blob: abcd756ad93c76544e770c1d8ebf6c518bf754d2 [file] [log] [blame]
Vikram S. Adve7f37fe52001-11-08 04:55:13 +00001// $Id$ -*- C++ -*--
2//***************************************************************************
3// File:
4// SparcInternals.h
5//
6// Purpose:
7// This file defines stuff that is to be private to the Sparc
8// backend, but is shared among different portions of the backend.
9//**************************************************************************/
10
Chris Lattnerc6495ee2001-09-14 03:56:45 +000011
12#ifndef SPARC_INTERNALS_H
13#define SPARC_INTERNALS_H
14
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +000015
16#include "SparcRegClassInfo.h"
17#include "llvm/Target/TargetMachine.h"
18#include "llvm/Target/MachineInstrInfo.h"
Vikram S. Adve7f37fe52001-11-08 04:55:13 +000019#include "llvm/Target/MachineFrameInfo.h"
Vikram S. Adve339084b2001-09-18 13:04:24 +000020#include "llvm/Target/MachineSchedInfo.h"
Ruchira Sasankaab304c42001-09-30 23:19:57 +000021#include "llvm/CodeGen/RegClass.h"
Chris Lattnerc6495ee2001-09-14 03:56:45 +000022#include "llvm/Type.h"
Vikram S. Adve339084b2001-09-18 13:04:24 +000023
Chris Lattner46cbff62001-09-14 16:56:32 +000024#include <sys/types.h>
Chris Lattnerc6495ee2001-09-14 03:56:45 +000025
Chris Lattnerf6e0e282001-09-14 04:32:55 +000026class UltraSparc;
27
Chris Lattnerc6495ee2001-09-14 03:56:45 +000028// OpCodeMask definitions for the Sparc V9
29//
30const OpCodeMask Immed = 0x00002000; // immed or reg operand?
31const OpCodeMask Annul = 0x20000000; // annul delay instr?
32const OpCodeMask PredictTaken = 0x00080000; // predict branch taken?
33
34
35enum SparcInstrSchedClass {
36 SPARC_NONE, /* Instructions with no scheduling restrictions */
37 SPARC_IEUN, /* Integer class that can use IEU0 or IEU1 */
38 SPARC_IEU0, /* Integer class IEU0 */
39 SPARC_IEU1, /* Integer class IEU1 */
40 SPARC_FPM, /* FP Multiply or Divide instructions */
41 SPARC_FPA, /* All other FP instructions */
42 SPARC_CTI, /* Control-transfer instructions */
43 SPARC_LD, /* Load instructions */
44 SPARC_ST, /* Store instructions */
45 SPARC_SINGLE, /* Instructions that must issue by themselves */
46
47 SPARC_INV, /* This should stay at the end for the next value */
48 SPARC_NUM_SCHED_CLASSES = SPARC_INV
49};
50
Chris Lattnerc6495ee2001-09-14 03:56:45 +000051
52//---------------------------------------------------------------------------
53// enum SparcMachineOpCode.
54// const MachineInstrDescriptor SparcMachineInstrDesc[]
55//
56// Purpose:
57// Description of UltraSparc machine instructions.
58//
59//---------------------------------------------------------------------------
60
Chris Lattnerc6495ee2001-09-14 03:56:45 +000061enum SparcMachineOpCode {
Chris Lattner9a3d63b2001-09-19 15:56:23 +000062#define I(ENUM, OPCODESTRING, NUMOPERANDS, RESULTPOS, MAXIMM, IMMSE, \
63 NUMDELAYSLOTS, LATENCY, SCHEDCLASS, INSTFLAGS) \
64 ENUM,
65#include "SparcInstr.def"
Chris Lattnerc6495ee2001-09-14 03:56:45 +000066
Chris Lattnerc6495ee2001-09-14 03:56:45 +000067 // End-of-array marker
68 INVALID_OPCODE,
Vikram S. Advec1521632001-10-22 13:31:53 +000069 NUM_REAL_OPCODES = PHI, // number of valid opcodes
Chris Lattnerc6495ee2001-09-14 03:56:45 +000070 NUM_TOTAL_OPCODES = INVALID_OPCODE
71};
72
Chris Lattnerc6495ee2001-09-14 03:56:45 +000073
Chris Lattner9a3d63b2001-09-19 15:56:23 +000074// Array of machine instruction descriptions...
75extern const MachineInstrDescriptor SparcMachineInstrDesc[];
Chris Lattnerc6495ee2001-09-14 03:56:45 +000076
77
78//---------------------------------------------------------------------------
79// class UltraSparcInstrInfo
80//
81// Purpose:
82// Information about individual instructions.
83// Most information is stored in the SparcMachineInstrDesc array above.
84// Other information is computed on demand, and most such functions
85// default to member functions in base class MachineInstrInfo.
86//---------------------------------------------------------------------------
87
88class UltraSparcInstrInfo : public MachineInstrInfo {
89public:
Vikram S. Adve7f37fe52001-11-08 04:55:13 +000090 /*ctor*/ UltraSparcInstrInfo(const TargetMachine& tgt);
Chris Lattnerc6495ee2001-09-14 03:56:45 +000091
Vikram S. Adve5684c4e2001-10-18 00:02:06 +000092 virtual bool hasResultInterlock (MachineOpCode opCode) const
Chris Lattnerc6495ee2001-09-14 03:56:45 +000093 {
94 // All UltraSPARC instructions have interlocks (note that delay slots
95 // are not considered here).
96 // However, instructions that use the result of an FCMP produce a
97 // 9-cycle stall if they are issued less than 3 cycles after the FCMP.
98 // Force the compiler to insert a software interlock (i.e., gap of
99 // 2 other groups, including NOPs if necessary).
100 return (opCode == FCMPS || opCode == FCMPD || opCode == FCMPQ);
101 }
102
Vikram S. Adve5684c4e2001-10-18 00:02:06 +0000103 //-------------------------------------------------------------------------
104 // Code generation support for creating individual machine instructions
105 //-------------------------------------------------------------------------
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000106
Vikram S. Adve5684c4e2001-10-18 00:02:06 +0000107 // Create an instruction sequence to put the constant `val' into
108 // the virtual register `dest'. The generated instructions are
109 // returned in `minstrVec'. Any temporary registers (TmpInstruction)
110 // created are returned in `tempVec'.
111 //
112 virtual void CreateCodeToLoadConst(Value* val,
113 Instruction* dest,
114 vector<MachineInstr*>& minstrVec,
115 vector<TmpInstruction*>& tempVec) const;
Vikram S. Adve7f37fe52001-11-08 04:55:13 +0000116
117
118 // Create an instruction sequence to copy an integer value `val' from an
119 // integer to a floating point register `dest'. val must be an integral
120 // type. dest must be a Float or Double.
121 // The generated instructions are returned in `minstrVec'.
122 // Any temp. registers (TmpInstruction) created are returned in `tempVec'.
