Chris Lattner | 00c992d | 2007-11-03 08:55:29 +0000 | [diff] [blame] | 1 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" |
| 2 | "http://www.w3.org/TR/html4/strict.dtd"> |
| 3 | |
| 4 | <html> |
| 5 | <head> |
| 6 | <title>Kaleidoscope: Extending the Language: Mutable Variables / SSA |
| 7 | construction</title> |
| 8 | <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> |
| 9 | <meta name="author" content="Chris Lattner"> |
| 10 | <link rel="stylesheet" href="../llvm.css" type="text/css"> |
| 11 | </head> |
| 12 | |
| 13 | <body> |
| 14 | |
| 15 | <div class="doc_title">Kaleidoscope: Extending the Language: Mutable Variables</div> |
| 16 | |
| 17 | <div class="doc_author"> |
| 18 | <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p> |
| 19 | </div> |
| 20 | |
| 21 | <!-- *********************************************************************** --> |
| 22 | <div class="doc_section"><a name="intro">Part 7 Introduction</a></div> |
| 23 | <!-- *********************************************************************** --> |
| 24 | |
| 25 | <div class="doc_text"> |
| 26 | |
| 27 | <p>Welcome to Part 7 of the "<a href="index.html">Implementing a language with |
| 28 | LLVM</a>" tutorial. In parts 1 through 6, we've built a very respectable, |
| 29 | albeit simple, <a |
| 30 | href="http://en.wikipedia.org/wiki/Functional_programming">functional |
| 31 | programming language</a>. In our journey, we learned some parsing techniques, |
| 32 | how to build and represent an AST, how to build LLVM IR, and how to optimize |
| 33 | the resultant code and JIT compile it.</p> |
| 34 | |
| 35 | <p>While Kaleidoscope is interesting as a functional language, this makes it |
| 36 | "too easy" to generate LLVM IR for it. In particular, a functional language |
| 37 | makes it very easy to build LLVM IR directly in <a |
| 38 | href="http://en.wikipedia.org/wiki/Static_single_assignment_form">SSA form</a>. |
| 39 | Since LLVM requires that the input code be in SSA form, this is a very nice |
| 40 | property and it is often unclear to newcomers how to generate code for an |
| 41 | imperative language with mutable variables.</p> |
| 42 | |
| 43 | <p>The short (and happy) summary of this chapter is that there is no need for |
| 44 | your front-end to build SSA form: LLVM provides highly tuned and well tested |
| 45 | support for this, though the way it works is a bit unexpected for some.</p> |
| 46 | |
| 47 | </div> |
| 48 | |
| 49 | <!-- *********************************************************************** --> |
| 50 | <div class="doc_section"><a name="why">Why is this a hard problem?</a></div> |
| 51 | <!-- *********************************************************************** --> |
| 52 | |
| 53 | <div class="doc_text"> |
| 54 | |
| 55 | <p> |
| 56 | To understand why mutable variables cause complexities in SSA construction, |
| 57 | consider this extremely simple C example: |
| 58 | </p> |
| 59 | |
| 60 | <div class="doc_code"> |
| 61 | <pre> |
| 62 | int G, H; |
| 63 | int test(_Bool Condition) { |
| 64 | int X; |
| 65 | if (Condition) |
| 66 | X = G; |
| 67 | else |
| 68 | X = H; |
| 69 | return X; |
| 70 | } |
| 71 | </pre> |
| 72 | </div> |
| 73 | |
| 74 | <p>In this case, we have the variable "X", whose value depends on the path |
| 75 | executed in the program. Because there are two different possible values for X |
| 76 | before the return instruction, a PHI node is inserted to merge the two values. |
| 77 | The LLVM IR that we want for this example looks like this:</p> |
| 78 | |
| 79 | <div class="doc_code"> |
| 80 | <pre> |
| 81 | @G = weak global i32 0 ; type of @G is i32* |
| 82 | @H = weak global i32 0 ; type of @H is i32* |
| 83 | |
| 84 | define i32 @test(i1 %Condition) { |
| 85 | entry: |
| 86 | br i1 %Condition, label %cond_true, label %cond_false |
| 87 | |
| 88 | cond_true: |
| 89 | %X.0 = load i32* @G |
| 90 | br label %cond_next |
| 91 | |
| 92 | cond_false: |
| 93 | %X.1 = load i32* @H |
| 94 | br label %cond_next |
| 95 | |
| 96 | cond_next: |
| 97 | %X.2 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ] |
| 98 | ret i32 %X.2 |
| 99 | } |
| 100 | </pre> |
| 101 | </div> |
| 102 | |
| 103 | <p>In this example, the loads from the G and H global variables are explicit in |
| 104 | the LLVM IR, and they live in the then/else branches of the if statement |
| 105 | (cond_true/cond_false). In order to merge the incoming values, the X.2 phi node |
| 106 | in the cond_next block selects the right value to use based on where control |
| 107 | flow is coming from: if control flow comes from the cond_false block, X.2 gets |
| 108 | the value of X.1. Alternatively, if control flow comes from cond_tree, it gets |
| 109 | the value of X.0. The intent of this chapter is not to explain the details of |
| 110 | SSA form. For more information, see one of the many <a |
| 111 | href="http://en.wikipedia.org/wiki/Static_single_assignment_form">online |
| 112 | references</a>.</p> |
| 113 | |
| 114 | <p>The question for this article is "who places phi nodes when lowering |
| 115 | assignments to mutable variables?". The issue here is that LLVM |
| 116 | <em>requires</em> that its IR be in SSA form: there is no "non-ssa" mode for it. |
| 117 | However, SSA construction requires non-trivial algorithms and data structures, |
| 118 | so it is inconvenient and wasteful for every front-end to have to reproduce this |
| 119 | logic.</p> |
| 120 | |
| 121 | </div> |
| 122 | |
| 123 | <!-- *********************************************************************** --> |
| 124 | <div class="doc_section"><a name="memory">Memory in LLVM</a></div> |
| 125 | <!-- *********************************************************************** --> |
| 126 | |
| 127 | <div class="doc_text"> |
| 128 | |
| 129 | <p>The 'trick' here is that while LLVM does require all register values to be |
| 130 | in SSA form, it does not require (or permit) memory objects to be in SSA form. |
| 131 | In the example above, note that the loads from G and H are direct accesses to |
| 132 | G and H: they are not renamed or versioned. This differs from some other |
Chris Lattner | 2e5d07e | 2007-11-04 19:42:13 +0000 | [diff] [blame] | 133 | compiler systems, which do try to version memory objects. In LLVM, instead of |
Chris Lattner | 00c992d | 2007-11-03 08:55:29 +0000 | [diff] [blame] | 134 | encoding dataflow analysis of memory into the LLVM IR, it is handled with <a |
| 135 | href="../WritingAnLLVMPass.html">Analysis Passes</a> which are computed on |
| 136 | demand.</p> |
| 137 | |
| 138 | <p> |
| 139 | With this in mind, the high-level idea is that we want to make a stack variable |
| 140 | (which lives in memory, because it is on the stack) for each mutable object in |
| 141 | a function. To take advantage of this trick, we need to talk about how LLVM |
| 142 | represents stack variables. |
| 143 | </p> |
| 144 | |
| 145 | <p>In LLVM, all memory accesses are explicit with load/store instructions, and |
| 146 | it is carefully designed to not have (or need) an "address-of" operator. Notice |
| 147 | how the type of the @G/@H global variables is actually "i32*" even though the |
| 148 | variable is defined as "i32". What this means is that @G defines <em>space</em> |
| 149 | for an i32 in the global data area, but its <em>name</em> actually refers to the |
| 150 | address for that space. Stack variables work the same way, but instead of being |
| 151 | declared with global variable definitions, they are declared with the |
| 152 | <a href="../LangRef.html#i_alloca">LLVM alloca instruction</a>:</p> |
| 153 | |
| 154 | <div class="doc_code"> |
| 155 | <pre> |
| 156 | define i32 @test(i1 %Condition) { |
| 157 | entry: |
| 158 | %X = alloca i32 ; type of %X is i32*. |
| 159 | ... |
| 160 | %tmp = load i32* %X ; load the stack value %X from the stack. |
| 161 | %tmp2 = add i32 %tmp, 1 ; increment it |
| 162 | store i32 %tmp2, i32* %X ; store it back |
| 163 | ... |
| 164 | </pre> |
| 165 | </div> |
| 166 | |
| 167 | <p>This code shows an example of how you can declare and manipulate a stack |
| 168 | variable in the LLVM IR. Stack memory allocated with the alloca instruction is |
| 169 | fully general: you can pass the address of the stack slot to functions, you can |
| 170 | store it in other variables, etc. In our example above, we could rewrite the |
| 171 | example to use the alloca technique to avoid using a PHI node:</p> |
| 172 | |
| 173 | <div class="doc_code"> |
| 174 | <pre> |
| 175 | @G = weak global i32 0 ; type of @G is i32* |
| 176 | @H = weak global i32 0 ; type of @H is i32* |
| 177 | |
| 178 | define i32 @test(i1 %Condition) { |
| 179 | entry: |
| 180 | %X = alloca i32 ; type of %X is i32*. |
| 181 | br i1 %Condition, label %cond_true, label %cond_false |
| 182 | |
| 183 | cond_true: |
| 184 | %X.0 = load i32* @G |
| 185 | store i32 %X.0, i32* %X ; Update X |
| 186 | br label %cond_next |
| 187 | |
| 188 | cond_false: |
| 189 | %X.1 = load i32* @H |
| 190 | store i32 %X.1, i32* %X ; Update X |
| 191 | br label %cond_next |
| 192 | |
| 193 | cond_next: |
| 194 | %X.2 = load i32* %X ; Read X |
| 195 | ret i32 %X.2 |
| 196 | } |
| 197 | </pre> |
| 198 | </div> |
| 199 | |
| 200 | <p>With this, we have discovered a way to handle arbitrary mutable variables |
| 201 | without the need to create Phi nodes at all:</p> |
| 202 | |
| 203 | <ol> |
| 204 | <li>Each mutable variable becomes a stack allocation.</li> |
| 205 | <li>Each read of the variable becomes a load from the stack.</li> |
| 206 | <li>Each update of the variable becomes a store to the stack.</li> |
| 207 | <li>Taking the address of a variable just uses the stack address directly.</li> |
| 208 | </ol> |
| 209 | |
| 210 | <p>While this solution has solved our immediate problem, it introduced another |
| 211 | one: we have now apparently introduced a lot of stack traffic for very simple |
| 212 | and common operations, a major performance problem. Fortunately for us, the |
| 213 | LLVM optimizer has a highly-tuned optimization pass named "mem2reg" that handles |
| 214 | this case, promoting allocas like this into SSA registers, inserting Phi nodes |
| 215 | as appropriate. If you run this example through the pass, for example, you'll |
| 216 | get:</p> |
| 217 | |
| 218 | <div class="doc_code"> |
| 219 | <pre> |
| 220 | $ <b>llvm-as < example.ll | opt -mem2reg | llvm-dis</b> |
| 221 | @G = weak global i32 0 |
| 222 | @H = weak global i32 0 |
| 223 | |
| 224 | define i32 @test(i1 %Condition) { |
| 225 | entry: |
| 226 | br i1 %Condition, label %cond_true, label %cond_false |
| 227 | |
| 228 | cond_true: |
| 229 | %X.0 = load i32* @G |
| 230 | br label %cond_next |
