520 let PrintMethod = "printSymbolHi";
521}
522
523def symbolLo: Operand<i32> {
524 let PrintMethod = "printSymbolLo";
525}
526
527def symbolLSA: Operand<i32> {
528 let PrintMethod = "printSymbolLSA";
529}
530
531// memory s7imm(reg) operaand
532def memri7 : Operand<iPTR> {
533 let PrintMethod = "printMemRegImmS7";
534 let MIOperandInfo = (ops s7imm:$imm, ptr_rc:$reg);
535}
536
537// memory s10imm(reg) operand
538def memri10 : Operand<iPTR> {
539 let PrintMethod = "printMemRegImmS10";
540 let MIOperandInfo = (ops s10imm:$imm, ptr_rc:$reg);
541}
542
543// 256K local store address
544// N.B.: The tblgen code generator expects to have two operands, an offset
545// and a pointer. Of these, only the immediate is actually used.
546def addr256k : Operand<iPTR> {
547 let PrintMethod = "printAddr256K";
548 let MIOperandInfo = (ops s16imm:$imm, ptr_rc:$reg);
549}
550
551// memory s18imm(reg) operand
552def memri18 : Operand<iPTR> {
553 let PrintMethod = "printMemRegImmS18";
554 let MIOperandInfo = (ops s18imm:$imm, ptr_rc:$reg);
555}
556
557// memory register + register operand
558def memrr : Operand<iPTR> {
559 let PrintMethod = "printMemRegReg";
560 let MIOperandInfo = (ops ptr_rc:$reg_a, ptr_rc:$reg_b);
561}
562
563// Define SPU-specific addressing modes: These come in three basic
564// flavors:
565//
566// D-form : [r+I10] (10-bit signed offset + reg)
567// X-form : [r+r] (reg+reg)
568// A-form : abs (256K LSA offset)
569// D-form(2): [r+I7] (7-bit signed offset + reg)
570
571def dform_addr : ComplexPattern<iPTR, 2, "SelectDFormAddr", [], []>;
572def xform_addr : ComplexPattern<iPTR, 2, "SelectXFormAddr", [], []>;
573def aform_addr : ComplexPattern<iPTR, 2, "SelectAFormAddr", [], []>;
574def dform2_addr : ComplexPattern<iPTR, 2, "SelectDForm2Addr", [], []>;