blob: 3aa05e4db8a06f6dfe09f0d0d56d46dca0c8e595 [file] [log] [blame]
Anton Korobeynikov099883f2007-03-21 21:38:25 +00001//===-- MSILWriter.cpp - Library for converting LLVM code to MSIL ---------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Roman Samoilov and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This library converts LLVM code to MSIL code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "MSILWriter.h"
15#include "llvm/CallingConv.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/IntrinsicInst.h"
Reid Spencer5694b6e2007-04-09 06:17:21 +000019#include "llvm/ParameterAttributes.h"
Anton Korobeynikov099883f2007-03-21 21:38:25 +000020#include "llvm/TypeSymbolTable.h"
21#include "llvm/Analysis/ConstantsScanner.h"
22#include "llvm/Support/CallSite.h"
23#include "llvm/Support/InstVisitor.h"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/ADT/StringExtras.h"
26
27namespace {
28 // TargetMachine for the MSIL
29 struct VISIBILITY_HIDDEN MSILTarget : public TargetMachine {
30 const TargetData DataLayout; // Calculates type size & alignment
31
32 MSILTarget(const Module &M, const std::string &FS)
33 : DataLayout(&M) {}
34
35 virtual bool WantsWholeFile() const { return true; }
36 virtual bool addPassesToEmitWholeFile(PassManager &PM, std::ostream &Out,
37 CodeGenFileType FileType, bool Fast);
38
39 // This class always works, but shouldn't be the default in most cases.
40 static unsigned getModuleMatchQuality(const Module &M) { return 1; }
41
42 virtual const TargetData *getTargetData() const { return &DataLayout; }
43 };
44}
45
46
47RegisterTarget<MSILTarget> X("msil", " MSIL backend");
48
49bool MSILModule::runOnModule(Module &M) {
50 ModulePtr = &M;
51 TD = &getAnalysis<TargetData>();
52 bool Changed = false;
53 // Find named types.
54 TypeSymbolTable& Table = M.getTypeSymbolTable();
55 std::set<const Type *> Types = getAnalysis<FindUsedTypes>().getTypes();
56 for (TypeSymbolTable::iterator I = Table.begin(), E = Table.end(); I!=E; ) {
57 if (!isa<StructType>(I->second) && !isa<OpaqueType>(I->second))
58 Table.remove(I++);
59 else {
60 std::set<const Type *>::iterator T = Types.find(I->second);
61 if (T==Types.end())
62 Table.remove(I++);
63 else {
64 Types.erase(T);
65 ++I;
66 }
67 }
68 }
69 // Find unnamed types.
70 unsigned RenameCounter = 0;
71 for (std::set<const Type *>::const_iterator I = Types.begin(),
72 E = Types.end(); I!=E; ++I)
73 if (const StructType *STy = dyn_cast<StructType>(*I)) {
74 while (ModulePtr->addTypeName("unnamed$"+utostr(RenameCounter), STy))
75 ++RenameCounter;
76 Changed = true;
77 }
78 // Pointer for FunctionPass.
79 UsedTypes = &getAnalysis<FindUsedTypes>().getTypes();
80 return Changed;
81}
82
83
84bool MSILWriter::runOnFunction(Function &F) {
85 if (F.isDeclaration()) return false;
86 LInfo = &getAnalysis<LoopInfo>();
87 printFunction(F);
88 return false;
89}
90
91
92bool MSILWriter::doInitialization(Module &M) {
93 ModulePtr = &M;
94 Mang = new Mangler(M);
95 Out << ".assembly extern mscorlib {}\n";
96 Out << ".assembly MSIL {}\n\n";
97 Out << "// External\n";
98 printExternals();
99 Out << "// Declarations\n";
100 printDeclarations(M.getTypeSymbolTable());
101 Out << "// Definitions\n";
102 printGlobalVariables();
103 return false;
104}
105
106
107bool MSILWriter::doFinalization(Module &M) {
108 delete Mang;
109 return false;
110}
111
112
113bool MSILWriter::isZeroValue(const Value* V) {
114 if (const Constant *C = dyn_cast<Constant>(V))
115 return C->isNullValue();
116 return false;
117}
118
119
120std::string MSILWriter::getValueName(const Value* V) {
121 // Name into the quotes allow control and space characters.
122 return "'"+Mang->getValueName(V)+"'";
123}
124
125
126std::string MSILWriter::getLabelName(const std::string& Name) {
127 if (Name.find('.')!=std::string::npos) {
128 std::string Tmp(Name);
129 // Replace unaccepable characters in the label name.
130 for (std::string::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I)
131 if (*I=='.') *I = '@';
132 return Tmp;
133 }
134 return Name;
135}
136
137
138std::string MSILWriter::getLabelName(const Value* V) {
139 return getLabelName(Mang->getValueName(V));
140}
141
142
143std::string MSILWriter::getConvModopt(unsigned CallingConvID) {
144 switch (CallingConvID) {
145 case CallingConv::C:
146 case CallingConv::Cold:
147 case CallingConv::Fast:
148 return "modopt([mscorlib]System.Runtime.CompilerServices.CallConvCdecl) ";
149 case CallingConv::X86_FastCall:
150 return "modopt([mscorlib]System.Runtime.CompilerServices.CallConvFastcall) ";
151 case CallingConv::X86_StdCall:
152 return "modopt([mscorlib]System.Runtime.CompilerServices.CallConvStdcall) ";
153 default:
154 cerr << "CallingConvID = " << CallingConvID << '\n';
155 assert(0 && "Unsupported calling convention");
156 }
157}
158
159
160std::string MSILWriter::getArrayTypeName(Type::TypeID TyID, const Type* Ty) {
161 std::string Tmp = "";
162 const Type* ElemTy = Ty;
163 assert(Ty->getTypeID()==TyID && "Invalid type passed");
164 // Walk trought array element types.
165 for (;;) {
166 // Multidimensional array.
167 if (ElemTy->getTypeID()==TyID) {
168 if (const ArrayType* ATy = dyn_cast<ArrayType>(ElemTy))
169 Tmp += utostr(ATy->getNumElements());
170 else if (const VectorType* VTy = dyn_cast<VectorType>(ElemTy))
171 Tmp += utostr(VTy->getNumElements());
172 ElemTy = cast<SequentialType>(ElemTy)->getElementType();
173 }
174 // Base element type found.
