blob: c9c0e2d870a9c1a900c151cd3785ff40587f7d9e [file] [log] [blame]
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for PowerPC --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "PowerPC.h"
11#include "PowerPCInstrBuilder.h"
12#include "PowerPCInstrInfo.h"
13#include "llvm/Constants.h"
14#include "llvm/DerivedTypes.h"
15#include "llvm/Function.h"
16#include "llvm/Instructions.h"
17#include "llvm/IntrinsicLowering.h"
18#include "llvm/Pass.h"
19#include "llvm/CodeGen/MachineConstantPool.h"
20#include "llvm/CodeGen/MachineFrameInfo.h"
21#include "llvm/CodeGen/MachineFunction.h"
22#include "llvm/CodeGen/SSARegMap.h"
23#include "llvm/Target/MRegisterInfo.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/Support/GetElementPtrTypeIterator.h"
26#include "llvm/Support/InstVisitor.h"
27using namespace llvm;
28
29namespace {
30 /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic PPC
31 /// Representation.
32 ///
33 enum TypeClass {
34 cByte, cShort, cInt, cFP, cLong
35 };
36}
37
38/// getClass - Turn a primitive type into a "class" number which is based on the
39/// size of the type, and whether or not it is floating point.
40///
41static inline TypeClass getClass(const Type *Ty) {
42 switch (Ty->getPrimitiveID()) {
43 case Type::SByteTyID:
44 case Type::UByteTyID: return cByte; // Byte operands are class #0
45 case Type::ShortTyID:
46 case Type::UShortTyID: return cShort; // Short operands are class #1
47 case Type::IntTyID:
48 case Type::UIntTyID:
49 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
50
51 case Type::FloatTyID:
52 case Type::DoubleTyID: return cFP; // Floating Point is #3
53
54 case Type::LongTyID:
55 case Type::ULongTyID: return cLong; // Longs are class #4
56 default:
57 assert(0 && "Invalid type to getClass!");
58 return cByte; // not reached
59 }
60}
61
62// getClassB - Just like getClass, but treat boolean values as ints.
63static inline TypeClass getClassB(const Type *Ty) {
64 if (Ty == Type::BoolTy) return cInt;
65 return getClass(Ty);
66}
67
68namespace {
69 struct ISel : public FunctionPass, InstVisitor<ISel> {
70 TargetMachine &TM;
71 MachineFunction *F; // The function we are compiling into
72 MachineBasicBlock *BB; // The current MBB we are compiling
73 int VarArgsFrameIndex; // FrameIndex for start of varargs area
74 int ReturnAddressIndex; // FrameIndex for the return address
75
76 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
77
78 // MBBMap - Mapping between LLVM BB -> Machine BB
79 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
80
81 // AllocaMap - Mapping from fixed sized alloca instructions to the
82 // FrameIndex for the alloca.
83 std::map<AllocaInst*, unsigned> AllocaMap;
84
85 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
86
87 /// runOnFunction - Top level implementation of instruction selection for
88 /// the entire function.
89 ///
90 bool runOnFunction(Function &Fn) {
91 // First pass over the function, lower any unknown intrinsic functions
92 // with the IntrinsicLowering class.
93 LowerUnknownIntrinsicFunctionCalls(Fn);
94
95 F = &MachineFunction::construct(&Fn, TM);
96
97 // Create all of the machine basic blocks for the function...
98 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
99 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
100
101 BB = &F->front();
102
103 // Set up a frame object for the return address. This is used by the
104 // llvm.returnaddress & llvm.frameaddress intrinisics.
105 ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
106
107 // Copy incoming arguments off of the stack...
108 LoadArgumentsToVirtualRegs(Fn);
109
110 // Instruction select everything except PHI nodes
111 visit(Fn);
112
113 // Select the PHI nodes
114 SelectPHINodes();
115
116 RegMap.clear();
117 MBBMap.clear();
118 AllocaMap.clear();
119 F = 0;
120 // We always build a machine code representation for the function
121 return true;
122 }
123
124 virtual const char *getPassName() const {
125 return "PowerPC Simple Instruction Selection";
126 }
127
128 /// visitBasicBlock - This method is called when we are visiting a new basic
129 /// block. This simply creates a new MachineBasicBlock to emit code into
130 /// and adds it to the current MachineFunction. Subsequent visit* for
131 /// instructions will be invoked for all instructions in the basic block.
132 ///
133 void visitBasicBlock(BasicBlock &LLVM_BB) {
134 BB = MBBMap[&LLVM_BB];
135 }
136
137 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
138 /// function, lowering any calls to unknown intrinsic functions into the
139 /// equivalent LLVM code.
140 ///
141 void LowerUnknownIntrinsicFunctionCalls(Function &F);
142
143 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
144 /// from the stack into virtual registers.
145 ///
146 void LoadArgumentsToVirtualRegs(Function &F);
147
148 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
149 /// because we have to generate our sources into the source basic blocks,
150 /// not the current one.
151 ///
152 void SelectPHINodes();
153
154 // Visitation methods for various instructions. These methods simply emit
155 // fixed PowerPC code for each instruction.
156
157 // Control flow operators
158 void visitReturnInst(ReturnInst &RI);
159 void visitBranchInst(BranchInst &BI);
160
161 struct ValueRecord {
162 Value *Val;
163 unsigned Reg;
164 const Type *Ty;
165 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
166 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
167 };
168 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
169 const std::vector<ValueRecord> &Args);
170 void visitCallInst(CallInst &I);
171 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
172
173 // Arithmetic operators
174 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
175 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
176 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
177 void visitMul(BinaryOperator &B);
178
179 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
180 void visitRem(BinaryOperator &B) { visitDivRem(B); }
181 void visitDivRem(BinaryOperator &B);
182
183 // Bitwise operators
184 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
185 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
186 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
187
188 // Comparison operators...
189 void visitSetCondInst(SetCondInst &I);
190 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
191 MachineBasicBlock *MBB,
192 MachineBasicBlock::iterator MBBI);
193 void visitSelectInst(SelectInst &SI);
194
195
196 // Memory Instructions
197 void visitLoadInst(LoadInst &I);
198 void visitStoreInst(StoreInst &I);
199 void visitGetElementPtrInst(GetElementPtrInst &I);
200 void visitAllocaInst(AllocaInst &I);
201 void visitMallocInst(MallocInst &I);
202 void visitFreeInst(FreeInst &I);
203
204 // Other operators
205 void visitShiftInst(ShiftInst &I);
206 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
207 void visitCastInst(CastInst &I);
208 void visitVANextInst(VANextInst &I);
209 void visitVAArgInst(VAArgInst &I);
210
211 void visitInstruction(Instruction &I) {
212 std::cerr << "Cannot instruction select: " << I;
213 abort();
214 }
215
216 /// promote32 - Make a value 32-bits wide, and put it somewhere.
217 ///
218 void promote32(unsigned targetReg, const ValueRecord &VR);
219
220 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
221 /// constant expression GEP support.
222 ///
223 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
224 Value *Src, User::op_iterator IdxBegin,
225 User::op_iterator IdxEnd, unsigned TargetReg);
226
227 /// emitCastOperation - Common code shared between visitCastInst and
228 /// constant expression cast support.
229 ///
230 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
231 Value *Src, const Type *DestTy, unsigned TargetReg);
232
233 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
234 /// and constant expression support.
235 ///
236 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
237 MachineBasicBlock::iterator IP,
238 Value *Op0, Value *Op1,
239 unsigned OperatorClass, unsigned TargetReg);
240
241 /// emitBinaryFPOperation - This method handles emission of floating point
242 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
243 void emitBinaryFPOperation(MachineBasicBlock *BB,
244 MachineBasicBlock::iterator IP,
245 Value *Op0, Value *Op1,
246 unsigned OperatorClass, unsigned TargetReg);
247
248 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
249 Value *Op0, Value *Op1, unsigned TargetReg);
250
251 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
252 unsigned DestReg, const Type *DestTy,
253 unsigned Op0Reg, unsigned Op1Reg);
254 void doMultiplyConst(MachineBasicBlock *MBB,
255 MachineBasicBlock::iterator MBBI,
256 unsigned DestReg, const Type *DestTy,
257 unsigned Op0Reg, unsigned Op1Val);
258
259 void emitDivRemOperation(MachineBasicBlock *BB,
260 MachineBasicBlock::iterator IP,
261 Value *Op0, Value *Op1, bool isDiv,
262 unsigned TargetReg);
263
264 /// emitSetCCOperation - Common code shared between visitSetCondInst and
265 /// constant expression support.
266 ///
267 void emitSetCCOperation(MachineBasicBlock *BB,
268 MachineBasicBlock::iterator IP,
269 Value *Op0, Value *Op1, unsigned Opcode,
270 unsigned TargetReg);
271
272 /// emitShiftOperation - Common code shared between visitShiftInst and
273 /// constant expression support.
274 ///
275 void emitShiftOperation(MachineBasicBlock *MBB,
276 MachineBasicBlock::iterator IP,
277 Value *Op, Value *ShiftAmount, bool isLeftShift,
278 const Type *ResultTy, unsigned DestReg);
279
280 /// emitSelectOperation - Common code shared between visitSelectInst and the
281 /// constant expression support.
282 void emitSelectOperation(MachineBasicBlock *MBB,
283 MachineBasicBlock::iterator IP,
284 Value *Cond, Value *TrueVal, Value *FalseVal,
285 unsigned DestReg);
286
287 /// copyConstantToRegister - Output the instructions required to put the
288 /// specified constant into the specified register.
289 ///
290 void copyConstantToRegister(MachineBasicBlock *MBB,
291 MachineBasicBlock::iterator MBBI,
292 Constant *C, unsigned Reg);
293
294 void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
295 unsigned LHS, unsigned RHS);
296
297 /// makeAnotherReg - This method returns the next register number we haven't
298 /// yet used.
299 ///
300 /// Long values are handled somewhat specially. They are always allocated
301 /// as pairs of 32 bit integer values. The register number returned is the
302 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
303 /// of the long value.
304 ///
305 unsigned makeAnotherReg(const Type *Ty) {
306 assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
307 "Current target doesn't have PPC reg info??");
308 const PowerPCRegisterInfo *MRI =
309 static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
310 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
311 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
312 // Create the lower part
313 F->getSSARegMap()->createVirtualRegister(RC);
314 // Create the upper part.
315 return F->getSSARegMap()->createVirtualRegister(RC)-1;
316 }
317
318 // Add the mapping of regnumber => reg class to MachineFunction
319 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
320 return F->getSSARegMap()->createVirtualRegister(RC);
321 }
322
323 /// getReg - This method turns an LLVM value into a register number.
324 ///
325 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
326 unsigned getReg(Value *V) {
327 // Just append to the end of the current bb.
328 MachineBasicBlock::iterator It = BB->end();
329 return getReg(V, BB, It);
330 }
331 unsigned getReg(Value *V, MachineBasicBlock *MBB,
332 MachineBasicBlock::iterator IPt);
333
334 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
335 /// that is to be statically allocated with the initial stack frame
336 /// adjustment.
337 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
338 };
339}
340
341/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
342/// instruction in the entry block, return it. Otherwise, return a null
343/// pointer.
344static AllocaInst *dyn_castFixedAlloca(Value *V) {
345 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
346 BasicBlock *BB = AI->getParent();
347 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
348 return AI;
349 }
350 return 0;
351}
352
353/// getReg - This method turns an LLVM value into a register number.
354///
355unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
356 MachineBasicBlock::iterator IPt) {
357 // If this operand is a constant, emit the code to copy the constant into
358 // the register here...
