blob: 3091ea3ba218534bcde769b0efb22a34d6e9c387 [file] [log] [blame]
Reid Spencer950bf602007-01-26 08:19:09 +00001//===-- llvmAsmParser.y - Parser for llvm assembly files --------*- C++ -*-===//
Reid Spencere7c3c602006-11-30 06:36:44 +00002//
3// The LLVM Compiler Infrastructure
4//
Reid Spencer950bf602007-01-26 08:19:09 +00005// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Reid Spencere7c3c602006-11-30 06:36:44 +00007//
8//===----------------------------------------------------------------------===//
9//
Reid Spencer950bf602007-01-26 08:19:09 +000010// This file implements the bison parser for LLVM assembly languages files.
Reid Spencere7c3c602006-11-30 06:36:44 +000011//
12//===----------------------------------------------------------------------===//
13
14%{
Reid Spencer319a7302007-01-05 17:20:02 +000015#include "UpgradeInternals.h"
Reid Spencer950bf602007-01-26 08:19:09 +000016#include "llvm/CallingConv.h"
17#include "llvm/InlineAsm.h"
18#include "llvm/Instructions.h"
19#include "llvm/Module.h"
Reid Spenceref9b9a72007-02-05 20:47:22 +000020#include "llvm/ValueSymbolTable.h"
Reid Spencer950bf602007-01-26 08:19:09 +000021#include "llvm/Support/GetElementPtrTypeIterator.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/Support/MathExtras.h"
Reid Spencere7c3c602006-11-30 06:36:44 +000024#include <algorithm>
Reid Spencere7c3c602006-11-30 06:36:44 +000025#include <iostream>
Reid Spencer950bf602007-01-26 08:19:09 +000026#include <list>
27#include <utility>
28
29// DEBUG_UPREFS - Define this symbol if you want to enable debugging output
30// relating to upreferences in the input stream.
31//
32//#define DEBUG_UPREFS 1
33#ifdef DEBUG_UPREFS
34#define UR_OUT(X) std::cerr << X
35#else
36#define UR_OUT(X)
37#endif
Reid Spencere7c3c602006-11-30 06:36:44 +000038
Reid Spencere77e35e2006-12-01 20:26:20 +000039#define YYERROR_VERBOSE 1
Reid Spencer96839be2006-11-30 16:50:26 +000040#define YYINCLUDED_STDLIB_H
Reid Spencere77e35e2006-12-01 20:26:20 +000041#define YYDEBUG 1
Reid Spencere7c3c602006-11-30 06:36:44 +000042
Reid Spencer950bf602007-01-26 08:19:09 +000043int yylex();
Reid Spencere7c3c602006-11-30 06:36:44 +000044int yyparse();
45
Reid Spencer950bf602007-01-26 08:19:09 +000046int yyerror(const char*);
47static void warning(const std::string& WarningMsg);
48
49namespace llvm {
50
Reid Spencer950bf602007-01-26 08:19:09 +000051std::istream* LexInput;
Reid Spencere7c3c602006-11-30 06:36:44 +000052static std::string CurFilename;
Reid Spencer96839be2006-11-30 16:50:26 +000053
Reid Spencer71d2ec92006-12-31 06:02:26 +000054// This bool controls whether attributes are ever added to function declarations
55// definitions and calls.
56static bool AddAttributes = false;
57
Reid Spencer950bf602007-01-26 08:19:09 +000058static Module *ParserResult;
59static bool ObsoleteVarArgs;
60static bool NewVarArgs;
61static BasicBlock *CurBB;
62static GlobalVariable *CurGV;
Reid Spencera50d5962006-12-02 04:11:07 +000063
Reid Spencer950bf602007-01-26 08:19:09 +000064// This contains info used when building the body of a function. It is
65// destroyed when the function is completed.