| 231 | |
| 232 | cond_false: |
| 233 | %X.1 = load i32* @H |
| 234 | br label %cond_next |
| 235 | |
| 236 | cond_next: |
| 237 | %X.01 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ] |
| 238 | ret i32 %X.01 |
| 239 | } |
| 240 | </pre> |
Chris Lattner | e719831 | 2007-11-03 22:22:30 +0000 | [diff] [blame] | 241 | </div> |
Chris Lattner | 00c992d | 2007-11-03 08:55:29 +0000 | [diff] [blame] | 242 | |
Chris Lattner | e719831 | 2007-11-03 22:22:30 +0000 | [diff] [blame] | 243 | <p>The mem2reg pass implements the standard "iterated dominator frontier" |
| 244 | algorithm for constructing SSA form and has a number of optimizations that speed |
| 245 | up very common degenerate cases. mem2reg really is the answer for dealing with |
| 246 | mutable variables, and we highly recommend that you depend on it. Note that |
| 247 | mem2reg only works on variables in certain circumstances:</p> |
Chris Lattner | 00c992d | 2007-11-03 08:55:29 +0000 | [diff] [blame] | 248 | |
Chris Lattner | e719831 | 2007-11-03 22:22:30 +0000 | [diff] [blame] | 249 | <ol> |
| 250 | <li>mem2reg is alloca-driven: it looks for allocas and if it can handle them, it |
| 251 | promotes them. It does not apply to global variables or heap allocations.</li> |
Chris Lattner | 00c992d | 2007-11-03 08:55:29 +0000 | [diff] [blame] | 252 | |
Chris Lattner | e719831 | 2007-11-03 22:22:30 +0000 | [diff] [blame] | 253 | <li>mem2reg only looks for alloca instructions in the entry block of the |
| 254 | function. Being in the entry block guarantees that the alloca is only executed |
| 255 | once, which makes analysis simpler.</li> |
Chris Lattner | 00c992d | 2007-11-03 08:55:29 +0000 | [diff] [blame] | 256 | |
Chris Lattner | e719831 | 2007-11-03 22:22:30 +0000 | [diff] [blame] | 257 | <li>mem2reg only promotes allocas whose uses are direct loads and stores. If |
| 258 | the address of the stack object is passed to a function, or if any funny pointer |
| 259 | arithmetic is involved, the alloca will not be promoted.</li> |
| 260 | |
| 261 | <li>mem2reg only works on allocas of scalar values, and only if the array size |
| 262 | of the allocation is 1 (or missing in the .ll file). mem2reg is not capable of |
| 263 | promoting structs or arrays to registers. Note that the "scalarrepl" pass is |
| 264 | more powerful and can promote structs, "unions", and arrays in many cases.</li> |
| 265 | |
| 266 | </ol> |
| 267 | |
| 268 | <p> |
| 269 | All of these properties are easy to satisfy for most imperative languages, and |
Chris Lattner | 2e5d07e | 2007-11-04 19:42:13 +0000 | [diff] [blame] | 270 | we'll illustrate this below with Kaleidoscope. The final question you may be |
Chris Lattner | e719831 | 2007-11-03 22:22:30 +0000 | [diff] [blame] | 271 | asking is: should I bother with this nonsense for my front-end? Wouldn't it be |
| 272 | better if I just did SSA construction directly, avoiding use of the mem2reg |
| 273 | optimization pass? In short, we strongly recommend that use you this technique |
| 274 | for building SSA form, unless there is an extremely good reason not to. Using |
| 275 | this technique is:</p> |
| 276 | |
| 277 | <ul> |
| 278 | <li>Proven and well tested: llvm-gcc and clang both use this technique for local |
| 279 | mutable variables. As such, the most common clients of LLVM are using this to |
| 280 | handle a bulk of their variables. You can be sure that bugs are found fast and |
| 281 | fixed early.</li> |
| 282 | |
| 283 | <li>Extremely Fast: mem2reg has a number of special cases that make it fast in |
| 284 | common cases as well as fully general. For example, it has fast-paths for |
| 285 | variables that are only used in a single block, variables that only have one |
| 286 | assignment point, good heuristics to avoid insertion of unneeded phi nodes, etc. |
| 287 | </li> |
| 288 | |
| 289 | <li>Needed for debug info generation: <a href="../SourceLevelDebugging.html"> |
| 290 | Debug information in LLVM</a> relies on having the address of the variable |
| 291 | exposed to attach debug info to it. This technique dovetails very naturally |
| 292 | with this style of debug info.</li> |
| 293 | </ul> |
| 294 | |
| 295 | <p>If nothing else, this makes it much easier to get your front-end up and |
| 296 | running, and is very simple to implement. Lets extend Kaleidoscope with mutable |
| 297 | variables now! |
Chris Lattner | 00c992d | 2007-11-03 08:55:29 +0000 | [diff] [blame] | 298 | </p> |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame^] | 299 | |
Chris Lattner | 00c992d | 2007-11-03 08:55:29 +0000 | [diff] [blame] | 300 | </div> |
| 301 | |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame^] | 302 | <!-- *********************************************************************** --> |
| 303 | <div class="doc_section"><a name="kalvars">Mutable Variables in |
| 304 | Kaleidoscope</a></div> |
| 305 | <!-- *********************************************************************** --> |
| 306 | |
| 307 | <div class="doc_text"> |
| 308 | |
| 309 | <p>Now that we know the sort of problem we want to tackle, lets see what this |
| 310 | looks like in the context of our little Kaleidoscope language. We're going to |
| 311 | add two features:</p> |
| 312 | |
| 313 | <ol> |
| 314 | <li>The ability to mutate variables with the '=' operator.</li> |
| 315 | <li>The ability to define new variables.</li> |
| 316 | </ol> |
| 317 | |
| 318 | <p>While the first item is really what this is about, we only have variables |
| 319 | for incoming arguments and for induction variables, and redefining them only |
| 320 | goes so far :). Also, the ability to define new variables is a |
| 321 | useful thing regardless of whether you will be mutating them. Here's a |
| 322 | motivating example that shows how we could use these:</p> |
| 323 | |
| 324 | <div class="doc_code"> |
| 325 | <pre> |
| 326 | # Define ':' for sequencing: as a low-precedence operator that ignores operands |
| 327 | # and just returns the RHS. |
| 328 | def binary : 1 (x y) y; |
| 329 | |
| 330 | # Recursive fib, we could do this before. |
| 331 | def fib(x) |
| 332 | if (x < 3) then |
| 333 | 1 |
| 334 | else |
| 335 | fib(x-1)+fib(x-2); |
| 336 | |
| 337 | # Iterative fib. |
| 338 | def fibi(x) |
| 339 | <b>var a = 1, b = 1, c in</b> |
| 340 | (for i = 3, i &;t; x in |
| 341 | <b>c = a + b</b> : |
| 342 | <b>a = b</b> : |
| 343 | <b>b = c</b>) : |
| 344 | b; |
| 345 | |
| 346 | # Call it. |
| 347 | fibi(10); |
| 348 | </pre> |
| 349 | </div> |
| 350 | |
| 351 | <p> |
| 352 | In order to mutate variables, we have to change our existing variables to use |
| 353 | the "alloca trick". Once we have that, we'll add our new operator, then extend |
| 354 | Kaleidoscope to support new variable definitions. |
| 355 | </p> |
| 356 | |
| 357 | </div> |
| 358 | |
| 359 | <!-- *********************************************************************** --> |
| 360 | <div class="doc_section"><a name="adjustments">Adjusting Existing Variables for |
| 361 | Mutation</a></div> |
| 362 | <!-- *********************************************************************** --> |
| 363 | |
| 364 | <div class="doc_text"> |
| 365 | |
| 366 | <p> |
| 367 | The symbol table in Kaleidoscope is managed at code generation time by the |
| 368 | '<tt>NamedValues</tt>' map. This map currently keeps track of the LLVM "Value*" |
| 369 | that holds the double value for the named variable. In order to support |
| 370 | mutation, we need to change this slightly, so that it <tt>NamedValues</tt> holds |
| 371 | the <em>memory location</em> of the variable in question. Note that this |
| 372 | change is a refactoring: it changes the structure of the code, but does not |
| 373 | (by itself) change the behavior of the compiler. All of these changes are |
| 374 | isolated in the Kaleidoscope code generator.</p> |
| 375 | |
| 376 | <p> |
| 377 | At this point in Kaleidoscope's development, it only supports variables for two |
| 378 | things: incoming arguments to functions and the induction variable of 'for' |
| 379 | loops. For consistency, we'll allow mutation of these variables in addition to |
| 380 | other user-defined variables. This means that these will both need memory |
| 381 | locations. |
| 382 | </p> |
| 383 | |
| 384 | <p>To start our transformation of Kaleidoscope, we'll change the NamedValues |
| 385 | map to map to AllocaInst* instead of Value*. Once we do this, the C++ compiler |
| 386 | will tell use what parts of the code we need to update:</p> |
| 387 | |
| 388 | <div class="doc_code"> |
| 389 | <pre> |
| 390 | static std::map<std::string, AllocaInst*> NamedValues; |
| 391 | </pre> |
| 392 | </div> |
| 393 | |
| 394 | <p>Also, since we will need to create these alloca's, we'll use a helper |
| 395 | function that ensures that the allocas are created in the entry block of the |
| 396 | function:</p> |
| 397 | |
| 398 | <div class="doc_code"> |
| 399 | <pre> |
| 400 | /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of |
| 401 | /// the function. This is used for mutable variables etc. |
| 402 | static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction, |
| 403 | const std::string &VarName) { |
| 404 | LLVMBuilder TmpB(&TheFunction->getEntryBlock(), |
| 405 | TheFunction->getEntryBlock().begin()); |
| 406 | return TmpB.CreateAlloca(Type::DoubleTy, 0, VarName.c_str()); |
| 407 | } |
| 408 | </pre> |
| 409 | </div> |
| 410 | |
| 411 | <p>This funny looking code creates an LLVMBuilder object that is pointing at |
| 412 | the first instruction (.begin()) of the entry block. It then creates an alloca |
| 413 | with the expected name and returns it. Because all values in Kaleidoscope are |
| 414 | doubles, there is no need to pass in a type to use.</p> |
| 415 | |
| 416 | <p>With this in place, the first functionality change we want to make is to |
| 417 | variable references. In our new scheme, variables live on the stack, so code |
| 418 | generating a reference to them actually needs to produce a load from the stack |
| 419 | slot:</p> |
| 420 | |
| 421 | <div class="doc_code"> |
| 422 | <pre> |
| 423 | Value *VariableExprAST::Codegen() { |
| 424 | // Look this variable up in the function. |
| 425 | Value *V = NamedValues[Name]; |
| 426 | if (V == 0) return ErrorV("Unknown variable name"); |
| 427 | |
| 428 | // Load the value. |
| 429 | return Builder.CreateLoad(V, Name.c_str()); |
| 430 | } |
| 431 | </pre> |
| 432 | </div> |
| 433 | |
| 434 | <p>As you can see, this is pretty straight-forward. Next we need to update the |
| 435 | things that define the variables to set up the alloca. We'll start with |
| 436 | <tt>ForExprAST::Codegen</tt> (see the <a href="#code">full code listing</a> for |
