blob: e7c505c85467f148086e9fb3d8209c091915472b [file] [log] [blame]
Jakob Stoklund Olesenc3ff3f42013-04-02 04:09:12 +00001//===-- SparcInstr64Bit.td - 64-bit instructions for Sparc Target ---------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains instruction definitions and patterns needed for 64-bit
11// code generation on SPARC v9.
12//
13// Some SPARC v9 instructions are defined in SparcInstrInfo.td because they can
14// also be used in 32-bit code running on a SPARC v9 CPU.
15//
16//===----------------------------------------------------------------------===//
17
18let Predicates = [Is64Bit] in {
19// The same integer registers are used for i32 and i64 values.
20// When registers hold i32 values, the high bits are don't care.
21// This give us free trunc and anyext.
22def : Pat<(i64 (anyext i32:$val)), (COPY $val)>;
23def : Pat<(i32 (trunc i64:$val)), (COPY $val)>;
24
25} // Predicates = [Is64Bit]
26
27
28//===----------------------------------------------------------------------===//
29// 64-bit Shift Instructions.
30//===----------------------------------------------------------------------===//
31//
32// The 32-bit shift instructions are still available. The left shift srl
33// instructions shift all 64 bits, but it only accepts a 5-bit shift amount.
34//
35// The srl instructions only shift the low 32 bits and clear the high 32 bits.
36// Finally, sra shifts the low 32 bits and sign-extends to 64 bits.
37
38let Predicates = [Is64Bit] in {
39
40def : Pat<(i64 (zext i32:$val)), (SRLri $val, 0)>;
41def : Pat<(i64 (sext i32:$val)), (SRAri $val, 0)>;
42
43defm SLLX : F3_S<"sllx", 0b100101, 1, shl, i64, I64Regs>;
44defm SRLX : F3_S<"srlx", 0b100110, 1, srl, i64, I64Regs>;
45defm SRAX : F3_S<"srax", 0b100111, 1, sra, i64, I64Regs>;
46
47} // Predicates = [Is64Bit]
Jakob Stoklund Olesen39e75542013-04-02 04:09:17 +000048
49
50//===----------------------------------------------------------------------===//
51// 64-bit Immediates.
52//===----------------------------------------------------------------------===//
53//
54// All 32-bit immediates can be materialized with sethi+or, but 64-bit
55// immediates may require more code. There may be a point where it is
56// preferable to use a constant pool load instead, depending on the
57// microarchitecture.
58
59// The %g0 register is constant 0.
60// This is useful for stx %g0, [...], for example.
61def : Pat<(i64 0), (i64 G0)>, Requires<[Is64Bit]>;
62
63// Single-instruction patterns.
64
65// The ALU instructions want their simm13 operands as i32 immediates.
66def as_i32imm : SDNodeXForm<imm, [{
67 return CurDAG->getTargetConstant(N->getSExtValue(), MVT::i32);
68}]>;
69def : Pat<(i64 simm13:$val), (ORri (i64 G0), (as_i32imm $val))>;
70def : Pat<(i64 SETHIimm:$val), (SETHIi (HI22 $val))>;
71
72// Double-instruction patterns.
73
74// All unsigned i32 immediates can be handled by sethi+or.
75def uimm32 : PatLeaf<(imm), [{ return isUInt<32>(N->getZExtValue()); }]>;
76def : Pat<(i64 uimm32:$val), (ORri (SETHIi (HI22 $val)), (LO10 $val))>,
77 Requires<[Is64Bit]>;
78
79// All negative i33 immediates can be handled by sethi+xor.
80def nimm33 : PatLeaf<(imm), [{
81 int64_t Imm = N->getSExtValue();
82 return Imm < 0 && isInt<33>(Imm);
83}]>;
84// Bits 10-31 inverted. Same as assembler's %hix.
85def HIX22 : SDNodeXForm<imm, [{
86 uint64_t Val = (~N->getZExtValue() >> 10) & ((1u << 22) - 1);
87 return CurDAG->getTargetConstant(Val, MVT::i32);
88}]>;
89// Bits 0-9 with ones in bits 10-31. Same as assembler's %lox.