359 //
360 if (Constant *C = dyn_cast<Constant>(V)) {
361 unsigned Reg = makeAnotherReg(V->getType());
362 copyConstantToRegister(MBB, IPt, C, Reg);
363 return Reg;
364 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
365 unsigned Reg1 = makeAnotherReg(V->getType());
366 unsigned Reg2 = makeAnotherReg(V->getType());
367 // Move the address of the global into the register
368 BuildMI(*MBB, IPt, PPC32::LOADHiAddr, 2, Reg1).addReg(PPC32::R0).addGlobalAddress(GV);
369 BuildMI(*MBB, IPt, PPC32::LOADLoAddr, 2, Reg2).addReg(Reg1).addGlobalAddress(GV);
370 return Reg2;
371 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
372 // Do not emit noop casts at all.
373 if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()))
374 return getReg(CI->getOperand(0), MBB, IPt);
375 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
376 unsigned Reg = makeAnotherReg(V->getType());
377 unsigned FI = getFixedSizedAllocaFI(AI);
378 addFrameReference(BuildMI(*MBB, IPt, PPC32::ADDI, 2, Reg), FI, 0, false);
379 return Reg;
380 }
381
382 unsigned &Reg = RegMap[V];
383 if (Reg == 0) {
384 Reg = makeAnotherReg(V->getType());
385 RegMap[V] = Reg;
386 }
387
388 return Reg;
389}
390
391/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
392/// that is to be statically allocated with the initial stack frame
393/// adjustment.
394unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
395 // Already computed this?
396 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
397 if (I != AllocaMap.end() && I->first == AI) return I->second;
398
399 const Type *Ty = AI->getAllocatedType();
400 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
401 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
402 TySize *= CUI->getValue(); // Get total allocated size...
403 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
404
405 // Create a new stack object using the frame manager...
406 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
407 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
408 return FrameIdx;
409}
410
411
412/// copyConstantToRegister - Output the instructions required to put the
413/// specified constant into the specified register.
414///
415void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
416 MachineBasicBlock::iterator IP,
417 Constant *C, unsigned R) {
418 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
419 unsigned Class = 0;
420 switch (CE->getOpcode()) {
421 case Instruction::GetElementPtr:
422 emitGEPOperation(MBB, IP, CE->getOperand(0),
423 CE->op_begin()+1, CE->op_end(), R);
424 return;
425 case Instruction::Cast:
426 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
427 return;
428
429 case Instruction::Xor: ++Class; // FALL THROUGH
430 case Instruction::Or: ++Class; // FALL THROUGH
431 case Instruction::And: ++Class; // FALL THROUGH
432 case Instruction::Sub: ++Class; // FALL THROUGH
433 case Instruction::Add:
434 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
435 Class, R);
436 return;
437
438 case Instruction::Mul:
439 emitMultiply(MBB, IP, CE->getOperand(0), CE->getOperand(1), R);
440 return;
441
442 case Instruction::Div:
443 case Instruction::Rem:
444 emitDivRemOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
445 CE->getOpcode() == Instruction::Div, R);
446 return;
447
448 case Instruction::SetNE:
449 case Instruction::SetEQ:
450 case Instruction::SetLT:
451 case Instruction::SetGT:
452 case Instruction::SetLE:
453 case Instruction::SetGE:
454 emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
455 CE->getOpcode(), R);
456 return;
457
458 case Instruction::Shl:
459 case Instruction::Shr:
460 emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
461 CE->getOpcode() == Instruction::Shl, CE->getType(), R);
462 return;
463
464 case Instruction::Select:
465 emitSelectOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
466 CE->getOperand(2), R);
467 return;
468
469 default:
470 std::cerr << "Offending expr: " << C << "\n";
471 assert(0 && "Constant expression not yet handled!\n");
472 }
473 }
474
475 if (C->getType()->isIntegral()) {
476 unsigned Class = getClassB(C->getType());
477
478 if (Class == cLong) {
479 // Copy the value into the register pair.
480 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
481 unsigned hiTmp = makeAnotherReg(Type::IntTy);
482 unsigned loTmp = makeAnotherReg(Type::IntTy);
483 BuildMI(*MBB, IP, PPC32::ADDIS, 2, loTmp).addReg(PPC32::R0).addImm(Val >> 48);
484 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(loTmp).addImm((Val >> 32) & 0xFFFF);
485 BuildMI(*MBB, IP, PPC32::ADDIS, 2, hiTmp).addReg(PPC32::R0).addImm((Val >> 16) & 0xFFFF);
486 BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(hiTmp).addImm(Val & 0xFFFF);
487 return;
488 }
489
490 assert(Class <= cInt && "Type not handled yet!");
491
492 if (C->getType() == Type::BoolTy) {
493 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(C == ConstantBool::True);
494 } else if (Class == cByte || Class == cShort) {
495 ConstantInt *CI = cast<ConstantInt>(C);
496 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(CI->getRawValue());
497 } else {
498 ConstantInt *CI = cast<ConstantInt>(C);
499 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
500 if (TheVal < 32768 && TheVal >= -32768) {
501 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(CI->getRawValue());
502 } else {
503 unsigned TmpReg = makeAnotherReg(Type::IntTy);
504 BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0).addImm(CI->getRawValue() >> 16);
505 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TmpReg).addImm(CI->getRawValue() & 0xFFFF);
506 }
507 }
508 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
509 // We need to spill the constant to memory...
510 MachineConstantPool *CP = F->getConstantPool();
511 unsigned CPI = CP->getConstantPoolIndex(CFP);
512 const Type *Ty = CFP->getType();
513
514 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
515 unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
516 addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 2, R), CPI);
517 } else if (isa<ConstantPointerNull>(C)) {
518 // Copy zero (null pointer) to the register.
519 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(0);
520 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
521 BuildMI(*MBB, IP, PPC32::ADDIS, 2, R).addReg(PPC32::R0).addGlobalAddress(CPR->getValue());
522 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(PPC32::R0).addGlobalAddress(CPR->getValue());
523 } else {
524 std::cerr << "Offending constant: " << C << "\n";
525 assert(0 && "Type not handled yet!");
526 }
527}
528
529/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
530/// the stack into virtual registers.
531///
532/// FIXME: When we can calculate which args are coming in via registers
533/// source them from there instead.
534void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
535 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
536 unsigned GPR_remaining = 8;
537 unsigned FPR_remaining = 13;
538 unsigned GPR_idx = 3;
539 unsigned FPR_idx = 1;
540
541 MachineFrameInfo *MFI = F->getFrameInfo();
542
543 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
544 bool ArgLive = !I->use_empty();
545 unsigned Reg = ArgLive ? getReg(*I) : 0;
546 int FI; // Frame object index
547
548 switch (getClassB(I->getType())) {
549 case cByte:
550 if (ArgLive) {
551 FI = MFI->CreateFixedObject(1, ArgOffset);
552 if (GPR_remaining > 0) {
553 BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx).addReg(PPC32::R0+GPR_idx);
554 } else {
555 addFrameReference(BuildMI(BB, PPC32::LBZ, 2, Reg), FI);
556 }
557 }
558 break;
559 case cShort:
560 if (ArgLive) {
561 FI = MFI->CreateFixedObject(2, ArgOffset);
562 if (GPR_remaining > 0) {
563 BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx).addReg(PPC32::R0+GPR_idx);
564 } else {
565 addFrameReference(BuildMI(BB, PPC32::LHZ, 2, Reg), FI);
566 }
567 }
568 break;
569 case cInt:
570 if (ArgLive) {
571 FI = MFI->CreateFixedObject(4, ArgOffset);
572 if (GPR_remaining > 0) {
573 BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx).addReg(PPC32::R0+GPR_idx);
574 } else {
575 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
576 }
577 }
578 break;
579 case cLong:
580 if (ArgLive) {
581 FI = MFI->CreateFixedObject(8, ArgOffset);
582 if (GPR_remaining > 1) {
583 BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx).addReg(PPC32::R0+GPR_idx);
584 BuildMI(BB, PPC32::OR, 2, Reg+1).addReg(PPC32::R0+GPR_idx+1).addReg(PPC32::R0+GPR_idx+1);
585 } else {
586 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
587 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg+1), FI, 4);
588 }
589 }
590 ArgOffset += 4; // longs require 4 additional bytes
591 if (GPR_remaining > 1) {
592 GPR_remaining--; // uses up 2 GPRs
593 GPR_idx++;
594 }
595 break;
596 case cFP:
597 if (ArgLive) {
598 unsigned Opcode;
599 if (I->getType() == Type::FloatTy) {
600 Opcode = PPC32::LFS;
601 FI = MFI->CreateFixedObject(4, ArgOffset);
602 } else {
603 Opcode = PPC32::LFD;
604 FI = MFI->CreateFixedObject(8, ArgOffset);
605 }
606 if (FPR_remaining > 0) {
607 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(PPC32::F0+FPR_idx);
608 FPR_remaining--;
609 FPR_idx++;
610 } else {
611 addFrameReference(BuildMI(BB, Opcode, 2, Reg), FI);
612 }
613 }
614 if (I->getType() == Type::DoubleTy) {
615 ArgOffset += 4; // doubles require 4 additional bytes
616 if (GPR_remaining > 0) {
617 GPR_remaining--; // uses up 2 GPRs
618 GPR_idx++;
619 }
620 }
621 break;
622 default:
623 assert(0 && "Unhandled argument type!");
624 }
625 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
626 if (GPR_remaining > 0) {
627 GPR_remaining--; // uses up 2 GPRs
628 GPR_idx++;
629 }
630 }
631
632 // If the function takes variable number of arguments, add a frame offset for
633 // the start of the first vararg value... this is used to expand
634 // llvm.va_start.
635 if (Fn.getFunctionType()->isVarArg())
636 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
637}
638
639
640/// SelectPHINodes - Insert machine code to generate phis. This is tricky
641/// because we have to generate our sources into the source basic blocks, not
642/// the current one.
643///
644void ISel::SelectPHINodes() {
645 const TargetInstrInfo &TII = *TM.getInstrInfo();
646 const Function &LF = *F->getFunction(); // The LLVM function...
647 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
648 const BasicBlock *BB = I;
649 MachineBasicBlock &MBB = *MBBMap[I];
650
651 // Loop over all of the PHI nodes in the LLVM basic block...
652 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
653 for (BasicBlock::const_iterator I = BB->begin();
654 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
655
656 // Create a new machine instr PHI node, and insert it.
657 unsigned PHIReg = getReg(*PN);
658 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
659 PPC32::PHI, PN->getNumOperands(), PHIReg);
660
661 MachineInstr *LongPhiMI = 0;
662 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
663 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
664 PPC32::PHI, PN->getNumOperands(), PHIReg+1);
665
666 // PHIValues - Map of blocks to incoming virtual registers. We use this
667 // so that we only initialize one incoming value for a particular block,
668 // even if the block has multiple entries in the PHI node.
669 //
670 std::map<MachineBasicBlock*, unsigned> PHIValues;
671
672 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
673 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
674 unsigned ValReg;
675 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
676 PHIValues.lower_bound(PredMBB);
677
678 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
679 // We already inserted an initialization of the register for this
680 // predecessor. Recycle it.
681 ValReg = EntryIt->second;
682
683 } else {
684 // Get the incoming value into a virtual register.
685 //
686 Value *Val = PN->getIncomingValue(i);
687
688 // If this is a constant or GlobalValue, we may have to insert code
689 // into the basic block to compute it into a virtual register.
690 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
691 isa<GlobalValue>(Val)) {
692 // Simple constants get emitted at the end of the basic block,
693 // before any terminator instructions. We "know" that the code to
694 // move a constant into a register will never clobber any flags.