123 //
124 virtual void CreateCodeToCopyIntToFloat(Method* method,
125 Value* val,
126 Instruction* dest,
127 vector<MachineInstr*>& minstrVec,
128 vector<TmpInstruction*>& tempVec,
129 TargetMachine& target) const;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000130};
131
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000132
Ruchira Sasanka20c82b12001-10-28 18:15:12 +0000133//----------------------------------------------------------------------------
134// class UltraSparcRegInfo
135//
136//----------------------------------------------------------------------------
137
138
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000139class LiveRange;
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000140class UltraSparc;
Ruchira Sasanka20c82b12001-10-28 18:15:12 +0000141class PhyRegAlloc;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000142
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000143
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000144class UltraSparcRegInfo : public MachineRegInfo
145{
146
147 private:
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000148
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000149 // The actual register classes in the Sparc
150
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000151 enum RegClassIDs {
152 IntRegClassID,
153 FloatRegClassID,
154 IntCCRegClassID,
155 FloatCCRegClassID
156 };
157
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000158
159 // Type of registers available in Sparc. There can be several reg types
160 // in the same class. For instace, the float reg class has Single/Double
161 // types
162 enum RegTypes {
163 IntRegType,
164 FPSingleRegType,
165 FPDoubleRegType,
166 IntCCRegType,
167 FloatCCRegType
168 };
169
Ruchira Sasanka20c82b12001-10-28 18:15:12 +0000170 // the size of a value (int, float, etc..) stored in the stack frame
171
172
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000173
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000174 // WARNING: If the above enum order must be changed, also modify
175 // getRegisterClassOfValue method below since it assumes this particular
176 // order for efficiency.
177
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000178
179 // reverse pointer to get info about the ultra sparc machine
180 const UltraSparc *const UltraSparcInfo;
181
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000182 // Both int and float rguments can be passed in 6 int regs -
183 // %o0 to %o5 (cannot be changed)
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000184 unsigned const NumOfIntArgRegs;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000185 unsigned const NumOfFloatArgRegs;
Ruchira Sasankac4d4b762001-10-16 01:23:19 +0000186 int const InvalidRegNum;
Ruchira Sasanka20c82b12001-10-28 18:15:12 +0000187 int SizeOfOperandOnStack;
188
189
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000190
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000191 //void setCallArgColor(LiveRange *const LR, const unsigned RegNo) const;
192
193 void setCallOrRetArgCol(LiveRange *const LR, const unsigned RegNo,
194 const MachineInstr *MI,AddedInstrMapType &AIMap)const;
195
196 MachineInstr * getCopy2RegMI(const Value *SrcVal, const unsigned Reg,
197 unsigned RegClassID) const ;
198
Ruchira Sasankacc3ccac2001-10-15 16:25:28 +0000199
200 void suggestReg4RetAddr(const MachineInstr * RetMI,
201 LiveRangeInfo& LRI) const;
202
Ruchira Sasankab3b6f532001-10-21 16:43:41 +0000203 void suggestReg4CallAddr(const MachineInstr * CallMI, LiveRangeInfo& LRI,
204 vector<RegClass *> RCList) const;
Ruchira Sasankacc3ccac2001-10-15 16:25:28 +0000205
206
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000207 Value *getValue4ReturnAddr( const MachineInstr * MInst ) const ;
208
209 int getRegType(const LiveRange *const LR) const {
210
211 unsigned Typ;
212
213 switch( (LR->getRegClass())->getID() ) {
214
215 case IntRegClassID: return IntRegType;
216
217 case FloatRegClassID:
218 Typ = LR->getTypeID();
219 if( Typ == Type::FloatTyID )
220 return FPSingleRegType;
221 else if( Typ == Type::DoubleTyID )
222 return FPDoubleRegType;
223 else assert(0 && "Unknown type in FloatRegClass");
224
225 case IntCCRegClassID: return IntCCRegType;
226
227 case FloatCCRegClassID: return FloatCCRegType ;
228
229 default: assert( 0 && "Unknown reg class ID");
Chris Lattner6dad5062001-11-07 13:49:12 +0000230 return 0;
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000231 }
232
233 }
234
235 int getRegType(const Value *const Val) const {
236
237 unsigned Typ;
238
239 switch( getRegClassIDOfValue(Val) ) {
240
241 case IntRegClassID: return IntRegType;
242
243 case FloatRegClassID:
244 Typ = (Val->getType())->getPrimitiveID();
245 if( Typ == Type::FloatTyID )
246 return FPSingleRegType;
247 else if( Typ == Type::DoubleTyID )
248 return FPDoubleRegType;
249 else assert(0 && "Unknown type in FloatRegClass");
250
251 case IntCCRegClassID: return IntCCRegType;
252
253 case FloatCCRegClassID: return FloatCCRegType ;
254
255 default: assert( 0 && "Unknown reg class ID");
Chris Lattner6dad5062001-11-07 13:49:12 +0000256 return 0;
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000257 }
258
259 }
260
261
262
Ruchira Sasankac4d4b762001-10-16 01:23:19 +0000263 // ***TODO: See this method is necessary
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000264
265 MachineInstr * cpValue2RegMI(Value * Val, const unsigned DestReg,
266 const int RegType) const;
267
Ruchira Sasankab3b6f532001-10-21 16:43:41 +0000268 const Value *getCallInstRetAddr(const MachineInstr *CallMI) const;
269 const unsigned getCallInstNumArgs(const MachineInstr *CallMI) const;
270
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000271
Ruchira Sasanka3839e6e2001-11-03 19:59:59 +0000272 MachineInstr * cpCCR2IntMI(const unsigned IntReg) const;
273 MachineInstr * cpInt2CCRMI(const unsigned IntReg) const;
274
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000275 public:
276
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000277
Vikram S. Adve7f37fe52001-11-08 04:55:13 +0000278 UltraSparcRegInfo(const TargetMachine& tgt ) : MachineRegInfo(tgt),
279 UltraSparcInfo(& (const UltraSparc&) tgt),
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000280 NumOfIntArgRegs(6),
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000281 NumOfFloatArgRegs(32),
Ruchira Sasanka20c82b12001-10-28 18:15:12 +0000282 InvalidRegNum(1000),
283 SizeOfOperandOnStack(8)
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000284 {
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000285 MachineRegClassArr.push_back( new SparcIntRegClass(IntRegClassID) );
286 MachineRegClassArr.push_back( new SparcFloatRegClass(FloatRegClassID) );
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000287 MachineRegClassArr.push_back( new SparcIntCCRegClass(IntCCRegClassID) );
288 MachineRegClassArr.push_back( new SparcFloatCCRegClass(FloatCCRegClassID));
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000289
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000290 assert( SparcFloatRegOrder::StartOfNonVolatileRegs == 32 &&
291 "32 Float regs are used for float arg passing");
Ruchira Sasanka20c82b12001-10-28 18:15:12 +0000292
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000293 }
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000294
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000295 // ***** TODO Delete
296 ~UltraSparcRegInfo(void) { } // empty destructor
297
298
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000299 inline const UltraSparc & getUltraSparcInfo() const {
300 return *UltraSparcInfo;
301 }
302
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000303
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000304
305 inline unsigned getRegClassIDOfValue (const Value *const Val,
306 bool isCCReg = false) const {
307
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000308 Type::PrimitiveID ty = (Val->getType())->getPrimitiveID();
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000309
310 unsigned res;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000311
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000312 if( (ty && ty <= Type::LongTyID) || (ty == Type::LabelTyID) ||
313 (ty == Type::MethodTyID) || (ty == Type::PointerTyID) )
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000314 res = IntRegClassID; // sparc int reg (ty=0: void)
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000315 else if( ty <= Type::DoubleTyID)
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000316 res = FloatRegClassID; // sparc float reg class
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000317 else {
Chris Lattner1e23ed72001-10-15 18:15:27 +0000318 cerr << "TypeID: " << ty << endl;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000319 assert(0 && "Cannot resolve register class for type");
Chris Lattner8e5c0b42001-11-07 14:01:59 +0000320 return 0;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000321 }
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000322
323 if(isCCReg)
324 return res + 2; // corresponidng condition code regiser
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000325 else
326 return res;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000327 }
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000328
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000329 // returns the register tha contains always zero
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000330 // this is the unified register number
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000331 inline int getZeroRegNum() const { return SparcIntRegOrder::g0; }
332
333 // returns the reg used for pushing the address when a method is called.