90def LOX10 : SDNodeXForm<imm, [{
91 return CurDAG->getTargetConstant(~(~N->getZExtValue() & 0x3ff), MVT::i32);
92}]>;
93def : Pat<(i64 nimm33:$val), (XORri (SETHIi (HIX22 $val)), (LOX10 $val))>,
94 Requires<[Is64Bit]>;
95
96// More possible patterns:
97//
98// (sllx sethi, n)
99// (sllx simm13, n)
100//
101// 3 instrs:
102//
103// (xor (sllx sethi), simm13)
104// (sllx (xor sethi, simm13))
105//
106// 4 instrs:
107//
108// (or sethi, (sllx sethi))
109// (xnor sethi, (sllx sethi))
110//
111// 5 instrs:
112//
113// (or (sllx sethi), (or sethi, simm13))
114// (xnor (sllx sethi), (or sethi, simm13))
115// (or (sllx sethi), (sllx sethi))
116// (xnor (sllx sethi), (sllx sethi))
117//
118// Worst case is 6 instrs:
119//
120// (or (sllx (or sethi, simmm13)), (or sethi, simm13))
121
122// Bits 42-63, same as assembler's %hh.
123def HH22 : SDNodeXForm<imm, [{
124 uint64_t Val = (N->getZExtValue() >> 42) & ((1u << 22) - 1);
125 return CurDAG->getTargetConstant(Val, MVT::i32);
126}]>;
127// Bits 32-41, same as assembler's %hm.
128def HM10 : SDNodeXForm<imm, [{
129 uint64_t Val = (N->getZExtValue() >> 32) & ((1u << 10) - 1);
130 return CurDAG->getTargetConstant(Val, MVT::i32);
131}]>;
132def : Pat<(i64 imm:$val),
133 (ORrr (SLLXri (ORri (SETHIi (HH22 $val)), (HM10 $val)), (i64 32)),
134 (ORri (SETHIi (HI22 $val)), (LO10 $val)))>,
135 Requires<[Is64Bit]>;
Jakob Stoklund Olesen73c5f802013-04-02 04:09:23 +0000136
137
138//===----------------------------------------------------------------------===//
139// 64-bit Integer Arithmetic and Logic.
140//===----------------------------------------------------------------------===//
141
142let Predicates = [Is64Bit] in {
143
144// Register-register instructions.
145
146def : Pat<(and i64:$a, i64:$b), (ANDrr $a, $b)>;
147def : Pat<(or i64:$a, i64:$b), (ORrr $a, $b)>;
148def : Pat<(xor i64:$a, i64:$b), (XORrr $a, $b)>;
149
150def : Pat<(and i64:$a, (not i64:$b)), (ANDNrr $a, $b)>;
151def : Pat<(or i64:$a, (not i64:$b)), (ORNrr $a, $b)>;
152def : Pat<(xor i64:$a, (not i64:$b)), (XNORrr $a, $b)>;
153
154def : Pat<(add i64:$a, i64:$b), (ADDrr $a, $b)>;
155def : Pat<(sub i64:$a, i64:$b), (SUBrr $a, $b)>;
156
157// Add/sub with carry were renamed to addc/subc in SPARC v9.
158def : Pat<(adde i64:$a, i64:$b), (ADDXrr $a, $b)>;
159def : Pat<(sube i64:$a, i64:$b), (SUBXrr $a, $b)>;
160
161def : Pat<(addc i64:$a, i64:$b), (ADDCCrr $a, $b)>;
162def : Pat<(subc i64:$a, i64:$b), (SUBCCrr $a, $b)>;
163
164// Register-immediate instructions.
165
166def : Pat<(and i64:$a, (i64 simm13:$b)), (ANDri $a, (as_i32imm $b))>;
167def : Pat<(or i64:$a, (i64 simm13:$b)), (ORri $a, (as_i32imm $b))>;
168def : Pat<(xor i64:$a, (i64 simm13:$b)), (XORri $a, (as_i32imm $b))>;
169
170def : Pat<(add i64:$a, (i64 simm13:$b)), (ADDri $a, (as_i32imm $b))>;
171def : Pat<(sub i64:$a, (i64 simm13:$b)), (SUBri $a, (as_i32imm $b))>;
172
173} // Predicates = [Is64Bit]
Jakob Stoklund Olesen61ed5dd2013-04-02 04:09:28 +0000174
175
176//===----------------------------------------------------------------------===//
177// 64-bit Loads and Stores.