| 437 | the unabridged code):</p> |
| 438 | |
| 439 | <div class="doc_code"> |
| 440 | <pre> |
| 441 | Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| 442 | |
| 443 | <b>// Create an alloca for the variable in the entry block. |
| 444 | AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);</b> |
| 445 | |
| 446 | // Emit the start code first, without 'variable' in scope. |
| 447 | Value *StartVal = Start->Codegen(); |
| 448 | if (StartVal == 0) return 0; |
| 449 | |
| 450 | <b>// Store the value into the alloca. |
| 451 | Builder.CreateStore(StartVal, Alloca);</b> |
| 452 | ... |
| 453 | |
| 454 | // Compute the end condition. |
| 455 | Value *EndCond = End->Codegen(); |
| 456 | if (EndCond == 0) return EndCond; |
| 457 | |
| 458 | <b>// Reload, increment, and restore the alloca. This handles the case where |
| 459 | // the body of the loop mutates the variable. |
| 460 | Value *CurVar = Builder.CreateLoad(Alloca); |
| 461 | Value *NextVar = Builder.CreateAdd(CurVar, StepVal, "nextvar"); |
| 462 | Builder.CreateStore(NextVar, Alloca);</b> |
| 463 | ... |
| 464 | </pre> |
| 465 | </div> |
| 466 | |
| 467 | <p>This code is virtually identical to the code <a |
| 468 | href="LangImpl5.html#forcodegen">before we allowed mutable variables</a>. The |
| 469 | big difference is that we no longer have to construct a PHI node, and we use |
| 470 | load/store to access the variable as needed.</p> |
| 471 | |
| 472 | <p>To support mutable argument variables, we need to also make allocas for them. |
| 473 | The code for this is also pretty simple:</p> |
| 474 | |
| 475 | <div class="doc_code"> |
| 476 | <pre> |
| 477 | /// CreateArgumentAllocas - Create an alloca for each argument and register the |
| 478 | /// argument in the symbol table so that references to it will succeed. |
| 479 | void PrototypeAST::CreateArgumentAllocas(Function *F) { |
| 480 | Function::arg_iterator AI = F->arg_begin(); |
| 481 | for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) { |
| 482 | // Create an alloca for this variable. |
| 483 | AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]); |
| 484 | |
| 485 | // Store the initial value into the alloca. |
| 486 | Builder.CreateStore(AI, Alloca); |
| 487 | |
| 488 | // Add arguments to variable symbol table. |
| 489 | NamedValues[Args[Idx]] = Alloca; |
| 490 | } |
| 491 | } |
| 492 | </pre> |
| 493 | </div> |
| 494 | |
| 495 | <p>For each argument, we make an alloca, store the input value to the function |
| 496 | into the alloca, and register the alloca as the memory location for the |
| 497 | argument. This method gets invoked by <tt>FunctionAST::Codegen</tt> right after |
| 498 | it sets up the entry block for the function.</p> |
| 499 | |
| 500 | <p>The final missing piece is adding the 'mem2reg' pass, which allows us to get |
| 501 | good codegen once again:</p> |
| 502 | |
| 503 | <div class="doc_code"> |
| 504 | <pre> |
| 505 | // Set up the optimizer pipeline. Start with registering info about how the |
| 506 | // target lays out data structures. |
| 507 | OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData())); |
| 508 | <b>// Promote allocas to registers. |
| 509 | OurFPM.add(createPromoteMemoryToRegisterPass());</b> |
| 510 | // Do simple "peephole" optimizations and bit-twiddling optzns. |
| 511 | OurFPM.add(createInstructionCombiningPass()); |
| 512 | // Reassociate expressions. |
| 513 | OurFPM.add(createReassociatePass()); |
| 514 | </pre> |
| 515 | </div> |
| 516 | |
| 517 | <p>It is interesting to see what the code looks like before and after the |
| 518 | mem2reg optimization runs. For example, this is the before/after code for our |
| 519 | recursive fib. Before the optimization:</p> |
| 520 | |
| 521 | <div class="doc_code"> |
| 522 | <pre> |
| 523 | define double @fib(double %x) { |
| 524 | entry: |
| 525 | <b>%x1 = alloca double |
| 526 | store double %x, double* %x1 |
| 527 | %x2 = load double* %x1</b> |
| 528 | %multmp = fcmp ult double %x2, 3.000000e+00 |
| 529 | %booltmp = uitofp i1 %multmp to double |
| 530 | %ifcond = fcmp one double %booltmp, 0.000000e+00 |
| 531 | br i1 %ifcond, label %then, label %else |
| 532 | |
| 533 | then: ; preds = %entry |
| 534 | br label %ifcont |
| 535 | |
| 536 | else: ; preds = %entry |
| 537 | <b>%x3 = load double* %x1</b> |
| 538 | %subtmp = sub double %x3, 1.000000e+00 |
| 539 | %calltmp = call double @fib( double %subtmp ) |
| 540 | <b>%x4 = load double* %x1</b> |
| 541 | %subtmp5 = sub double %x4, 2.000000e+00 |
| 542 | %calltmp6 = call double @fib( double %subtmp5 ) |
| 543 | %addtmp = add double %calltmp, %calltmp6 |
| 544 | br label %ifcont |
| 545 | |
| 546 | ifcont: ; preds = %else, %then |
| 547 | %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ] |
| 548 | ret double %iftmp |
| 549 | } |
| 550 | </pre> |
| 551 | </div> |
| 552 | |
| 553 | <p>Here there is only one variable (x, the input argument) but you can still |
| 554 | see the extremely simple-minded code generation strategy we are using. In the |
| 555 | entry block, an alloca is created, and the initial input value is stored into |
| 556 | it. Each reference to the variable does a reload from the stack. Also, note |
| 557 | that we didn't modify the if/then/else expression, so it still inserts a PHI |
| 558 | node. While we could make an alloca for it, it is actually easier to create a |
| 559 | PHI node for it, so we still just make the PHI.</p> |
| 560 | |
| 561 | <p>Here is the code after the mem2reg pass runs:</p> |
| 562 | |
| 563 | <div class="doc_code"> |
| 564 | <pre> |
| 565 | define double @fib(double %x) { |
| 566 | entry: |
| 567 | %multmp = fcmp ult double <b>%x</b>, 3.000000e+00 |
| 568 | %booltmp = uitofp i1 %multmp to double |
| 569 | %ifcond = fcmp one double %booltmp, 0.000000e+00 |
| 570 | br i1 %ifcond, label %then, label %else |
| 571 | |
| 572 | then: |
| 573 | br label %ifcont |
| 574 | |
| 575 | else: |
| 576 | %subtmp = sub double <b>%x</b>, 1.000000e+00 |
| 577 | %calltmp = call double @fib( double %subtmp ) |
| 578 | %subtmp5 = sub double <b>%x</b>, 2.000000e+00 |
| 579 | %calltmp6 = call double @fib( double %subtmp5 ) |
| 580 | %addtmp = add double %calltmp, %calltmp6 |
| 581 | br label %ifcont |
| 582 | |
| 583 | ifcont: ; preds = %else, %then |
| 584 | %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ] |
| 585 | ret double %iftmp |
| 586 | } |
| 587 | </pre> |
| 588 | </div> |
| 589 | |
| 590 | <p>This is a trivial case for mem2reg, since there are no redefinitions of the |
| 591 | variable. The point of showing this is to calm your tension about inserting |
| 592 | such blatent inefficiencies :).</p> |
| 593 | |
| 594 | <p>After the rest of the optimizers run, we get:</p> |
| 595 | |
| 596 | <div class="doc_code"> |
| 597 | <pre> |
| 598 | define double @fib(double %x) { |
| 599 | entry: |
| 600 | %multmp = fcmp ult double %x, 3.000000e+00 |
| 601 | %booltmp = uitofp i1 %multmp to double |
| 602 | %ifcond = fcmp ueq double %booltmp, 0.000000e+00 |
| 603 | br i1 %ifcond, label %else, label %ifcont |
| 604 | |
| 605 | else: |
| 606 | %subtmp = sub double %x, 1.000000e+00 |
| 607 | %calltmp = call double @fib( double %subtmp ) |
| 608 | %subtmp5 = sub double %x, 2.000000e+00 |
| 609 | %calltmp6 = call double @fib( double %subtmp5 ) |
| 610 | %addtmp = add double %calltmp, %calltmp6 |
| 611 | ret double %addtmp |
| 612 | |
| 613 | ifcont: |
| 614 | ret double 1.000000e+00 |
| 615 | } |
| 616 | </pre> |
| 617 | </div> |
| 618 | |
| 619 | <p>Here we see that the simplifycfg pass decided to clone the return instruction |
| 620 | into the end of the 'else' block. This allowed it to eliminate some branches |
| 621 | and the PHI node.</p> |
| 622 | |
| 623 | <p>Now that all symbol table references are updated to use stack variables, |
| 624 | we'll add the assignment operator.</p> |
| 625 | |
| 626 | </div> |
| 627 | |
| 628 | <!-- *********************************************************************** --> |
| 629 | <div class="doc_section"><a name="assignment">New Assignment Operator</a></div> |
| 630 | <!-- *********************************************************************** --> |
| 631 | |
| 632 | <div class="doc_text"> |
| 633 | |
| 634 | <p>With our current framework, adding a new assignment operator is really |
| 635 | simple. We will parse it just like any other binary operator, but handle it |
| 636 | internally (instead of allowing the user to define it). The first step is to |
| 637 | set a precedence:</p> |
| 638 | |
| 639 | <div class="doc_code"> |
| 640 | <pre> |
| 641 | int main() { |
| 642 | // Install standard binary operators. |
| 643 | // 1 is lowest precedence. |
| 644 | <b>BinopPrecedence['='] = 2;</b> |
| 645 | BinopPrecedence['<'] = 10; |
| 646 | BinopPrecedence['+'] = 20; |
| 647 | BinopPrecedence['-'] = 20; |
| 648 | </pre> |
| 649 | </div> |
| 650 | |
| 651 | <p>Now that the parser knows the precedence of the binary operator, it takes |
| 652 | care of all the parsing and AST generation. We just need to implement codegen |
| 653 | for the assignment operator. This looks like:</p> |
| 654 | |
| 655 | <div class="doc_code"> |
| 656 | <pre> |
| 657 | Value *BinaryExprAST::Codegen() { |
| 658 | // Special case '=' because we don't want to emit the LHS as an expression. |
| 659 | if (Op == '=') { |
| 660 | // Assignment requires the LHS to be an identifier. |
| 661 | VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS); |
| 662 | if (!LHSE) |
| 663 | return ErrorV("destination of '=' must be a variable"); |
| 664 | </pre> |
| 665 | </div> |
| 666 | |
| 667 | <p>Unlike the rest of the binary operators, our assignment operator doesn't |
| 668 | follow the "emit LHS, emit RHS, do computation" model. As such, it is handled |
| 669 | as a special case before the other binary operators are handled. The other |
| 670 | strange thing about it is that it requires the LHS to be a variable directly. |
| 671 | </p> |
| 672 | |
| 673 | <div class="doc_code"> |
| 674 | <pre> |
| 675 | // Codegen the RHS. |
| 676 | Value *Val = RHS->Codegen(); |
| 677 | if (Val == 0) return 0; |
| 678 | |
| 679 | // Look up the name. |
| 680 | Value *Variable = NamedValues[LHSE->getName()]; |
| 681 | if (Variable == 0) return ErrorV("Unknown variable name"); |
| 682 | |
| 683 | Builder.CreateStore(Val, Variable); |
| 684 | return Val; |
| 685 | } |
| 686 | ... |
| 687 | </pre> |
| 688 | </div> |
| 689 | |
| 690 | <p>Once it has the variable, codegen'ing the assignment is straight-forward: |
| 691 | we emit the RHS of the assignment, create a store, and return the computed |
| 692 | value. Returning a value allows for chained assignments like "X = (Y = Z)".</p> |