334 // This can be used for other purposes between calls
335 unsigned getCallAddressReg() const { return SparcIntRegOrder::o7; }
336
337
338 // and when we return from a method. It should be made sure that this
339 // register contains the return value when a return instruction is reached.
340 unsigned getReturnAddressReg() const { return SparcIntRegOrder::i7; }
341
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000342 void suggestRegs4MethodArgs(const Method *const Meth,
343 LiveRangeInfo& LRI) const;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000344
Ruchira Sasankacc3ccac2001-10-15 16:25:28 +0000345 void suggestRegs4CallArgs(const MachineInstr *const CallMI,
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000346 LiveRangeInfo& LRI, vector<RegClass *> RCL) const;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000347
Ruchira Sasankacc3ccac2001-10-15 16:25:28 +0000348 void suggestReg4RetValue(const MachineInstr *const RetMI,
349 LiveRangeInfo& LRI ) const;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000350
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000351
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000352 void colorMethodArgs(const Method *const Meth, LiveRangeInfo& LRI,
353 AddedInstrns *const FirstAI) const;
354
Ruchira Sasankacc3ccac2001-10-15 16:25:28 +0000355 void colorCallArgs(const MachineInstr *const CallMI, LiveRangeInfo& LRI,
Ruchira Sasanka20c82b12001-10-28 18:15:12 +0000356 AddedInstrns *const CallAI, PhyRegAlloc &PRA) const;
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000357
Ruchira Sasankacc3ccac2001-10-15 16:25:28 +0000358 void colorRetValue(const MachineInstr *const RetI, LiveRangeInfo& LRI,
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000359 AddedInstrns *const RetAI) const;
360
361
Ruchira Sasankacc3ccac2001-10-15 16:25:28 +0000362 // bool handleSpecialMInstr(const MachineInstr * MInst,
363 // LiveRangeInfo& LRI, vector<RegClass *> RCL) const;
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000364
365
366 static void printReg(const LiveRange *const LR) ;
Ruchira Sasanka89fb46b2001-09-18 22:52:44 +0000367
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000368 // this method provides a unique number for each register
369 inline int getUnifiedRegNum(int RegClassID, int reg) const {
370
371 if( RegClassID == IntRegClassID && reg < 32 )
372 return reg;
373 else if ( RegClassID == FloatRegClassID && reg < 64)
374 return reg + 32; // we have 32 int regs
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000375 else if( RegClassID == FloatCCRegClassID && reg < 4)
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000376 return reg + 32 + 64; // 32 int, 64 float
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000377 else if( RegClassID == IntCCRegClassID )
378 return 4+ 32 + 64; // only int cc reg
Ruchira Sasankac4d4b762001-10-16 01:23:19 +0000379 else if (reg==InvalidRegNum)
380 return InvalidRegNum;
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000381 else
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000382 assert(0 && "Invalid register class or reg number");
Chris Lattner6dad5062001-11-07 13:49:12 +0000383 return 0;
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000384 }
385
386 // given the unified register number, this gives the name
387 inline const string getUnifiedRegName(int reg) const {
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000388 if( reg < 32 )
389 return SparcIntRegOrder::getRegName(reg);
390 else if ( reg < (64 + 32) )
391 return SparcFloatRegOrder::getRegName( reg - 32);
392 else if( reg < (64+32+4) )
Ruchira Sasankae38bd5332001-09-15 00:30:44 +0000393 return SparcFloatCCRegOrder::getRegName( reg -32 - 64);
Ruchira Sasanka3839e6e2001-11-03 19:59:59 +0000394 else if( reg < (64+32+4+2) ) // two names: %xcc and %ccr
395 return SparcIntCCRegOrder::getRegName( reg -32 - 64 - 4);
Vikram S. Advec1521632001-10-22 13:31:53 +0000396 else if (reg== InvalidRegNum) //****** TODO: Remove */
Ruchira Sasankaab304c42001-09-30 23:19:57 +0000397 return "<*NoReg*>";
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000398 else
399 assert(0 && "Invalid register number");
Chris Lattner6dad5062001-11-07 13:49:12 +0000400 return "";
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000401 }
402
Vikram S. Advec1521632001-10-22 13:31:53 +0000403 inline unsigned int getRegNumInCallersWindow(int reg) {
404 if (reg == InvalidRegNum || reg >= 32)
405 return reg;
406 return SparcIntRegOrder::getRegNumInCallersWindow(reg);
407 }
408
409 inline bool mustBeRemappedInCallersWindow(int reg) {
410 return (reg != InvalidRegNum && reg < 32);
411 }
412
Ruchira Sasankab3b6f532001-10-21 16:43:41 +0000413 const Value * getCallInstRetVal(const MachineInstr *CallMI) const;
414
Ruchira Sasankac4d4b762001-10-16 01:23:19 +0000415 MachineInstr * cpReg2RegMI(const unsigned SrcReg, const unsigned DestReg,
416 const int RegType) const;
417
418 MachineInstr * cpReg2MemMI(const unsigned SrcReg, const unsigned DestPtrReg,
419 const int Offset, const int RegType) const;
420
421 MachineInstr * cpMem2RegMI(const unsigned SrcPtrReg, const int Offset,
422 const unsigned DestReg, const int RegType) const;
423
Ruchira Sasankaef1b0cb2001-11-03 17:13:27 +0000424 MachineInstr* cpValue2Value(Value *Src, Value *Dest) const;
425
426
Ruchira Sasankac4d4b762001-10-16 01:23:19 +0000427 inline bool isRegVolatile(const int RegClassID, const int Reg) const {
428 return (MachineRegClassArr[RegClassID])->isRegVolatile(Reg);
429 }
430
431
432 inline unsigned getFramePointer() const {
433 return SparcIntRegOrder::i6;
434 }
435
436 inline unsigned getStackPointer() const {
437 return SparcIntRegOrder::o6;
438 }
439
440 inline int getInvalidRegNum() const {
441 return InvalidRegNum;
442 }
443
Ruchira Sasanka20c82b12001-10-28 18:15:12 +0000444
445 void insertCallerSavingCode(const MachineInstr *MInst,
446 const BasicBlock *BB, PhyRegAlloc &PRA ) const;
447
448
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000449};
450
451
452
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000453/*---------------------------------------------------------------------------
454Scheduling guidelines for SPARC IIi:
455
456I-Cache alignment rules (pg 326)
457-- Align a branch target instruction so that it's entire group is within
458 the same cache line (may be 1-4 instructions).
459** Don't let a branch that is predicted taken be the last instruction
460 on an I-cache line: delay slot will need an entire line to be fetched
461-- Make a FP instruction or a branch be the 4th instruction in a group.