66//
67typedef std::vector<Value *> ValueList; // Numbered defs
68
69typedef std::pair<std::string,const Type*> RenameMapKey;
70typedef std::map<RenameMapKey,std::string> RenameMapType;
71
72static void
73ResolveDefinitions(std::map<const Type *,ValueList> &LateResolvers,
74 std::map<const Type *,ValueList> *FutureLateResolvers = 0);
75
76static struct PerModuleInfo {
77 Module *CurrentModule;
78 std::map<const Type *, ValueList> Values; // Module level numbered definitions
79 std::map<const Type *,ValueList> LateResolveValues;
80 std::vector<PATypeHolder> Types;
81 std::map<ValID, PATypeHolder> LateResolveTypes;
82 static Module::Endianness Endian;
83 static Module::PointerSize PointerSize;
84 RenameMapType RenameMap;
85
86 /// PlaceHolderInfo - When temporary placeholder objects are created, remember
87 /// how they were referenced and on which line of the input they came from so
88 /// that we can resolve them later and print error messages as appropriate.
89 std::map<Value*, std::pair<ValID, int> > PlaceHolderInfo;
90
91 // GlobalRefs - This maintains a mapping between <Type, ValID>'s and forward
92 // references to global values. Global values may be referenced before they
93 // are defined, and if so, the temporary object that they represent is held
94 // here. This is used for forward references of GlobalValues.
95 //
96 typedef std::map<std::pair<const PointerType *, ValID>, GlobalValue*>
97 GlobalRefsType;
98 GlobalRefsType GlobalRefs;
99
100 void ModuleDone() {
101 // If we could not resolve some functions at function compilation time
102 // (calls to functions before they are defined), resolve them now... Types
103 // are resolved when the constant pool has been completely parsed.
104 //
105 ResolveDefinitions(LateResolveValues);
106
107 // Check to make sure that all global value forward references have been
108 // resolved!
109 //
110 if (!GlobalRefs.empty()) {
111 std::string UndefinedReferences = "Unresolved global references exist:\n";
112
113 for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end();
114 I != E; ++I) {
115 UndefinedReferences += " " + I->first.first->getDescription() + " " +
116 I->first.second.getName() + "\n";
117 }
118 error(UndefinedReferences);
119 return;
120 }
121
122 if (CurrentModule->getDataLayout().empty()) {
123 std::string dataLayout;
124 if (Endian != Module::AnyEndianness)
125 dataLayout.append(Endian == Module::BigEndian ? "E" : "e");
126 if (PointerSize != Module::AnyPointerSize) {
127 if (!dataLayout.empty())
128 dataLayout += "-";
129 dataLayout.append(PointerSize == Module::Pointer64 ?
130 "p:64:64" : "p:32:32");
131 }
132 CurrentModule->setDataLayout(dataLayout);
133 }
134
135 Values.clear(); // Clear out function local definitions
136 Types.clear();
137 CurrentModule = 0;
138 }
139
140 // GetForwardRefForGlobal - Check to see if there is a forward reference
141 // for this global. If so, remove it from the GlobalRefs map and return it.
142 // If not, just return null.
143 GlobalValue *GetForwardRefForGlobal(const PointerType *PTy, ValID ID) {
144 // Check to see if there is a forward reference to this global variable...
145 // if there is, eliminate it and patch the reference to use the new def'n.
146 GlobalRefsType::iterator I = GlobalRefs.find(std::make_pair(PTy, ID));
147 GlobalValue *Ret = 0;
148 if (I != GlobalRefs.end()) {
149 Ret = I->second;
150 GlobalRefs.erase(I);
151 }
152 return Ret;
153 }
154 void setEndianness(Module::Endianness E) { Endian = E; }
155 void setPointerSize(Module::PointerSize sz) { PointerSize = sz; }
156} CurModule;
157
158Module::Endianness PerModuleInfo::Endian = Module::AnyEndianness;
159Module::PointerSize PerModuleInfo::PointerSize = Module::AnyPointerSize;
160
161static struct PerFunctionInfo {
162 Function *CurrentFunction; // Pointer to current function being created
163
164 std::map<const Type*, ValueList> Values; // Keep track of #'d definitions
165 std::map<const Type*, ValueList> LateResolveValues;
166 bool isDeclare; // Is this function a forward declararation?
167 GlobalValue::LinkageTypes Linkage;// Linkage for forward declaration.
168
169 /// BBForwardRefs - When we see forward references to basic blocks, keep
170 /// track of them here.
