blob: 707b5334a5de2dc64f2574e93a861bbe7a982bb7 [file] [log] [blame]
Chris Lattner17152292001-07-02 05:46:38 +00001//===- DominatorSet.cpp - Dominator Set Calculation --------------*- C++ -*--=//
2//
3// This file provides a simple class to calculate the dominator set of a method.
4//
5//===----------------------------------------------------------------------===//
6
7#include "llvm/Analysis/Dominators.h"
Chris Lattner94108ab2001-07-06 16:58:22 +00008#include "llvm/Analysis/SimplifyCFG.h" // To get cfg::UnifyAllExitNodes
Chris Lattner17152292001-07-02 05:46:38 +00009#include "llvm/CFG.h"
Chris Lattner57dbb3a2001-07-23 17:46:59 +000010#include "llvm/Support/STLExtras.h"
Chris Lattner17152292001-07-02 05:46:38 +000011#include <algorithm>
12
13//===----------------------------------------------------------------------===//
14// Helper Template
15//===----------------------------------------------------------------------===//
16
17// set_intersect - Identical to set_intersection, except that it works on
18// set<>'s and is nicer to use. Functionally, this iterates through S1,
19// removing elements that are not contained in S2.
20//
21template <class Ty, class Ty2>
22void set_intersect(set<Ty> &S1, const set<Ty2> &S2) {
23 for (typename set<Ty>::iterator I = S1.begin(); I != S1.end();) {
24 const Ty &E = *I;
25 ++I;
26 if (!S2.count(E)) S1.erase(E); // Erase element if not in S2
27 }
28}
29
Chris Lattner94108ab2001-07-06 16:58:22 +000030//===----------------------------------------------------------------------===//
31// DominatorBase Implementation
32//===----------------------------------------------------------------------===//
33
34bool cfg::DominatorBase::isPostDominator() const {
35 return Root != Root->getParent()->front();
36}
37
Chris Lattner17152292001-07-02 05:46:38 +000038
39//===----------------------------------------------------------------------===//
40// DominatorSet Implementation
41//===----------------------------------------------------------------------===//
42
43// DominatorSet ctor - Build either the dominator set or the post-dominator
44// set for a method...
45//
Chris Lattner94108ab2001-07-06 16:58:22 +000046cfg::DominatorSet::DominatorSet(const Method *M) : DominatorBase(M->front()) {
47 calcForwardDominatorSet(M);
48}
49
50// calcForwardDominatorSet - This method calculates the forward dominator sets
51// for the specified method.
52//
53void cfg::DominatorSet::calcForwardDominatorSet(const Method *M) {
Chris Lattner17152292001-07-02 05:46:38 +000054 assert(Root && M && "Can't build dominator set of null method!");
55 bool Changed;
56 do {
57 Changed = false;
58
59 DomSetType WorkingSet;
60 df_const_iterator It = df_begin(M), End = df_end(M);
61 for ( ; It != End; ++It) {
62 const BasicBlock *BB = *It;
63 pred_const_iterator PI = pred_begin(BB), PEnd = pred_end(BB);
64 if (PI != PEnd) { // Is there SOME predecessor?
65 // Loop until we get to a predecessor that has had it's dom set filled
66 // in at least once. We are guaranteed to have this because we are
67 // traversing the graph in DFO and have handled start nodes specially.
68 //
69 while (Doms[*PI].size() == 0) ++PI;
70 WorkingSet = Doms[*PI];
71
72 for (++PI; PI != PEnd; ++PI) { // Intersect all of the predecessor sets
73 DomSetType &PredSet = Doms[*PI];
74 if (PredSet.size())
75 set_intersect(WorkingSet, PredSet);
76 }
77 }
78
79 WorkingSet.insert(BB); // A block always dominates itself
80 DomSetType &BBSet = Doms[BB];
81 if (BBSet != WorkingSet) {
82 BBSet.swap(WorkingSet); // Constant time operation!
83 Changed = true; // The sets changed.
84 }
85 WorkingSet.clear(); // Clear out the set for next iteration
86 }
87 } while (Changed);
Chris Lattner94108ab2001-07-06 16:58:22 +000088}
Chris Lattner17152292001-07-02 05:46:38 +000089
Chris Lattner94108ab2001-07-06 16:58:22 +000090// Postdominator set constructor. This ctor converts the specified method to
91// only have a single exit node (return stmt), then calculates the post
92// dominance sets for the method.