| 693 | |
| 694 | <p>Now that we have an assignment operator, we can mutate loop variables and |
| 695 | arguments. For example, we can now run code like this:</p> |
| 696 | |
| 697 | <div class="doc_code"> |
| 698 | <pre> |
| 699 | # Function to print a double. |
| 700 | extern printd(x); |
| 701 | |
| 702 | # Define ':' for sequencing: as a low-precedence operator that ignores operands |
| 703 | # and just returns the RHS. |
| 704 | def binary : 1 (x y) y; |
| 705 | |
| 706 | def test(x) |
| 707 | printd(x) : |
| 708 | x = 4 : |
| 709 | printd(x); |
| 710 | |
| 711 | test(123); |
| 712 | </pre> |
| 713 | </div> |
| 714 | |
| 715 | <p>When run, this example prints "123" and then "4", showing that we did |
| 716 | actually mutate the value! Okay, we have now officially implemented our goal: |
| 717 | getting this to work requires SSA construction in the general case. However, |
| 718 | to be really useful, we want the ability to define our own local variables, lets |
| 719 | add this next! |
| 720 | </p> |
| 721 | |
| 722 | </div> |
| 723 | |
| 724 | <!-- *********************************************************************** --> |
| 725 | <div class="doc_section"><a name="localvars">User-defined Local |
| 726 | Variables</a></div> |
| 727 | <!-- *********************************************************************** --> |
| 728 | |
| 729 | <div class="doc_text"> |
| 730 | |
| 731 | <p>Adding var/in is just like any other other extensions we made to |
| 732 | Kaleidoscope: we extend the lexer, the parser, the AST and the code generator. |
| 733 | The first step for adding our new 'var/in' construct is to extend the lexer. |
| 734 | As before, this is pretty trivial, the code looks like this:</p> |
| 735 | |
| 736 | <div class="doc_code"> |
| 737 | <pre> |
| 738 | enum Token { |
| 739 | ... |
| 740 | <b>// var definition |
| 741 | tok_var = -13</b> |
| 742 | ... |
| 743 | } |
| 744 | ... |
| 745 | static int gettok() { |
| 746 | ... |
| 747 | if (IdentifierStr == "in") return tok_in; |
| 748 | if (IdentifierStr == "binary") return tok_binary; |
| 749 | if (IdentifierStr == "unary") return tok_unary; |
| 750 | <b>if (IdentifierStr == "var") return tok_var;</b> |
| 751 | return tok_identifier; |
| 752 | ... |
| 753 | </pre> |
| 754 | </div> |
| 755 | |
| 756 | <p>The next step is to define the AST node that we will construct. For var/in, |
| 757 | it will look like this:</p> |
| 758 | |
| 759 | <div class="doc_code"> |
| 760 | <pre> |
| 761 | /// VarExprAST - Expression class for var/in |
| 762 | class VarExprAST : public ExprAST { |
| 763 | std::vector<std::pair<std::string, ExprAST*> > VarNames; |
| 764 | ExprAST *Body; |
| 765 | public: |
| 766 | VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames, |
| 767 | ExprAST *body) |
| 768 | : VarNames(varnames), Body(body) {} |
| 769 | |
| 770 | virtual Value *Codegen(); |
| 771 | }; |
| 772 | </pre> |
| 773 | </div> |
| 774 | |
| 775 | <p>var/in allows a list of names to be defined all at once, and each name can |
| 776 | optionally have an initializer value. As such, we capture this information in |
| 777 | the VarNames vector. Also, var/in has a body, this body is allowed to access |
| 778 | the variables defined by the let/in.</p> |
| 779 | |
| 780 | <p>With this ready, we can define the parser pieces. First thing we do is add |
| 781 | it as a primary expression:</p> |
| 782 | |
| 783 | <div class="doc_code"> |
| 784 | <pre> |
| 785 | /// primary |
| 786 | /// ::= identifierexpr |
| 787 | /// ::= numberexpr |
| 788 | /// ::= parenexpr |
| 789 | /// ::= ifexpr |
| 790 | /// ::= forexpr |
| 791 | <b>/// ::= varexpr</b> |
| 792 | static ExprAST *ParsePrimary() { |
| 793 | switch (CurTok) { |
| 794 | default: return Error("unknown token when expecting an expression"); |
| 795 | case tok_identifier: return ParseIdentifierExpr(); |
| 796 | case tok_number: return ParseNumberExpr(); |
| 797 | case '(': return ParseParenExpr(); |
| 798 | case tok_if: return ParseIfExpr(); |
| 799 | case tok_for: return ParseForExpr(); |
| 800 | <b>case tok_var: return ParseVarExpr();</b> |
| 801 | } |
| 802 | } |
| 803 | </pre> |
| 804 | </div> |
| 805 | |
| 806 | <p>Next we define ParseVarExpr:</p> |
| 807 | |
| 808 | <div class="doc_code"> |
| 809 | <pre> |
| 810 | /// varexpr ::= 'var' identifer ('=' expression)? |
| 811 | // (',' identifer ('=' expression)?)* 'in' expression |
| 812 | static ExprAST *ParseVarExpr() { |
| 813 | getNextToken(); // eat the var. |
| 814 | |
| 815 | std::vector<std::pair<std::string, ExprAST*> > VarNames; |
| 816 | |
| 817 | // At least one variable name is required. |
| 818 | if (CurTok != tok_identifier) |
| 819 | return Error("expected identifier after var"); |
| 820 | </pre> |
| 821 | </div> |
| 822 | |
| 823 | <p>The first part of this code parses the list of identifier/expr pairs into the |
| 824 | local <tt>VarNames</tt> vector. |
| 825 | |
| 826 | <div class="doc_code"> |
| 827 | <pre> |
| 828 | while (1) { |
| 829 | std::string Name = IdentifierStr; |
| 830 | getNextToken(); // eat identifer. |
| 831 | |
| 832 | // Read the optional initializer. |
| 833 | ExprAST *Init = 0; |
| 834 | if (CurTok == '=') { |
| 835 | getNextToken(); // eat the '='. |
| 836 | |
| 837 | Init = ParseExpression(); |
| 838 | if (Init == 0) return 0; |
| 839 | } |
| 840 | |
| 841 | VarNames.push_back(std::make_pair(Name, Init)); |
| 842 | |
| 843 | // End of var list, exit loop. |
| 844 | if (CurTok != ',') break; |
| 845 | getNextToken(); // eat the ','. |
| 846 | |
| 847 | if (CurTok != tok_identifier) |
| 848 | return Error("expected identifier list after var"); |
| 849 | } |
| 850 | </pre> |
| 851 | </div> |
| 852 | |
| 853 | <p>Once all the variables are parsed, we then parse the body and create the |
| 854 | AST node:</p> |
| 855 | |
| 856 | <div class="doc_code"> |
| 857 | <pre> |
| 858 | // At this point, we have to have 'in'. |
| 859 | if (CurTok != tok_in) |
| 860 | return Error("expected 'in' keyword after 'var'"); |
| 861 | getNextToken(); // eat 'in'. |
| 862 | |
| 863 | ExprAST *Body = ParseExpression(); |
| 864 | if (Body == 0) return 0; |
| 865 | |
| 866 | return new VarExprAST(VarNames, Body); |
| 867 | } |
| 868 | </pre> |
| 869 | </div> |
| 870 | |
| 871 | <p>Now that we can parse and represent the code, we need to support emission of |
| 872 | LLVM IR for it. This code starts out with:</p> |
| 873 | |
| 874 | <div class="doc_code"> |
| 875 | <pre> |
| 876 | Value *VarExprAST::Codegen() { |
| 877 | std::vector<AllocaInst *> OldBindings; |
| 878 | |
| 879 | Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| 880 | |
| 881 | // Register all variables and emit their initializer. |
| 882 | for (unsigned i = 0, e = VarNames.size(); i != e; ++i) { |
| 883 | const std::string &VarName = VarNames[i].first; |
| 884 | ExprAST *Init = VarNames[i].second; |
| 885 | </pre> |
| 886 | </div> |
| 887 | |
| 888 | <p>Basically it loops over all the variables, installing them one at a time. |
| 889 | For each variable we put into the symbol table, we remember the previous value |
| 890 | that we replace in OldBindings.</p> |
| 891 | |
| 892 | <div class="doc_code"> |
| 893 | <pre> |
| 894 | // Emit the initializer before adding the variable to scope, this prevents |
| 895 | // the initializer from referencing the variable itself, and permits stuff |
| 896 | // like this: |
| 897 | // var a = 1 in |
| 898 | // var a = a in ... # refers to outer 'a'. |
| 899 | Value *InitVal; |
| 900 | if (Init) { |
| 901 | InitVal = Init->Codegen(); |
| 902 | if (InitVal == 0) return 0; |
| 903 | } else { // If not specified, use 0.0. |
| 904 | InitVal = ConstantFP::get(Type::DoubleTy, APFloat(0.0)); |
| 905 | } |
| 906 | |
| 907 | AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); |
| 908 | Builder.CreateStore(InitVal, Alloca); |
| 909 | |
| 910 | // Remember the old variable binding so that we can restore the binding when |
| 911 | // we unrecurse. |
| 912 | OldBindings.push_back(NamedValues[VarName]); |
| 913 | |
| 914 | // Remember this binding. |
| 915 | NamedValues[VarName] = Alloca; |
| 916 | } |
| 917 | </pre> |
| 918 | </div> |
| 919 | |
| 920 | <p>There are more comments here than code. The basic idea is that we emit the |
| 921 | initializer, create the alloca, then update the symbol table to point to it. |
| 922 | Once all the variables are installed in the symbol table, we evaluate the body |
| 923 | of the var/in expression:</p> |
| 924 | |
| 925 | <div class="doc_code"> |
| 926 | <pre> |
| 927 | // Codegen the body, now that all vars are in scope. |
| 928 | Value *BodyVal = Body->Codegen(); |
| 929 | if (BodyVal == 0) return 0; |
| 930 | </pre> |
| 931 | </div> |
| 932 | |
| 933 | <p>Finally, before returning, we restore the previous variable bindings:</p> |
| 934 | |
| 935 | <div class="doc_code"> |
| 936 | <pre> |
| 937 | // Pop all our variables from scope. |
| 938 | for (unsigned i = 0, e = VarNames.size(); i != e; ++i) |
| 939 | NamedValues[VarNames[i].first] = OldBindings[i]; |
| 940 | |
| 941 | // Return the body computation. |
| 942 | return BodyVal; |
| 943 | } |
| 944 | </pre> |
| 945 | </div> |
| 946 | |
| 947 | <p>The end result of all of this is that we get properly scoped variable |
| 948 | definitions, and we even (trivially) allow mutation of them :).</p> |
| 949 | |
| 950 | <p>With this, we completed what we set out to do. Our nice iterative fib |
| 951 | example from the intro compiles and runs just fine. The mem2reg pass optimizes |
| 952 | all of our stack variables into SSA registers, inserting PHI nodes where needed, |
| 953 | and our front-end remains simple: no iterated dominator frontier computation |
| 954 | anywhere in sight.</p> |
| 955 | |
| 956 | </div> |
Chris Lattner | 00c992d | 2007-11-03 08:55:29 +0000 | [diff] [blame] | 957 | |
| 958 | <!-- *********************************************************************** --> |
| 959 | <div class="doc_section"><a name="code">Full Code Listing</a></div> |
| 960 | <!-- *********************************************************************** --> |
| 961 | |
| 962 | <div class="doc_text"> |
| 963 | |
| 964 | <p> |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame^] | 965 | Here is the complete code listing for our running example, enhanced with mutable |
| 966 | variables and var/in support. To build this example, use: |
Chris Lattner | 00c992d | 2007-11-03 08:55:29 +0000 | [diff] [blame] | 967 | </p> |
| 968 | |
| 969 | <div class="doc_code"> |
| 970 | <pre> |
| 971 | # Compile |
| 972 | g++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy |
| 973 | # Run |
| 974 | ./toy |
| 975 | </pre> |
| 976 | </div> |
| 977 | |
| 978 | <p>Here is the code:</p> |