175 if (ElemTy->getTypeID()!=TyID) break;
176 Tmp += ",";
177 }
178 return getTypeName(ElemTy)+"["+Tmp+"]";
179}
180
181
182std::string MSILWriter::getPrimitiveTypeName(const Type* Ty, bool isSigned) {
183 unsigned NumBits = 0;
184 switch (Ty->getTypeID()) {
185 case Type::VoidTyID:
186 return "void ";
187 case Type::IntegerTyID:
188 NumBits = getBitWidth(Ty);
189 if(NumBits==1)
190 return "bool ";
191 if (!isSigned)
192 return "unsigned int"+utostr(NumBits)+" ";
193 return "int"+utostr(NumBits)+" ";
194 case Type::FloatTyID:
195 return "float32 ";
196 case Type::DoubleTyID:
197 return "float64 ";
198 default:
199 cerr << "Type = " << *Ty << '\n';
200 assert(0 && "Invalid primitive type");
201 }
202}
203
204
205std::string MSILWriter::getTypeName(const Type* Ty, bool isSigned) {
206 if (Ty->isPrimitiveType() || Ty->isInteger())
207 return getPrimitiveTypeName(Ty,isSigned);
208 // FIXME: "OpaqueType" support
209 switch (Ty->getTypeID()) {
210 case Type::PointerTyID:
211 return "void* ";
212 case Type::StructTyID:
213 return "valuetype '"+ModulePtr->getTypeName(Ty)+"' ";
214 case Type::ArrayTyID:
215 return "valuetype '"+getArrayTypeName(Ty->getTypeID(),Ty)+"' ";
216 case Type::VectorTyID:
217 return "valuetype '"+getArrayTypeName(Ty->getTypeID(),Ty)+"' ";
218 default:
219 cerr << "Type = " << *Ty << '\n';
220 assert(0 && "Invalid type in getTypeName()");
221 }
222}
223
224
225MSILWriter::ValueType MSILWriter::getValueLocation(const Value* V) {
226 // Function argument
227 if (isa<Argument>(V))
228 return ArgumentVT;
229 // Function
230 else if (const Function* F = dyn_cast<Function>(V))
231 return F->hasInternalLinkage() ? InternalVT : GlobalVT;
232 // Variable
233 else if (const GlobalVariable* G = dyn_cast<GlobalVariable>(V))
234 return G->hasInternalLinkage() ? InternalVT : GlobalVT;
235 // Constant
236 else if (isa<Constant>(V))
237 return isa<ConstantExpr>(V) ? ConstExprVT : ConstVT;
238 // Local variable
239 return LocalVT;
240}
241
242
243std::string MSILWriter::getTypePostfix(const Type* Ty, bool Expand,
244 bool isSigned) {
245 unsigned NumBits = 0;
246 switch (Ty->getTypeID()) {
247 // Integer constant, expanding for stack operations.
248 case Type::IntegerTyID:
249 NumBits = getBitWidth(Ty);
250 // Expand integer value to "int32" or "int64".
251 if (Expand) return (NumBits<=32 ? "i4" : "i8");
252 if (NumBits==1) return "i1";
253 return (isSigned ? "i" : "u")+utostr(NumBits/8);
254 // Float constant.
255 case Type::FloatTyID:
256 return "r4";
257 case Type::DoubleTyID:
258 return "r8";
259 case Type::PointerTyID:
260 return "i"+utostr(TD->getTypeSize(Ty));
261 default:
262 cerr << "TypeID = " << Ty->getTypeID() << '\n';
263 assert(0 && "Invalid type in TypeToPostfix()");
264 }
265}
266
267
268void MSILWriter::printPtrLoad(uint64_t N) {
269 switch (ModulePtr->getPointerSize()) {
270 case Module::Pointer32:
271 printSimpleInstruction("ldc.i4",utostr(N).c_str());
272 // FIXME: Need overflow test?
273 assert(N<0xFFFFFFFF && "32-bit pointer overflowed");
274 break;
275 case Module::Pointer64:
276 printSimpleInstruction("ldc.i8",utostr(N).c_str());
277 break;
278 default:
279 assert(0 && "Module use not supporting pointer size");
280 }
281}
282
283
284void MSILWriter::printConstLoad(const Constant* C) {
285 if (const ConstantInt* CInt = dyn_cast<ConstantInt>(C)) {
286 // Integer constant
287 Out << "\tldc." << getTypePostfix(C->getType(),true) << '\t';
288 if (CInt->isMinValue(true))
289 Out << CInt->getSExtValue();
290 else
291 Out << CInt->getZExtValue();
292 } else if (const ConstantFP* CFp = dyn_cast<ConstantFP>(C)) {
293 // Float constant
294 Out << "\tldc." << getTypePostfix(C->getType(),true) << '\t' <<
295 CFp->getValue();
296 } else {
297 cerr << "Constant = " << *C << '\n';
298 assert(0 && "Invalid constant value");
299 }
300 Out << '\n';
301}
302
303
304void MSILWriter::printValueLoad(const Value* V) {
305 switch (getValueLocation(V)) {
306 // Global variable or function address.
307 case GlobalVT:
308 case InternalVT:
309 if (const Function* F = dyn_cast<Function>(V)) {
310 std::string Name = getConvModopt(F->getCallingConv())+getValueName(F);
311 printSimpleInstruction("ldftn",
312 getCallSignature(F->getFunctionType(),NULL,Name).c_str());
313 } else {
314 const Type* ElemTy = cast<PointerType>(V->getType())->getElementType();
315 std::string Tmp = getTypeName(ElemTy)+getValueName(V);
316 printSimpleInstruction("ldsflda",Tmp.c_str());
317 }
318 break;
319 // Function argument.
320 case ArgumentVT:
321 printSimpleInstruction("ldarg",getValueName(V).c_str());
322 break;
323 // Local function variable.
324 case LocalVT:
325 printSimpleInstruction("ldloc",getValueName(V).c_str());
326 break;
327 // Constant value.
328 case ConstVT:
329 if (isa<ConstantPointerNull>(V))
330 printPtrLoad(0);
331 else
332 printConstLoad(cast<Constant>(V));
333 break;
334 // Constant expression.