462 For branches, there are tradeoffs in reordering to make this happen
463 (see pg. 327).
464** Don't put a branch in a group that crosses a 32-byte boundary!
465 An artificial branch is inserted after every 32 bytes, and having
466 another branch will force the group to be broken into 2 groups.
467
468iTLB rules:
469-- Don't let a loop span two memory pages, if possible
470
471Branch prediction performance:
472-- Don't make the branch in a delay slot the target of a branch
473-- Try not to have 2 predicted branches within a group of 4 instructions
474 (because each such group has a single branch target field).
475-- Try to align branches in slots 0, 2, 4 or 6 of a cache line (to avoid
476 the wrong prediction bits being used in some cases).
477
478D-Cache timing constraints:
479-- Signed int loads of less than 64 bits have 3 cycle latency, not 2
480-- All other loads that hit in D-Cache have 2 cycle latency
481-- All loads are returned IN ORDER, so a D-Cache miss will delay a later hit
482-- Mis-aligned loads or stores cause a trap. In particular, replace
483 mis-aligned FP double precision l/s with 2 single-precision l/s.
484-- Simulations of integer codes show increase in avg. group size of
485 33% when code (including esp. non-faulting loads) is moved across
486 one branch, and 50% across 2 branches.
487
488E-Cache timing constraints:
489-- Scheduling for E-cache (D-Cache misses) is effective (due to load buffering)
490
491Store buffer timing constraints:
492-- Stores can be executed in same cycle as instruction producing the value
493-- Stores are buffered and have lower priority for E-cache until
494 highwater mark is reached in the store buffer (5 stores)
495
496Pipeline constraints:
497-- Shifts can only use IEU0.
498-- CC setting instructions can only use IEU1.
499-- Several other instructions must only use IEU1:
500 EDGE(?), ARRAY(?), CALL, JMPL, BPr, PST, and FCMP.
501-- Two instructions cannot store to the same register file in a single cycle
502 (single write port per file).
503
504Issue and grouping constraints:
505-- FP and branch instructions must use slot 4.
506-- Shift instructions cannot be grouped with other IEU0-specific instructions.
507-- CC setting instructions cannot be grouped with other IEU1-specific instrs.
508-- Several instructions must be issued in a single-instruction group:
509 MOVcc or MOVr, MULs/x and DIVs/x, SAVE/RESTORE, many others
510-- A CALL or JMPL breaks a group, ie, is not combined with subsequent instrs.
511--
512--
513
514Branch delay slot scheduling rules:
515-- A CTI couple (two back-to-back CTI instructions in the dynamic stream)
516 has a 9-instruction penalty: the entire pipeline is flushed when the
517 second instruction reaches stage 9 (W-Writeback).
518-- Avoid putting multicycle instructions, and instructions that may cause
519 load misses, in the delay slot of an annulling branch.
520-- Avoid putting WR, SAVE..., RESTORE and RETURN instructions in the
521 delay slot of an annulling branch.
522
523 *--------------------------------------------------------------------------- */
524
525//---------------------------------------------------------------------------
526// List of CPUResources for UltraSPARC IIi.
527//---------------------------------------------------------------------------
528
529const CPUResource AllIssueSlots( "All Instr Slots", 4);
530const CPUResource IntIssueSlots( "Int Instr Slots", 3);
531const CPUResource First3IssueSlots("Instr Slots 0-3", 3);
532const CPUResource LSIssueSlots( "Load-Store Instr Slot", 1);
533const CPUResource CTIIssueSlots( "Ctrl Transfer Instr Slot", 1);
534const CPUResource FPAIssueSlots( "Int Instr Slot 1", 1);
535const CPUResource FPMIssueSlots( "Int Instr Slot 1", 1);
536
537// IEUN instructions can use either Alu and should use IAluN.
538// IEU0 instructions must use Alu 1 and should use both IAluN and IAlu0.
539// IEU1 instructions must use Alu 2 and should use both IAluN and IAlu1.
540const CPUResource IAluN("Int ALU 1or2", 2);
541const CPUResource IAlu0("Int ALU 1", 1);
542const CPUResource IAlu1("Int ALU 2", 1);
543
544const CPUResource LSAluC1("Load/Store Unit Addr Cycle", 1);
545const CPUResource LSAluC2("Load/Store Unit Issue Cycle", 1);
546const CPUResource LdReturn("Load Return Unit", 1);
547
548const CPUResource FPMAluC1("FP Mul/Div Alu Cycle 1", 1);
549const CPUResource FPMAluC2("FP Mul/Div Alu Cycle 2", 1);
550const CPUResource FPMAluC3("FP Mul/Div Alu Cycle 3", 1);
551
552const CPUResource FPAAluC1("FP Other Alu Cycle 1", 1);
553const CPUResource FPAAluC2("FP Other Alu Cycle 2", 1);
554const CPUResource FPAAluC3("FP Other Alu Cycle 3", 1);
555
556const CPUResource IRegReadPorts("Int Reg ReadPorts", INT_MAX); // CHECK
557const CPUResource IRegWritePorts("Int Reg WritePorts", 2); // CHECK
558const CPUResource FPRegReadPorts("FP Reg Read Ports", INT_MAX); // CHECK
559const CPUResource FPRegWritePorts("FP Reg Write Ports", 1); // CHECK
560
561const CPUResource CTIDelayCycle( "CTI delay cycle", 1);
562const CPUResource FCMPDelayCycle("FCMP delay cycle", 1);
563
564
565//---------------------------------------------------------------------------
566// const InstrClassRUsage SparcRUsageDesc[]
567//
568// Purpose:
569// Resource usage information for instruction in each scheduling class.
570// The InstrRUsage Objects for individual classes are specified first.
571// Note that fetch and decode are decoupled from the execution pipelines
572// via an instr buffer, so they are not included in the cycles below.