| 979 | |
| 980 | <div class="doc_code"> |
| 981 | <pre> |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame^] | 982 | #include "llvm/DerivedTypes.h" |
| 983 | #include "llvm/ExecutionEngine/ExecutionEngine.h" |
| 984 | #include "llvm/Module.h" |
| 985 | #include "llvm/ModuleProvider.h" |
| 986 | #include "llvm/PassManager.h" |
| 987 | #include "llvm/Analysis/Verifier.h" |
| 988 | #include "llvm/Target/TargetData.h" |
| 989 | #include "llvm/Transforms/Scalar.h" |
| 990 | #include "llvm/Support/LLVMBuilder.h" |
| 991 | #include <cstdio> |
| 992 | #include <string> |
| 993 | #include <map> |
| 994 | #include <vector> |
| 995 | using namespace llvm; |
| 996 | |
| 997 | //===----------------------------------------------------------------------===// |
| 998 | // Lexer |
| 999 | //===----------------------------------------------------------------------===// |
| 1000 | |
| 1001 | // The lexer returns tokens [0-255] if it is an unknown character, otherwise one |
| 1002 | // of these for known things. |
| 1003 | enum Token { |
| 1004 | tok_eof = -1, |
| 1005 | |
| 1006 | // commands |
| 1007 | tok_def = -2, tok_extern = -3, |
| 1008 | |
| 1009 | // primary |
| 1010 | tok_identifier = -4, tok_number = -5, |
| 1011 | |
| 1012 | // control |
| 1013 | tok_if = -6, tok_then = -7, tok_else = -8, |
| 1014 | tok_for = -9, tok_in = -10, |
| 1015 | |
| 1016 | // operators |
| 1017 | tok_binary = -11, tok_unary = -12, |
| 1018 | |
| 1019 | // var definition |
| 1020 | tok_var = -13 |
| 1021 | }; |
| 1022 | |
| 1023 | static std::string IdentifierStr; // Filled in if tok_identifier |
| 1024 | static double NumVal; // Filled in if tok_number |
| 1025 | |
| 1026 | /// gettok - Return the next token from standard input. |
| 1027 | static int gettok() { |
| 1028 | static int LastChar = ' '; |
| 1029 | |
| 1030 | // Skip any whitespace. |
| 1031 | while (isspace(LastChar)) |
| 1032 | LastChar = getchar(); |
| 1033 | |
| 1034 | if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* |
| 1035 | IdentifierStr = LastChar; |
| 1036 | while (isalnum((LastChar = getchar()))) |
| 1037 | IdentifierStr += LastChar; |
| 1038 | |
| 1039 | if (IdentifierStr == "def") return tok_def; |
| 1040 | if (IdentifierStr == "extern") return tok_extern; |
| 1041 | if (IdentifierStr == "if") return tok_if; |
| 1042 | if (IdentifierStr == "then") return tok_then; |
| 1043 | if (IdentifierStr == "else") return tok_else; |
| 1044 | if (IdentifierStr == "for") return tok_for; |
| 1045 | if (IdentifierStr == "in") return tok_in; |
| 1046 | if (IdentifierStr == "binary") return tok_binary; |
| 1047 | if (IdentifierStr == "unary") return tok_unary; |
| 1048 | if (IdentifierStr == "var") return tok_var; |
| 1049 | return tok_identifier; |
| 1050 | } |
| 1051 | |
| 1052 | if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ |
| 1053 | std::string NumStr; |
| 1054 | do { |
| 1055 | NumStr += LastChar; |
| 1056 | LastChar = getchar(); |
| 1057 | } while (isdigit(LastChar) || LastChar == '.'); |
| 1058 | |
| 1059 | NumVal = strtod(NumStr.c_str(), 0); |
| 1060 | return tok_number; |
| 1061 | } |
| 1062 | |
| 1063 | if (LastChar == '#') { |
| 1064 | // Comment until end of line. |
| 1065 | do LastChar = getchar(); |
| 1066 | while (LastChar != EOF && LastChar != '\n' & LastChar != '\r'); |
| 1067 | |
| 1068 | if (LastChar != EOF) |
| 1069 | return gettok(); |
| 1070 | } |
| 1071 | |
| 1072 | // Check for end of file. Don't eat the EOF. |
| 1073 | if (LastChar == EOF) |
| 1074 | return tok_eof; |
| 1075 | |
| 1076 | // Otherwise, just return the character as its ascii value. |
| 1077 | int ThisChar = LastChar; |
| 1078 | LastChar = getchar(); |
| 1079 | return ThisChar; |
| 1080 | } |
| 1081 | |
| 1082 | //===----------------------------------------------------------------------===// |
| 1083 | // Abstract Syntax Tree (aka Parse Tree) |
| 1084 | //===----------------------------------------------------------------------===// |
| 1085 | |
| 1086 | /// ExprAST - Base class for all expression nodes. |
| 1087 | class ExprAST { |
| 1088 | public: |
| 1089 | virtual ~ExprAST() {} |
| 1090 | virtual Value *Codegen() = 0; |
| 1091 | }; |
| 1092 | |
| 1093 | /// NumberExprAST - Expression class for numeric literals like "1.0". |
| 1094 | class NumberExprAST : public ExprAST { |
| 1095 | double Val; |
| 1096 | public: |
| 1097 | NumberExprAST(double val) : Val(val) {} |
| 1098 | virtual Value *Codegen(); |
| 1099 | }; |
| 1100 | |
| 1101 | /// VariableExprAST - Expression class for referencing a variable, like "a". |
| 1102 | class VariableExprAST : public ExprAST { |
| 1103 | std::string Name; |
| 1104 | public: |
| 1105 | VariableExprAST(const std::string &name) : Name(name) {} |
| 1106 | const std::string &getName() const { return Name; } |
| 1107 | virtual Value *Codegen(); |
| 1108 | }; |
| 1109 | |
| 1110 | /// UnaryExprAST - Expression class for a unary operator. |
| 1111 | class UnaryExprAST : public ExprAST { |
| 1112 | char Opcode; |
| 1113 | ExprAST *Operand; |
| 1114 | public: |
| 1115 | UnaryExprAST(char opcode, ExprAST *operand) |
| 1116 | : Opcode(opcode), Operand(operand) {} |
| 1117 | virtual Value *Codegen(); |
| 1118 | }; |
| 1119 | |
| 1120 | /// BinaryExprAST - Expression class for a binary operator. |
| 1121 | class BinaryExprAST : public ExprAST { |
| 1122 | char Op; |
| 1123 | ExprAST *LHS, *RHS; |
| 1124 | public: |
| 1125 | BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) |
| 1126 | : Op(op), LHS(lhs), RHS(rhs) {} |
| 1127 | virtual Value *Codegen(); |
| 1128 | }; |
| 1129 | |
| 1130 | /// CallExprAST - Expression class for function calls. |
| 1131 | class CallExprAST : public ExprAST { |
| 1132 | std::string Callee; |
| 1133 | std::vector<ExprAST*> Args; |
| 1134 | public: |
| 1135 | CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) |
| 1136 | : Callee(callee), Args(args) {} |
| 1137 | virtual Value *Codegen(); |
| 1138 | }; |
| 1139 | |
| 1140 | /// IfExprAST - Expression class for if/then/else. |
| 1141 | class IfExprAST : public ExprAST { |
| 1142 | ExprAST *Cond, *Then, *Else; |
| 1143 | public: |
| 1144 | IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else) |
| 1145 | : Cond(cond), Then(then), Else(_else) {} |
| 1146 | virtual Value *Codegen(); |
| 1147 | }; |
| 1148 | |
| 1149 | /// ForExprAST - Expression class for for/in. |
| 1150 | class ForExprAST : public ExprAST { |
| 1151 | std::string VarName; |
| 1152 | ExprAST *Start, *End, *Step, *Body; |
| 1153 | public: |
| 1154 | ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end, |
| 1155 | ExprAST *step, ExprAST *body) |
| 1156 | : VarName(varname), Start(start), End(end), Step(step), Body(body) {} |
| 1157 | virtual Value *Codegen(); |
| 1158 | }; |
| 1159 | |
| 1160 | /// VarExprAST - Expression class for var/in |
| 1161 | class VarExprAST : public ExprAST { |
| 1162 | std::vector<std::pair<std::string, ExprAST*> > VarNames; |
| 1163 | ExprAST *Body; |
| 1164 | public: |
| 1165 | VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames, |
| 1166 | ExprAST *body) |
| 1167 | : VarNames(varnames), Body(body) {} |
| 1168 | |
| 1169 | virtual Value *Codegen(); |
| 1170 | }; |
| 1171 | |
| 1172 | /// PrototypeAST - This class represents the "prototype" for a function, |
| 1173 | /// which captures its argument names as well as if it is an operator. |
| 1174 | class PrototypeAST { |
| 1175 | std::string Name; |
| 1176 | std::vector<std::string> Args; |
| 1177 | bool isOperator; |
| 1178 | unsigned Precedence; // Precedence if a binary op. |
| 1179 | public: |
| 1180 | PrototypeAST(const std::string &name, const std::vector<std::string> &args, |
| 1181 | bool isoperator = false, unsigned prec = 0) |
| 1182 | : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {} |
| 1183 | |
| 1184 | bool isUnaryOp() const { return isOperator && Args.size() == 1; } |
| 1185 | bool isBinaryOp() const { return isOperator && Args.size() == 2; } |
| 1186 | |
| 1187 | char getOperatorName() const { |
| 1188 | assert(isUnaryOp() || isBinaryOp()); |
| 1189 | return Name[Name.size()-1]; |
| 1190 | } |
| 1191 | |
| 1192 | unsigned getBinaryPrecedence() const { return Precedence; } |
| 1193 | |
| 1194 | Function *Codegen(); |
| 1195 | |
| 1196 | void CreateArgumentAllocas(Function *F); |
| 1197 | }; |
| 1198 | |
| 1199 | /// FunctionAST - This class represents a function definition itself. |
| 1200 | class FunctionAST { |
| 1201 | PrototypeAST *Proto; |
| 1202 | ExprAST *Body; |
| 1203 | public: |
| 1204 | FunctionAST(PrototypeAST *proto, ExprAST *body) |
| 1205 | : Proto(proto), Body(body) {} |
| 1206 | |
| 1207 | Function *Codegen(); |
| 1208 | }; |
| 1209 | |
| 1210 | //===----------------------------------------------------------------------===// |
| 1211 | // Parser |
| 1212 | //===----------------------------------------------------------------------===// |
| 1213 | |
| 1214 | /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current |
| 1215 | /// token the parser it looking at. getNextToken reads another token from the |
| 1216 | /// lexer and updates CurTok with its results. |
| 1217 | static int CurTok; |
| 1218 | static int getNextToken() { |
| 1219 | return CurTok = gettok(); |
| 1220 | } |
| 1221 | |
| 1222 | /// BinopPrecedence - This holds the precedence for each binary operator that is |
| 1223 | /// defined. |
| 1224 | static std::map<char, int> BinopPrecedence; |
| 1225 | |
| 1226 | /// GetTokPrecedence - Get the precedence of the pending binary operator token. |
| 1227 | static int GetTokPrecedence() { |
| 1228 | if (!isascii(CurTok)) |
| 1229 | return -1; |
| 1230 | |
| 1231 | // Make sure it's a declared binop. |
| 1232 | int TokPrec = BinopPrecedence[CurTok]; |
| 1233 | if (TokPrec <= 0) return -1; |
| 1234 | return TokPrec; |
| 1235 | } |
| 1236 | |
| 1237 | /// Error* - These are little helper functions for error handling. |
| 1238 | ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} |
| 1239 | PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } |
| 1240 | FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } |
| 1241 | |
| 1242 | static ExprAST *ParseExpression(); |
| 1243 | |
| 1244 | /// identifierexpr |
| 1245 | /// ::= identifer |
| 1246 | /// ::= identifer '(' expression* ')' |
| 1247 | static ExprAST *ParseIdentifierExpr() { |
| 1248 | std::string IdName = IdentifierStr; |
| 1249 | |
| 1250 | getNextToken(); // eat identifer. |
| 1251 | |
| 1252 | if (CurTok != '(') // Simple variable ref. |
| 1253 | return new VariableExprAST(IdName); |
| 1254 | |
| 1255 | // Call. |
| 1256 | getNextToken(); // eat ( |
| 1257 | std::vector<ExprAST*> Args; |
| 1258 | if (CurTok != ')') { |
| 1259 | while (1) { |
| 1260 | ExprAST *Arg = ParseExpression(); |