171 std::map<BasicBlock*, std::pair<ValID, int> > BBForwardRefs;
172 std::vector<BasicBlock*> NumberedBlocks;
173 RenameMapType RenameMap;
Reid Spencerb7046c72007-01-29 05:41:34 +0000174 unsigned LastCC;
Reid Spencer950bf602007-01-26 08:19:09 +0000175 unsigned NextBBNum;
176
177 inline PerFunctionInfo() {
178 CurrentFunction = 0;
179 isDeclare = false;
180 Linkage = GlobalValue::ExternalLinkage;
181 }
182
183 inline void FunctionStart(Function *M) {
184 CurrentFunction = M;
185 NextBBNum = 0;
186 }
187
188 void FunctionDone() {
189 NumberedBlocks.clear();
190
191 // Any forward referenced blocks left?
192 if (!BBForwardRefs.empty()) {
193 error("Undefined reference to label " +
194 BBForwardRefs.begin()->first->getName());
195 return;
196 }
197
198 // Resolve all forward references now.
199 ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues);
200
201 Values.clear(); // Clear out function local definitions
202 RenameMap.clear();
Reid Spencer950bf602007-01-26 08:19:09 +0000203 CurrentFunction = 0;
204 isDeclare = false;
205 Linkage = GlobalValue::ExternalLinkage;
206 }
207} CurFun; // Info for the current function...
208
209static bool inFunctionScope() { return CurFun.CurrentFunction != 0; }
210
211
212//===----------------------------------------------------------------------===//
213// Code to handle definitions of all the types
214//===----------------------------------------------------------------------===//
215
216static int InsertValue(Value *V,
217 std::map<const Type*,ValueList> &ValueTab = CurFun.Values) {
218 if (V->hasName()) return -1; // Is this a numbered definition?
219
220 // Yes, insert the value into the value table...
221 ValueList &List = ValueTab[V->getType()];
222 List.push_back(V);
223 return List.size()-1;
224}
225
Reid Spencerd7c4f8c2007-01-26 19:59:25 +0000226static const Type *getType(const ValID &D, bool DoNotImprovise = false) {
Reid Spencer950bf602007-01-26 08:19:09 +0000227 switch (D.Type) {
228 case ValID::NumberVal: // Is it a numbered definition?
229 // Module constants occupy the lowest numbered slots...
230 if ((unsigned)D.Num < CurModule.Types.size()) {
231 return CurModule.Types[(unsigned)D.Num];
232 }
233 break;
234 case ValID::NameVal: // Is it a named definition?
235 if (const Type *N = CurModule.CurrentModule->getTypeByName(D.Name)) {
236 D.destroy(); // Free old strdup'd memory...
237 return N;
238 }
239 break;
240 default:
241 error("Internal parser error: Invalid symbol type reference");
242 return 0;
243 }
244
245 // If we reached here, we referenced either a symbol that we don't know about
246 // or an id number that hasn't been read yet. We may be referencing something
247 // forward, so just create an entry to be resolved later and get to it...
248 //
249 if (DoNotImprovise) return 0; // Do we just want a null to be returned?
250
251
252 if (inFunctionScope()) {
253 if (D.Type == ValID::NameVal) {
254 error("Reference to an undefined type: '" + D.getName() + "'");
255 return 0;
256 } else {
257 error("Reference to an undefined type: #" + itostr(D.Num));
258 return 0;
259 }
260 }
261
262 std::map<ValID, PATypeHolder>::iterator I =CurModule.LateResolveTypes.find(D);
263 if (I != CurModule.LateResolveTypes.end())
264 return I->second;
265
266 Type *Typ = OpaqueType::get();
267 CurModule.LateResolveTypes.insert(std::make_pair(D, Typ));
268 return Typ;
269 }
270
271// getExistingValue - Look up the value specified by the provided type and
272// the provided ValID. If the value exists and has already been defined, return
273// it. Otherwise return null.
274//
275static Value *getExistingValue(const Type *Ty, const ValID &D) {
276 if (isa<FunctionType>(Ty)) {
277 error("Functions are not values and must be referenced as pointers");
278 }
279
280 switch (D.Type) {
281 case ValID::NumberVal: { // Is it a numbered definition?