695 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
696 } else {
697 // Because we don't want to clobber any values which might be in
698 // physical registers with the computation of this constant (which
699 // might be arbitrarily complex if it is a constant expression),
700 // just insert the computation at the top of the basic block.
701 MachineBasicBlock::iterator PI = PredMBB->begin();
702
703 // Skip over any PHI nodes though!
704 while (PI != PredMBB->end() && PI->getOpcode() == PPC32::PHI)
705 ++PI;
706
707 ValReg = getReg(Val, PredMBB, PI);
708 }
709
710 // Remember that we inserted a value for this PHI for this predecessor
711 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
712 }
713
714 PhiMI->addRegOperand(ValReg);
715 PhiMI->addMachineBasicBlockOperand(PredMBB);
716 if (LongPhiMI) {
717 LongPhiMI->addRegOperand(ValReg+1);
718 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
719 }
720 }
721
722 // Now that we emitted all of the incoming values for the PHI node, make
723 // sure to reposition the InsertPoint after the PHI that we just added.
724 // This is needed because we might have inserted a constant into this
725 // block, right after the PHI's which is before the old insert point!
726 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
727 ++PHIInsertPoint;
728 }
729 }
730}
731
732
733// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
734// it into the conditional branch or select instruction which is the only user
735// of the cc instruction. This is the case if the conditional branch is the
736// only user of the setcc, and if the setcc is in the same basic block as the
737// conditional branch. We also don't handle long arguments below, so we reject
738// them here as well.
739//
740static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
741 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
742 if (SCI->hasOneUse()) {
743 Instruction *User = cast<Instruction>(SCI->use_back());
744 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
745 SCI->getParent() == User->getParent() &&
746 (getClassB(SCI->getOperand(0)->getType()) != cLong ||
747 SCI->getOpcode() == Instruction::SetEQ ||
748 SCI->getOpcode() == Instruction::SetNE))
749 return SCI;
750 }
751 return 0;
752}
753
754// Return a fixed numbering for setcc instructions which does not depend on the
755// order of the opcodes.
756//
757static unsigned getSetCCNumber(unsigned Opcode) {
758 switch(Opcode) {
759 default: assert(0 && "Unknown setcc instruction!");
760 case Instruction::SetEQ: return 0;
761 case Instruction::SetNE: return 1;
762 case Instruction::SetLT: return 2;
763 case Instruction::SetGE: return 3;
764 case Instruction::SetGT: return 4;
765 case Instruction::SetLE: return 5;
766 }
767}
768
769/// emitUCOM - emits an unordered FP compare.
770void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
771 unsigned LHS, unsigned RHS) {
772 BuildMI(*MBB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(LHS).addReg(RHS);
773}
774
775// EmitComparison - This function emits a comparison of the two operands,
776// returning the extended setcc code to use.
777unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
778 MachineBasicBlock *MBB,
779 MachineBasicBlock::iterator IP) {
780 // The arguments are already supposed to be of the same type.
781 const Type *CompTy = Op0->getType();
782 unsigned Class = getClassB(CompTy);
783 unsigned Op0r = getReg(Op0, MBB, IP);
784
785 // Special case handling of: cmp R, i
786 if (isa<ConstantPointerNull>(Op1)) {
787 BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(Op0r).addImm(0);
788 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
789 if (Class == cByte || Class == cShort || Class == cInt) {
790 unsigned Op1v = CI->getRawValue();
791
792 // Mask off any upper bits of the constant, if there are any...
793 Op1v &= (1ULL << (8 << Class)) - 1;
794
795 // Compare immediate or promote to reg?
796 if (Op1v <= 32767) {
797 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3, PPC32::CR0).addImm(0).addReg(Op0r).addImm(Op1v);
798 } else {
799 unsigned Op1r = getReg(Op1, MBB, IP);
800 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 3, PPC32::CR0).addImm(0).addReg(Op0r).addReg(Op1r);
801 }
802 return OpNum;
803 } else {
804 assert(Class == cLong && "Unknown integer class!");
805 unsigned LowCst = CI->getRawValue();
806 unsigned HiCst = CI->getRawValue() >> 32;
807 if (OpNum < 2) { // seteq, setne
808 unsigned LoTmp = Op0r;
809 if (LowCst != 0) {
810 unsigned LoLow = makeAnotherReg(Type::IntTy);
811 unsigned LoTmp = makeAnotherReg(Type::IntTy);
812 BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r).addImm(LowCst);
813 BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow).addImm(LowCst >> 16);
814 }
815 unsigned HiTmp = Op0r+1;
816 if (HiCst != 0) {
817 unsigned HiLow = makeAnotherReg(Type::IntTy);
818 unsigned HiTmp = makeAnotherReg(Type::IntTy);
819 BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r+1).addImm(HiCst);
820 BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow).addImm(HiCst >> 16);
821 }
822 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
823 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
824 //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0);
825 return OpNum;
826 } else {
827 // Emit a sequence of code which compares the high and low parts once
828 // each, then uses a conditional move to handle the overflow case. For
829 // example, a setlt for long would generate code like this:
830 //
831 // AL = lo(op1) < lo(op2) // Always unsigned comparison
832 // BL = hi(op1) < hi(op2) // Signedness depends on operands
833 // dest = hi(op1) == hi(op2) ? BL : AL;
834 //
835
836 // FIXME: Not Yet Implemented
837 return OpNum;
838 }
839 }
840 }
841
842 unsigned Op1r = getReg(Op1, MBB, IP);
843 switch (Class) {
844 default: assert(0 && "Unknown type class!");
845 case cByte:
846 case cShort:
847 case cInt:
848 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 2, PPC32::CR0).addReg(Op0r).addReg(Op1r);
849 break;
850 case cFP:
851 emitUCOM(MBB, IP, Op0r, Op1r);
852 break;
853
854 case cLong:
855 if (OpNum < 2) { // seteq, setne
856 unsigned LoTmp = makeAnotherReg(Type::IntTy);
857 unsigned HiTmp = makeAnotherReg(Type::IntTy);
858 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
859 BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r).addReg(Op1r);
860 BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
861 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
862 //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0);
863 break; // Allow the sete or setne to be generated from flags set by OR
864 } else {
865 // Emit a sequence of code which compares the high and low parts once
866 // each, then uses a conditional move to handle the overflow case. For
867 // example, a setlt for long would generate code like this:
868 //
869 // AL = lo(op1) < lo(op2) // Signedness depends on operands
870 // BL = hi(op1) < hi(op2) // Always unsigned comparison
871 // dest = hi(op1) == hi(op2) ? BL : AL;
872 //
873
874 // FIXME: Not Yet Implemented
875 return OpNum;
876 }
877 }
878 return OpNum;
879}
880
881/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
882/// register, then move it to wherever the result should be.
883///
884void ISel::visitSetCondInst(SetCondInst &I) {
885 if (canFoldSetCCIntoBranchOrSelect(&I))
886 return; // Fold this into a branch or select.
887
888 unsigned DestReg = getReg(I);
889 MachineBasicBlock::iterator MII = BB->end();
890 emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),DestReg);
891}
892
893/// emitSetCCOperation - Common code shared between visitSetCondInst and
894/// constant expression support.
895///
896/// FIXME: this is wrong. we should figure out a way to guarantee
897/// TargetReg is a CR and then make it a no-op
898void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
899 MachineBasicBlock::iterator IP,
900 Value *Op0, Value *Op1, unsigned Opcode,
901 unsigned TargetReg) {
902 unsigned OpNum = getSetCCNumber(Opcode);
903 OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
904
905 // The value is already in CR0 at this point, do nothing.
906}
907
908
909void ISel::visitSelectInst(SelectInst &SI) {
910 unsigned DestReg = getReg(SI);
911 MachineBasicBlock::iterator MII = BB->end();
912 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),SI.getFalseValue(), DestReg);
913}
914
915/// emitSelect - Common code shared between visitSelectInst and the constant
916/// expression support.
917/// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has
918/// no select instruction. FSEL only works for comparisons against zero.
919void ISel::emitSelectOperation(MachineBasicBlock *MBB,
920 MachineBasicBlock::iterator IP,
921 Value *Cond, Value *TrueVal, Value *FalseVal,
922 unsigned DestReg) {
923 unsigned SelectClass = getClassB(TrueVal->getType());
924
925 unsigned TrueReg = getReg(TrueVal, MBB, IP);
926 unsigned FalseReg = getReg(FalseVal, MBB, IP);
927
928 if (TrueReg == FalseReg) {
929 if (SelectClass == cFP) {
930 BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(TrueReg);
931 } else {
932 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TrueReg).addReg(TrueReg);
933 }
934
935 if (SelectClass == cLong)
936 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TrueReg+1).addReg(TrueReg+1);
937 return;
938 }
939
940 unsigned CondReg = getReg(Cond, MBB, IP);
941 unsigned numZeros = makeAnotherReg(Type::IntTy);
942 unsigned falseHi = makeAnotherReg(Type::IntTy);
943 unsigned falseAll = makeAnotherReg(Type::IntTy);
944 unsigned trueAll = makeAnotherReg(Type::IntTy);
945 unsigned Temp1 = makeAnotherReg(Type::IntTy);
946 unsigned Temp2 = makeAnotherReg(Type::IntTy);
947
948 BuildMI(*MBB, IP, PPC32::CNTLZW, 1, numZeros).addReg(CondReg);
949 BuildMI(*MBB, IP, PPC32::RLWINM, 4, falseHi).addReg(numZeros).addImm(26).addImm(0).addImm(0);
950 BuildMI(*MBB, IP, PPC32::SRAWI, 2, falseAll).addReg(falseHi).addImm(31);
951 BuildMI(*MBB, IP, PPC32::NOR, 2, trueAll).addReg(falseAll).addReg(falseAll);
952 BuildMI(*MBB, IP, PPC32::AND, 2, Temp1).addReg(TrueReg).addReg(trueAll);
953 BuildMI(*MBB, IP, PPC32::AND, 2, Temp2).addReg(FalseReg).addReg(falseAll);
954 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Temp1).addReg(Temp2);
955
956 if (SelectClass == cLong) {
957 unsigned Temp3 = makeAnotherReg(Type::IntTy);
958 unsigned Temp4 = makeAnotherReg(Type::IntTy);
959 BuildMI(*MBB, IP, PPC32::AND, 2, Temp3).addReg(TrueReg+1).addReg(trueAll);
960 BuildMI(*MBB, IP, PPC32::AND, 2, Temp4).addReg(FalseReg+1).addReg(falseAll);
961 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(Temp3).addReg(Temp4);
962 }
963
964 return;
965}
966
967
968
969/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
970/// operand, in the specified target register.
971///
972void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
973 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
974
975 Value *Val = VR.Val;
976 const Type *Ty = VR.Ty;
977 if (Val) {
978 if (Constant *C = dyn_cast<Constant>(Val)) {
979 Val = ConstantExpr::getCast(C, Type::IntTy);
980 Ty = Type::IntTy;
981 }
982
983 // If this is a simple constant, just emit a load directly to avoid the copy.
984 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
985 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
986
987 if (TheVal < 32768 && TheVal >= -32768) {
988 BuildMI(BB, PPC32::ADDI, 2, targetReg).addReg(PPC32::R0).addImm(TheVal);
989 } else {
990 unsigned TmpReg = makeAnotherReg(Type::IntTy);
991 BuildMI(BB, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0).addImm(TheVal >> 16);
992 BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(TmpReg).addImm(TheVal & 0xFFFF);
993 }
994 return;
995 }
996 }
997
998 // Make sure we have the register number for this value...