| 1261 | if (!Arg) return 0; |
| 1262 | Args.push_back(Arg); |
| 1263 | |
| 1264 | if (CurTok == ')') break; |
| 1265 | |
| 1266 | if (CurTok != ',') |
| 1267 | return Error("Expected ')'"); |
| 1268 | getNextToken(); |
| 1269 | } |
| 1270 | } |
| 1271 | |
| 1272 | // Eat the ')'. |
| 1273 | getNextToken(); |
| 1274 | |
| 1275 | return new CallExprAST(IdName, Args); |
| 1276 | } |
| 1277 | |
| 1278 | /// numberexpr ::= number |
| 1279 | static ExprAST *ParseNumberExpr() { |
| 1280 | ExprAST *Result = new NumberExprAST(NumVal); |
| 1281 | getNextToken(); // consume the number |
| 1282 | return Result; |
| 1283 | } |
| 1284 | |
| 1285 | /// parenexpr ::= '(' expression ')' |
| 1286 | static ExprAST *ParseParenExpr() { |
| 1287 | getNextToken(); // eat (. |
| 1288 | ExprAST *V = ParseExpression(); |
| 1289 | if (!V) return 0; |
| 1290 | |
| 1291 | if (CurTok != ')') |
| 1292 | return Error("expected ')'"); |
| 1293 | getNextToken(); // eat ). |
| 1294 | return V; |
| 1295 | } |
| 1296 | |
| 1297 | /// ifexpr ::= 'if' expression 'then' expression 'else' expression |
| 1298 | static ExprAST *ParseIfExpr() { |
| 1299 | getNextToken(); // eat the if. |
| 1300 | |
| 1301 | // condition. |
| 1302 | ExprAST *Cond = ParseExpression(); |
| 1303 | if (!Cond) return 0; |
| 1304 | |
| 1305 | if (CurTok != tok_then) |
| 1306 | return Error("expected then"); |
| 1307 | getNextToken(); // eat the then |
| 1308 | |
| 1309 | ExprAST *Then = ParseExpression(); |
| 1310 | if (Then == 0) return 0; |
| 1311 | |
| 1312 | if (CurTok != tok_else) |
| 1313 | return Error("expected else"); |
| 1314 | |
| 1315 | getNextToken(); |
| 1316 | |
| 1317 | ExprAST *Else = ParseExpression(); |
| 1318 | if (!Else) return 0; |
| 1319 | |
| 1320 | return new IfExprAST(Cond, Then, Else); |
| 1321 | } |
| 1322 | |
| 1323 | /// forexpr ::= 'for' identifer '=' expr ',' expr (',' expr)? 'in' expression |
| 1324 | static ExprAST *ParseForExpr() { |
| 1325 | getNextToken(); // eat the for. |
| 1326 | |
| 1327 | if (CurTok != tok_identifier) |
| 1328 | return Error("expected identifier after for"); |
| 1329 | |
| 1330 | std::string IdName = IdentifierStr; |
| 1331 | getNextToken(); // eat identifer. |
| 1332 | |
| 1333 | if (CurTok != '=') |
| 1334 | return Error("expected '=' after for"); |
| 1335 | getNextToken(); // eat '='. |
| 1336 | |
| 1337 | |
| 1338 | ExprAST *Start = ParseExpression(); |
| 1339 | if (Start == 0) return 0; |
| 1340 | if (CurTok != ',') |
| 1341 | return Error("expected ',' after for start value"); |
| 1342 | getNextToken(); |
| 1343 | |
| 1344 | ExprAST *End = ParseExpression(); |
| 1345 | if (End == 0) return 0; |
| 1346 | |
| 1347 | // The step value is optional. |
| 1348 | ExprAST *Step = 0; |
| 1349 | if (CurTok == ',') { |
| 1350 | getNextToken(); |
| 1351 | Step = ParseExpression(); |
| 1352 | if (Step == 0) return 0; |
| 1353 | } |
| 1354 | |
| 1355 | if (CurTok != tok_in) |
| 1356 | return Error("expected 'in' after for"); |
| 1357 | getNextToken(); // eat 'in'. |
| 1358 | |
| 1359 | ExprAST *Body = ParseExpression(); |
| 1360 | if (Body == 0) return 0; |
| 1361 | |
| 1362 | return new ForExprAST(IdName, Start, End, Step, Body); |
| 1363 | } |
| 1364 | |
| 1365 | /// varexpr ::= 'var' identifer ('=' expression)? |
| 1366 | // (',' identifer ('=' expression)?)* 'in' expression |
| 1367 | static ExprAST *ParseVarExpr() { |
| 1368 | getNextToken(); // eat the var. |
| 1369 | |
| 1370 | std::vector<std::pair<std::string, ExprAST*> > VarNames; |
| 1371 | |
| 1372 | // At least one variable name is required. |
| 1373 | if (CurTok != tok_identifier) |
| 1374 | return Error("expected identifier after var"); |
| 1375 | |
| 1376 | while (1) { |
| 1377 | std::string Name = IdentifierStr; |
| 1378 | getNextToken(); // eat identifer. |
| 1379 | |
| 1380 | // Read the optional initializer. |
| 1381 | ExprAST *Init = 0; |
| 1382 | if (CurTok == '=') { |
| 1383 | getNextToken(); // eat the '='. |
| 1384 | |
| 1385 | Init = ParseExpression(); |
| 1386 | if (Init == 0) return 0; |
| 1387 | } |
| 1388 | |
| 1389 | VarNames.push_back(std::make_pair(Name, Init)); |
| 1390 | |
| 1391 | // End of var list, exit loop. |
| 1392 | if (CurTok != ',') break; |
| 1393 | getNextToken(); // eat the ','. |
| 1394 | |
| 1395 | if (CurTok != tok_identifier) |
| 1396 | return Error("expected identifier list after var"); |
| 1397 | } |
| 1398 | |
| 1399 | // At this point, we have to have 'in'. |
| 1400 | if (CurTok != tok_in) |
| 1401 | return Error("expected 'in' keyword after 'var'"); |
| 1402 | getNextToken(); // eat 'in'. |
| 1403 | |
| 1404 | ExprAST *Body = ParseExpression(); |
| 1405 | if (Body == 0) return 0; |
| 1406 | |
| 1407 | return new VarExprAST(VarNames, Body); |
| 1408 | } |
| 1409 | |
| 1410 | |
| 1411 | /// primary |
| 1412 | /// ::= identifierexpr |
| 1413 | /// ::= numberexpr |
| 1414 | /// ::= parenexpr |
| 1415 | /// ::= ifexpr |
| 1416 | /// ::= forexpr |
| 1417 | /// ::= varexpr |
| 1418 | static ExprAST *ParsePrimary() { |
| 1419 | switch (CurTok) { |
| 1420 | default: return Error("unknown token when expecting an expression"); |
| 1421 | case tok_identifier: return ParseIdentifierExpr(); |
| 1422 | case tok_number: return ParseNumberExpr(); |
| 1423 | case '(': return ParseParenExpr(); |
| 1424 | case tok_if: return ParseIfExpr(); |
| 1425 | case tok_for: return ParseForExpr(); |
| 1426 | case tok_var: return ParseVarExpr(); |
| 1427 | } |
| 1428 | } |
| 1429 | |
| 1430 | /// unary |
| 1431 | /// ::= primary |
| 1432 | /// ::= '!' unary |
| 1433 | static ExprAST *ParseUnary() { |
| 1434 | // If the current token is not an operator, it must be a primary expr. |
| 1435 | if (!isascii(CurTok) || CurTok == '(' || CurTok == ',') |
| 1436 | return ParsePrimary(); |
| 1437 | |
| 1438 | // If this is a unary operator, read it. |
| 1439 | int Opc = CurTok; |
| 1440 | getNextToken(); |
| 1441 | if (ExprAST *Operand = ParseUnary()) |
| 1442 | return new UnaryExprAST(Opc, Operand); |
| 1443 | return 0; |
| 1444 | } |
| 1445 | |
| 1446 | /// binoprhs |
| 1447 | /// ::= ('+' unary)* |
| 1448 | static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { |
| 1449 | // If this is a binop, find its precedence. |
| 1450 | while (1) { |
| 1451 | int TokPrec = GetTokPrecedence(); |
| 1452 | |
| 1453 | // If this is a binop that binds at least as tightly as the current binop, |
| 1454 | // consume it, otherwise we are done. |
| 1455 | if (TokPrec < ExprPrec) |
| 1456 | return LHS; |
| 1457 | |
| 1458 | // Okay, we know this is a binop. |
| 1459 | int BinOp = CurTok; |
| 1460 | getNextToken(); // eat binop |
| 1461 | |
| 1462 | // Parse the unary expression after the binary operator. |
| 1463 | ExprAST *RHS = ParseUnary(); |
| 1464 | if (!RHS) return 0; |
| 1465 | |
| 1466 | // If BinOp binds less tightly with RHS than the operator after RHS, let |
| 1467 | // the pending operator take RHS as its LHS. |
| 1468 | int NextPrec = GetTokPrecedence(); |
| 1469 | if (TokPrec < NextPrec) { |
| 1470 | RHS = ParseBinOpRHS(TokPrec+1, RHS); |
| 1471 | if (RHS == 0) return 0; |
| 1472 | } |
| 1473 | |
| 1474 | // Merge LHS/RHS. |
| 1475 | LHS = new BinaryExprAST(BinOp, LHS, RHS); |
| 1476 | } |
| 1477 | } |
| 1478 | |
| 1479 | /// expression |
| 1480 | /// ::= unary binoprhs |
| 1481 | /// |
| 1482 | static ExprAST *ParseExpression() { |
| 1483 | ExprAST *LHS = ParseUnary(); |
| 1484 | if (!LHS) return 0; |
| 1485 | |
| 1486 | return ParseBinOpRHS(0, LHS); |
| 1487 | } |
| 1488 | |
| 1489 | /// prototype |
| 1490 | /// ::= id '(' id* ')' |
| 1491 | /// ::= binary LETTER number? (id, id) |
| 1492 | /// ::= unary LETTER (id) |
| 1493 | static PrototypeAST *ParsePrototype() { |
| 1494 | std::string FnName; |
| 1495 | |
| 1496 | int Kind = 0; // 0 = identifier, 1 = unary, 2 = binary. |
| 1497 | unsigned BinaryPrecedence = 30; |
| 1498 | |
| 1499 | switch (CurTok) { |
| 1500 | default: |
| 1501 | return ErrorP("Expected function name in prototype"); |
| 1502 | case tok_identifier: |
| 1503 | FnName = IdentifierStr; |
| 1504 | Kind = 0; |
| 1505 | getNextToken(); |
| 1506 | break; |
| 1507 | case tok_unary: |
| 1508 | getNextToken(); |
| 1509 | if (!isascii(CurTok)) |
| 1510 | return ErrorP("Expected unary operator"); |
| 1511 | FnName = "unary"; |
| 1512 | FnName += (char)CurTok; |
| 1513 | Kind = 1; |
| 1514 | getNextToken(); |
| 1515 | break; |
| 1516 | case tok_binary: |
| 1517 | getNextToken(); |
| 1518 | if (!isascii(CurTok)) |
| 1519 | return ErrorP("Expected binary operator"); |
| 1520 | FnName = "binary"; |
| 1521 | FnName += (char)CurTok; |
| 1522 | Kind = 2; |
| 1523 | getNextToken(); |
| 1524 | |
| 1525 | // Read the precedence if present. |
| 1526 | if (CurTok == tok_number) { |
| 1527 | if (NumVal < 1 || NumVal > 100) |
| 1528 | return ErrorP("Invalid precedecnce: must be 1..100"); |
| 1529 | BinaryPrecedence = (unsigned)NumVal; |
| 1530 | getNextToken(); |
| 1531 | } |
| 1532 | break; |
| 1533 | } |
| 1534 | |
| 1535 | if (CurTok != '(') |
| 1536 | return ErrorP("Expected '(' in prototype"); |
| 1537 | |
| 1538 | std::vector<std::string> ArgNames; |
| 1539 | while (getNextToken() == tok_identifier) |
| 1540 | ArgNames.push_back(IdentifierStr); |
| 1541 | if (CurTok != ')') |
| 1542 | return ErrorP("Expected ')' in prototype"); |
| 1543 | |
| 1544 | // success. |
| 1545 | getNextToken(); // eat ')'. |
| 1546 | |
| 1547 | // Verify right number of names for operator. |
| 1548 | if (Kind && ArgNames.size() != Kind) |
| 1549 | return ErrorP("Invalid number of operands for operator"); |
| 1550 | |
| 1551 | return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence); |
| 1552 | } |
| 1553 | |
| 1554 | /// definition ::= 'def' prototype expression |
| 1555 | static FunctionAST *ParseDefinition() { |
| 1556 | getNextToken(); // eat def. |
| 1557 | PrototypeAST *Proto = ParsePrototype(); |
| 1558 | if (Proto == 0) return 0; |
| 1559 | |
| 1560 | if (ExprAST *E = ParseExpression()) |
| 1561 | return new FunctionAST(Proto, E); |
| 1562 | return 0; |
| 1563 | } |
| 1564 | |
| 1565 | /// toplevelexpr ::= expression |
| 1566 | static FunctionAST *ParseTopLevelExpr() { |
| 1567 | if (ExprAST *E = ParseExpression()) { |
| 1568 | // Make an anonymous proto. |
| 1569 | PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); |
| 1570 | return new FunctionAST(Proto, E); |
| 1571 | } |
| 1572 | return 0; |
| 1573 | } |
| 1574 | |
| 1575 | /// external ::= 'extern' prototype |
| 1576 | static PrototypeAST *ParseExtern() { |
| 1577 | getNextToken(); // eat extern. |
| 1578 | return ParsePrototype(); |
| 1579 | } |
| 1580 | |
| 1581 | //===----------------------------------------------------------------------===// |