93//
94cfg::DominatorSet::DominatorSet(Method *M, bool PostDomSet)
95 : DominatorBase(M->front()) {
96 if (!PostDomSet) { calcForwardDominatorSet(M); return; }
97
98 Root = cfg::UnifyAllExitNodes(M);
99 assert(Root && "TODO: Don't handle case where there are no exit nodes yet!");
100
101 bool Changed;
102 do {
103 Changed = false;
104
105 set<const BasicBlock*> Visited;
106 DomSetType WorkingSet;
107 idf_const_iterator It = idf_begin(Root), End = idf_end(Root);
108 for ( ; It != End; ++It) {
109 const BasicBlock *BB = *It;
110 succ_const_iterator PI = succ_begin(BB), PEnd = succ_end(BB);
111 if (PI != PEnd) { // Is there SOME predecessor?
112 // Loop until we get to a successor that has had it's dom set filled
113 // in at least once. We are guaranteed to have this because we are
114 // traversing the graph in DFO and have handled start nodes specially.
115 //
116 while (Doms[*PI].size() == 0) ++PI;
117 WorkingSet = Doms[*PI];
118
119 for (++PI; PI != PEnd; ++PI) { // Intersect all of the successor sets
120 DomSetType &PredSet = Doms[*PI];
121 if (PredSet.size())
122 set_intersect(WorkingSet, PredSet);
123 }
124 }
125
126 WorkingSet.insert(BB); // A block always dominates itself
127 DomSetType &BBSet = Doms[BB];
128 if (BBSet != WorkingSet) {
129 BBSet.swap(WorkingSet); // Constant time operation!
130 Changed = true; // The sets changed.
131 }
132 WorkingSet.clear(); // Clear out the set for next iteration
133 }
134 } while (Changed);
Chris Lattner17152292001-07-02 05:46:38 +0000135}
136
137
138//===----------------------------------------------------------------------===//
139// ImmediateDominators Implementation
140//===----------------------------------------------------------------------===//
141
142// calcIDoms - Calculate the immediate dominator mapping, given a set of
143// dominators for every basic block.
144void cfg::ImmediateDominators::calcIDoms(const DominatorSet &DS) {
145 // Loop over all of the nodes that have dominators... figuring out the IDOM
146 // for each node...
147 //
148 for (DominatorSet::const_iterator DI = DS.begin(), DEnd = DS.end();
149 DI != DEnd; ++DI) {
150 const BasicBlock *BB = DI->first;
151 const DominatorSet::DomSetType &Dominators = DI->second;
152 unsigned DomSetSize = Dominators.size();
153 if (DomSetSize == 1) continue; // Root node... IDom = null
154
155 // Loop over all dominators of this node. This corresponds to looping over
156 // nodes in the dominator chain, looking for a node whose dominator set is
157 // equal to the current nodes, except that the current node does not exist
158 // in it. This means that it is one level higher in the dom chain than the
159 // current node, and it is our idom!
160 //
161 DominatorSet::DomSetType::const_iterator I = Dominators.begin();
162 DominatorSet::DomSetType::const_iterator End = Dominators.end();
163 for (; I != End; ++I) { // Iterate over dominators...
164 // All of our dominators should form a chain, where the number of elements
165 // in the dominator set indicates what level the node is at in the chain.
166 // We want the node immediately above us, so it will have an identical
167 // dominator set, except that BB will not dominate it... therefore it's
168 // dominator set size will be one less than BB's...
169 //
170 if (DS.getDominators(*I).size() == DomSetSize - 1) {
171 IDoms[BB] = *I;
172 break;
173 }
174 }
175 }
176}
177
178
179//===----------------------------------------------------------------------===//
180// DominatorTree Implementation
181//===----------------------------------------------------------------------===//
182
183// DominatorTree dtor - Free all of the tree node memory.