999 unsigned Reg = Val ? getReg(Val) : VR.Reg;
1000
1001 switch (getClassB(Ty)) {
1002 case cByte:
1003 // Extend value into target register (8->32)
1004 if (isUnsigned)
1005 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0).addZImm(24).addZImm(31);
1006 else
1007 BuildMI(BB, PPC32::EXTSB, 1, targetReg).addReg(Reg);
1008 break;
1009 case cShort:
1010 // Extend value into target register (16->32)
1011 if (isUnsigned)
1012 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0).addZImm(16).addZImm(31);
1013 else
1014 BuildMI(BB, PPC32::EXTSH, 1, targetReg).addReg(Reg);
1015 break;
1016 case cInt:
1017 // Move value into target register (32->32)
1018 BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(Reg).addReg(Reg);
1019 break;
1020 default:
1021 assert(0 && "Unpromotable operand class in promote32");
1022 }
1023}
1024
1025// just emit blr.
1026void ISel::visitReturnInst(ReturnInst &I) {
1027 Value *RetVal = I.getOperand(0);
1028
1029 switch (getClassB(RetVal->getType())) {
1030 case cByte: // integral return values: extend or move into r3 and return
1031 case cShort:
1032 case cInt:
1033 promote32(PPC32::R3, ValueRecord(RetVal));
1034 break;
1035 case cFP: { // Floats & Doubles: Return in f1
1036 unsigned RetReg = getReg(RetVal);
1037 BuildMI(BB, PPC32::FMR, 1, PPC32::F1).addReg(RetReg);
1038 break;
1039 }
1040 case cLong: {
1041 unsigned RetReg = getReg(RetVal);
1042 BuildMI(BB, PPC32::OR, 2, PPC32::R3).addReg(RetReg).addReg(RetReg);
1043 BuildMI(BB, PPC32::OR, 2, PPC32::R4).addReg(RetReg+1).addReg(RetReg+1);
1044 break;
1045 }
1046 default:
1047 visitInstruction(I);
1048 }
1049 BuildMI(BB, PPC32::BLR, 1).addImm(0);
1050}
1051
1052// getBlockAfter - Return the basic block which occurs lexically after the
1053// specified one.
1054static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1055 Function::iterator I = BB; ++I; // Get iterator to next block
1056 return I != BB->getParent()->end() ? &*I : 0;
1057}
1058
1059/// visitBranchInst - Handle conditional and unconditional branches here. Note
1060/// that since code layout is frozen at this point, that if we are trying to
1061/// jump to a block that is the immediate successor of the current block, we can
1062/// just make a fall-through (but we don't currently).
1063///
1064void ISel::visitBranchInst(BranchInst &BI) {
1065 // Update machine-CFG edges
1066 BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
1067 if (BI.isConditional())
1068 BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
1069
1070 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
1071
1072 if (!BI.isConditional()) { // Unconditional branch?
1073 if (BI.getSuccessor(0) != NextBB)
1074 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1075 return;
1076 }
1077
1078 // See if we can fold the setcc into the branch itself...
1079 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
1080 if (SCI == 0) {
1081 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1082 // computed some other way...
1083 unsigned condReg = getReg(BI.getCondition());
1084 BuildMI(BB, PPC32::CMPLI, 3, PPC32::CR0).addImm(0).addReg(condReg).addImm(0);
1085 if (BI.getSuccessor(1) == NextBB) {
1086 if (BI.getSuccessor(0) != NextBB)
1087 BuildMI(BB, PPC32::BC, 3).addImm(4).addImm(2).addMBB(MBBMap[BI.getSuccessor(0)]);
1088 } else {
1089 BuildMI(BB, PPC32::BC, 3).addImm(12).addImm(2).addMBB(MBBMap[BI.getSuccessor(1)]);
1090
1091 if (BI.getSuccessor(0) != NextBB)
1092 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1093 }
1094 return;
1095 }
1096
1097
1098 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
1099 MachineBasicBlock::iterator MII = BB->end();
1100 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
1101
1102 const Type *CompTy = SCI->getOperand(0)->getType();
1103 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
1104
1105 // LLVM -> X86 signed X86 unsigned
1106 // ----- ---------- ------------
1107 // seteq -> je je
1108 // setne -> jne jne
1109 // setlt -> jl jb
1110 // setge -> jge jae
1111 // setgt -> jg ja
1112 // setle -> jle jbe
1113
1114 static const unsigned BITab[6] = { 2, 2, 0, 0, 1, 1 };
1115 unsigned BO_true = (OpNum % 2 == 0) ? 12 : 4;
1116 unsigned BO_false = (OpNum % 2 == 0) ? 4 : 12;
1117 unsigned BIval = BITab[0];
1118
1119 if (BI.getSuccessor(0) != NextBB) {
1120 BuildMI(BB, PPC32::BC, 3).addImm(BO_true).addImm(BIval).addMBB(MBBMap[BI.getSuccessor(0)]);
1121 if (BI.getSuccessor(1) != NextBB)
1122 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
1123 } else {
1124 // Change to the inverse condition...
1125 if (BI.getSuccessor(1) != NextBB) {
1126 BuildMI(BB, PPC32::BC, 3).addImm(BO_false).addImm(BIval).addMBB(MBBMap[BI.getSuccessor(1)]);
1127 }
1128 }
1129}
1130
1131
1132/// doCall - This emits an abstract call instruction, setting up the arguments
1133/// and the return value as appropriate. For the actual function call itself,
1134/// it inserts the specified CallMI instruction into the stream.
1135///
1136/// FIXME: See Documentation at the following URL for "correct" behavior
1137/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html>
1138void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
1139 const std::vector<ValueRecord> &Args) {
1140 // Count how many bytes are to be pushed on the stack...
1141 unsigned NumBytes = 0;
1142
1143 if (!Args.empty()) {
1144 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1145 switch (getClassB(Args[i].Ty)) {
1146 case cByte: case cShort: case cInt:
1147 NumBytes += 4; break;
1148 case cLong:
1149 NumBytes += 8; break;
1150 case cFP:
1151 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
1152 break;
1153 default: assert(0 && "Unknown class!");
1154 }
1155
1156 // Adjust the stack pointer for the new arguments...
1157 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
1158
1159 // Arguments go on the stack in reverse order, as specified by the ABI.
1160 unsigned ArgOffset = 0;
1161 unsigned GPR_remaining = 8;
1162 unsigned FPR_remaining = 13;
1163 unsigned GPR_idx = 3;
1164 unsigned FPR_idx = 1;
1165
1166 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1167 unsigned ArgReg;
1168 switch (getClassB(Args[i].Ty)) {
1169 case cByte:
1170 case cShort:
1171 // Promote arg to 32 bits wide into a temporary register...
1172 ArgReg = makeAnotherReg(Type::UIntTy);
1173 promote32(ArgReg, Args[i]);
1174
1175 // Reg or stack?
1176 if (GPR_remaining > 0) {
1177 BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg).addReg(ArgReg);
1178 } else {
1179 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset).addReg(PPC32::R1);
1180 }
1181 break;
1182 case cInt:
1183 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1184
1185 // Reg or stack?
1186 if (GPR_remaining > 0) {
1187 BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg).addReg(ArgReg);
1188 } else {
1189 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset).addReg(PPC32::R1);
1190 }
1191 break;
1192 case cLong:
1193 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1194
1195 // Reg or stack?
1196 if (GPR_remaining > 1) {
1197 BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg).addReg(ArgReg);
1198 BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx + 1).addReg(ArgReg+1).addReg(ArgReg+1);
1199 } else {
1200 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset).addReg(PPC32::R1);
1201 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addImm(ArgOffset+4).addReg(PPC32::R1);
1202 }
1203
1204 ArgOffset += 4; // 8 byte entry, not 4.
1205 if (GPR_remaining > 0) {
1206 GPR_remaining -= 1; // uses up 2 GPRs
1207 GPR_idx += 1;
1208 }
1209 break;
1210 case cFP:
1211 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1212 if (Args[i].Ty == Type::FloatTy) {
1213 // Reg or stack?
1214 if (FPR_remaining > 0) {
1215 BuildMI(BB, PPC32::FMR, 1, PPC32::F0 + FPR_idx).addReg(ArgReg);
1216 FPR_remaining--;
1217 FPR_idx++;
1218 } else {
1219 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addImm(ArgOffset).addReg(PPC32::R1);
1220 }
1221 } else {
1222 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
1223 // Reg or stack?
1224 if (FPR_remaining > 0) {
1225 BuildMI(BB, PPC32::FMR, 1, PPC32::F0 + FPR_idx).addReg(ArgReg);
1226 FPR_remaining--;
1227 FPR_idx++;
1228 } else {
1229 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset).addReg(PPC32::R1);
1230 }
1231
1232 ArgOffset += 4; // 8 byte entry, not 4.
1233 if (GPR_remaining > 0) {
1234 GPR_remaining--; // uses up 2 GPRs
1235 GPR_idx++;
1236 }
1237 }
1238 break;
1239
1240 default: assert(0 && "Unknown class!");
1241 }
1242 ArgOffset += 4;
1243 if (GPR_remaining > 0) {
1244 GPR_remaining--; // uses up 2 GPRs
1245 GPR_idx++;
1246 }
1247 }
1248 } else {
1249 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(0);
1250 }
1251
1252 BB->push_back(CallMI);
1253
1254 BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addImm(NumBytes);
1255
1256 // If there is a return value, scavenge the result from the location the call
1257 // leaves it in...
1258 //
1259 if (Ret.Ty != Type::VoidTy) {
1260 unsigned DestClass = getClassB(Ret.Ty);
1261 switch (DestClass) {
1262 case cByte:
1263 case cShort:
1264 case cInt:
1265 // Integral results are in r3
1266 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
1267 case cFP: // Floating-point return values live in f1
1268 BuildMI(BB, PPC32::FMR, 1, Ret.Reg).addReg(PPC32::F1);
1269 break;
1270 case cLong: // Long values are in r3:r4
1271 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
1272 BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R4).addReg(PPC32::R4);
1273 break;
1274 default: assert(0 && "Unknown class!");
1275 }
1276 }
1277}
1278
1279
1280/// visitCallInst - Push args on stack and do a procedure call instruction.
1281void ISel::visitCallInst(CallInst &CI) {
1282 MachineInstr *TheCall;
1283 if (Function *F = CI.getCalledFunction()) {
1284 // Is it an intrinsic function call?
1285 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
1286 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1287 return;
1288 }
1289
1290 // Emit a CALL instruction with PC-relative displacement.
1291 TheCall = BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(F, true);
1292 } else { // Emit an indirect call through the CTR
1293 unsigned Reg = getReg(CI.getCalledValue());
1294 BuildMI(PPC32::MTSPR, 2).addZImm(9).addReg(Reg);
1295 TheCall = BuildMI(PPC32::CALLindirect, 1).addZImm(20).addZImm(0);
1296 }
1297
1298 std::vector<ValueRecord> Args;
1299 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
1300 Args.push_back(ValueRecord(CI.getOperand(i)));
1301
1302 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
1303 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
1304}
1305
1306
1307/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
1308///
1309static Value *dyncastIsNan(Value *V) {
1310 if (CallInst *CI = dyn_cast<CallInst>(V))
1311 if (Function *F = CI->getCalledFunction())
1312 if (F->getIntrinsicID() == Intrinsic::isnan)
1313 return CI->getOperand(1);
1314 return 0;
1315}
1316
1317/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
1318/// or's whos operands are all calls to the isnan predicate.
1319static bool isOnlyUsedByUnorderedComparisons(Value *V) {
1320 assert(dyncastIsNan(V) && "The value isn't an isnan call!");
1321
1322 // Check all uses, which will be or's of isnans if this predicate is true.