| 1582 | // Code Generation |
| 1583 | //===----------------------------------------------------------------------===// |
| 1584 | |
| 1585 | static Module *TheModule; |
| 1586 | static LLVMFoldingBuilder Builder; |
| 1587 | static std::map<std::string, AllocaInst*> NamedValues; |
| 1588 | static FunctionPassManager *TheFPM; |
| 1589 | |
| 1590 | Value *ErrorV(const char *Str) { Error(Str); return 0; } |
| 1591 | |
| 1592 | /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of |
| 1593 | /// the function. This is used for mutable variables etc. |
| 1594 | static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction, |
| 1595 | const std::string &VarName) { |
| 1596 | LLVMBuilder TmpB(&TheFunction->getEntryBlock(), |
| 1597 | TheFunction->getEntryBlock().begin()); |
| 1598 | return TmpB.CreateAlloca(Type::DoubleTy, 0, VarName.c_str()); |
| 1599 | } |
| 1600 | |
| 1601 | |
| 1602 | Value *NumberExprAST::Codegen() { |
| 1603 | return ConstantFP::get(Type::DoubleTy, APFloat(Val)); |
| 1604 | } |
| 1605 | |
| 1606 | Value *VariableExprAST::Codegen() { |
| 1607 | // Look this variable up in the function. |
| 1608 | Value *V = NamedValues[Name]; |
| 1609 | if (V == 0) return ErrorV("Unknown variable name"); |
| 1610 | |
| 1611 | // Load the value. |
| 1612 | return Builder.CreateLoad(V, Name.c_str()); |
| 1613 | } |
| 1614 | |
| 1615 | Value *UnaryExprAST::Codegen() { |
| 1616 | Value *OperandV = Operand->Codegen(); |
| 1617 | if (OperandV == 0) return 0; |
| 1618 | |
| 1619 | Function *F = TheModule->getFunction(std::string("unary")+Opcode); |
| 1620 | if (F == 0) |
| 1621 | return ErrorV("Unknown unary operator"); |
| 1622 | |
| 1623 | return Builder.CreateCall(F, OperandV, "unop"); |
| 1624 | } |
| 1625 | |
| 1626 | |
| 1627 | Value *BinaryExprAST::Codegen() { |
| 1628 | // Special case '=' because we don't want to emit the LHS as an expression. |
| 1629 | if (Op == '=') { |
| 1630 | // Assignment requires the LHS to be an identifier. |
| 1631 | VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS); |
| 1632 | if (!LHSE) |
| 1633 | return ErrorV("destination of '=' must be a variable"); |
| 1634 | // Codegen the RHS. |
| 1635 | Value *Val = RHS->Codegen(); |
| 1636 | if (Val == 0) return 0; |
| 1637 | |
| 1638 | // Look up the name. |
| 1639 | Value *Variable = NamedValues[LHSE->getName()]; |
| 1640 | if (Variable == 0) return ErrorV("Unknown variable name"); |
| 1641 | |
| 1642 | Builder.CreateStore(Val, Variable); |
| 1643 | return Val; |
| 1644 | } |
| 1645 | |
| 1646 | |
| 1647 | Value *L = LHS->Codegen(); |
| 1648 | Value *R = RHS->Codegen(); |
| 1649 | if (L == 0 || R == 0) return 0; |
| 1650 | |
| 1651 | switch (Op) { |
| 1652 | case '+': return Builder.CreateAdd(L, R, "addtmp"); |
| 1653 | case '-': return Builder.CreateSub(L, R, "subtmp"); |
| 1654 | case '*': return Builder.CreateMul(L, R, "multmp"); |
| 1655 | case '<': |
| 1656 | L = Builder.CreateFCmpULT(L, R, "multmp"); |
| 1657 | // Convert bool 0/1 to double 0.0 or 1.0 |
| 1658 | return Builder.CreateUIToFP(L, Type::DoubleTy, "booltmp"); |
| 1659 | default: break; |
| 1660 | } |
| 1661 | |
| 1662 | // If it wasn't a builtin binary operator, it must be a user defined one. Emit |
| 1663 | // a call to it. |
| 1664 | Function *F = TheModule->getFunction(std::string("binary")+Op); |
| 1665 | assert(F && "binary operator not found!"); |
| 1666 | |
| 1667 | Value *Ops[] = { L, R }; |
| 1668 | return Builder.CreateCall(F, Ops, Ops+2, "binop"); |
| 1669 | } |
| 1670 | |
| 1671 | Value *CallExprAST::Codegen() { |
| 1672 | // Look up the name in the global module table. |
| 1673 | Function *CalleeF = TheModule->getFunction(Callee); |
| 1674 | if (CalleeF == 0) |
| 1675 | return ErrorV("Unknown function referenced"); |
| 1676 | |
| 1677 | // If argument mismatch error. |
| 1678 | if (CalleeF->arg_size() != Args.size()) |
| 1679 | return ErrorV("Incorrect # arguments passed"); |
| 1680 | |
| 1681 | std::vector<Value*> ArgsV; |
| 1682 | for (unsigned i = 0, e = Args.size(); i != e; ++i) { |
| 1683 | ArgsV.push_back(Args[i]->Codegen()); |
| 1684 | if (ArgsV.back() == 0) return 0; |
| 1685 | } |
| 1686 | |
| 1687 | return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp"); |
| 1688 | } |
| 1689 | |
| 1690 | Value *IfExprAST::Codegen() { |
| 1691 | Value *CondV = Cond->Codegen(); |
| 1692 | if (CondV == 0) return 0; |
| 1693 | |
| 1694 | // Convert condition to a bool by comparing equal to 0.0. |
| 1695 | CondV = Builder.CreateFCmpONE(CondV, |
| 1696 | ConstantFP::get(Type::DoubleTy, APFloat(0.0)), |
| 1697 | "ifcond"); |
| 1698 | |
| 1699 | Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| 1700 | |
| 1701 | // Create blocks for the then and else cases. Insert the 'then' block at the |
| 1702 | // end of the function. |
| 1703 | BasicBlock *ThenBB = new BasicBlock("then", TheFunction); |
| 1704 | BasicBlock *ElseBB = new BasicBlock("else"); |
| 1705 | BasicBlock *MergeBB = new BasicBlock("ifcont"); |
| 1706 | |
| 1707 | Builder.CreateCondBr(CondV, ThenBB, ElseBB); |
| 1708 | |
| 1709 | // Emit then value. |
| 1710 | Builder.SetInsertPoint(ThenBB); |
| 1711 | |
| 1712 | Value *ThenV = Then->Codegen(); |
| 1713 | if (ThenV == 0) return 0; |
| 1714 | |
| 1715 | Builder.CreateBr(MergeBB); |
| 1716 | // Codegen of 'Then' can change the current block, update ThenBB for the PHI. |
| 1717 | ThenBB = Builder.GetInsertBlock(); |
| 1718 | |
| 1719 | // Emit else block. |
| 1720 | TheFunction->getBasicBlockList().push_back(ElseBB); |
| 1721 | Builder.SetInsertPoint(ElseBB); |
| 1722 | |
| 1723 | Value *ElseV = Else->Codegen(); |
| 1724 | if (ElseV == 0) return 0; |
| 1725 | |
| 1726 | Builder.CreateBr(MergeBB); |
| 1727 | // Codegen of 'Else' can change the current block, update ElseBB for the PHI. |
| 1728 | ElseBB = Builder.GetInsertBlock(); |
| 1729 | |
| 1730 | // Emit merge block. |
| 1731 | TheFunction->getBasicBlockList().push_back(MergeBB); |
| 1732 | Builder.SetInsertPoint(MergeBB); |
| 1733 | PHINode *PN = Builder.CreatePHI(Type::DoubleTy, "iftmp"); |
| 1734 | |
| 1735 | PN->addIncoming(ThenV, ThenBB); |
| 1736 | PN->addIncoming(ElseV, ElseBB); |
| 1737 | return PN; |
| 1738 | } |
| 1739 | |
| 1740 | Value *ForExprAST::Codegen() { |
| 1741 | // Output this as: |
| 1742 | // var = alloca double |
| 1743 | // ... |
| 1744 | // start = startexpr |
| 1745 | // store start -> var |
| 1746 | // goto loop |
| 1747 | // loop: |
| 1748 | // ... |
| 1749 | // bodyexpr |
| 1750 | // ... |
| 1751 | // loopend: |
| 1752 | // step = stepexpr |
| 1753 | // endcond = endexpr |
| 1754 | // |
| 1755 | // curvar = load var |
| 1756 | // nextvar = curvar + step |
| 1757 | // store nextvar -> var |
| 1758 | // br endcond, loop, endloop |
| 1759 | // outloop: |
| 1760 | |
| 1761 | Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| 1762 | |
| 1763 | // Create an alloca for the variable in the entry block. |
| 1764 | AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); |
| 1765 | |
| 1766 | // Emit the start code first, without 'variable' in scope. |
| 1767 | Value *StartVal = Start->Codegen(); |
| 1768 | if (StartVal == 0) return 0; |
| 1769 | |
| 1770 | // Store the value into the alloca. |
| 1771 | Builder.CreateStore(StartVal, Alloca); |
| 1772 | |
| 1773 | // Make the new basic block for the loop header, inserting after current |
| 1774 | // block. |
| 1775 | BasicBlock *PreheaderBB = Builder.GetInsertBlock(); |
| 1776 | BasicBlock *LoopBB = new BasicBlock("loop", TheFunction); |
| 1777 | |
| 1778 | // Insert an explicit fall through from the current block to the LoopBB. |
| 1779 | Builder.CreateBr(LoopBB); |
| 1780 | |
| 1781 | // Start insertion in LoopBB. |
| 1782 | Builder.SetInsertPoint(LoopBB); |
| 1783 | |
| 1784 | // Within the loop, the variable is defined equal to the PHI node. If it |
| 1785 | // shadows an existing variable, we have to restore it, so save it now. |
| 1786 | AllocaInst *OldVal = NamedValues[VarName]; |
| 1787 | NamedValues[VarName] = Alloca; |
| 1788 | |
| 1789 | // Emit the body of the loop. This, like any other expr, can change the |
| 1790 | // current BB. Note that we ignore the value computed by the body, but don't |
| 1791 | // allow an error. |
| 1792 | if (Body->Codegen() == 0) |
| 1793 | return 0; |
| 1794 | |
| 1795 | // Emit the step value. |
| 1796 | Value *StepVal; |
| 1797 | if (Step) { |
| 1798 | StepVal = Step->Codegen(); |
| 1799 | if (StepVal == 0) return 0; |
| 1800 | } else { |
| 1801 | // If not specified, use 1.0. |
| 1802 | StepVal = ConstantFP::get(Type::DoubleTy, APFloat(1.0)); |
| 1803 | } |
| 1804 | |
| 1805 | // Compute the end condition. |
| 1806 | Value *EndCond = End->Codegen(); |
| 1807 | if (EndCond == 0) return EndCond; |
| 1808 | |
| 1809 | // Reload, increment, and restore the alloca. This handles the case where |
| 1810 | // the body of the loop mutates the variable. |
| 1811 | Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str()); |
| 1812 | Value *NextVar = Builder.CreateAdd(CurVar, StepVal, "nextvar"); |
| 1813 | Builder.CreateStore(NextVar, Alloca); |
| 1814 | |
| 1815 | // Convert condition to a bool by comparing equal to 0.0. |
| 1816 | EndCond = Builder.CreateFCmpONE(EndCond, |
| 1817 | ConstantFP::get(Type::DoubleTy, APFloat(0.0)), |
| 1818 | "loopcond"); |
| 1819 | |
| 1820 | // Create the "after loop" block and insert it. |
| 1821 | BasicBlock *LoopEndBB = Builder.GetInsertBlock(); |
| 1822 | BasicBlock *AfterBB = new BasicBlock("afterloop", TheFunction); |
| 1823 | |
| 1824 | // Insert the conditional branch into the end of LoopEndBB. |
| 1825 | Builder.CreateCondBr(EndCond, LoopBB, AfterBB); |
| 1826 | |
| 1827 | // Any new code will be inserted in AfterBB. |
| 1828 | Builder.SetInsertPoint(AfterBB); |
| 1829 | |
| 1830 | // Restore the unshadowed variable. |
| 1831 | if (OldVal) |
| 1832 | NamedValues[VarName] = OldVal; |
| 1833 | else |
| 1834 | NamedValues.erase(VarName); |
| 1835 | |
| 1836 | |
| 1837 | // for expr always returns 0.0. |
| 1838 | return Constant::getNullValue(Type::DoubleTy); |
| 1839 | } |
| 1840 | |
| 1841 | Value *VarExprAST::Codegen() { |
| 1842 | std::vector<AllocaInst *> OldBindings; |
| 1843 | |
| 1844 | Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| 1845 | |
| 1846 | // Register all variables and emit their initializer. |
| 1847 | for (unsigned i = 0, e = VarNames.size(); i != e; ++i) { |
| 1848 | const std::string &VarName = VarNames[i].first; |
| 1849 | ExprAST *Init = VarNames[i].second; |
| 1850 | |
| 1851 | // Emit the initializer before adding the variable to scope, this prevents |
| 1852 | // the initializer from referencing the variable itself, and permits stuff |
| 1853 | // like this: |
| 1854 | // var a = 1 in |