573//---------------------------------------------------------------------------
574
575const InstrClassRUsage NoneClassRUsage = {
576 SPARC_NONE,
577 /*totCycles*/ 7,
578
579 /* maxIssueNum */ 4,
580 /* isSingleIssue */ false,
581 /* breaksGroup */ false,
582 /* numBubbles */ 0,
583
584 /*numSlots*/ 4,
585 /* feasibleSlots[] */ { 0, 1, 2, 3 },
586
587 /*numEntries*/ 0,
588 /* V[] */ {
589 /*Cycle G */
Ruchira Sasankac4d4b762001-10-16 01:23:19 +0000590 /*Ccle E */
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000591 /*Cycle C */
592 /*Cycle N1*/
593 /*Cycle N1*/
594 /*Cycle N1*/
595 /*Cycle W */
596 }
597};
598
599const InstrClassRUsage IEUNClassRUsage = {
600 SPARC_IEUN,
601 /*totCycles*/ 7,
602
603 /* maxIssueNum */ 3,
604 /* isSingleIssue */ false,
605 /* breaksGroup */ false,
606 /* numBubbles */ 0,
607
608 /*numSlots*/ 3,
609 /* feasibleSlots[] */ { 0, 1, 2 },
610
611 /*numEntries*/ 4,
612 /* V[] */ {
613 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
614 { IntIssueSlots.rid, 0, 1 },
615 /*Cycle E */ { IAluN.rid, 1, 1 },
616 /*Cycle C */
617 /*Cycle N1*/
618 /*Cycle N1*/
619 /*Cycle N1*/
620 /*Cycle W */ { IRegWritePorts.rid, 6, 1 }
621 }
622};
623
624const InstrClassRUsage IEU0ClassRUsage = {
625 SPARC_IEU0,
626 /*totCycles*/ 7,
627
628 /* maxIssueNum */ 1,
629 /* isSingleIssue */ false,
630 /* breaksGroup */ false,
631 /* numBubbles */ 0,
632
633 /*numSlots*/ 3,
634 /* feasibleSlots[] */ { 0, 1, 2 },
635
636 /*numEntries*/ 5,
637 /* V[] */ {
638 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
639 { IntIssueSlots.rid, 0, 1 },
640 /*Cycle E */ { IAluN.rid, 1, 1 },
641 { IAlu0.rid, 1, 1 },
642 /*Cycle C */
643 /*Cycle N1*/
644 /*Cycle N1*/
645 /*Cycle N1*/
646 /*Cycle W */ { IRegWritePorts.rid, 6, 1 }
647 }
648};
649
650const InstrClassRUsage IEU1ClassRUsage = {
651 SPARC_IEU1,
652 /*totCycles*/ 7,
653
654 /* maxIssueNum */ 1,
655 /* isSingleIssue */ false,
656 /* breaksGroup */ false,
657 /* numBubbles */ 0,
658
659 /*numSlots*/ 3,
660 /* feasibleSlots[] */ { 0, 1, 2 },
661
662 /*numEntries*/ 5,
663 /* V[] */ {
664 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
665 { IntIssueSlots.rid, 0, 1 },
666 /*Cycle E */ { IAluN.rid, 1, 1 },
667 { IAlu1.rid, 1, 1 },
668 /*Cycle C */
669 /*Cycle N1*/
670 /*Cycle N1*/
671 /*Cycle N1*/
672 /*Cycle W */ { IRegWritePorts.rid, 6, 1 }
673 }
674};
675
676const InstrClassRUsage FPMClassRUsage = {
677 SPARC_FPM,
678 /*totCycles*/ 7,
679
680 /* maxIssueNum */ 1,
681 /* isSingleIssue */ false,
682 /* breaksGroup */ false,
683 /* numBubbles */ 0,
684
685 /*numSlots*/ 4,
686 /* feasibleSlots[] */ { 0, 1, 2, 3 },
687
688 /*numEntries*/ 7,
689 /* V[] */ {
690 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
691 { FPMIssueSlots.rid, 0, 1 },
692 /*Cycle E */ { FPRegReadPorts.rid, 1, 1 },
693 /*Cycle C */ { FPMAluC1.rid, 2, 1 },
694 /*Cycle N1*/ { FPMAluC2.rid, 3, 1 },
695 /*Cycle N1*/ { FPMAluC3.rid, 4, 1 },
696 /*Cycle N1*/
697 /*Cycle W */ { FPRegWritePorts.rid, 6, 1 }
698 }
699};
700
701const InstrClassRUsage FPAClassRUsage = {
702 SPARC_FPA,
703 /*totCycles*/ 7,
704
705 /* maxIssueNum */ 1,
706 /* isSingleIssue */ false,
707 /* breaksGroup */ false,
708 /* numBubbles */ 0,
709
710 /*numSlots*/ 4,
711 /* feasibleSlots[] */ { 0, 1, 2, 3 },
712
713 /*numEntries*/ 7,
714 /* V[] */ {
715 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
716 { FPAIssueSlots.rid, 0, 1 },
717 /*Cycle E */ { FPRegReadPorts.rid, 1, 1 },
718 /*Cycle C */ { FPAAluC1.rid, 2, 1 },
719 /*Cycle N1*/ { FPAAluC2.rid, 3, 1 },
720 /*Cycle N1*/ { FPAAluC3.rid, 4, 1 },
721 /*Cycle N1*/
722 /*Cycle W */ { FPRegWritePorts.rid, 6, 1 }
723 }
724};
725
726const InstrClassRUsage LDClassRUsage = {
727 SPARC_LD,
728 /*totCycles*/ 7,
729
730 /* maxIssueNum */ 1,
731 /* isSingleIssue */ false,
732 /* breaksGroup */ false,
733 /* numBubbles */ 0,
734
735 /*numSlots*/ 3,
736 /* feasibleSlots[] */ { 0, 1, 2, },
737
738 /*numEntries*/ 6,
739 /* V[] */ {
740 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
741 { First3IssueSlots.rid, 0, 1 },
742 { LSIssueSlots.rid, 0, 1 },
743 /*Cycle E */ { LSAluC1.rid, 1, 1 },
744 /*Cycle C */ { LSAluC2.rid, 2, 1 },
745 { LdReturn.rid, 2, 1 },
746 /*Cycle N1*/
747 /*Cycle N1*/
748 /*Cycle N1*/
749 /*Cycle W */ { IRegWritePorts.rid, 6, 1 }
750 }
751};
752
753const InstrClassRUsage STClassRUsage = {
754 SPARC_ST,
755 /*totCycles*/ 7,
756
757 /* maxIssueNum */ 1,
758 /* isSingleIssue */ false,
759 /* breaksGroup */ false,
760 /* numBubbles */ 0,
761
762 /*numSlots*/ 3,
763 /* feasibleSlots[] */ { 0, 1, 2 },
764
765 /*numEntries*/ 4,
766 /* V[] */ {
767 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
768 { First3IssueSlots.rid, 0, 1 },
769 { LSIssueSlots.rid, 0, 1 },
770 /*Cycle E */ { LSAluC1.rid, 1, 1 },
771 /*Cycle C */ { LSAluC2.rid, 2, 1 }
772 /*Cycle N1*/
773 /*Cycle N1*/
774 /*Cycle N1*/
775 /*Cycle W */
776 }
777};
778
779const InstrClassRUsage CTIClassRUsage = {
780 SPARC_CTI,
781 /*totCycles*/ 7,
782
783 /* maxIssueNum */ 1,
784 /* isSingleIssue */ false,
785 /* breaksGroup */ false,
786 /* numBubbles */ 0,
787
788 /*numSlots*/ 4,
789 /* feasibleSlots[] */ { 0, 1, 2, 3 },
790
791 /*numEntries*/ 4,
792 /* V[] */ {
793 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
794 { CTIIssueSlots.rid, 0, 1 },
795 /*Cycle E */ { IAlu0.rid, 1, 1 },
796 /*Cycles E-C */ { CTIDelayCycle.rid, 1, 2 }
797 /*Cycle C */
798 /*Cycle N1*/
799 /*Cycle N1*/
800 /*Cycle N1*/
801 /*Cycle W */
802 }
803};
804
805const InstrClassRUsage SingleClassRUsage = {
806 SPARC_SINGLE,
807 /*totCycles*/ 7,
808
809 /* maxIssueNum */ 1,
810 /* isSingleIssue */ true,
811 /* breaksGroup */ false,
812 /* numBubbles */ 0,
813
814 /*numSlots*/ 1,
815 /* feasibleSlots[] */ { 0 },
816
817 /*numEntries*/ 5,
818 /* V[] */ {
819 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
820 { AllIssueSlots.rid, 0, 1 },
821 { AllIssueSlots.rid, 0, 1 },
822 { AllIssueSlots.rid, 0, 1 },
823 /*Cycle E */ { IAlu0.rid, 1, 1 }
824 /*Cycle C */
825 /*Cycle N1*/
826 /*Cycle N1*/
827 /*Cycle N1*/
828 /*Cycle W */
829 }
830};
831
832
833const InstrClassRUsage SparcRUsageDesc[] = {
834 NoneClassRUsage,
835 IEUNClassRUsage,
836 IEU0ClassRUsage,
837 IEU1ClassRUsage,
838 FPMClassRUsage,
839 FPAClassRUsage,
840 CTIClassRUsage,
841 LDClassRUsage,
842 STClassRUsage,
843 SingleClassRUsage
844};
845
846
847//---------------------------------------------------------------------------
848// const InstrIssueDelta SparcInstrIssueDeltas[]
849//
850// Purpose:
851// Changes to issue restrictions information in InstrClassRUsage for
852// instructions that differ from other instructions in their class.