184//
185cfg::DominatorTree::~DominatorTree() {
186 for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I)
187 delete I->second;
188}
189
190
191cfg::DominatorTree::DominatorTree(const ImmediateDominators &IDoms)
Chris Lattner94108ab2001-07-06 16:58:22 +0000192 : DominatorBase(IDoms.getRoot()) {
Chris Lattner17152292001-07-02 05:46:38 +0000193 const Method *M = Root->getParent();
194
195 Nodes[Root] = new Node(Root, 0); // Add a node for the root...
196
197 // Iterate over all nodes in depth first order...
198 for (df_const_iterator I = df_begin(M), E = df_end(M); I != E; ++I) {
199 const BasicBlock *BB = *I, *IDom = IDoms[*I];
200
201 if (IDom != 0) { // Ignore the root node and other nasty nodes
202 // We know that the immediate dominator should already have a node,
203 // because we are traversing the CFG in depth first order!
204 //
205 assert(Nodes[IDom] && "No node for IDOM?");
206 Node *IDomNode = Nodes[IDom];
207
208 // Add a new tree node for this BasicBlock, and link it as a child of
209 // IDomNode
210 Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
211 }
212 }
213}
214
215void cfg::DominatorTree::calculate(const DominatorSet &DS) {
Chris Lattner17152292001-07-02 05:46:38 +0000216 Nodes[Root] = new Node(Root, 0); // Add a node for the root...
217
Chris Lattner94108ab2001-07-06 16:58:22 +0000218 if (!isPostDominator()) {
219 // Iterate over all nodes in depth first order...
220 for (df_const_iterator I = df_begin(Root), E = df_end(Root); I != E; ++I) {
221 const BasicBlock *BB = *I;
222 const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
223 unsigned DomSetSize = Dominators.size();
224 if (DomSetSize == 1) continue; // Root node... IDom = null
225
226 // Loop over all dominators of this node. This corresponds to looping over
227 // nodes in the dominator chain, looking for a node whose dominator set is
228 // equal to the current nodes, except that the current node does not exist
229 // in it. This means that it is one level higher in the dom chain than the
230 // current node, and it is our idom! We know that we have already added
231 // a DominatorTree node for our idom, because the idom must be a
232 // predecessor in the depth first order that we are iterating through the
233 // method.
Chris Lattner17152292001-07-02 05:46:38 +0000234 //
Chris Lattner94108ab2001-07-06 16:58:22 +0000235 DominatorSet::DomSetType::const_iterator I = Dominators.begin();
236 DominatorSet::DomSetType::const_iterator End = Dominators.end();
237 for (; I != End; ++I) { // Iterate over dominators...
238 // All of our dominators should form a chain, where the number of elements
239 // in the dominator set indicates what level the node is at in the chain.
240 // We want the node immediately above us, so it will have an identical
241 // dominator set, except that BB will not dominate it... therefore it's
242 // dominator set size will be one less than BB's...
Chris Lattner17152292001-07-02 05:46:38 +0000243 //
Chris Lattner94108ab2001-07-06 16:58:22 +0000244 if (DS.getDominators(*I).size() == DomSetSize - 1) {
245 // We know that the immediate dominator should already have a node,
246 // because we are traversing the CFG in depth first order!
247 //
248 Node *IDomNode = Nodes[*I];
249 assert(IDomNode && "No node for IDOM?");
250
251 // Add a new tree node for this BasicBlock, and link it as a child of
252 // IDomNode
253 Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
254 break;
255 }
256 }
257 }
258 } else {
259 // Iterate over all nodes in depth first order...
260 for (idf_const_iterator I = idf_begin(Root), E = idf_end(Root); I != E; ++I) {
261 const BasicBlock *BB = *I;
262 const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
263 unsigned DomSetSize = Dominators.size();
264 if (DomSetSize == 1) continue; // Root node... IDom = null
265
266 // Loop over all dominators of this node. This corresponds to looping over
267 // nodes in the dominator chain, looking for a node whose dominator set is
268 // equal to the current nodes, except that the current node does not exist
269 // in it. This means that it is one level higher in the dom chain than the
270 // current node, and it is our idom! We know that we have already added
271 // a DominatorTree node for our idom, because the idom must be a
272 // predecessor in the depth first order that we are iterating through the
273 // method.