| 1855 | // var a = a in ... # refers to outer 'a'. |
| 1856 | Value *InitVal; |
| 1857 | if (Init) { |
| 1858 | InitVal = Init->Codegen(); |
| 1859 | if (InitVal == 0) return 0; |
| 1860 | } else { // If not specified, use 0.0. |
| 1861 | InitVal = ConstantFP::get(Type::DoubleTy, APFloat(0.0)); |
| 1862 | } |
| 1863 | |
| 1864 | AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); |
| 1865 | Builder.CreateStore(InitVal, Alloca); |
| 1866 | |
| 1867 | // Remember the old variable binding so that we can restore the binding when |
| 1868 | // we unrecurse. |
| 1869 | OldBindings.push_back(NamedValues[VarName]); |
| 1870 | |
| 1871 | // Remember this binding. |
| 1872 | NamedValues[VarName] = Alloca; |
| 1873 | } |
| 1874 | |
| 1875 | // Codegen the body, now that all vars are in scope. |
| 1876 | Value *BodyVal = Body->Codegen(); |
| 1877 | if (BodyVal == 0) return 0; |
| 1878 | |
| 1879 | // Pop all our variables from scope. |
| 1880 | for (unsigned i = 0, e = VarNames.size(); i != e; ++i) |
| 1881 | NamedValues[VarNames[i].first] = OldBindings[i]; |
| 1882 | |
| 1883 | // Return the body computation. |
| 1884 | return BodyVal; |
| 1885 | } |
| 1886 | |
| 1887 | |
| 1888 | Function *PrototypeAST::Codegen() { |
| 1889 | // Make the function type: double(double,double) etc. |
| 1890 | std::vector<const Type*> Doubles(Args.size(), Type::DoubleTy); |
| 1891 | FunctionType *FT = FunctionType::get(Type::DoubleTy, Doubles, false); |
| 1892 | |
| 1893 | Function *F = new Function(FT, Function::ExternalLinkage, Name, TheModule); |
| 1894 | |
| 1895 | // If F conflicted, there was already something named 'Name'. If it has a |
| 1896 | // body, don't allow redefinition or reextern. |
| 1897 | if (F->getName() != Name) { |
| 1898 | // Delete the one we just made and get the existing one. |
| 1899 | F->eraseFromParent(); |
| 1900 | F = TheModule->getFunction(Name); |
| 1901 | |
| 1902 | // If F already has a body, reject this. |
| 1903 | if (!F->empty()) { |
| 1904 | ErrorF("redefinition of function"); |
| 1905 | return 0; |
| 1906 | } |
| 1907 | |
| 1908 | // If F took a different number of args, reject. |
| 1909 | if (F->arg_size() != Args.size()) { |
| 1910 | ErrorF("redefinition of function with different # args"); |
| 1911 | return 0; |
| 1912 | } |
| 1913 | } |
| 1914 | |
| 1915 | // Set names for all arguments. |
| 1916 | unsigned Idx = 0; |
| 1917 | for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); |
| 1918 | ++AI, ++Idx) |
| 1919 | AI->setName(Args[Idx]); |
| 1920 | |
| 1921 | return F; |
| 1922 | } |
| 1923 | |
| 1924 | /// CreateArgumentAllocas - Create an alloca for each argument and register the |
| 1925 | /// argument in the symbol table so that references to it will succeed. |
| 1926 | void PrototypeAST::CreateArgumentAllocas(Function *F) { |
| 1927 | Function::arg_iterator AI = F->arg_begin(); |
| 1928 | for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) { |
| 1929 | // Create an alloca for this variable. |
| 1930 | AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]); |
| 1931 | |
| 1932 | // Store the initial value into the alloca. |
| 1933 | Builder.CreateStore(AI, Alloca); |
| 1934 | |
| 1935 | // Add arguments to variable symbol table. |
| 1936 | NamedValues[Args[Idx]] = Alloca; |
| 1937 | } |
| 1938 | } |
| 1939 | |
| 1940 | |
| 1941 | Function *FunctionAST::Codegen() { |
| 1942 | NamedValues.clear(); |
| 1943 | |
| 1944 | Function *TheFunction = Proto->Codegen(); |
| 1945 | if (TheFunction == 0) |
| 1946 | return 0; |
| 1947 | |
| 1948 | // If this is an operator, install it. |
| 1949 | if (Proto->isBinaryOp()) |
| 1950 | BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence(); |
| 1951 | |
| 1952 | // Create a new basic block to start insertion into. |
| 1953 | BasicBlock *BB = new BasicBlock("entry", TheFunction); |
| 1954 | Builder.SetInsertPoint(BB); |
| 1955 | |
| 1956 | // Add all arguments to the symbol table and create their allocas. |
| 1957 | Proto->CreateArgumentAllocas(TheFunction); |
| 1958 | |
| 1959 | if (Value *RetVal = Body->Codegen()) { |
| 1960 | // Finish off the function. |
| 1961 | Builder.CreateRet(RetVal); |
| 1962 | |
| 1963 | // Validate the generated code, checking for consistency. |
| 1964 | verifyFunction(*TheFunction); |
| 1965 | |
| 1966 | // Optimize the function. |
| 1967 | TheFPM->run(*TheFunction); |
| 1968 | |
| 1969 | return TheFunction; |
| 1970 | } |
| 1971 | |
| 1972 | // Error reading body, remove function. |
| 1973 | TheFunction->eraseFromParent(); |
| 1974 | |
| 1975 | if (Proto->isBinaryOp()) |
| 1976 | BinopPrecedence.erase(Proto->getOperatorName()); |
| 1977 | return 0; |
| 1978 | } |
| 1979 | |
| 1980 | //===----------------------------------------------------------------------===// |
| 1981 | // Top-Level parsing and JIT Driver |
| 1982 | //===----------------------------------------------------------------------===// |
| 1983 | |
| 1984 | static ExecutionEngine *TheExecutionEngine; |
| 1985 | |
| 1986 | static void HandleDefinition() { |
| 1987 | if (FunctionAST *F = ParseDefinition()) { |
| 1988 | if (Function *LF = F->Codegen()) { |
| 1989 | fprintf(stderr, "Read function definition:"); |
| 1990 | LF->dump(); |
| 1991 | } |
| 1992 | } else { |
| 1993 | // Skip token for error recovery. |
| 1994 | getNextToken(); |
| 1995 | } |
| 1996 | } |
| 1997 | |
| 1998 | static void HandleExtern() { |
| 1999 | if (PrototypeAST *P = ParseExtern()) { |
| 2000 | if (Function *F = P->Codegen()) { |
| 2001 | fprintf(stderr, "Read extern: "); |
| 2002 | F->dump(); |
| 2003 | } |
| 2004 | } else { |
| 2005 | // Skip token for error recovery. |
| 2006 | getNextToken(); |
| 2007 | } |
| 2008 | } |
| 2009 | |
| 2010 | static void HandleTopLevelExpression() { |
| 2011 | // Evaluate a top level expression into an anonymous function. |
| 2012 | if (FunctionAST *F = ParseTopLevelExpr()) { |
| 2013 | if (Function *LF = F->Codegen()) { |
| 2014 | // JIT the function, returning a function pointer. |
| 2015 | void *FPtr = TheExecutionEngine->getPointerToFunction(LF); |
| 2016 | |
| 2017 | // Cast it to the right type (takes no arguments, returns a double) so we |
| 2018 | // can call it as a native function. |
| 2019 | double (*FP)() = (double (*)())FPtr; |
| 2020 | fprintf(stderr, "Evaluated to %f\n", FP()); |
| 2021 | } |
| 2022 | } else { |
| 2023 | // Skip token for error recovery. |
| 2024 | getNextToken(); |
| 2025 | } |
| 2026 | } |
| 2027 | |
| 2028 | /// top ::= definition | external | expression | ';' |
| 2029 | static void MainLoop() { |
| 2030 | while (1) { |
| 2031 | fprintf(stderr, "ready> "); |
| 2032 | switch (CurTok) { |
| 2033 | case tok_eof: return; |
| 2034 | case ';': getNextToken(); break; // ignore top level semicolons. |
| 2035 | case tok_def: HandleDefinition(); break; |
| 2036 | case tok_extern: HandleExtern(); break; |
| 2037 | default: HandleTopLevelExpression(); break; |
| 2038 | } |
| 2039 | } |
| 2040 | } |
| 2041 | |
| 2042 | |
| 2043 | |
| 2044 | //===----------------------------------------------------------------------===// |
| 2045 | // "Library" functions that can be "extern'd" from user code. |
| 2046 | //===----------------------------------------------------------------------===// |
| 2047 | |
| 2048 | /// putchard - putchar that takes a double and returns 0. |
| 2049 | extern "C" |
| 2050 | double putchard(double X) { |
| 2051 | putchar((char)X); |
| 2052 | return 0; |
| 2053 | } |
| 2054 | |
| 2055 | /// printd - printf that takes a double prints it as "%f\n", returning 0. |
| 2056 | extern "C" |
| 2057 | double printd(double X) { |
| 2058 | printf("%f\n", X); |
| 2059 | return 0; |
| 2060 | } |
| 2061 | |
| 2062 | //===----------------------------------------------------------------------===// |
| 2063 | // Main driver code. |
| 2064 | //===----------------------------------------------------------------------===// |
| 2065 | |
| 2066 | int main() { |
| 2067 | // Install standard binary operators. |
| 2068 | // 1 is lowest precedence. |
| 2069 | BinopPrecedence['='] = 2; |
| 2070 | BinopPrecedence['<'] = 10; |
| 2071 | BinopPrecedence['+'] = 20; |
| 2072 | BinopPrecedence['-'] = 20; |
| 2073 | BinopPrecedence['*'] = 40; // highest. |
| 2074 | |
| 2075 | // Prime the first token. |
| 2076 | fprintf(stderr, "ready> "); |
| 2077 | getNextToken(); |
| 2078 | |
| 2079 | // Make the module, which holds all the code. |
| 2080 | TheModule = new Module("my cool jit"); |
| 2081 | |
| 2082 | // Create the JIT. |
| 2083 | TheExecutionEngine = ExecutionEngine::create(TheModule); |
| 2084 | |
| 2085 | { |
| 2086 | ExistingModuleProvider OurModuleProvider(TheModule); |
| 2087 | FunctionPassManager OurFPM(&OurModuleProvider); |
| 2088 | |
| 2089 | // Set up the optimizer pipeline. Start with registering info about how the |
| 2090 | // target lays out data structures. |
| 2091 | OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData())); |
| 2092 | // Promote allocas to registers. |
| 2093 | OurFPM.add(createPromoteMemoryToRegisterPass()); |
| 2094 | // Do simple "peephole" optimizations and bit-twiddling optzns. |
| 2095 | OurFPM.add(createInstructionCombiningPass()); |
| 2096 | // Reassociate expressions. |
| 2097 | OurFPM.add(createReassociatePass()); |
| 2098 | // Eliminate Common SubExpressions. |
| 2099 | OurFPM.add(createGVNPass()); |
| 2100 | // Simplify the control flow graph (deleting unreachable blocks, etc). |
| 2101 | OurFPM.add(createCFGSimplificationPass()); |
| 2102 | |
| 2103 | // Set the global so the code gen can use this. |
| 2104 | TheFPM = &OurFPM; |
| 2105 | |
| 2106 | // Run the main "interpreter loop" now. |
| 2107 | MainLoop(); |
| 2108 | |
| 2109 | TheFPM = 0; |
| 2110 | } // Free module provider and pass manager. |
| 2111 | |
| 2112 | |
| 2113 | // Print out all of the generated code. |
| 2114 | TheModule->dump(); |
| 2115 | return 0; |
| 2116 | } |
Chris Lattner | 00c992d | 2007-11-03 08:55:29 +0000 | [diff] [blame] | 2117 | </pre> |
| 2118 | </div> |
| 2119 | |
| 2120 | </div> |
| 2121 | |
| 2122 | <!-- *********************************************************************** --> |
| 2123 | <hr> |
| 2124 | <address> |
| 2125 | <a href="http://jigsaw.w3.org/css-validator/check/referer"><img |
| 2126 | src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a> |
| 2127 | <a href="http://validator.w3.org/check/referer"><img |
| 2128 | src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a> |
| 2129 | |
| 2130 | <a href="mailto:sabre@nondot.org">Chris Lattner</a><br> |
| 2131 | <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br> |
| 2132 | Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $ |
| 2133 | </address> |
| 2134 | </body> |
| 2135 | </html> |