335 case ConstExprVT:
336 printConstantExpr(cast<ConstantExpr>(V));
337 break;
338 default:
339 cerr << "Value = " << *V << '\n';
340 assert(0 && "Invalid value location");
341 }
342}
343
344
345void MSILWriter::printValueSave(const Value* V) {
346 switch (getValueLocation(V)) {
347 case ArgumentVT:
348 printSimpleInstruction("starg",getValueName(V).c_str());
349 break;
350 case LocalVT:
351 printSimpleInstruction("stloc",getValueName(V).c_str());
352 break;
353 default:
354 cerr << "Value = " << *V << '\n';
355 assert(0 && "Invalid value location");
356 }
357}
358
359
360void MSILWriter::printBinaryInstruction(const char* Name, const Value* Left,
361 const Value* Right) {
362 printValueLoad(Left);
363 printValueLoad(Right);
364 Out << '\t' << Name << '\n';
365}
366
367
368void MSILWriter::printSimpleInstruction(const char* Inst, const char* Operand) {
369 if(Operand)
370 Out << '\t' << Inst << '\t' << Operand << '\n';
371 else
372 Out << '\t' << Inst << '\n';
373}
374
375
376void MSILWriter::printPHICopy(const BasicBlock* Src, const BasicBlock* Dst) {
377 for (BasicBlock::const_iterator I = Dst->begin(), E = Dst->end();
378 isa<PHINode>(I); ++I) {
379 const PHINode* Phi = cast<PHINode>(I);
380 const Value* Val = Phi->getIncomingValueForBlock(Src);
381 if (isa<UndefValue>(Val)) continue;
382 printValueLoad(Val);
383 printValueSave(Phi);
384 }
385}
386
387
388void MSILWriter::printBranchToBlock(const BasicBlock* CurrBB,
389 const BasicBlock* TrueBB,
390 const BasicBlock* FalseBB) {
391 if (TrueBB==FalseBB) {
392 // "TrueBB" and "FalseBB" destination equals
393 printPHICopy(CurrBB,TrueBB);
394 printSimpleInstruction("pop");
395 printSimpleInstruction("br",getLabelName(TrueBB).c_str());
396 } else if (FalseBB==NULL) {
397 // If "FalseBB" not used the jump have condition
398 printPHICopy(CurrBB,TrueBB);
399 printSimpleInstruction("brtrue",getLabelName(TrueBB).c_str());
400 } else if (TrueBB==NULL) {
401 // If "TrueBB" not used the jump is unconditional
402 printPHICopy(CurrBB,FalseBB);
403 printSimpleInstruction("br",getLabelName(FalseBB).c_str());
404 } else {
405 // Copy PHI instructions for each block
406 std::string TmpLabel;
407 // Print PHI instructions for "TrueBB"
408 if (isa<PHINode>(TrueBB->begin())) {
409 TmpLabel = getLabelName(TrueBB)+"$phi_"+utostr(getUniqID());
410 printSimpleInstruction("brtrue",TmpLabel.c_str());
411 } else {
412 printSimpleInstruction("brtrue",getLabelName(TrueBB).c_str());
413 }
414 // Print PHI instructions for "FalseBB"
415 if (isa<PHINode>(FalseBB->begin())) {
416 printPHICopy(CurrBB,FalseBB);
417 printSimpleInstruction("br",getLabelName(FalseBB).c_str());
418 } else {
419 printSimpleInstruction("br",getLabelName(FalseBB).c_str());
420 }
421 if (isa<PHINode>(TrueBB->begin())) {
422 // Handle "TrueBB" PHI Copy
423 Out << TmpLabel << ":\n";
424 printPHICopy(CurrBB,TrueBB);
425 printSimpleInstruction("br",getLabelName(TrueBB).c_str());
426 }
427 }
428}
429
430
431void MSILWriter::printBranchInstruction(const BranchInst* Inst) {
432 if (Inst->isUnconditional()) {
433 printBranchToBlock(Inst->getParent(),NULL,Inst->getSuccessor(0));
434 } else {
435 printValueLoad(Inst->getCondition());
436 printBranchToBlock(Inst->getParent(),Inst->getSuccessor(0),
437 Inst->getSuccessor(1));
438 }
439}
440
441
442void MSILWriter::printSelectInstruction(const Value* Cond, const Value* VTrue,
443 const Value* VFalse) {
444 std::string TmpLabel = std::string("select$true_")+utostr(getUniqID());
445 printValueLoad(VTrue);
446 printValueLoad(Cond);
447 printSimpleInstruction("brtrue",TmpLabel.c_str());
448 printSimpleInstruction("pop");
449 printValueLoad(VFalse);
450 Out << TmpLabel << ":\n";
451}
452
453
454void MSILWriter::printIndirectLoad(const Value* V) {
455 printValueLoad(V);
456 std::string Tmp = "ldind."+getTypePostfix(V->getType(),false);
457 printSimpleInstruction(Tmp.c_str());
458}
459
460
461void MSILWriter::printStoreInstruction(const Instruction* Inst) {
462 const Value* Val = Inst->getOperand(0);
463 const Value* Ptr = Inst->getOperand(1);
464 // Load destination address.
465 printValueLoad(Ptr);
466 // Load value.
467 printValueLoad(Val);
468 // Instruction need signed postfix for any type.
469 std::string postfix = getTypePostfix(Val->getType(),false);
470 if (*postfix.begin()=='u') *postfix.begin() = 'i';
471 postfix = "stind."+postfix;
472 printSimpleInstruction(postfix.c_str());
473}
474
475
476void MSILWriter::printCastInstruction(unsigned int Op, const Value* V,
477 const Type* Ty) {
478 std::string Tmp("");
479 printValueLoad(V);
480 switch (Op) {
481 // Signed
482 case Instruction::SExt:
483 case Instruction::SIToFP:
484 case Instruction::FPToSI:
485 Tmp = "conv."+getTypePostfix(Ty,false,true);
486 printSimpleInstruction(Tmp.c_str());
487 break;
488 // Unsigned
489 case Instruction::FPTrunc:
490 case Instruction::FPExt:
491 case Instruction::UIToFP:
492 case Instruction::Trunc:
493 case Instruction::ZExt:
494 case Instruction::FPToUI:
495 case Instruction::PtrToInt:
496 case Instruction::IntToPtr:
497 Tmp = "conv."+getTypePostfix(Ty,false);
498 printSimpleInstruction(Tmp.c_str());
499 break;
500 // Do nothing
501 case Instruction::BitCast:
502 // FIXME: meaning that ld*/st* instruction do not change data format.
503 break;
504 default:
505 cerr << "Opcode = " << Op << '\n';
506 assert(0 && "Invalid conversion instruction");
507 }
508}
509
510
511void MSILWriter::printGepInstruction(const Value* V, gep_type_iterator I,
512 gep_type_iterator E) {
513 // Load address
514 printValueLoad(V);
515 // Calculate element offset.
516 unsigned TySize;
517 for (++I; I!=E; ++I){
518 const Type* Ty = I.getIndexedType();
519 const Value* Idx = I.getOperand();
520 // Get size of type.
521 switch (Ty->getTypeID()) {
522 case Type::IntegerTyID:
523 case Type::FloatTyID:
524 case Type::DoubleTyID:
525 case Type::PointerTyID:
526 TySize = TD->getTypeSize(Ty);
527 break;
528 case Type::StructTyID:
529 TySize = 0;
530 break;
531 case Type::ArrayTyID:
532 TySize = TD->getTypeSize(cast<ArrayType>(Ty)->getElementType());
533 break;
534 case Type::VectorTyID:
535 TySize = TD->getTypeSize(cast<VectorType>(Ty)->getElementType());
536 break;
537 default:
538 cerr << "Type = " << *Ty << '\n';
539 assert(0 && "Invalid index type in printGepInstruction()");
540 }
541 // Calculate offset to structure field.