853//---------------------------------------------------------------------------
854
855const InstrIssueDelta SparcInstrIssueDeltas[] = {
856
857 // opCode, isSingleIssue, breaksGroup, numBubbles
858
859 // Special cases for single-issue only
860 // Other single issue cases are below.
861//{ LDDA, true, true, 0 },
862//{ STDA, true, true, 0 },
863//{ LDDF, true, true, 0 },
864//{ LDDFA, true, true, 0 },
865 { ADDC, true, true, 0 },
866 { ADDCcc, true, true, 0 },
867 { SUBC, true, true, 0 },
868 { SUBCcc, true, true, 0 },
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000869//{ LDSTUB, true, true, 0 },
870//{ SWAP, true, true, 0 },
871//{ SWAPA, true, true, 0 },
872//{ CAS, true, true, 0 },
873//{ CASA, true, true, 0 },
874//{ CASX, true, true, 0 },
875//{ CASXA, true, true, 0 },
876//{ LDFSR, true, true, 0 },
877//{ LDFSRA, true, true, 0 },
878//{ LDXFSR, true, true, 0 },
879//{ LDXFSRA, true, true, 0 },
880//{ STFSR, true, true, 0 },
881//{ STFSRA, true, true, 0 },
882//{ STXFSR, true, true, 0 },
883//{ STXFSRA, true, true, 0 },
884//{ SAVED, true, true, 0 },
885//{ RESTORED, true, true, 0 },
886//{ FLUSH, true, true, 9 },
887//{ FLUSHW, true, true, 9 },
888//{ ALIGNADDR, true, true, 0 },
889 { RETURN, true, true, 0 },
890//{ DONE, true, true, 0 },
891//{ RETRY, true, true, 0 },
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000892//{ TCC, true, true, 0 },
893//{ SHUTDOWN, true, true, 0 },
894
895 // Special cases for breaking group *before*
896 // CURRENTLY NOT SUPPORTED!
897 { CALL, false, false, 0 },
Vikram S. Advec1521632001-10-22 13:31:53 +0000898 { JMPLCALL, false, false, 0 },
899 { JMPLRET, false, false, 0 },
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000900
901 // Special cases for breaking the group *after*
902 { MULX, true, true, (4+34)/2 },
903 { FDIVS, false, true, 0 },
904 { FDIVD, false, true, 0 },
905 { FDIVQ, false, true, 0 },
906 { FSQRTS, false, true, 0 },
907 { FSQRTD, false, true, 0 },
908 { FSQRTQ, false, true, 0 },
909//{ FCMP{LE,GT,NE,EQ}, false, true, 0 },
910
911 // Instructions that introduce bubbles
912//{ MULScc, true, true, 2 },
913//{ SMULcc, true, true, (4+18)/2 },
914//{ UMULcc, true, true, (4+19)/2 },
915 { SDIVX, true, true, 68 },
916 { UDIVX, true, true, 68 },
917//{ SDIVcc, true, true, 36 },
918//{ UDIVcc, true, true, 37 },
Vikram S. Adveb7f06f42001-11-04 19:34:49 +0000919 { WRCCR, true, true, 4 },
920//{ WRPR, true, true, 4 },
921//{ RDCCR, true, true, 0 }, // no bubbles after, but see below
922//{ RDPR, true, true, 0 },
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000923};
924
925
926//---------------------------------------------------------------------------
927// const InstrRUsageDelta SparcInstrUsageDeltas[]
928//
929// Purpose:
930// Changes to resource usage information in InstrClassRUsage for
931// instructions that differ from other instructions in their class.
932//---------------------------------------------------------------------------
933
934const InstrRUsageDelta SparcInstrUsageDeltas[] = {
935
936 // MachineOpCode, Resource, Start cycle, Num cycles
937
938 //
939 // JMPL counts as a load/store instruction for issue!
940 //
Vikram S. Advec1521632001-10-22 13:31:53 +0000941 { JMPLCALL, LSIssueSlots.rid, 0, 1 },
942 { JMPLRET, LSIssueSlots.rid, 0, 1 },
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000943
944 //
945 // Many instructions cannot issue for the next 2 cycles after an FCMP
946 // We model that with a fake resource FCMPDelayCycle.
947 //
948 { FCMPS, FCMPDelayCycle.rid, 1, 3 },
949 { FCMPD, FCMPDelayCycle.rid, 1, 3 },
950 { FCMPQ, FCMPDelayCycle.rid, 1, 3 },
951
952 { MULX, FCMPDelayCycle.rid, 1, 1 },
953 { SDIVX, FCMPDelayCycle.rid, 1, 1 },
954 { UDIVX, FCMPDelayCycle.rid, 1, 1 },
955//{ SMULcc, FCMPDelayCycle.rid, 1, 1 },
956//{ UMULcc, FCMPDelayCycle.rid, 1, 1 },
957//{ SDIVcc, FCMPDelayCycle.rid, 1, 1 },
958//{ UDIVcc, FCMPDelayCycle.rid, 1, 1 },
959 { STD, FCMPDelayCycle.rid, 1, 1 },
960 { FMOVRSZ, FCMPDelayCycle.rid, 1, 1 },
961 { FMOVRSLEZ,FCMPDelayCycle.rid, 1, 1 },
962 { FMOVRSLZ, FCMPDelayCycle.rid, 1, 1 },
963 { FMOVRSNZ, FCMPDelayCycle.rid, 1, 1 },
964 { FMOVRSGZ, FCMPDelayCycle.rid, 1, 1 },
965 { FMOVRSGEZ,FCMPDelayCycle.rid, 1, 1 },
966
967 //
968 // Some instructions are stalled in the GROUP stage if a CTI is in
Vikram S. Adveb7f06f42001-11-04 19:34:49 +0000969 // the E or C stage. We model that with a fake resource CTIDelayCycle.
Chris Lattnerc6495ee2001-09-14 03:56:45 +0000970 //
971 { LDD, CTIDelayCycle.rid, 1, 1 },
972//{ LDDA, CTIDelayCycle.rid, 1, 1 },
973//{ LDDSTUB, CTIDelayCycle.rid, 1, 1 },
974//{ LDDSTUBA, CTIDelayCycle.rid, 1, 1 },
975//{ SWAP, CTIDelayCycle.rid, 1, 1 },
976//{ SWAPA, CTIDelayCycle.rid, 1, 1 },
977//{ CAS, CTIDelayCycle.rid, 1, 1 },
978//{ CASA, CTIDelayCycle.rid, 1, 1 },
979//{ CASX, CTIDelayCycle.rid, 1, 1 },
980//{ CASXA, CTIDelayCycle.rid, 1, 1 },
981
982 //
983 // Signed int loads of less than dword size return data in cycle N1 (not C)
984 // and put all loads in consecutive cycles into delayed load return mode.