178//===----------------------------------------------------------------------===//
179//
180// All the 32-bit loads and stores are available. The extending loads are sign
181// or zero-extending to 64 bits. The LDrr and LDri instructions load 32 bits
182// zero-extended to i64. Their mnemonic is lduw in SPARC v9 (Load Unsigned
183// Word).
184//
185// SPARC v9 adds 64-bit loads as well as a sign-extending ldsw i32 loads.
186
187let Predicates = [Is64Bit] in {
188
189// 64-bit loads.
190def LDXrr : F3_1<3, 0b001011,
191 (outs I64Regs:$dst), (ins MEMrr:$addr),
192 "ldx [$addr], $dst",
193 [(set i64:$dst, (load ADDRrr:$addr))]>;
194def LDXri : F3_2<3, 0b001011,
195 (outs I64Regs:$dst), (ins MEMri:$addr),
196 "ldx [$addr], $dst",
197 [(set i64:$dst, (load ADDRri:$addr))]>;
198
199// Extending loads to i64.
200def : Pat<(i64 (zextloadi8 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
201def : Pat<(i64 (zextloadi8 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
202def : Pat<(i64 (sextloadi8 ADDRrr:$addr)), (LDSBrr ADDRrr:$addr)>;
203def : Pat<(i64 (sextloadi8 ADDRri:$addr)), (LDSBri ADDRri:$addr)>;
204
205def : Pat<(i64 (zextloadi16 ADDRrr:$addr)), (LDUHrr ADDRrr:$addr)>;
206def : Pat<(i64 (zextloadi16 ADDRri:$addr)), (LDUHri ADDRri:$addr)>;
207def : Pat<(i64 (sextloadi16 ADDRrr:$addr)), (LDSHrr ADDRrr:$addr)>;
208def : Pat<(i64 (sextloadi16 ADDRri:$addr)), (LDSHri ADDRri:$addr)>;
209
210def : Pat<(i64 (zextloadi32 ADDRrr:$addr)), (LDrr ADDRrr:$addr)>;
211def : Pat<(i64 (zextloadi32 ADDRri:$addr)), (LDri ADDRri:$addr)>;
212
213// Sign-extending load of i32 into i64 is a new SPARC v9 instruction.
214def LDSWrr : F3_1<3, 0b001011,
215 (outs I64Regs:$dst), (ins MEMrr:$addr),
216 "ldsw [$addr], $dst",
217 [(set i64:$dst, (sextloadi32 ADDRrr:$addr))]>;
218def LDSWri : F3_2<3, 0b001011,
219 (outs I64Regs:$dst), (ins MEMri:$addr),
220 "ldsw [$addr], $dst",
221 [(set i64:$dst, (sextloadi32 ADDRri:$addr))]>;
222
223// 64-bit stores.
224def STXrr : F3_1<3, 0b001110,
225 (outs), (ins MEMrr:$addr, I64Regs:$src),
226 "stx $src, [$addr]",
227 [(store i64:$src, ADDRrr:$addr)]>;
228def STXri : F3_2<3, 0b001110,
229 (outs), (ins MEMri:$addr, I64Regs:$src),
230 "stx $src, [$addr]",
231 [(store i64:$src, ADDRri:$addr)]>;
232
233// Truncating stores from i64 are identical to the i32 stores.
234def : Pat<(truncstorei8 i64:$src, ADDRrr:$addr), (STBrr ADDRrr:$addr, $src)>;
235def : Pat<(truncstorei8 i64:$src, ADDRri:$addr), (STBri ADDRri:$addr, $src)>;
236def : Pat<(truncstorei16 i64:$src, ADDRrr:$addr), (STHrr ADDRrr:$addr, $src)>;
237def : Pat<(truncstorei16 i64:$src, ADDRri:$addr), (STHri ADDRri:$addr, $src)>;
238def : Pat<(truncstorei32 i64:$src, ADDRrr:$addr), (STrr ADDRrr:$addr, $src)>;
239def : Pat<(truncstorei32 i64:$src, ADDRri:$addr), (STri ADDRri:$addr, $src)>;
240
241} // Predicates = [Is64Bit]