282 unsigned Num = (unsigned)D.Num;
283
284 // Module constants occupy the lowest numbered slots...
285 std::map<const Type*,ValueList>::iterator VI = CurModule.Values.find(Ty);
286 if (VI != CurModule.Values.end()) {
287 if (Num < VI->second.size())
288 return VI->second[Num];
289 Num -= VI->second.size();
290 }
291
292 // Make sure that our type is within bounds
293 VI = CurFun.Values.find(Ty);
294 if (VI == CurFun.Values.end()) return 0;
295
296 // Check that the number is within bounds...
297 if (VI->second.size() <= Num) return 0;
298
299 return VI->second[Num];
300 }
301
302 case ValID::NameVal: { // Is it a named definition?
303 // Get the name out of the ID
304 std::string Name(D.Name);
305 Value* V = 0;
306 RenameMapKey Key = std::make_pair(Name, Ty);
307 if (inFunctionScope()) {
308 // See if the name was renamed
309 RenameMapType::const_iterator I = CurFun.RenameMap.find(Key);
310 std::string LookupName;
311 if (I != CurFun.RenameMap.end())
312 LookupName = I->second;
313 else
314 LookupName = Name;
Reid Spenceref9b9a72007-02-05 20:47:22 +0000315 ValueSymbolTable &SymTab = CurFun.CurrentFunction->getValueSymbolTable();
316 V = SymTab.lookup(LookupName);
317 if (V && V->getType() != Ty)
318 V = 0;
Reid Spencer950bf602007-01-26 08:19:09 +0000319 }
320 if (!V) {
321 RenameMapType::const_iterator I = CurModule.RenameMap.find(Key);
322 std::string LookupName;
323 if (I != CurModule.RenameMap.end())
324 LookupName = I->second;
325 else
326 LookupName = Name;
Reid Spenceref9b9a72007-02-05 20:47:22 +0000327 V = CurModule.CurrentModule->getValueSymbolTable().lookup(LookupName);
328 if (V && V->getType() != Ty)
329 V = 0;
Reid Spencer950bf602007-01-26 08:19:09 +0000330 }
Reid Spenceref9b9a72007-02-05 20:47:22 +0000331 if (!V)
Reid Spencer950bf602007-01-26 08:19:09 +0000332 return 0;
333
334 D.destroy(); // Free old strdup'd memory...
335 return V;
336 }
337
338 // Check to make sure that "Ty" is an integral type, and that our
339 // value will fit into the specified type...
340 case ValID::ConstSIntVal: // Is it a constant pool reference??
341 if (!ConstantInt::isValueValidForType(Ty, D.ConstPool64)) {
342 error("Signed integral constant '" + itostr(D.ConstPool64) +
343 "' is invalid for type '" + Ty->getDescription() + "'");
344 }
345 return ConstantInt::get(Ty, D.ConstPool64);
346
347 case ValID::ConstUIntVal: // Is it an unsigned const pool reference?
348 if (!ConstantInt::isValueValidForType(Ty, D.UConstPool64)) {
349 if (!ConstantInt::isValueValidForType(Ty, D.ConstPool64))
350 error("Integral constant '" + utostr(D.UConstPool64) +
351 "' is invalid or out of range");
352 else // This is really a signed reference. Transmogrify.
353 return ConstantInt::get(Ty, D.ConstPool64);
354 } else
355 return ConstantInt::get(Ty, D.UConstPool64);
356
357 case ValID::ConstFPVal: // Is it a floating point const pool reference?
358 if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP))
359 error("FP constant invalid for type");
360 return ConstantFP::get(Ty, D.ConstPoolFP);
361
362 case ValID::ConstNullVal: // Is it a null value?
363 if (!isa<PointerType>(Ty))
364 error("Cannot create a a non pointer null");
365 return ConstantPointerNull::get(cast<PointerType>(Ty));
366
367 case ValID::ConstUndefVal: // Is it an undef value?
368 return UndefValue::get(Ty);
369
370 case ValID::ConstZeroVal: // Is it a zero value?
371 return Constant::getNullValue(Ty);
372
373 case ValID::ConstantVal: // Fully resolved constant?