542 if (const StructType* STy = dyn_cast<StructType>(Ty)) {
543 TySize = 0;
544 uint64_t FieldIdx = cast<ConstantInt>(Idx)->getZExtValue();
545 // Offset is the summ of all previous structure fields.
546 for (uint64_t F = 0; F<FieldIdx; ++F)
547 TySize += TD->getTypeSize(STy->getContainedType(unsigned(F)));
548 // Add field offset to stack top.
549 printPtrLoad(TySize);
550 printSimpleInstruction("add");
551 continue;
552 }
553 // Add offset of current element to stack top.
554 if (!isZeroValue(Idx)) {
555 uint64_t TySize = TD->getTypeSize(I.getIndexedType());
556 // Constant optimization
557 if (const ConstantInt* CInt = dyn_cast<ConstantInt>(Idx)) {
558 printPtrLoad(CInt->getZExtValue()*TySize);
559 } else {
560 printPtrLoad(TySize);
561 printValueLoad(Idx);
562 printSimpleInstruction("mul");
563 }
564 printSimpleInstruction("add");
565 }
566 }
567}
568
569
570std::string MSILWriter::getCallSignature(const FunctionType* Ty,
571 const Instruction* Inst,
572 std::string Name) {
573 std::string Tmp = "";
574 if (Ty->isVarArg()) Tmp += "vararg ";
575 // Name and return type.
576 Tmp += getTypeName(Ty->getReturnType())+Name+"(";
577 // Function argument type list.
578 unsigned NumParams = Ty->getNumParams();
579 for (unsigned I = 0; I!=NumParams; ++I) {
580 if (I!=0) Tmp += ",";
581 Tmp += getTypeName(Ty->getParamType(I));
582 }
583 // CLR needs to know the exact amount of parameters received by vararg
584 // function, because caller cleans the stack.
585 if (Ty->isVarArg() && Inst) {
586 // Origin to function arguments in "CallInst" or "InvokeInst"
587 unsigned Org = isa<InvokeInst>(Inst) ? 3 : 1;
588 // Print variable argument types.
589 unsigned NumOperands = Inst->getNumOperands()-Org;
590 if (NumParams<NumOperands) {
591 if (NumParams!=0) Tmp += ", ";
592 Tmp += "... , ";
593 for (unsigned J = NumParams; J!=NumOperands; ++J) {
594 if (J!=NumParams) Tmp += ", ";
595 Tmp += getTypeName(Inst->getOperand(J+Org)->getType());
596 }
597 }
598 }
599 return Tmp+")";
600}
601
602
603void MSILWriter::printFunctionCall(const Value* FnVal,
604 const Instruction* Inst) {
605 // Get function calling convention
606 std::string Name = "";
607 if (const CallInst* Call = dyn_cast<CallInst>(Inst))
608 Name = getConvModopt(Call->getCallingConv());
609 else if (const InvokeInst* Invoke = dyn_cast<InvokeInst>(Inst))
610 Name = getConvModopt(Invoke->getCallingConv());
611 else {
612 cerr << "Instruction = " << Inst->getName() << '\n';
613 assert(0 && "Need \"Invoke\" or \"Call\" instruction only");
614 }
615
616 if (const Function* F = dyn_cast<Function>(FnVal)) {
617 // Direct call
618 Name += getValueName(F);
619 printSimpleInstruction("call",
620 getCallSignature(F->getFunctionType(),Inst,Name).c_str());
621 } else {
622 // Indirect function call
623 const PointerType* PTy = cast<PointerType>(FnVal->getType());
624 const FunctionType* FTy = cast<FunctionType>(PTy->getElementType());
625 // Load function address
626 printValueLoad(FnVal);
627 printSimpleInstruction("calli",getCallSignature(FTy,Inst,Name).c_str());
628 }
629}
630
631
632void MSILWriter::printCallInstruction(const Instruction* Inst) {
633 // Load arguments to stack
634 for (int I = 1, E = Inst->getNumOperands(); I!=E; ++I)
635 printValueLoad(Inst->getOperand(I));
636 printFunctionCall(Inst->getOperand(0),Inst);
637}
638
639
640void MSILWriter::printICmpInstruction(unsigned Predicate, const Value* Left,
641 const Value* Right) {
642 switch (Predicate) {
643 case ICmpInst::ICMP_EQ:
644 printBinaryInstruction("ceq",Left,Right);
645 break;
646 case ICmpInst::ICMP_NE:
647 // Emulate = not (Op1 eq Op2)
648 printBinaryInstruction("ceq",Left,Right);
649 printSimpleInstruction("not");
650 break;
651 case ICmpInst::ICMP_ULE:
652 case ICmpInst::ICMP_SLE:
653 // Emulate = (Op1 eq Op2) or (Op1 lt Op2)
654 printBinaryInstruction("ceq",Left,Right);
655 if (Predicate==ICmpInst::ICMP_ULE)
656 printBinaryInstruction("clt.un",Left,Right);
657 else
658 printBinaryInstruction("clt",Left,Right);
659 printSimpleInstruction("or");
660 break;
661 case ICmpInst::ICMP_UGE:
662 case ICmpInst::ICMP_SGE:
663 // Emulate = (Op1 eq Op2) or (Op1 gt Op2)
664 printBinaryInstruction("ceq",Left,Right);
665 if (Predicate==ICmpInst::ICMP_UGE)
666 printBinaryInstruction("cgt.un",Left,Right);
667 else
668 printBinaryInstruction("cgt",Left,Right);
669 printSimpleInstruction("or");
670 break;
671 case ICmpInst::ICMP_ULT:
672 printBinaryInstruction("clt.un",Left,Right);
673 break;
674 case ICmpInst::ICMP_SLT:
675 printBinaryInstruction("clt",Left,Right);
676 break;
677 case ICmpInst::ICMP_UGT:
678 printBinaryInstruction("cgt.un",Left,Right);
679 case ICmpInst::ICMP_SGT:
680 printBinaryInstruction("cgt",Left,Right);
681 break;
682 default:
683 cerr << "Predicate = " << Predicate << '\n';