1323 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1324 Instruction *I = cast<Instruction>(*UI);
1325 if (I->getOpcode() != Instruction::Or) return false;
1326 if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
1327 if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
1328 }
1329
1330 return true;
1331}
1332
1333/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1334/// function, lowering any calls to unknown intrinsic functions into the
1335/// equivalent LLVM code.
1336///
1337void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1338 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1339 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1340 if (CallInst *CI = dyn_cast<CallInst>(I++))
1341 if (Function *F = CI->getCalledFunction())
1342 switch (F->getIntrinsicID()) {
1343 case Intrinsic::not_intrinsic:
1344 case Intrinsic::vastart:
1345 case Intrinsic::vacopy:
1346 case Intrinsic::vaend:
1347 case Intrinsic::returnaddress:
1348 case Intrinsic::frameaddress:
1349 case Intrinsic::isnan:
1350 // We directly implement these intrinsics
1351 break;
1352 case Intrinsic::readio: {
1353 // On PPC, memory operations are in-order. Lower this intrinsic
1354 // into a volatile load.
1355 Instruction *Before = CI->getPrev();
1356 LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
1357 CI->replaceAllUsesWith(LI);
1358 BB->getInstList().erase(CI);
1359 break;
1360 }
1361 case Intrinsic::writeio: {
1362 // On PPC, memory operations are in-order. Lower this intrinsic
1363 // into a volatile store.
1364 Instruction *Before = CI->getPrev();
1365 StoreInst *LI = new StoreInst(CI->getOperand(1),
1366 CI->getOperand(2), true, CI);
1367 CI->replaceAllUsesWith(LI);
1368 BB->getInstList().erase(CI);
1369 break;
1370 }
1371 default:
1372 // All other intrinsic calls we must lower.
1373 Instruction *Before = CI->getPrev();
1374 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
1375 if (Before) { // Move iterator to instruction after call
1376 I = Before; ++I;
1377 } else {
1378 I = BB->begin();
1379 }
1380 }
1381}
1382
1383void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
1384 unsigned TmpReg1, TmpReg2, TmpReg3;
1385 switch (ID) {
1386 case Intrinsic::vastart:
1387 // Get the address of the first vararg value...
1388 TmpReg1 = getReg(CI);
1389 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1), VarArgsFrameIndex);
1390 return;
1391
1392 case Intrinsic::vacopy:
1393 TmpReg1 = getReg(CI);
1394 TmpReg2 = getReg(CI.getOperand(1));
1395 BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
1396 return;
1397 case Intrinsic::vaend: return;
1398
1399 case Intrinsic::returnaddress:
1400 case Intrinsic::frameaddress:
1401 TmpReg1 = getReg(CI);
1402 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1403 if (ID == Intrinsic::returnaddress) {
1404 // Just load the return address
1405 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, TmpReg1),
1406 ReturnAddressIndex);
1407 } else {
1408 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1),
1409 ReturnAddressIndex, -4, false);
1410 }
1411 } else {
1412 // Values other than zero are not implemented yet.
1413 BuildMI(BB, PPC32::ADDI, 2, TmpReg1).addReg(PPC32::R0).addImm(0);
1414 }
1415 return;
1416
1417 case Intrinsic::isnan:
1418 // If this is only used by 'isunordered' style comparisons, don't emit it.
1419 if (isOnlyUsedByUnorderedComparisons(&CI)) return;
1420 TmpReg1 = getReg(CI.getOperand(1));
1421 emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
1422 TmpReg2 = makeAnotherReg(Type::IntTy);
1423 BuildMI(BB, PPC32::MFCR, TmpReg2);
1424 TmpReg3 = getReg(CI);
1425 BuildMI(BB, PPC32::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
1426 return;
1427
1428 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
1429 }
1430}
1431
1432/// visitSimpleBinary - Implement simple binary operators for integral types...
1433/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1434/// Xor.
1435///
1436void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1437 unsigned DestReg = getReg(B);
1438 MachineBasicBlock::iterator MI = BB->end();
1439 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
1440 unsigned Class = getClassB(B.getType());
1441
1442 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
1443}
1444
1445/// emitBinaryFPOperation - This method handles emission of floating point
1446/// Add (0), Sub (1), Mul (2), and Div (3) operations.
1447void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
1448 MachineBasicBlock::iterator IP,
1449 Value *Op0, Value *Op1,
1450 unsigned OperatorClass, unsigned DestReg) {
1451
1452 // Special case: op Reg, <const fp>
1453 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
1454 // Create a constant pool entry for this constant.
1455 MachineConstantPool *CP = F->getConstantPool();
1456 unsigned CPI = CP->getConstantPoolIndex(Op1C);
1457 const Type *Ty = Op1->getType();
1458
1459 static const unsigned OpcodeTab[][4] = {
1460 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1461 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
1462 };
1463
1464 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1465 unsigned TempReg = makeAnotherReg(Ty);
1466 unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
1467 addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI);
1468
1469 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
1470 unsigned Op0r = getReg(Op0, BB, IP);
1471 BuildMI(*BB, IP, Opcode, DestReg).addReg(Op0r).addReg(TempReg);
1472 return;
1473 }
1474
1475 // Special case: R1 = op <const fp>, R2
1476 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
1477 if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) {
1478 // -0.0 - X === -X
1479 unsigned op1Reg = getReg(Op1, BB, IP);
1480 BuildMI(*BB, IP, PPC32::FNEG, 1, DestReg).addReg(op1Reg);
1481 return;
1482 } else {
1483 // R1 = op CST, R2 --> R1 = opr R2, CST
1484
1485 // Create a constant pool entry for this constant.
1486 MachineConstantPool *CP = F->getConstantPool();
1487 unsigned CPI = CP->getConstantPoolIndex(CFP);
1488 const Type *Ty = CFP->getType();
1489
1490 static const unsigned OpcodeTab[][4] = {
1491 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1492 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
1493 };
1494
1495 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1496 unsigned TempReg = makeAnotherReg(Ty);
1497 unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
1498 addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI);
1499
1500 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
1501 unsigned Op1r = getReg(Op1, BB, IP);
1502 BuildMI(*BB, IP, Opcode, DestReg).addReg(TempReg).addReg(Op1r);
1503 return;
1504 }
1505
1506 // General case.
1507 static const unsigned OpcodeTab[4] = {
1508 PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV
1509 };
1510
1511 unsigned Opcode = OpcodeTab[OperatorClass];
1512 unsigned Op0r = getReg(Op0, BB, IP);
1513 unsigned Op1r = getReg(Op1, BB, IP);
1514 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1515}
1516
1517/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1518/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1519/// Or, 4 for Xor.
1520///
1521/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1522/// and constant expression support.
1523///
1524void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
1525 MachineBasicBlock::iterator IP,
1526 Value *Op0, Value *Op1,
1527 unsigned OperatorClass, unsigned DestReg) {
1528 unsigned Class = getClassB(Op0->getType());
1529
1530 // Arithmetic and Bitwise operators
1531 static const unsigned OpcodeTab[5] = {
1532 PPC32::ADD, PPC32::SUB, PPC32::AND, PPC32::OR, PPC32::XOR
1533 };
1534 // Otherwise, code generate the full operation with a constant.
1535 static const unsigned BottomTab[] = {
1536 PPC32::ADDC, PPC32::SUBC, PPC32::AND, PPC32::OR, PPC32::XOR
1537 };
1538 static const unsigned TopTab[] = {
1539 PPC32::ADDE, PPC32::SUBFE, PPC32::AND, PPC32::OR, PPC32::XOR
1540 };
1541
1542 if (Class == cFP) {
1543 assert(OperatorClass < 2 && "No logical ops for FP!");
1544 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
1545 return;
1546 }
1547
1548 if (Op0->getType() == Type::BoolTy) {
1549 if (OperatorClass == 3)
1550 // If this is an or of two isnan's, emit an FP comparison directly instead
1551 // of or'ing two isnan's together.
1552 if (Value *LHS = dyncastIsNan(Op0))
1553 if (Value *RHS = dyncastIsNan(Op1)) {
1554 unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
1555 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1556 emitUCOM(MBB, IP, Op0Reg, Op1Reg);
1557 BuildMI(*MBB, IP, PPC32::MFCR, TmpReg);
1558 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4).addImm(31).addImm(31);
1559 return;
1560 }
1561 }
1562
1563 // sub 0, X -> neg X
1564 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
1565 if (OperatorClass == 1 && CI->isNullValue()) {
1566 unsigned op1Reg = getReg(Op1, MBB, IP);
1567 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg).addReg(op1Reg);
1568
1569 if (Class == cLong) {
1570 unsigned zeroes = makeAnotherReg(Type::IntTy);
1571 unsigned overflow = makeAnotherReg(Type::IntTy);
1572 unsigned T = makeAnotherReg(Type::IntTy);
1573 BuildMI(*MBB, IP, PPC32::CNTLZW, 1, zeroes).addReg(op1Reg);
1574 BuildMI(*MBB, IP, PPC32::RLWINM, 4, overflow).addReg(zeroes).addImm(27).addImm(5).addImm(31);
1575 BuildMI(*MBB, IP, PPC32::ADD, 2, T).addReg(op1Reg+1).addReg(overflow);
1576 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg+1).addReg(T);
1577 }
1578 return;
1579 }
1580
1581 // Special case: op Reg, <const int>
1582 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1583 unsigned Op0r = getReg(Op0, MBB, IP);
1584
1585 // xor X, -1 -> not X
1586 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1587 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1588 if (Class == cLong) // Invert the top part too
1589 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
1590 return;
1591 }
1592
1593 unsigned Opcode = OpcodeTab[OperatorClass];
1594 unsigned Op1r = getReg(Op1, MBB, IP);
1595
1596 if (Class != cLong) {
1597 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1598 return;
1599 }
1600
1601 // If the constant is zero in the low 32-bits, just copy the low part
1602 // across and apply the normal 32-bit operation to the high parts. There
1603 // will be no carry or borrow into the top.
1604 if (cast<ConstantInt>(Op1C)->getRawValue() == 0) {
1605 if (OperatorClass != 2) // All but and...
1606 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1607 else
1608 BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
1609 BuildMI(*MBB, IP, Opcode, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
1610 return;
1611 }
1612
1613 // If this is a long value and the high or low bits have a special
1614 // property, emit some special cases.
1615 unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
1616
1617 // If this is a logical operation and the top 32-bits are zero, just
1618 // operate on the lower 32.
1619 if (Op1h == 0 && OperatorClass > 1) {
1620 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1621 if (OperatorClass != 2) // All but and
1622 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
1623 else
1624 BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg+1).addReg(PPC32::R0).addImm(0);
1625 return;
1626 }
1627
1628 // TODO: We could handle lots of other special cases here, such as AND'ing
1629 // with 0xFFFFFFFF00000000 -> noop, etc.
1630
1631 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r).addImm(Op1r);
1632 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1).addImm(Op1r+1);
1633 return;
1634 }
1635
1636 unsigned Op0r = getReg(Op0, MBB, IP);
1637 unsigned Op1r = getReg(Op1, MBB, IP);
1638
1639 if (Class != cLong) {
1640 unsigned Opcode = OpcodeTab[OperatorClass];
1641 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1642 } else {
1643 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r).addImm(Op1r);
1644 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1).addImm(Op1r+1);
1645 }
1646 return;
1647}
1648
1649/// doMultiply - Emit appropriate instructions to multiply together the
1650/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1651/// result should be given as DestTy.