374 if (D.ConstantValue->getType() != Ty)
375 error("Constant expression type different from required type");
376 return D.ConstantValue;
377
378 case ValID::InlineAsmVal: { // Inline asm expression
379 const PointerType *PTy = dyn_cast<PointerType>(Ty);
380 const FunctionType *FTy =
381 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
382 if (!FTy || !InlineAsm::Verify(FTy, D.IAD->Constraints))
383 error("Invalid type for asm constraint string");
384 InlineAsm *IA = InlineAsm::get(FTy, D.IAD->AsmString, D.IAD->Constraints,
385 D.IAD->HasSideEffects);
386 D.destroy(); // Free InlineAsmDescriptor.
387 return IA;
388 }
389 default:
390 assert(0 && "Unhandled case");
391 return 0;
392 } // End of switch
393
394 assert(0 && "Unhandled case");
395 return 0;
396}
397
398// getVal - This function is identical to getExistingValue, except that if a
399// value is not already defined, it "improvises" by creating a placeholder var
400// that looks and acts just like the requested variable. When the value is
401// defined later, all uses of the placeholder variable are replaced with the
402// real thing.
403//
404static Value *getVal(const Type *Ty, const ValID &ID) {
405 if (Ty == Type::LabelTy)
406 error("Cannot use a basic block here");
407
408 // See if the value has already been defined.
409 Value *V = getExistingValue(Ty, ID);
410 if (V) return V;
411
412 if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty))
413 error("Invalid use of a composite type");
414
415 // If we reached here, we referenced either a symbol that we don't know about
416 // or an id number that hasn't been read yet. We may be referencing something
417 // forward, so just create an entry to be resolved later and get to it...
Reid Spencer950bf602007-01-26 08:19:09 +0000418 V = new Argument(Ty);
419
420 // Remember where this forward reference came from. FIXME, shouldn't we try
421 // to recycle these things??
422 CurModule.PlaceHolderInfo.insert(
Reid Spenceref9b9a72007-02-05 20:47:22 +0000423 std::make_pair(V, std::make_pair(ID, Upgradelineno)));
Reid Spencer950bf602007-01-26 08:19:09 +0000424
425 if (inFunctionScope())
426 InsertValue(V, CurFun.LateResolveValues);
427 else
428 InsertValue(V, CurModule.LateResolveValues);
429 return V;
430}
431
432/// getBBVal - This is used for two purposes:
433/// * If isDefinition is true, a new basic block with the specified ID is being
434/// defined.
435/// * If isDefinition is true, this is a reference to a basic block, which may
436/// or may not be a forward reference.
437///
438static BasicBlock *getBBVal(const ValID &ID, bool isDefinition = false) {
439 assert(inFunctionScope() && "Can't get basic block at global scope");
440
441 std::string Name;
442 BasicBlock *BB = 0;
443 switch (ID.Type) {
444 default:
445 error("Illegal label reference " + ID.getName());
446 break;
447 case ValID::NumberVal: // Is it a numbered definition?
448 if (unsigned(ID.Num) >= CurFun.NumberedBlocks.size())
449 CurFun.NumberedBlocks.resize(ID.Num+1);
450 BB = CurFun.NumberedBlocks[ID.Num];
451 break;
452 case ValID::NameVal: // Is it a named definition?
453 Name = ID.Name;
454 if (Value *N = CurFun.CurrentFunction->
Reid Spenceref9b9a72007-02-05 20:47:22 +0000455 getValueSymbolTable().lookup(Name)) {
Reid Spencer950bf602007-01-26 08:19:09 +0000456 if (N->getType() != Type::LabelTy)
457 error("Name '" + Name + "' does not refer to a BasicBlock");
458 BB = cast<BasicBlock>(N);
459 }
460 break;
461 }
462
463 // See if the block has already been defined.
464 if (BB) {
465 // If this is the definition of the block, make sure the existing value was
466 // just a forward reference. If it was a forward reference, there will be
467 // an entry for it in the PlaceHolderInfo map.
468 if (isDefinition && !CurFun.BBForwardRefs.erase(BB))
469 // The existing value was a definition, not a forward reference.
470 error("Redefinition of label " + ID.getName());
471
472 ID.destroy(); // Free strdup'd memory.
473 return BB;
474 }
475
476 // Otherwise this block has not been seen before.