684 assert(0 && "Invalid icmp predicate");
685 }
686}
687
688
689void MSILWriter::printFCmpInstruction(unsigned Predicate, const Value* Left,
690 const Value* Right) {
691 // FIXME: Correct comparison
692 std::string NanFunc = "bool [mscorlib]System.Double::IsNaN(float64)";
693 switch (Predicate) {
694 case FCmpInst::FCMP_UGT:
695 // X > Y || llvm_fcmp_uno(X, Y)
696 printBinaryInstruction("cgt",Left,Right);
697 printFCmpInstruction(FCmpInst::FCMP_UNO,Left,Right);
698 printSimpleInstruction("or");
699 break;
700 case FCmpInst::FCMP_OGT:
701 // X > Y
702 printBinaryInstruction("cgt",Left,Right);
703 break;
704 case FCmpInst::FCMP_UGE:
705 // X >= Y || llvm_fcmp_uno(X, Y)
706 printBinaryInstruction("ceq",Left,Right);
707 printBinaryInstruction("cgt",Left,Right);
708 printSimpleInstruction("or");
709 printFCmpInstruction(FCmpInst::FCMP_UNO,Left,Right);
710 printSimpleInstruction("or");
711 break;
712 case FCmpInst::FCMP_OGE:
713 // X >= Y
714 printBinaryInstruction("ceq",Left,Right);
715 printBinaryInstruction("cgt",Left,Right);
716 printSimpleInstruction("or");
717 break;
718 case FCmpInst::FCMP_ULT:
719 // X < Y || llvm_fcmp_uno(X, Y)
720 printBinaryInstruction("clt",Left,Right);
721 printFCmpInstruction(FCmpInst::FCMP_UNO,Left,Right);
722 printSimpleInstruction("or");
723 break;
724 case FCmpInst::FCMP_OLT:
725 // X < Y
726 printBinaryInstruction("clt",Left,Right);
727 break;
728 case FCmpInst::FCMP_ULE:
729 // X <= Y || llvm_fcmp_uno(X, Y)
730 printBinaryInstruction("ceq",Left,Right);
731 printBinaryInstruction("clt",Left,Right);
732 printSimpleInstruction("or");
733 printFCmpInstruction(FCmpInst::FCMP_UNO,Left,Right);
734 printSimpleInstruction("or");
735 break;
736 case FCmpInst::FCMP_OLE:
737 // X <= Y
738 printBinaryInstruction("ceq",Left,Right);
739 printBinaryInstruction("clt",Left,Right);
740 printSimpleInstruction("or");
741 break;
742 case FCmpInst::FCMP_UEQ:
743 // X == Y || llvm_fcmp_uno(X, Y)
744 printBinaryInstruction("ceq",Left,Right);
745 printFCmpInstruction(FCmpInst::FCMP_UNO,Left,Right);
746 printSimpleInstruction("or");
747 break;
748 case FCmpInst::FCMP_OEQ:
749 // X == Y
750 printBinaryInstruction("ceq",Left,Right);
751 break;
752 case FCmpInst::FCMP_UNE:
753 // X != Y
754 printBinaryInstruction("ceq",Left,Right);
755 printSimpleInstruction("not");
756 break;
757 case FCmpInst::FCMP_ONE:
758 // X != Y && llvm_fcmp_ord(X, Y)
759 printBinaryInstruction("ceq",Left,Right);
760 printSimpleInstruction("not");
761 break;
762 case FCmpInst::FCMP_ORD:
763 // return X == X && Y == Y
764 printBinaryInstruction("ceq",Left,Left);
765 printBinaryInstruction("ceq",Right,Right);
766 printSimpleInstruction("or");
767 break;
768 case FCmpInst::FCMP_UNO:
769 // X != X || Y != Y
770 printBinaryInstruction("ceq",Left,Left);
771 printSimpleInstruction("not");
772 printBinaryInstruction("ceq",Right,Right);
773 printSimpleInstruction("not");
774 printSimpleInstruction("or");
775 break;
776 default:
777 assert(0 && "Illegal FCmp predicate");
778 }
779}
780
781
782void MSILWriter::printInvokeInstruction(const InvokeInst* Inst) {
783 std::string Label = "leave$normal_"+utostr(getUniqID());
784 Out << ".try {\n";
785 // Load arguments
786 for (int I = 3, E = Inst->getNumOperands(); I!=E; ++I)
787 printValueLoad(Inst->getOperand(I));
788 // Print call instruction
789 printFunctionCall(Inst->getOperand(0),Inst);
790 // Save function result and leave "try" block
791 printValueSave(Inst);
792 printSimpleInstruction("leave",Label.c_str());
793 Out << "}\n";
794 Out << "catch [mscorlib]System.Exception {\n";
795 // Redirect to unwind block
796 printSimpleInstruction("pop");
797 printBranchToBlock(Inst->getParent(),NULL,Inst->getUnwindDest());
798 Out << "}\n" << Label << ":\n";
799 // Redirect to continue block
800 printBranchToBlock(Inst->getParent(),NULL,Inst->getNormalDest());
801}
802
803
804void MSILWriter::printSwitchInstruction(const SwitchInst* Inst) {
805 // FIXME: Emulate with IL "switch" instruction
806 // Emulate = if () else if () else if () else ...
807 for (unsigned int I = 1, E = Inst->getNumCases(); I!=E; ++I) {
808 printValueLoad(Inst->getCondition());
809 printValueLoad(Inst->getCaseValue(I));
810 printSimpleInstruction("ceq");
811 // Condition jump to successor block
812 printBranchToBlock(Inst->getParent(),Inst->getSuccessor(I),NULL);
813 }
814 // Jump to default block
815 printBranchToBlock(Inst->getParent(),NULL,Inst->getDefaultDest());
816}
817
818
819void MSILWriter::printInstruction(const Instruction* Inst) {
820 const Value *Left = 0, *Right = 0;
821 if (Inst->getNumOperands()>=1) Left = Inst->getOperand(0);
822 if (Inst->getNumOperands()>=2) Right = Inst->getOperand(1);
823 // Print instruction
824 // FIXME: "ShuffleVector","ExtractElement","InsertElement","VAArg" support.