1652///
1653void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
1654 unsigned DestReg, const Type *DestTy,
1655 unsigned op0Reg, unsigned op1Reg) {
1656 unsigned Class = getClass(DestTy);
1657 switch (Class) {
1658 case cLong:
1659 BuildMI(*MBB, MBBI, PPC32::MULHW, 2, DestReg+1).addReg(op0Reg+1).addReg(op1Reg+1);
1660 case cInt:
1661 case cShort:
1662 case cByte:
1663 BuildMI(*MBB, MBBI, PPC32::MULLW, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
1664 return;
1665 default:
1666 assert(0 && "doMultiply cannot operate on unknown type!");
1667 }
1668}
1669
1670// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1671// returns zero when the input is not exactly a power of two.
1672static unsigned ExactLog2(unsigned Val) {
1673 if (Val == 0 || (Val & (Val-1))) return 0;
1674 unsigned Count = 0;
1675 while (Val != 1) {
1676 Val >>= 1;
1677 ++Count;
1678 }
1679 return Count+1;
1680}
1681
1682
1683/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
1684/// 16, or 32-bit integer multiply by a constant.
1685void ISel::doMultiplyConst(MachineBasicBlock *MBB,
1686 MachineBasicBlock::iterator IP,
1687 unsigned DestReg, const Type *DestTy,
1688 unsigned op0Reg, unsigned ConstRHS) {
1689 unsigned Class = getClass(DestTy);
1690 // Handle special cases here.
1691 switch (ConstRHS) {
1692 case 0:
1693 BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
1694 return;
1695 case 1:
1696 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(op0Reg).addReg(op0Reg);
1697 return;
1698 case 2:
1699 BuildMI(*MBB, IP, PPC32::ADD, 2,DestReg).addReg(op0Reg).addReg(op0Reg);
1700 return;
1701 }
1702
1703 // If the element size is exactly a power of 2, use a shift to get it.
1704 if (unsigned Shift = ExactLog2(ConstRHS)) {
1705 switch (Class) {
1706 default: assert(0 && "Unknown class for this function!");
1707 case cByte:
1708 case cShort:
1709 case cInt:
1710 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(op0Reg).addImm(Shift-1).addImm(0).addImm(31-Shift-1);
1711 return;
1712 }
1713 }
1714
1715 // Most general case, emit a normal multiply...
1716 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
1717 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
1718 BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg1).addReg(PPC32::R0).addImm(ConstRHS >> 16);
1719 BuildMI(*MBB, IP, PPC32::ORI, 2, TmpReg2).addReg(TmpReg1).addImm(ConstRHS);
1720
1721 // Emit a MUL to multiply the register holding the index by
1722 // elementSize, putting the result in OffsetReg.
1723 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg2);
1724}
1725
1726void ISel::visitMul(BinaryOperator &I) {
1727 unsigned ResultReg = getReg(I);
1728
1729 Value *Op0 = I.getOperand(0);
1730 Value *Op1 = I.getOperand(1);
1731
1732 MachineBasicBlock::iterator IP = BB->end();
1733 emitMultiply(BB, IP, Op0, Op1, ResultReg);
1734}
1735
1736void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
1737 Value *Op0, Value *Op1, unsigned DestReg) {
1738 MachineBasicBlock &BB = *MBB;
1739 TypeClass Class = getClass(Op0->getType());
1740
1741 // Simple scalar multiply?
1742 unsigned Op0Reg = getReg(Op0, &BB, IP);
1743 switch (Class) {
1744 case cByte:
1745 case cShort:
1746 case cInt:
1747 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1748 unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
1749 doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
1750 } else {
1751 unsigned Op1Reg = getReg(Op1, &BB, IP);
1752 doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
1753 }
1754 return;
1755 case cFP:
1756 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
1757 return;
1758 case cLong:
1759 break;
1760 }
1761
1762 // Long value. We have to do things the hard way...
1763 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1764 unsigned CLow = CI->getRawValue();
1765 unsigned CHi = CI->getRawValue() >> 32;
1766
1767 if (CLow == 0) {
1768 // If the low part of the constant is all zeros, things are simple.
1769 BuildMI(BB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
1770 doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
1771 return;
1772 }
1773
1774 // Multiply the two low parts
1775 unsigned OverflowReg = 0;
1776 if (CLow == 1) {
1777 BuildMI(BB, IP, PPC32::OR, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg);
1778 } else {
1779 unsigned TmpRegL = makeAnotherReg(Type::UIntTy);
1780 unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
1781 OverflowReg = makeAnotherReg(Type::UIntTy);
1782 BuildMI(BB, IP, PPC32::ADDIS, 2, TmpRegL).addReg(PPC32::R0).addImm(CLow >> 16);
1783 BuildMI(BB, IP, PPC32::ORI, 2, Op1RegL).addReg(TmpRegL).addImm(CLow);
1784 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1RegL);
1785 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg).addReg(Op1RegL);
1786 }
1787
1788 unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
1789 doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
1790
1791 unsigned AHBLplusOverflowReg;
1792 if (OverflowReg) {
1793 AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
1794 BuildMI(BB, IP, PPC32::ADD, 2, // AH*BL+(AL*BL >> 32)
1795 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
1796 } else {
1797 AHBLplusOverflowReg = AHBLReg;
1798 }
1799
1800 if (CHi == 0) {
1801 BuildMI(BB, IP, PPC32::OR, 2, DestReg+1).addReg(AHBLplusOverflowReg).addReg(AHBLplusOverflowReg);
1802 } else {
1803 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
1804 doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
1805
1806 BuildMI(BB, IP, PPC32::ADD, 2, // AL*BH + AH*BL + (AL*BL >> 32)
1807 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1808 }
1809 return;
1810 }
1811
1812 // General 64x64 multiply
1813
1814 unsigned Op1Reg = getReg(Op1, &BB, IP);
1815
1816 // Multiply the two low parts... capturing carry into EDX
1817 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg); // AL*BL
1818
1819 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
1820 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg).addReg(Op1Reg); // AL*BL >> 32
1821
1822 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
1823 BuildMI(BB, IP, PPC32::MULLW, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
1824
1825 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
1826 BuildMI(BB, IP, PPC32::ADD, 2, // AH*BL+(AL*BL >> 32)
1827 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
1828
1829 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
1830 BuildMI(BB, IP, PPC32::MULLW, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
1831
1832 BuildMI(BB, IP, PPC32::ADD, 2, // AL*BH + AH*BL + (AL*BL >> 32)
1833 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1834}
1835
1836
1837/// visitDivRem - Handle division and remainder instructions... these
1838/// instruction both require the same instructions to be generated, they just
1839/// select the result from a different register. Note that both of these
1840/// instructions work differently for signed and unsigned operands.
1841///
1842void ISel::visitDivRem(BinaryOperator &I) {
1843 unsigned ResultReg = getReg(I);
1844 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1845
1846 MachineBasicBlock::iterator IP = BB->end();
1847 emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div, ResultReg);
1848}
1849
1850void ISel::emitDivRemOperation(MachineBasicBlock *BB,
1851 MachineBasicBlock::iterator IP,
1852 Value *Op0, Value *Op1, bool isDiv,
1853 unsigned ResultReg) {
1854 const Type *Ty = Op0->getType();
1855 unsigned Class = getClass(Ty);
1856 switch (Class) {
1857 case cFP: // Floating point divide
1858 if (isDiv) {
1859 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
1860 return;
1861 } else { // Floating point remainder...
1862 unsigned Op0Reg = getReg(Op0, BB, IP);
1863 unsigned Op1Reg = getReg(Op1, BB, IP);
1864 MachineInstr *TheCall =
1865 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("fmod", true);
1866 std::vector<ValueRecord> Args;
1867 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
1868 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
1869 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
1870 }
1871 return;
1872 case cLong: {
1873 static const char *FnName[] =
1874 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
1875 unsigned Op0Reg = getReg(Op0, BB, IP);
1876 unsigned Op1Reg = getReg(Op1, BB, IP);
1877 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
1878 MachineInstr *TheCall =
1879 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol(FnName[NameIdx], true);
1880
1881 std::vector<ValueRecord> Args;
1882 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
1883 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
1884 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
1885 return;
1886 }
1887 case cByte: case cShort: case cInt:
1888 break; // Small integrals, handled below...
1889 default: assert(0 && "Unknown class!");
1890 }
1891
1892 // Special case signed division by power of 2.
1893 if (isDiv)
1894 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
1895 assert(Class != cLong && "This doesn't handle 64-bit divides!");
1896 int V = CI->getValue();
1897
1898 if (V == 1) { // X /s 1 => X
1899 unsigned Op0Reg = getReg(Op0, BB, IP);
1900 BuildMI(*BB, IP, PPC32::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
1901 return;
1902 }
1903
1904 if (V == -1) { // X /s -1 => -X
1905 unsigned Op0Reg = getReg(Op0, BB, IP);
1906 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(Op0Reg);
1907 return;
1908 }
1909
1910 bool isNeg = false;
1911 if (V < 0) { // Not a positive power of 2?
1912 V = -V;
1913 isNeg = true; // Maybe it's a negative power of 2.
1914 }
1915 if (unsigned Log = ExactLog2(V)) {
1916 --Log;
1917 unsigned Op0Reg = getReg(Op0, BB, IP);
1918 unsigned TmpReg = makeAnotherReg(Op0->getType());
1919 if (Log != 1)
1920 BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg).addReg(Op0Reg).addImm(Log-1);
1921 else
1922 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(Op0Reg).addReg(Op0Reg);
1923
1924 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
1925 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg2).addReg(TmpReg).addImm(Log).addImm(32-Log).addImm(31);
1926
1927 unsigned TmpReg3 = makeAnotherReg(Op0->getType());
1928 BuildMI(*BB, IP, PPC32::ADD, 2, TmpReg3).addReg(Op0Reg).addReg(TmpReg2);
1929
1930 unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg;
1931 BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg4).addReg(Op0Reg).addImm(Log);
1932
1933 if (isNeg)
1934 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(TmpReg4);
1935 return;
1936 }
1937 }
1938
1939 unsigned Op0Reg = getReg(Op0, BB, IP);
1940 unsigned Op1Reg = getReg(Op1, BB, IP);
1941
1942 if (isDiv) {
1943 if (Ty->isSigned()) {
1944 BuildMI(*BB, IP, PPC32::DIVW, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
1945 } else {
1946 BuildMI(*BB, IP, PPC32::DIVWU, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
1947 }
1948 } else { // Remainder
1949 unsigned TmpReg1 = makeAnotherReg(Op0->getType());
1950 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
1951
1952 if (Ty->isSigned()) {
1953 BuildMI(*BB, IP, PPC32::DIVW, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
1954 } else {
1955 BuildMI(*BB, IP, PPC32::DIVWU, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
1956 }
1957 BuildMI(*BB, IP, PPC32::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
1958 BuildMI(*BB, IP, PPC32::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
1959 }
1960}
1961
1962
1963/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
1964/// for constant immediate shift values, and for constant immediate
1965/// shift values equal to 1. Even the general case is sort of special,
1966/// because the shift amount has to be in CL, not just any old register.
1967///
1968void ISel::visitShiftInst(ShiftInst &I) {
1969 MachineBasicBlock::iterator IP = BB->end ();
1970 emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1),
1971 I.getOpcode () == Instruction::Shl, I.getType (),
1972 getReg (I));
1973}
1974
1975/// emitShiftOperation - Common code shared between visitShiftInst and
1976/// constant expression support.