985 //
986 { LDSB, LdReturn.rid, 2, -1 },
987 { LDSB, LdReturn.rid, 3, 1 },
988
989 { LDSH, LdReturn.rid, 2, -1 },
990 { LDSH, LdReturn.rid, 3, 1 },
991
992 { LDSW, LdReturn.rid, 2, -1 },
993 { LDSW, LdReturn.rid, 3, 1 },
994
Vikram S. Adveb7f06f42001-11-04 19:34:49 +0000995 //
996 // RDPR from certain registers and RD from any register are not dispatchable
997 // until four clocks after they reach the head of the instr. buffer.
998 // Together with their single-issue requirement, this means all four issue
999 // slots are effectively blocked for those cycles, plus the issue cycle.
1000 // This does not increase the latency of the instruction itself.
1001 //
1002 { RDCCR, AllIssueSlots.rid, 0, 5 },
1003 { RDCCR, AllIssueSlots.rid, 0, 5 },
1004 { RDCCR, AllIssueSlots.rid, 0, 5 },
1005 { RDCCR, AllIssueSlots.rid, 0, 5 },
Chris Lattnerc6495ee2001-09-14 03:56:45 +00001006
1007#undef EXPLICIT_BUBBLES_NEEDED
1008#ifdef EXPLICIT_BUBBLES_NEEDED
1009 //
1010 // MULScc inserts one bubble.
1011 // This means it breaks the current group (captured in UltraSparcSchedInfo)
1012 // *and occupies all issue slots for the next cycle
1013 //
1014//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
1015//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
1016//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
1017//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
1018
1019 //
1020 // SMULcc inserts between 4 and 18 bubbles, depending on #leading 0s in rs1.
1021 // We just model this with a simple average.
1022 //
1023//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
1024//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
1025//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
1026//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
1027
1028 // SMULcc inserts between 4 and 19 bubbles, depending on #leading 0s in rs1.
1029//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
1030//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
1031//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
1032//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
1033
1034 //
1035 // MULX inserts between 4 and 34 bubbles, depending on #leading 0s in rs1.
1036 //
1037 { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
1038 { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
1039 { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
1040 { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
1041
1042 //
1043 // SDIVcc inserts 36 bubbles.
1044 //
1045//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
1046//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
1047//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
1048//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
1049
1050 // UDIVcc inserts 37 bubbles.
1051//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
1052//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
1053//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
1054//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
1055
1056 //
1057 // SDIVX inserts 68 bubbles.
1058 //
1059 { SDIVX, AllIssueSlots.rid, 2, 68-1 },
1060 { SDIVX, AllIssueSlots.rid, 2, 68-1 },
1061 { SDIVX, AllIssueSlots.rid, 2, 68-1 },
1062 { SDIVX, AllIssueSlots.rid, 2, 68-1 },
1063
1064 //
1065 // UDIVX inserts 68 bubbles.
1066 //
1067 { UDIVX, AllIssueSlots.rid, 2, 68-1 },
1068 { UDIVX, AllIssueSlots.rid, 2, 68-1 },
1069 { UDIVX, AllIssueSlots.rid, 2, 68-1 },
1070 { UDIVX, AllIssueSlots.rid, 2, 68-1 },
1071
1072 //
1073 // WR inserts 4 bubbles.
1074 //
1075//{ WR, AllIssueSlots.rid, 2, 68-1 },
1076//{ WR, AllIssueSlots.rid, 2, 68-1 },
1077//{ WR, AllIssueSlots.rid, 2, 68-1 },
1078//{ WR, AllIssueSlots.rid, 2, 68-1 },
1079
1080 //
1081 // WRPR inserts 4 bubbles.
1082 //
1083//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
1084//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
1085//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
1086//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
1087
1088 //
1089 // DONE inserts 9 bubbles.
1090 //
1091//{ DONE, AllIssueSlots.rid, 2, 9-1 },
1092//{ DONE, AllIssueSlots.rid, 2, 9-1 },
1093//{ DONE, AllIssueSlots.rid, 2, 9-1 },
1094//{ DONE, AllIssueSlots.rid, 2, 9-1 },
1095
1096 //
1097 // RETRY inserts 9 bubbles.
1098 //
1099//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
1100//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
1101//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
1102//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
1103
Chris Lattnere369fcb2001-10-13 06:54:54 +00001104#endif /*EXPLICIT_BUBBLES_NEEDED */
Chris Lattnerc6495ee2001-09-14 03:56:45 +00001105};
1106
1107
1108
1109// Additional delays to be captured in code:
1110// 1. RDPR from several state registers (page 349)
1111// 2. RD from *any* register (page 349)
1112// 3. Writes to TICK, PSTATE, TL registers and FLUSH{W} instr (page 349)
1113// 4. Integer store can be in same group as instr producing value to store.
1114// 5. BICC and BPICC can be in the same group as instr producing CC (pg 350)
1115// 6. FMOVr cannot be in the same or next group as an IEU instr (pg 351).
1116// 7. The second instr. of a CTI group inserts 9 bubbles (pg 351)
1117// 8. WR{PR}, SVAE, SAVED, RESTORE, RESTORED, RETURN, RETRY, and DONE that
1118// follow an annulling branch cannot be issued in the same group or in
1119// the 3 groups following the branch.
1120// 9. A predicted annulled load does not stall dependent instructions.
1121// Other annulled delay slot instructions *do* stall dependents, so
1122// nothing special needs to be done for them during scheduling.
1123//10. Do not put a load use that may be annulled in the same group as the
1124// branch. The group will stall until the load returns.
1125//11. Single-prec. FP loads lock 2 registers, for dependency checking.
1126//
1127//
1128// Additional delays we cannot or will not capture:
1129// 1. If DCTI is last word of cache line, it is delayed until next line can be
1130// fetched. Also, other DCTI alignment-related delays (pg 352)
1131// 2. Load-after-store is delayed by 7 extra cycles if load hits in D-Cache.
1132// Also, several other store-load and load-store conflicts (pg 358)
1133// 3. MEMBAR, LD{X}FSR, LDD{A} and a bunch of other load stalls (pg 358)
1134// 4. There can be at most 8 outstanding buffered store instructions
1135// (including some others like MEMBAR, LDSTUB, CAS{AX}, and FLUSH)
1136
1137
1138
1139//---------------------------------------------------------------------------
1140// class UltraSparcSchedInfo
1141//
1142// Purpose:
1143// Interface to instruction scheduling information for UltraSPARC.
1144// The parameter values above are based on UltraSPARC IIi.