825 switch (Inst->getOpcode()) {
826 // Terminator
827 case Instruction::Ret:
828 if (Inst->getNumOperands()) {
829 printValueLoad(Left);
830 printSimpleInstruction("ret");
831 } else
832 printSimpleInstruction("ret");
833 break;
834 case Instruction::Br:
835 printBranchInstruction(cast<BranchInst>(Inst));
836 break;
837 // Binary
838 case Instruction::Add:
839 printBinaryInstruction("add",Left,Right);
840 break;
841 case Instruction::Sub:
842 printBinaryInstruction("sub",Left,Right);
843 break;
844 case Instruction::Mul:
845 printBinaryInstruction("mul",Left,Right);
846 break;
847 case Instruction::UDiv:
848 printBinaryInstruction("div.un",Left,Right);
849 break;
850 case Instruction::SDiv:
851 case Instruction::FDiv:
852 printBinaryInstruction("div",Left,Right);
853 break;
854 case Instruction::URem:
855 printBinaryInstruction("rem.un",Left,Right);
856 break;
857 case Instruction::SRem:
858 case Instruction::FRem:
859 printBinaryInstruction("rem",Left,Right);
860 break;
861 // Binary Condition
862 case Instruction::ICmp:
863 printICmpInstruction(cast<ICmpInst>(Inst)->getPredicate(),Left,Right);
864 break;
865 case Instruction::FCmp:
866 printFCmpInstruction(cast<FCmpInst>(Inst)->getPredicate(),Left,Right);
867 break;
868 // Bitwise Binary
869 case Instruction::And:
870 printBinaryInstruction("and",Left,Right);
871 break;
872 case Instruction::Or:
873 printBinaryInstruction("or",Left,Right);
874 break;
875 case Instruction::Xor:
876 printBinaryInstruction("xor",Left,Right);
877 break;
878 case Instruction::Shl:
879 printBinaryInstruction("shl",Left,Right);
880 break;
881 case Instruction::LShr:
882 printBinaryInstruction("shr.un",Left,Right);
883 break;
884 case Instruction::AShr:
885 printBinaryInstruction("shr",Left,Right);
886 break;
887 case Instruction::Select:
888 printSelectInstruction(Inst->getOperand(0),Inst->getOperand(1),Inst->getOperand(2));
889 break;
890 case Instruction::Load:
891 printIndirectLoad(Inst->getOperand(0));
892 break;
893 case Instruction::Store:
894 printStoreInstruction(Inst);
895 break;
896 case Instruction::Trunc:
897 case Instruction::ZExt:
898 case Instruction::SExt:
899 case Instruction::FPTrunc:
900 case Instruction::FPExt:
901 case Instruction::UIToFP:
902 case Instruction::SIToFP:
903 case Instruction::FPToUI:
904 case Instruction::FPToSI:
905 case Instruction::PtrToInt:
906 case Instruction::IntToPtr:
907 case Instruction::BitCast:
908 printCastInstruction(Inst->getOpcode(),Left,
909 cast<CastInst>(Inst)->getDestTy());
910 break;
911 case Instruction::GetElementPtr:
912 printGepInstruction(Inst->getOperand(0),gep_type_begin(Inst),
913 gep_type_end(Inst));
914 break;
915 case Instruction::Call:
916 printCallInstruction(cast<CallInst>(Inst));
917 break;
918 case Instruction::Invoke:
919 printInvokeInstruction(cast<InvokeInst>(Inst));
920 break;
921 case Instruction::Unwind: {
922 std::string Class = "instance void [mscorlib]System.Exception::.ctor()";
923 printSimpleInstruction("newobj",Class.c_str());
924 printSimpleInstruction("throw");
925 break;
926 }
927 case Instruction::Switch:
928 printSwitchInstruction(cast<SwitchInst>(Inst));
929 break;
930 case Instruction::Alloca:
931 printValueLoad(Inst->getOperand(0));
932 printSimpleInstruction("localloc");
933 break;
934 case Instruction::Malloc:
935 assert(0 && "LowerAllocationsPass used");
936 break;
937 case Instruction::Free:
938 assert(0 && "LowerAllocationsPass used");
939 break;
940 case Instruction::Unreachable:
941 printSimpleInstruction("ldnull");
942 printSimpleInstruction("throw");
943 break;
944 default:
945 cerr << "Instruction = " << Inst->getName() << '\n';
946 assert(0 && "Unsupported instruction");
947 }
948}
949
950
951void MSILWriter::printLoop(const Loop* L) {
952 Out << getLabelName(L->getHeader()->getName()) << ":\n";
953 const std::vector<BasicBlock*>& blocks = L->getBlocks();
954 for (unsigned I = 0, E = blocks.size(); I!=E; I++) {
955 BasicBlock* BB = blocks[I];
956 Loop* BBLoop = LInfo->getLoopFor(BB);
957 if (BBLoop == L)
958 printBasicBlock(BB);
959 else if (BB==BBLoop->getHeader() && BBLoop->getParentLoop()==L)
960 printLoop(BBLoop);
961 }
962 printSimpleInstruction("br",getLabelName(L->getHeader()->getName()).c_str());
963}
964
965
966void MSILWriter::printBasicBlock(const BasicBlock* BB) {
967 Out << getLabelName(BB) << ":\n";
968 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
969 const Instruction* Inst = I;
970 // Comment llvm original instruction
971 Out << "\n//" << *Inst << "\n";
972 // Do not handle PHI instruction in current block
973 if (Inst->getOpcode()==Instruction::PHI) continue;
974 // Print instruction
975 printInstruction(Inst);
976 // Save result
977 if (Inst->getType()!=Type::VoidTy) {
978 // Do not save value after invoke, it done in "try" block
979 if (Inst->getOpcode()==Instruction::Invoke) continue;
980 printValueSave(Inst);
981 }
982 }
983}
984
985
986void MSILWriter::printLocalVariables(const Function& F) {
987 std::string Name;
988 const Type* Ty = NULL;
989 // Find variables
990 for (const_inst_iterator I = inst_begin(&F), E = inst_end(&F); I!=E; ++I) {
991 const AllocaInst* AI = dyn_cast<AllocaInst>(&*I);
992 if (AI && !isa<GlobalVariable>(AI)) {
993 Ty = PointerType::get(AI->getAllocatedType());
994 Name = getValueName(AI);
995 } else if (I->getType()!=Type::VoidTy) {
996 Ty = I->getType();
997 Name = getValueName(&*I);
998 } else continue;
999 Out << "\t.locals (" << getTypeName(Ty) << Name << ")\n";
1000 }
1001}
1002
1003
1004void MSILWriter::printFunctionBody(const Function& F) {
1005 // Print body
1006 for (Function::const_iterator I = F.begin(), E = F.end(); I!=E; ++I) {
1007 if (Loop *L = LInfo->getLoopFor(I)) {
1008 if (L->getHeader()==I && L->getParentLoop()==0)
1009 printLoop(L);
1010 } else {
1011 printBasicBlock(I);
1012 }
1013 }
1014}
1015
1016