477 BB = new BasicBlock("", CurFun.CurrentFunction);
478 if (ID.Type == ValID::NameVal) {
479 BB->setName(ID.Name);
480 } else {
481 CurFun.NumberedBlocks[ID.Num] = BB;
482 }
483
484 // If this is not a definition, keep track of it so we can use it as a forward
485 // reference.
486 if (!isDefinition) {
487 // Remember where this forward reference came from.
488 CurFun.BBForwardRefs[BB] = std::make_pair(ID, Upgradelineno);
489 } else {
490 // The forward declaration could have been inserted anywhere in the
491 // function: insert it into the correct place now.
492 CurFun.CurrentFunction->getBasicBlockList().remove(BB);
493 CurFun.CurrentFunction->getBasicBlockList().push_back(BB);
494 }
495 ID.destroy();
496 return BB;
497}
498
499
500//===----------------------------------------------------------------------===//
501// Code to handle forward references in instructions
502//===----------------------------------------------------------------------===//
503//
504// This code handles the late binding needed with statements that reference
505// values not defined yet... for example, a forward branch, or the PHI node for
506// a loop body.
507//
508// This keeps a table (CurFun.LateResolveValues) of all such forward references
509// and back patchs after we are done.
510//
511
Reid Spencer7de2e012007-01-29 19:08:46 +0000512/// This function determines if two function types differ only in their use of
513/// the sret parameter attribute in the first argument. If they are identical
514/// in all other respects, it returns true. Otherwise, it returns false.
515bool FuncTysDifferOnlyBySRet(const FunctionType *F1,
516 const FunctionType *F2) {
517 if (F1->getReturnType() != F2->getReturnType() ||
518 F1->getNumParams() != F2->getNumParams() ||
519 F1->getParamAttrs(0) != F2->getParamAttrs(0))
520 return false;
521 unsigned SRetMask = ~unsigned(FunctionType::StructRetAttribute);
522 for (unsigned i = 0; i < F1->getNumParams(); ++i) {
523 if (F1->getParamType(i) != F2->getParamType(i) ||
524 unsigned(F1->getParamAttrs(i+1)) & SRetMask !=
525 unsigned(F2->getParamAttrs(i+1)) & SRetMask)
526 return false;
527 }
528 return true;
529}
530
Reid Spencer950bf602007-01-26 08:19:09 +0000531// ResolveDefinitions - If we could not resolve some defs at parsing
532// time (forward branches, phi functions for loops, etc...) resolve the
533// defs now...
534//
535static void
536ResolveDefinitions(std::map<const Type*,ValueList> &LateResolvers,
537 std::map<const Type*,ValueList> *FutureLateResolvers) {
538 // Loop over LateResolveDefs fixing up stuff that couldn't be resolved
539 for (std::map<const Type*,ValueList>::iterator LRI = LateResolvers.begin(),
540 E = LateResolvers.end(); LRI != E; ++LRI) {
541 ValueList &List = LRI->second;
542 while (!List.empty()) {
543 Value *V = List.back();
544 List.pop_back();
545
546 std::map<Value*, std::pair<ValID, int> >::iterator PHI =
547 CurModule.PlaceHolderInfo.find(V);
548 assert(PHI != CurModule.PlaceHolderInfo.end() && "Placeholder error");
549
550 ValID &DID = PHI->second.first;
551
552 Value *TheRealValue = getExistingValue(LRI->first, DID);
553 if (TheRealValue) {
554 V->replaceAllUsesWith(TheRealValue);
555 delete V;
556 CurModule.PlaceHolderInfo.erase(PHI);
557 } else if (FutureLateResolvers) {
558 // Functions have their unresolved items forwarded to the module late
559 // resolver table
560 InsertValue(V, *FutureLateResolvers);
561 } else {
562 if (DID.Type == ValID::NameVal) {
Reid Spencer7de2e012007-01-29 19:08:46 +0000563 // The upgrade of csretcc to sret param attribute may have caused a
564 // function to not be found because the param attribute changed the
565 // type of the called function. Detect this situation and insert a
566 // cast as necessary.