274 //
275 DominatorSet::DomSetType::const_iterator I = Dominators.begin();
276 DominatorSet::DomSetType::const_iterator End = Dominators.end();
277 for (; I != End; ++I) { // Iterate over dominators...
278 // All of our dominators should form a chain, where the number of elements
279 // in the dominator set indicates what level the node is at in the chain.
280 // We want the node immediately above us, so it will have an identical
281 // dominator set, except that BB will not dominate it... therefore it's
282 // dominator set size will be one less than BB's...
283 //
284 if (DS.getDominators(*I).size() == DomSetSize - 1) {
285 // We know that the immediate dominator should already have a node,
286 // because we are traversing the CFG in depth first order!
287 //
288 Node *IDomNode = Nodes[*I];
289 assert(IDomNode && "No node for IDOM?");
290
291 // Add a new tree node for this BasicBlock, and link it as a child of
292 // IDomNode
293 Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
294 break;
295 }
Chris Lattner17152292001-07-02 05:46:38 +0000296 }
297 }
298 }
299}
300
301
302
303//===----------------------------------------------------------------------===//
304// DominanceFrontier Implementation
305//===----------------------------------------------------------------------===//
306
307const cfg::DominanceFrontier::DomSetType &
308cfg::DominanceFrontier::calcDomFrontier(const DominatorTree &DT,
309 const DominatorTree::Node *Node) {
310 // Loop over CFG successors to calculate DFlocal[Node]
311 const BasicBlock *BB = Node->getNode();
312 DomSetType &S = Frontiers[BB]; // The new set to fill in...
313
314 for (succ_const_iterator SI = succ_begin(BB), SE = succ_end(BB);
315 SI != SE; ++SI) {
316 // Does Node immediately dominate this successor?
317 if (DT[*SI]->getIDom() != Node)
318 S.insert(*SI);
319 }
320
321 // At this point, S is DFlocal. Now we union in DFup's of our children...
322 // Loop through and visit the nodes that Node immediately dominates (Node's
323 // children in the IDomTree)
324 //
325 for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end();
326 NI != NE; ++NI) {
327 DominatorTree::Node *IDominee = *NI;
328 const DomSetType &ChildDF = calcDomFrontier(DT, IDominee);
329
330 DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
331 for (; CDFI != CDFE; ++CDFI) {
332 if (!Node->dominates(DT[*CDFI]))
333 S.insert(*CDFI);
334 }
335 }
336
337 return S;
338}
Chris Lattner94108ab2001-07-06 16:58:22 +0000339
340const cfg::DominanceFrontier::DomSetType &
341cfg::DominanceFrontier::calcPostDomFrontier(const DominatorTree &DT,
342 const DominatorTree::Node *Node) {
343 // Loop over CFG successors to calculate DFlocal[Node]
344 const BasicBlock *BB = Node->getNode();
345 DomSetType &S = Frontiers[BB]; // The new set to fill in...
346
347 for (pred_const_iterator SI = pred_begin(BB), SE = pred_end(BB);
348 SI != SE; ++SI) {
349 // Does Node immediately dominate this predeccessor?
350 if (DT[*SI]->getIDom() != Node)
351 S.insert(*SI);
352 }
353
354 // At this point, S is DFlocal. Now we union in DFup's of our children...
355 // Loop through and visit the nodes that Node immediately dominates (Node's
356 // children in the IDomTree)
357 //
358 for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end();
359 NI != NE; ++NI) {
360 DominatorTree::Node *IDominee = *NI;
Chris Lattner35908302001-07-08 05:54:09 +0000361 const DomSetType &ChildDF = calcPostDomFrontier(DT, IDominee);
Chris Lattner94108ab2001-07-06 16:58:22 +0000362
363 DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
364 for (; CDFI != CDFE; ++CDFI) {
365 if (!Node->dominates(DT[*CDFI]))
366 S.insert(*CDFI);
367 }
368 }
369
370 return S;
371}