1017void MSILWriter::printConstantExpr(const ConstantExpr* CE) {
1018 const Value *left = 0, *right = 0;
1019 if (CE->getNumOperands()>=1) left = CE->getOperand(0);
1020 if (CE->getNumOperands()>=2) right = CE->getOperand(1);
1021 // Print instruction
1022 switch (CE->getOpcode()) {
1023 case Instruction::Trunc:
1024 case Instruction::ZExt:
1025 case Instruction::SExt:
1026 case Instruction::FPTrunc:
1027 case Instruction::FPExt:
1028 case Instruction::UIToFP:
1029 case Instruction::SIToFP:
1030 case Instruction::FPToUI:
1031 case Instruction::FPToSI:
1032 case Instruction::PtrToInt:
1033 case Instruction::IntToPtr:
1034 case Instruction::BitCast:
1035 printCastInstruction(CE->getOpcode(),left,CE->getType());
1036 break;
1037 case Instruction::GetElementPtr:
1038 printGepInstruction(CE->getOperand(0),gep_type_begin(CE),gep_type_end(CE));
1039 break;
1040 case Instruction::ICmp:
1041 printICmpInstruction(CE->getPredicate(),left,right);
1042 break;
1043 case Instruction::FCmp:
1044 printFCmpInstruction(CE->getPredicate(),left,right);
1045 break;
1046 case Instruction::Select:
1047 printSelectInstruction(CE->getOperand(0),CE->getOperand(1),CE->getOperand(2));
1048 break;
1049 case Instruction::Add:
1050 printBinaryInstruction("add",left,right);
1051 break;
1052 case Instruction::Sub:
1053 printBinaryInstruction("sub",left,right);
1054 break;
1055 case Instruction::Mul:
1056 printBinaryInstruction("mul",left,right);
1057 break;
1058 case Instruction::UDiv:
1059 printBinaryInstruction("div.un",left,right);
1060 break;
1061 case Instruction::SDiv:
1062 case Instruction::FDiv:
1063 printBinaryInstruction("div",left,right);
1064 break;
1065 case Instruction::URem:
1066 printBinaryInstruction("rem.un",left,right);
1067 break;
1068 case Instruction::SRem:
1069 case Instruction::FRem:
1070 printBinaryInstruction("rem",left,right);
1071 break;
1072 case Instruction::And:
1073 printBinaryInstruction("and",left,right);
1074 break;
1075 case Instruction::Or:
1076 printBinaryInstruction("or",left,right);
1077 break;
1078 case Instruction::Xor:
1079 printBinaryInstruction("xor",left,right);
1080 break;
1081 case Instruction::Shl:
1082 printBinaryInstruction("shl",left,right);
1083 break;
1084 case Instruction::LShr:
1085 printBinaryInstruction("shr.un",left,right);
1086 break;
1087 case Instruction::AShr:
1088 printBinaryInstruction("shr",left,right);
1089 break;
1090 default:
1091 cerr << "Expression = " << *CE << "\n";
1092 assert(0 && "Invalid constant expression");
1093 }
1094}
1095
1096
1097void MSILWriter::printStaticInitializerList() {
1098 // List of global variables with uninitialized fields.
1099 for (std::map<const GlobalVariable*,std::vector<StaticInitializer> >::iterator
1100 VarI = StaticInitList.begin(), VarE = StaticInitList.end(); VarI!=VarE;
1101 ++VarI) {
1102 const std::vector<StaticInitializer>& InitList = VarI->second;
1103 if (InitList.empty()) continue;
1104 // For each uninitialized field.
1105 for (std::vector<StaticInitializer>::const_iterator I = InitList.begin(),
1106 E = InitList.end(); I!=E; ++I) {
1107 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(I->constant)) {
1108 Out << "\n// Init " << getValueName(VarI->first) << ", offset " <<
1109 utostr(I->offset) << ", type "<< *I->constant->getType() << "\n\n";
1110 // Load variable address
1111 printValueLoad(VarI->first);
1112 // Add offset
1113 if (I->offset!=0) {
1114 printPtrLoad(I->offset);
1115 printSimpleInstruction("add");
1116 }
1117 // Load value
1118 printConstantExpr(CE);
1119 // Save result at offset
1120 std::string postfix = getTypePostfix(CE->getType(),true);
1121 if (*postfix.begin()=='u') *postfix.begin() = 'i';
1122 postfix = "stind."+postfix;
1123 printSimpleInstruction(postfix.c_str());
1124 } else {
1125 cerr << "Constant = " << *I->constant << '\n';
1126 assert(0 && "Invalid static initializer");
1127 }
1128 }
1129 }
1130}
1131
1132
1133void MSILWriter::printFunction(const Function& F) {
1134 const FunctionType* FTy = F.getFunctionType();
Reid Spencer5694b6e2007-04-09 06:17:21 +00001135 const ParamAttrsList *Attrs = FTy->getParamAttrs();
1136 bool isSigned = Attrs && Attrs->paramHasAttr(0, SExtAttribute);
Anton Korobeynikov099883f2007-03-21 21:38:25 +00001137 Out << "\n.method static ";
1138 Out << (F.hasInternalLinkage() ? "private " : "public ");
1139 if (F.isVarArg()) Out << "vararg ";
1140 Out << getTypeName(F.getReturnType(),isSigned) <<
1141 getConvModopt(F.getCallingConv()) << getValueName(&F) << '\n';
1142 // Arguments
1143 Out << "\t(";
1144 unsigned ArgIdx = 1;
1145 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I!=E;
1146 ++I, ++ArgIdx) {
Reid Spencer5694b6e2007-04-09 06:17:21 +00001147 isSigned = Attrs && Attrs->paramHasAttr(ArgIdx, SExtAttribute);
Anton Korobeynikov099883f2007-03-21 21:38:25 +00001148 if (I!=F.arg_begin()) Out << ", ";
1149 Out << getTypeName(I->getType(),isSigned) << getValueName(I);
1150 }
1151 Out << ") cil managed\n";
1152 // Body
1153 Out << "{\n";
1154 // FIXME: Convert "string[]" to "argc,argv"
1155 if (F.getName()=="main") {
1156 printSimpleInstruction(".entrypoint");
1157 printLocalVariables(F);
1158 printStaticInitializerList();
1159 } else {
1160 printLocalVariables(F);
1161 }
1162 printFunctionBody(F);
1163 Out << "}\n";
1164}
1165
1166
1167void MSILWriter::printDeclarations(const TypeSymbolTable& ST) {
1168 std::string Name;
1169 std::set<const Type*> Printed;
1170 //cerr << "UsedTypes = " << UsedTypes << '\n';
1171 for (std::set<const Type*>::const_iterator
1172 UI = UsedTypes->begin(), UE = UsedTypes->end(); UI!=UE; ++UI) {
1173 const Type* Ty = *UI;
1174 if (isa<ArrayType>(Ty))
1175 Name = getArrayTypeName(Ty->getTypeID(),Ty);
1176 else if (isa<VectorType>(Ty))
1177 Name = getArrayTypeName(Ty->getTypeID(),Ty);
1178 else if (isa<StructType>(Ty))
1179 Name = ModulePtr->getTypeName(Ty);
1180 // Type with no need to declare.