567 bool fixed = false;
568 if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
569 if (const FunctionType *FTy =
570 dyn_cast<FunctionType>(PTy->getElementType()))
571 if (Function *OtherF =
Reid Spencer688b0492007-02-05 21:19:13 +0000572 CurModule.CurrentModule->getFunction(DID.getName()))
Reid Spencer7de2e012007-01-29 19:08:46 +0000573 if (FuncTysDifferOnlyBySRet(FTy,OtherF->getFunctionType())) {
574 V->replaceAllUsesWith(ConstantExpr::getBitCast(OtherF, PTy));
575 fixed = true;
576 }
577 if (!fixed) {
578 error("Reference to an invalid definition: '" +DID.getName()+
579 "' of type '" + V->getType()->getDescription() + "'",
580 PHI->second.second);
581 return;
582 }
Reid Spencer950bf602007-01-26 08:19:09 +0000583 } else {
584 error("Reference to an invalid definition: #" +
585 itostr(DID.Num) + " of type '" +
586 V->getType()->getDescription() + "'", PHI->second.second);
587 return;
588 }
589 }
590 }
591 }
592
593 LateResolvers.clear();
594}
595
596// ResolveTypeTo - A brand new type was just declared. This means that (if
597// name is not null) things referencing Name can be resolved. Otherwise, things
598// refering to the number can be resolved. Do this now.
599//
600static void ResolveTypeTo(char *Name, const Type *ToTy) {
601 ValID D;
602 if (Name) D = ValID::create(Name);
603 else D = ValID::create((int)CurModule.Types.size());
604
605 std::map<ValID, PATypeHolder>::iterator I =
606 CurModule.LateResolveTypes.find(D);
607 if (I != CurModule.LateResolveTypes.end()) {
608 ((DerivedType*)I->second.get())->refineAbstractTypeTo(ToTy);
609 CurModule.LateResolveTypes.erase(I);
610 }
611}
612
Anton Korobeynikovce13b852007-01-28 15:25:24 +0000613/// @brief This just makes any name given to it unique, up to MAX_UINT times.
Reid Spencer950bf602007-01-26 08:19:09 +0000614static std::string makeNameUnique(const std::string& Name) {
615 static unsigned UniqueNameCounter = 1;
616 std::string Result(Name);
617 Result += ".upgrd." + llvm::utostr(UniqueNameCounter++);
618 return Result;
619}
620
Anton Korobeynikovce13b852007-01-28 15:25:24 +0000621/// This is the implementation portion of TypeHasInteger. It traverses the
622/// type given, avoiding recursive types, and returns true as soon as it finds
623/// an integer type. If no integer type is found, it returns false.
624static bool TypeHasIntegerI(const Type *Ty, std::vector<const Type*> Stack) {
625 // Handle some easy cases
626 if (Ty->isPrimitiveType() || (Ty->getTypeID() == Type::OpaqueTyID))
627 return false;
628 if (Ty->isInteger())
629 return true;
630 if (const SequentialType *STy = dyn_cast<SequentialType>(Ty))
631 return STy->getElementType()->isInteger();
632
633 // Avoid type structure recursion
634 for (std::vector<const Type*>::iterator I = Stack.begin(), E = Stack.end();
635 I != E; ++I)
636 if (Ty == *I)
637 return false;
638
639 // Push us on the type stack
640 Stack.push_back(Ty);
641
642 if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
643 if (TypeHasIntegerI(FTy->getReturnType(), Stack))
644 return true;
645 FunctionType::param_iterator I = FTy->param_begin();
646 FunctionType::param_iterator E = FTy->param_end();
647 for (; I != E; ++I)
648 if (TypeHasIntegerI(*I, Stack))
649 return true;
650 return false;
651 } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
652 StructType::element_iterator I = STy->element_begin();
653 StructType::element_iterator E = STy->element_end();
654 for (; I != E; ++I) {
655 if (TypeHasIntegerI(*I, Stack))
656 return true;
657 }
658 return false;
659 }
660 // There shouldn't be anything else, but its definitely not integer
661 assert(0 && "What type is this?");
662 return false;
663}
664
665/// This is the interface to TypeHasIntegerI. It just provides the type stack,
666/// to avoid recursion, and then calls TypeHasIntegerI.