1977void ISel::emitShiftOperation(MachineBasicBlock *MBB,
1978 MachineBasicBlock::iterator IP,
1979 Value *Op, Value *ShiftAmount, bool isLeftShift,
1980 const Type *ResultTy, unsigned DestReg) {
1981 unsigned SrcReg = getReg (Op, MBB, IP);
1982 bool isSigned = ResultTy->isSigned ();
1983 unsigned Class = getClass (ResultTy);
1984
1985 // Longs, as usual, are handled specially...
1986 if (Class == cLong) {
1987 // If we have a constant shift, we can generate much more efficient code
1988 // than otherwise...
1989 //
1990 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
1991 unsigned Amount = CUI->getValue();
1992 if (Amount < 32) {
1993 if (isLeftShift) {
1994 // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
1995 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1).addImm(Amount).addImm(0).addImm(31-Amount);
1996 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg).addImm(Amount).addImm(32-Amount).addImm(31);
1997 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addImm(Amount).addImm(0).addImm(31-Amount);
1998 } else {
1999 // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
2000 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addImm(32-Amount).addImm(Amount).addImm(31);
2001 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1).addImm(32-Amount).addImm(0).addImm(Amount-1);
2002 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1).addImm(32-Amount).addImm(Amount).addImm(31);
2003 }
2004 } else { // Shifting more than 32 bits
2005 Amount -= 32;
2006 if (isLeftShift) {
2007 if (Amount != 0) {
2008 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg).addImm(Amount).addImm(0).addImm(31-Amount);
2009 } else {
2010 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg).addReg(SrcReg);
2011 }
2012 BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
2013 } else {
2014 if (Amount != 0) {
2015 if (isSigned)
2016 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg+1).addImm(Amount);
2017 else
2018 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1).addImm(32-Amount).addImm(Amount).addImm(31);
2019 } else {
2020 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1).addReg(SrcReg+1);
2021 }
2022 BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg+1).addReg(PPC32::R0).addImm(0);
2023 }
2024 }
2025 } else {
2026 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
2027 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
2028 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
2029 unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
2030 unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
2031 unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
2032 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2033
2034 if (isLeftShift) {
2035 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg).addImm(32);
2036 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg+1).addReg(ShiftAmountReg);
2037 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg3).addReg(SrcReg).addReg(TmpReg1);
2038 BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
2039 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg).addImm(-32);
2040 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg6).addReg(SrcReg).addReg(TmpReg5);
2041 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4).addReg(TmpReg6);
2042 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg).addReg(ShiftAmountReg);
2043 } else {
2044 if (isSigned) {
2045 // FIXME: Unimplmented
2046 // Page C-3 of the PowerPC 32bit Programming Environments Manual
2047 } else {
2048 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg).addImm(32);
2049 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg).addReg(ShiftAmountReg);
2050 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg+1).addReg(TmpReg1);
2051 BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
2052 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg).addImm(-32);
2053 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg+1).addReg(TmpReg5);
2054 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4).addReg(TmpReg6);
2055 BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg+1).addReg(SrcReg+1).addReg(ShiftAmountReg);
2056 }
2057 }
2058 }
2059 return;
2060 }
2061
2062 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2063 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
2064 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
2065 unsigned Amount = CUI->getValue();
2066
2067 if (isLeftShift) {
2068 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addImm(Amount).addImm(0).addImm(31-Amount);
2069 } else {
2070 if (isSigned) {
2071 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg).addImm(Amount);
2072 } else {
2073 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addImm(32-Amount).addImm(Amount).addImm(31);
2074 }
2075 }
2076 } else { // The shift amount is non-constant.
2077 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2078
2079 if (isLeftShift) {
2080 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg).addReg(ShiftAmountReg);
2081 } else {
2082 BuildMI(*MBB, IP, isSigned ? PPC32::SRAW : PPC32::SRW, 2, DestReg).addReg(SrcReg).addReg(ShiftAmountReg);
2083 }
2084 }
2085}
2086
2087
2088/// visitLoadInst - Implement LLVM load instructions
2089///
2090void ISel::visitLoadInst(LoadInst &I) {
2091 static const unsigned Opcodes[] = { PPC32::LBZ, PPC32::LHZ, PPC32::LWZ, PPC32::LFS };
2092 unsigned Class = getClassB(I.getType());
2093 unsigned Opcode = Opcodes[Class];
2094 if (I.getType() == Type::DoubleTy) Opcode = PPC32::LFD;
2095
2096 unsigned DestReg = getReg(I);
2097
2098 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
2099 unsigned FI = getFixedSizedAllocaFI(AI);
2100 if (Class == cLong) {
2101 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg), FI);
2102 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg+1), FI, 4);
2103 } else {
2104 addFrameReference(BuildMI(BB, Opcode, 2, DestReg), FI);
2105 }
2106 } else {
2107 unsigned SrcAddrReg = getReg(I.getOperand(0));
2108
2109 if (Class == cLong) {
2110 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2111 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(SrcAddrReg);
2112 } else {
2113 BuildMI(BB, Opcode, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2114 }
2115 }
2116}
2117
2118/// visitStoreInst - Implement LLVM store instructions
2119///
2120void ISel::visitStoreInst(StoreInst &I) {
2121 unsigned ValReg = getReg(I.getOperand(0));
2122 unsigned AddressReg = getReg(I.getOperand(1));
2123
2124 const Type *ValTy = I.getOperand(0)->getType();
2125 unsigned Class = getClassB(ValTy);
2126
2127 if (Class == cLong) {
2128 BuildMI(BB, PPC32::STW, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
2129 BuildMI(BB, PPC32::STW, 3).addReg(ValReg+1).addImm(4).addReg(AddressReg);
2130 return;
2131 }
2132
2133 static const unsigned Opcodes[] = {
2134 PPC32::STB, PPC32::STH, PPC32::STW, PPC32::STFS
2135 };
2136 unsigned Opcode = Opcodes[Class];
2137 if (ValTy == Type::DoubleTy) Opcode = PPC32::STFD;
2138 BuildMI(BB, Opcode, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
2139}
2140
2141
2142/// visitCastInst - Here we have various kinds of copying with or without sign
2143/// extension going on.
2144///
2145void ISel::visitCastInst(CastInst &CI) {
2146 Value *Op = CI.getOperand(0);
2147
2148 unsigned SrcClass = getClassB(Op->getType());
2149 unsigned DestClass = getClassB(CI.getType());
2150 // Noop casts are not emitted: getReg will return the source operand as the
2151 // register to use for any uses of the noop cast.
2152 if (DestClass == SrcClass)
2153 return;
2154
2155 // If this is a cast from a 32-bit integer to a Long type, and the only uses
2156 // of the case are GEP instructions, then the cast does not need to be
2157 // generated explicitly, it will be folded into the GEP.
2158 if (DestClass == cLong && SrcClass == cInt) {
2159 bool AllUsesAreGEPs = true;
2160 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
2161 if (!isa<GetElementPtrInst>(*I)) {
2162 AllUsesAreGEPs = false;
2163 break;
2164 }
2165
2166 // No need to codegen this cast if all users are getelementptr instrs...
2167 if (AllUsesAreGEPs) return;
2168 }
2169
2170 unsigned DestReg = getReg(CI);
2171 MachineBasicBlock::iterator MI = BB->end();
2172 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
2173}
2174
2175/// emitCastOperation - Common code shared between visitCastInst and constant
2176/// expression cast support.
2177///
2178void ISel::emitCastOperation(MachineBasicBlock *BB,
2179 MachineBasicBlock::iterator IP,
2180 Value *Src, const Type *DestTy,
2181 unsigned DestReg) {
2182 const Type *SrcTy = Src->getType();
2183 unsigned SrcClass = getClassB(SrcTy);
2184 unsigned DestClass = getClassB(DestTy);
2185 unsigned SrcReg = getReg(Src, BB, IP);
2186
2187 // Implement casts to bool by using compare on the operand followed by set if
2188 // not zero on the result.
2189 if (DestTy == Type::BoolTy) {
2190 switch (SrcClass) {
2191 case cByte:
2192 case cShort:
2193 case cInt: {
2194 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2195 BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addImm(-1);
2196 BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
2197 break;
2198 }
2199 case cLong: {
2200 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2201 unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
2202 BuildMI(*BB, IP, PPC32::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
2203 BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addImm(-1);
2204 BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg2);
2205 break;
2206 }
2207 case cFP:
2208 // FIXME
2209 // Load -0.0
2210 // Compare
2211 // move to CR1
2212 // Negate -0.0
2213 // Compare
2214 // CROR
2215 // MFCR
2216 // Left-align
2217 // SRA ?
2218 break;
2219 }
2220 return;
2221 }
2222
2223 // Implement casts between values of the same type class (as determined by
2224 // getClass) by using a register-to-register move.
2225 if (SrcClass == DestClass) {
2226 if (SrcClass <= cInt) {
2227 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2228 } else if (SrcClass == cFP && SrcTy == DestTy) {
2229 BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2230 } else if (SrcClass == cFP) {
2231 if (SrcTy == Type::FloatTy) { // float -> double
2232 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
2233 BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2234 } else { // double -> float
2235 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
2236 "Unknown cFP member!");
2237 BuildMI(*BB, IP, PPC32::FRSP, 1, DestReg).addReg(SrcReg);
2238 }
2239 } else if (SrcClass == cLong) {
2240 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2241 BuildMI(*BB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1).addReg(SrcReg+1);
2242 } else {
2243 assert(0 && "Cannot handle this type of cast instruction!");
2244 abort();
2245 }
2246 return;
2247 }
2248
2249 // Handle cast of SMALLER int to LARGER int using a move with sign extension
2250 // or zero extension, depending on whether the source type was signed.
2251 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
2252 SrcClass < DestClass) {
2253 bool isLong = DestClass == cLong;
2254 if (isLong) DestClass = cInt;
2255
2256 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
2257 if (SrcClass < cInt) {
2258 if (isUnsigned) {
2259 unsigned shift = (SrcClass == cByte) ? 24 : 16;
2260 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0).addImm(shift).addImm(31);
2261 } else {
2262 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH, 1, DestReg).addReg(SrcReg);
2263 }
2264 } else {
2265 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2266 }
2267
2268 if (isLong) { // Handle upper 32 bits as appropriate...
2269 if (isUnsigned) // Zero out top bits...
2270 BuildMI(*BB, IP, PPC32::ADDI, 2, DestReg+1).addReg(PPC32::R0).addImm(0);
2271 else // Sign extend bottom half...
2272 BuildMI(*BB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(DestReg).addImm(31);
2273 }
2274 return;
2275 }
2276
2277 // Special case long -> int ...
2278 if (SrcClass == cLong && DestClass == cInt) {
2279 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2280 return;
2281 }
2282
2283 // Handle cast of LARGER int to SMALLER int with a clear or sign extend
2284 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
2285 && SrcClass > DestClass) {
2286 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
2287 if (isUnsigned) {
2288 unsigned shift = (SrcClass == cByte) ? 24 : 16;
2289 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0).addImm(shift).addImm(31);
2290 } else {
2291 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH, 1, DestReg).addReg(SrcReg);
2292 }
2293 return;
2294 }
2295
2296 // Handle casts from integer to floating point now...
2297 if (DestClass == cFP) {
2298
2299 // Emit a library call for long to float conversion
2300 if (SrcClass == cLong) {
2301 std::vector<ValueRecord> Args;
2302 Args.push_back(ValueRecord(SrcReg, SrcTy));
2303 MachineInstr *TheCall = BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("__floatdidf", true);
2304 doCall(ValueRecord(DestReg, DestTy), TheCall, Args);
2305 return;
2306 }
2307
2308 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2309 switch (SrcTy->getPrimitiveID()) {
2310 case Type::BoolTyID:
2311 case Type::SByteTyID:
2312 BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
2313 break;
2314 case Type::UByteTyID:
2315 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0).addImm(24).addImm(31);
2316 break;
2317 case Type::ShortTyID:
2318 BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
2319 break;
2320 case Type::UShortTyID:
2321 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0).addImm(16).addImm(31);
2322 break;
2323 case Type::IntTyID:
2324 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
2325 break;
2326 case Type::UIntTyID:
2327 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
2328 break;
2329 default: // No promotion needed...