1145//---------------------------------------------------------------------------
1146
1147
1148class UltraSparcSchedInfo: public MachineSchedInfo {
1149public:
Vikram S. Adve7f37fe52001-11-08 04:55:13 +00001150 /*ctor*/ UltraSparcSchedInfo (const TargetMachine& tgt);
Chris Lattnerc6495ee2001-09-14 03:56:45 +00001151 /*dtor*/ virtual ~UltraSparcSchedInfo () {}
1152protected:
1153 virtual void initializeResources ();
1154};
1155
Chris Lattnerf6e0e282001-09-14 04:32:55 +00001156
1157//---------------------------------------------------------------------------
Vikram S. Advec1521632001-10-22 13:31:53 +00001158// class UltraSparcFrameInfo
1159//
1160// Purpose:
1161// Interface to stack frame layout info for the UltraSPARC.
Vikram S. Advec1521632001-10-22 13:31:53 +00001162//---------------------------------------------------------------------------
1163
Vikram S. Adve7f37fe52001-11-08 04:55:13 +00001164class UltraSparcFrameInfo: public MachineFrameInfo {
Vikram S. Advec1521632001-10-22 13:31:53 +00001165public:
Vikram S. Adve7f37fe52001-11-08 04:55:13 +00001166 /*ctor*/ UltraSparcFrameInfo(const TargetMachine& tgt) : MachineFrameInfo(tgt) {}
1167
1168public:
1169 int getStackFrameSizeAlignment () const { return StackFrameSizeAlignment;}
1170 int getMinStackFrameSize () const { return MinStackFrameSize; }
1171 int getNumFixedOutgoingArgs () const { return NumFixedOutgoingArgs; }
1172 int getSizeOfEachArgOnStack () const { return SizeOfEachArgOnStack; }
1173 bool argsOnStackHaveFixedSize () const { return true; }
1174
1175 //
1176 // These methods compute offsets using the frame contents for a
1177 // particular method. The frame contents are obtained from the
1178 // MachineCodeInfoForMethod object for the given method.
1179 //
1180 int getFirstIncomingArgOffset (MachineCodeForMethod& mcInfo,
1181 bool& pos) const
1182 {
1183 pos = true; // arguments area grows upwards
1184 return FirstIncomingArgOffsetFromFP;
1185 }
1186 int getFirstOutgoingArgOffset (MachineCodeForMethod& mcInfo,
1187 bool& pos) const
1188 {
1189 pos = true; // arguments area grows upwards
1190 return FirstOutgoingArgOffsetFromSP;
1191 }
1192 int getFirstOptionalOutgoingArgOffset(MachineCodeForMethod& mcInfo,
1193 bool& pos)const
1194 {
1195 pos = true; // arguments area grows upwards
1196 return FirstOptionalOutgoingArgOffsetFromSP;
1197 }
1198
1199 int getFirstAutomaticVarOffset (MachineCodeForMethod& mcInfo,
1200 bool& pos) const;
1201 int getRegSpillAreaOffset (MachineCodeForMethod& mcInfo,
1202 bool& pos) const;
1203 int getTmpAreaOffset (MachineCodeForMethod& mcInfo,
1204 bool& pos) const;
1205 int getDynamicAreaOffset (MachineCodeForMethod& mcInfo,
1206 bool& pos) const;
1207
1208 //
1209 // These methods specify the base register used for each stack area
1210 // (generally FP or SP)
1211 //
1212 virtual int getIncomingArgBaseRegNum() const {
1213 return (int) target.getRegInfo().getFramePointer();
1214 }
1215 virtual int getOutgoingArgBaseRegNum() const {
1216 return (int) target.getRegInfo().getStackPointer();
1217 }
1218 virtual int getOptionalOutgoingArgBaseRegNum() const {
1219 return (int) target.getRegInfo().getStackPointer();
1220 }
1221 virtual int getAutomaticVarBaseRegNum() const {
1222 return (int) target.getRegInfo().getFramePointer();
1223 }
1224 virtual int getRegSpillAreaBaseRegNum() const {
1225 return (int) target.getRegInfo().getFramePointer();
1226 }
1227 virtual int getDynamicAreaBaseRegNum() const {
1228 return (int) target.getRegInfo().getStackPointer();
1229 }
1230
1231private:
1232 static const int StackFrameSizeAlignment = 16;
Vikram S. Advec1521632001-10-22 13:31:53 +00001233 static const int MinStackFrameSize = 176;
Vikram S. Adve7f37fe52001-11-08 04:55:13 +00001234 static const int NumFixedOutgoingArgs = 6;
1235 static const int SizeOfEachArgOnStack = 8;
1236 static const int StaticAreaOffsetFromFP = -1;
1237 static const int FirstIncomingArgOffsetFromFP = 126;
Vikram S. Advec1521632001-10-22 13:31:53 +00001238 static const int FirstOutgoingArgOffsetFromSP = 128;
1239 static const int FirstOptionalOutgoingArgOffsetFromSP = 176;
Vikram S. Advec1521632001-10-22 13:31:53 +00001240};
1241
1242
1243
1244//---------------------------------------------------------------------------
Chris Lattnerf6e0e282001-09-14 04:32:55 +00001245// class UltraSparcMachine
1246//
1247// Purpose:
1248// Primary interface to machine description for the UltraSPARC.
1249// Primarily just initializes machine-dependent parameters in
1250// class TargetMachine, and creates machine-dependent subclasses
Vikram S. Adve339084b2001-09-18 13:04:24 +00001251// for classes such as InstrInfo, SchedInfo and RegInfo.
Chris Lattnerf6e0e282001-09-14 04:32:55 +00001252//---------------------------------------------------------------------------
1253
1254class UltraSparc : public TargetMachine {
Vikram S. Adve339084b2001-09-18 13:04:24 +00001255private:
1256 UltraSparcInstrInfo instrInfo;
1257 UltraSparcSchedInfo schedInfo;
1258 UltraSparcRegInfo regInfo;
Vikram S. Advec1521632001-10-22 13:31:53 +00001259 UltraSparcFrameInfo frameInfo;
Chris Lattnerf6e0e282001-09-14 04:32:55 +00001260public:
1261 UltraSparc();
1262 virtual ~UltraSparc() {}
Vikram S. Adve339084b2001-09-18 13:04:24 +00001263
Chris Lattner32f600a2001-09-19 13:47:12 +00001264 virtual const MachineInstrInfo &getInstrInfo() const { return instrInfo; }
1265 virtual const MachineSchedInfo &getSchedInfo() const { return schedInfo; }
1266 virtual const MachineRegInfo &getRegInfo() const { return regInfo; }
Vikram S. Adve7f37fe52001-11-08 04:55:13 +00001267 virtual const MachineFrameInfo &getFrameInfo() const { return frameInfo; }
Vikram S. Adve339084b2001-09-18 13:04:24 +00001268
Chris Lattnerf6e0e282001-09-14 04:32:55 +00001269 // compileMethod - For the sparc, we do instruction selection, followed by
1270 // delay slot scheduling, then register allocation.
1271 //
1272 virtual bool compileMethod(Method *M);
Chris Lattner32f600a2001-09-19 13:47:12 +00001273
1274 //
1275 // emitAssembly - Output assembly language code (a .s file) for the specified
1276 // module. The specified module must have been compiled before this may be
1277 // used.
1278 //
Chris Lattnerec0a95f2001-10-15 15:54:43 +00001279 virtual void emitAssembly(const Module *M, ostream &OutStr) const;
Chris Lattnerf6e0e282001-09-14 04:32:55 +00001280};
1281
1282
Chris Lattnerc6495ee2001-09-14 03:56:45 +00001283#endif