1181 else continue;
1182 // Print not duplicated type
1183 if (Printed.insert(Ty).second) {
1184 Out << ".class value explicit ansi sealed '" << Name << "'";
1185 Out << " { .pack " << 1 << " .size " << TD->getTypeSize(Ty) << " }\n\n";
1186 }
1187 }
1188}
1189
1190
1191unsigned int MSILWriter::getBitWidth(const Type* Ty) {
1192 unsigned int N = Ty->getPrimitiveSizeInBits();
1193 assert(N!=0 && "Invalid type in getBitWidth()");
1194 switch (N) {
1195 case 1:
1196 case 8:
1197 case 16:
1198 case 32:
1199 case 64:
1200 return N;
1201 default:
1202 cerr << "Bits = " << N << '\n';
1203 assert(0 && "Unsupported integer width");
1204 }
1205}
1206
1207
1208void MSILWriter::printStaticConstant(const Constant* C, uint64_t& Offset) {
1209 uint64_t TySize = 0;
1210 const Type* Ty = C->getType();
1211 // Print zero initialized constant.
1212 if (isa<ConstantAggregateZero>(C) || C->isNullValue()) {
1213 TySize = TD->getTypeSize(C->getType());
1214 Offset += TySize;
1215 Out << "int8 (0) [" << TySize << "]";
1216 return;
1217 }
1218 // Print constant initializer
1219 switch (Ty->getTypeID()) {
1220 case Type::IntegerTyID: {
1221 TySize = TD->getTypeSize(Ty);
1222 const ConstantInt* Int = cast<ConstantInt>(C);
1223 Out << getPrimitiveTypeName(Ty,true) << "(" << Int->getSExtValue() << ")";
1224 break;
1225 }
1226 case Type::FloatTyID:
1227 case Type::DoubleTyID: {
1228 TySize = TD->getTypeSize(Ty);
1229 const ConstantFP* CFp = cast<ConstantFP>(C);
1230 Out << getPrimitiveTypeName(Ty,true) << "(" << CFp->getValue() << ")";
1231 break;
1232 }
1233 case Type::ArrayTyID:
1234 case Type::VectorTyID:
1235 case Type::StructTyID:
1236 for (unsigned I = 0, E = C->getNumOperands(); I<E; I++) {
1237 if (I!=0) Out << ",\n";
1238 printStaticConstant(C->getOperand(I),Offset);
1239 }
1240 break;
1241 case Type::PointerTyID:
1242 TySize = TD->getTypeSize(C->getType());
1243 // Initialize with global variable address
1244 if (const GlobalVariable *G = dyn_cast<GlobalVariable>(C)) {
1245 std::string name = getValueName(G);
1246 Out << "&(" << name.insert(name.length()-1,"$data") << ")";
1247 } else {
1248 // Dynamic initialization
1249 if (!isa<ConstantPointerNull>(C) && !C->isNullValue())
1250 InitListPtr->push_back(StaticInitializer(C,Offset));
1251 // Null pointer initialization
1252 if (TySize==4) Out << "int32 (0)";
1253 else if (TySize==8) Out << "int64 (0)";
1254 else assert(0 && "Invalid pointer size");
1255 }
1256 break;
1257 default:
1258 cerr << "TypeID = " << Ty->getTypeID() << '\n';
1259 assert(0 && "Invalid type in printStaticConstant()");
1260 }
1261 // Increase offset.
1262 Offset += TySize;
1263}
1264
1265
1266void MSILWriter::printStaticInitializer(const Constant* C,
1267 const std::string& Name) {
1268 switch (C->getType()->getTypeID()) {
1269 case Type::IntegerTyID:
1270 case Type::FloatTyID:
1271 case Type::DoubleTyID:
1272 Out << getPrimitiveTypeName(C->getType(),true);
1273 break;
1274 case Type::ArrayTyID:
1275 case Type::VectorTyID:
1276 case Type::StructTyID:
1277 case Type::PointerTyID:
1278 Out << getTypeName(C->getType());
1279 break;
1280 default:
1281 cerr << "Type = " << *C << "\n";
1282 assert(0 && "Invalid constant type");
1283 }
1284 // Print initializer
1285 std::string label = Name;
1286 label.insert(label.length()-1,"$data");
1287 Out << Name << " at " << label << '\n';
1288 Out << ".data " << label << " = {\n";
1289 uint64_t offset = 0;
1290 printStaticConstant(C,offset);
1291 Out << "\n}\n\n";
1292}
1293
1294
1295void MSILWriter::printVariableDefinition(const GlobalVariable* G) {
1296 const Constant* C = G->getInitializer();
1297 if (C->isNullValue() || isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
1298 InitListPtr = 0;
1299 else
1300 InitListPtr = &StaticInitList[G];
1301 printStaticInitializer(C,getValueName(G));
1302}
1303
1304
1305void MSILWriter::printGlobalVariables() {
1306 if (ModulePtr->global_empty()) return;
1307 Module::global_iterator I,E;
1308 for (I = ModulePtr->global_begin(), E = ModulePtr->global_end(); I!=E; ++I) {
1309 // Variable definition
1310 if (I->isDeclaration()) continue;
1311 Out << ".field static " << (I->hasExternalLinkage() ? "public " :
1312 "private ");
1313 printVariableDefinition(&*I);
1314 }
1315}
1316
1317
1318void MSILWriter::printExternals() {
1319 Module::const_iterator I,E;
1320 for (I=ModulePtr->begin(),E=ModulePtr->end(); I!=E; ++I) {
1321 // Skip intrisics
1322 if (I->getIntrinsicID()) continue;
1323 // FIXME: Treat as standard library function
1324 if (I->isDeclaration()) {
1325 const Function* F = &*I;
1326 const FunctionType* FTy = F->getFunctionType();
1327 std::string Name = getConvModopt(F->getCallingConv())+getValueName(F);
1328 std::string Sig = getCallSignature(FTy,NULL,Name);
1329 Out << ".method static hidebysig pinvokeimpl(\"msvcrt.dll\" cdecl)\n\t"
1330 << Sig << " preservesig {}\n\n";
1331 }
1332 }
1333}
1334
1335//===----------------------------------------------------------------------===//
1336// External Interface declaration
1337//===----------------------------------------------------------------------===//
1338
1339bool MSILTarget::addPassesToEmitWholeFile(PassManager &PM, std::ostream &o,
1340 CodeGenFileType FileType, bool Fast)
1341{
1342 if (FileType != TargetMachine::AssemblyFile) return true;
1343 MSILWriter* Writer = new MSILWriter(o);
1344 PM.add(createLowerGCPass());
1345 PM.add(createLowerAllocationsPass(true));
1346 // FIXME: Handle switch trougth native IL instruction "switch"
1347 PM.add(createLowerSwitchPass());
1348 PM.add(createCFGSimplificationPass());
1349 PM.add(new MSILModule(Writer->UsedTypes,Writer->TD));
1350 PM.add(Writer);
1351 return false;
1352}