2330 break;
2331 }
2332
2333 SrcReg = TmpReg;
2334
2335 // Spill the integer to memory and reload it from there.
2336 // Also spill room for a special conversion constant
2337 int ConstantFrameIndex =
2338 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2339 int ValueFrameIdx =
2340 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2341
2342 unsigned constantHi = makeAnotherReg(Type::IntTy);
2343 unsigned constantLo = makeAnotherReg(Type::IntTy);
2344 unsigned ConstF = makeAnotherReg(Type::DoubleTy);
2345 unsigned TempF = makeAnotherReg(Type::DoubleTy);
2346
2347 if (!SrcTy->isSigned()) {
2348 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0).addImm(0x4330);
2349 BuildMI(*BB, IP, PPC32::ADDI, 2, constantLo).addReg(PPC32::R0).addImm(0);
2350 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi), ConstantFrameIndex);
2351 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo), ConstantFrameIndex, 4);
2352 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi), ValueFrameIdx);
2353 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(SrcReg), ValueFrameIdx, 4);
2354 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF), ConstantFrameIndex);
2355 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
2356 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
2357 } else {
2358 unsigned TempLo = makeAnotherReg(Type::IntTy);
2359 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0).addImm(0x4330);
2360 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantLo).addReg(PPC32::R0).addImm(0x8000);
2361 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi), ConstantFrameIndex);
2362 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo), ConstantFrameIndex, 4);
2363 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi), ValueFrameIdx);
2364 BuildMI(*BB, IP, PPC32::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
2365 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(TempLo), ValueFrameIdx, 4);
2366 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF), ConstantFrameIndex);
2367 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
2368 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
2369 }
2370 return;
2371 }
2372
2373 // Handle casts from floating point to integer now...
2374 if (SrcClass == cFP) {
2375
2376 // emit library call
2377 if (DestClass == cLong) {
2378 std::vector<ValueRecord> Args;
2379 Args.push_back(ValueRecord(SrcReg, SrcTy));
2380 MachineInstr *TheCall = BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("__fixdfdi", true);
2381 doCall(ValueRecord(DestReg, DestTy), TheCall, Args);
2382 return;
2383 }
2384
2385 int ValueFrameIdx =
2386 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2387
2388 // load into 32 bit value, and then truncate as necessary
2389 // FIXME: This is wrong for unsigned dest types
2390 //if (DestTy->isSigned()) {
2391 unsigned TempReg = makeAnotherReg(Type::DoubleTy);
2392 BuildMI(*BB, IP, PPC32::FCTIWZ, 1, TempReg).addReg(SrcReg);
2393 addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3).addReg(TempReg), ValueFrameIdx);
2394 addFrameReference(BuildMI(*BB, IP, PPC32::LWZ, 2, DestReg), ValueFrameIdx+4);
2395 //} else {
2396 //}
2397
2398 // FIXME: Truncate return value
2399 return;
2400 }
2401
2402 // Anything we haven't handled already, we can't (yet) handle at all.
2403 assert(0 && "Unhandled cast instruction!");
2404 abort();
2405}
2406
2407/// visitVANextInst - Implement the va_next instruction...
2408///
2409void ISel::visitVANextInst(VANextInst &I) {
2410 unsigned VAList = getReg(I.getOperand(0));
2411 unsigned DestReg = getReg(I);
2412
2413 unsigned Size;
2414 switch (I.getArgType()->getPrimitiveID()) {
2415 default:
2416 std::cerr << I;
2417 assert(0 && "Error: bad type for va_next instruction!");
2418 return;
2419 case Type::PointerTyID:
2420 case Type::UIntTyID:
2421 case Type::IntTyID:
2422 Size = 4;
2423 break;
2424 case Type::ULongTyID:
2425 case Type::LongTyID:
2426 case Type::DoubleTyID:
2427 Size = 8;
2428 break;
2429 }
2430
2431 // Increment the VAList pointer...
2432 BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addImm(Size);
2433}
2434
2435void ISel::visitVAArgInst(VAArgInst &I) {
2436 unsigned VAList = getReg(I.getOperand(0));
2437 unsigned DestReg = getReg(I);
2438
2439 switch (I.getType()->getPrimitiveID()) {
2440 default:
2441 std::cerr << I;
2442 assert(0 && "Error: bad type for va_next instruction!");
2443 return;
2444 case Type::PointerTyID:
2445 case Type::UIntTyID:
2446 case Type::IntTyID:
2447 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2448 break;
2449 case Type::ULongTyID:
2450 case Type::LongTyID:
2451 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2452 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(VAList);
2453 break;
2454 case Type::DoubleTyID:
2455 BuildMI(BB, PPC32::LFD, 2, DestReg).addImm(0).addReg(VAList);
2456 break;
2457 }
2458}
2459
2460/// visitGetElementPtrInst - instruction-select GEP instructions
2461///
2462void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
2463 unsigned outputReg = getReg(I);
2464 emitGEPOperation(BB, BB->end(), I.getOperand(0),I.op_begin()+1, I.op_end(), outputReg);
2465}
2466
2467void ISel::emitGEPOperation(MachineBasicBlock *MBB,
2468 MachineBasicBlock::iterator IP,
2469 Value *Src, User::op_iterator IdxBegin,
2470 User::op_iterator IdxEnd, unsigned TargetReg) {
2471 const TargetData &TD = TM.getTargetData();
2472 if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src))
2473 Src = CPR->getValue();
2474
2475 std::vector<Value*> GEPOps;
2476 GEPOps.resize(IdxEnd-IdxBegin+1);
2477 GEPOps[0] = Src;
2478 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
2479
2480 std::vector<const Type*> GEPTypes;
2481 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
2482 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
2483
2484 // Keep emitting instructions until we consume the entire GEP instruction.
2485 while (!GEPOps.empty()) {
2486 // It's an array or pointer access: [ArraySize x ElementType].
2487 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
2488 Value *idx = GEPOps.back();
2489 GEPOps.pop_back(); // Consume a GEP operand
2490 GEPTypes.pop_back();
2491
2492 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
2493 // operand on X86. Handle this case directly now...
2494 if (CastInst *CI = dyn_cast<CastInst>(idx))
2495 if (CI->getOperand(0)->getType() == Type::IntTy ||
2496 CI->getOperand(0)->getType() == Type::UIntTy)
2497 idx = CI->getOperand(0);
2498
2499 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
2500 // must find the size of the pointed-to type (Not coincidentally, the next
2501 // type is the type of the elements in the array).
2502 const Type *ElTy = SqTy->getElementType();
2503 unsigned elementSize = TD.getTypeSize(ElTy);
2504
2505 if (elementSize == 1) {
2506 // If the element size is 1, we don't have to multiply, just add
2507 unsigned idxReg = getReg(idx, MBB, IP);
2508 unsigned Reg = makeAnotherReg(Type::UIntTy);
2509 BuildMI(*MBB, IP, PPC32::ADD, 2,TargetReg).addReg(Reg).addReg(idxReg);
2510 --IP; // Insert the next instruction before this one.
2511 TargetReg = Reg; // Codegen the rest of the GEP into this
2512 } else {
2513 unsigned idxReg = getReg(idx, MBB, IP);
2514 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
2515
2516 // Make sure we can back the iterator up to point to the first
2517 // instruction emitted.
2518 MachineBasicBlock::iterator BeforeIt = IP;
2519 if (IP == MBB->begin())
2520 BeforeIt = MBB->end();
2521 else
2522 --BeforeIt;
2523 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
2524
2525 // Emit an ADD to add OffsetReg to the basePtr.
2526 unsigned Reg = makeAnotherReg(Type::UIntTy);
2527 BuildMI(*MBB, IP, PPC32::ADD, 2, TargetReg).addReg(Reg).addReg(OffsetReg);
2528
2529 // Step to the first instruction of the multiply.
2530 if (BeforeIt == MBB->end())
2531 IP = MBB->begin();
2532 else
2533 IP = ++BeforeIt;
2534
2535 TargetReg = Reg; // Codegen the rest of the GEP into this
2536 }
2537 }
2538}
2539
2540/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2541/// frame manager, otherwise do it the hard way.
2542///
2543void ISel::visitAllocaInst(AllocaInst &I) {
2544 // If this is a fixed size alloca in the entry block for the function, we
2545 // statically stack allocate the space, so we don't need to do anything here.
2546 //
2547 if (dyn_castFixedAlloca(&I)) return;
2548
2549 // Find the data size of the alloca inst's getAllocatedType.
2550 const Type *Ty = I.getAllocatedType();
2551 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2552
2553 // Create a register to hold the temporary result of multiplying the type size
2554 // constant by the variable amount.
2555 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2556 unsigned SrcReg1 = getReg(I.getArraySize());
2557
2558 // TotalSizeReg = mul <numelements>, <TypeSize>
2559 MachineBasicBlock::iterator MBBI = BB->end();
2560 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
2561
2562 // AddedSize = add <TotalSizeReg>, 15
2563 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2564 BuildMI(BB, PPC32::ADD, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
2565
2566 // AlignedSize = and <AddedSize>, ~15
2567 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
2568 BuildMI(BB, PPC32::RLWNM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0).addImm(0).addImm(27);
2569
2570 // Subtract size from stack pointer, thereby allocating some space.
2571 BuildMI(BB, PPC32::SUB, 2, PPC32::R1).addReg(PPC32::R1).addReg(AlignedSize);
2572
2573 // Put a pointer to the space into the result register, by copying
2574 // the stack pointer.
2575 BuildMI(BB, PPC32::OR, 2, getReg(I)).addReg(PPC32::R1).addReg(PPC32::R1);
2576
2577 // Inform the Frame Information that we have just allocated a variable-sized
2578 // object.
2579 F->getFrameInfo()->CreateVariableSizedObject();
2580}
2581
2582/// visitMallocInst - Malloc instructions are code generated into direct calls
2583/// to the library malloc.
2584///
2585void ISel::visitMallocInst(MallocInst &I) {
2586 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2587 unsigned Arg;
2588
2589 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2590 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2591 } else {
2592 Arg = makeAnotherReg(Type::UIntTy);
2593 unsigned Op0Reg = getReg(I.getOperand(0));
2594 MachineBasicBlock::iterator MBBI = BB->end();
2595 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
2596 }
2597
2598 std::vector<ValueRecord> Args;
2599 Args.push_back(ValueRecord(Arg, Type::UIntTy));
2600 MachineInstr *TheCall = BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("malloc", true);
2601 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
2602}
2603
2604
2605/// visitFreeInst - Free instructions are code gen'd to call the free libc
2606/// function.
2607///
2608void ISel::visitFreeInst(FreeInst &I) {
2609 std::vector<ValueRecord> Args;
2610 Args.push_back(ValueRecord(I.getOperand(0)));
2611 MachineInstr *TheCall = BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("free", true);
2612 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
2613}
2614
2615/// createPPC32SimpleInstructionSelector - This pass converts an LLVM function
2616/// into a machine code representation is a very simple peep-hole fashion. The
2617/// generated code sucks but the implementation is nice and simple.
2618///
2619FunctionPass *llvm::createPPCSimpleInstructionSelector(TargetMachine &TM) {
2620 return new ISel(TM);
2621}