667static inline bool TypeHasInteger(const Type *Ty) {
668 std::vector<const Type*> TyStack;
669 return TypeHasIntegerI(Ty, TyStack);
670}
671
Reid Spencer950bf602007-01-26 08:19:09 +0000672// setValueName - Set the specified value to the name given. The name may be
673// null potentially, in which case this is a noop. The string passed in is
674// assumed to be a malloc'd string buffer, and is free'd by this function.
675//
676static void setValueName(Value *V, char *NameStr) {
677 if (NameStr) {
678 std::string Name(NameStr); // Copy string
679 free(NameStr); // Free old string
680
681 if (V->getType() == Type::VoidTy) {
682 error("Can't assign name '" + Name + "' to value with void type");
683 return;
684 }
685
Reid Spencer950bf602007-01-26 08:19:09 +0000686 assert(inFunctionScope() && "Must be in function scope");
687
688 // Search the function's symbol table for an existing value of this name
Reid Spenceref9b9a72007-02-05 20:47:22 +0000689 ValueSymbolTable &ST = CurFun.CurrentFunction->getValueSymbolTable();
690 Value* Existing = ST.lookup(Name);
Reid Spencer950bf602007-01-26 08:19:09 +0000691 if (Existing) {
Anton Korobeynikovce13b852007-01-28 15:25:24 +0000692 // An existing value of the same name was found. This might have happened
693 // because of the integer type planes collapsing in LLVM 2.0.
694 if (Existing->getType() == V->getType() &&
695 !TypeHasInteger(Existing->getType())) {
696 // If the type does not contain any integers in them then this can't be
697 // a type plane collapsing issue. It truly is a redefinition and we
698 // should error out as the assembly is invalid.
699 error("Redefinition of value named '" + Name + "' of type '" +
700 V->getType()->getDescription() + "'");
701 return;
Reid Spencer950bf602007-01-26 08:19:09 +0000702 }
703 // In LLVM 2.0 we don't allow names to be re-used for any values in a
704 // function, regardless of Type. Previously re-use of names was okay as
705 // long as they were distinct types. With type planes collapsing because
706 // of the signedness change and because of PR411, this can no longer be
707 // supported. We must search the entire symbol table for a conflicting
708 // name and make the name unique. No warning is needed as this can't
709 // cause a problem.
710 std::string NewName = makeNameUnique(Name);
711 // We're changing the name but it will probably be used by other
712 // instructions as operands later on. Consequently we have to retain
713 // a mapping of the renaming that we're doing.
714 RenameMapKey Key = std::make_pair(Name,V->getType());
715 CurFun.RenameMap[Key] = NewName;
716 Name = NewName;
717 }
718
719 // Set the name.
720 V->setName(Name);
721 }
722}
723
724/// ParseGlobalVariable - Handle parsing of a global. If Initializer is null,
725/// this is a declaration, otherwise it is a definition.
726static GlobalVariable *
727ParseGlobalVariable(char *NameStr,GlobalValue::LinkageTypes Linkage,
728 bool isConstantGlobal, const Type *Ty,
729 Constant *Initializer) {
730 if (isa<FunctionType>(Ty))
731 error("Cannot declare global vars of function type");
732
733 const PointerType *PTy = PointerType::get(Ty);
734
735 std::string Name;
736 if (NameStr) {
737 Name = NameStr; // Copy string
738 free(NameStr); // Free old string
739 }
740
741 // See if this global value was forward referenced. If so, recycle the
742 // object.
743 ValID ID;
744 if (!Name.empty()) {
745 ID = ValID::create((char*)Name.c_str());
746 } else {
747 ID = ValID::create((int)CurModule.Values[PTy].size());
748 }
749
750 if (GlobalValue *FWGV = CurModule.GetForwardRefForGlobal(PTy, ID)) {
751 // Move the global to the end of the list, from whereever it was
752 // previously inserted.
753 GlobalVariable *GV = cast<GlobalVariable>(FWGV);
754 CurModule.CurrentModule->getGlobalList().remove(GV);
755 CurModule.CurrentModule->getGlobalList().push_back(GV);
756 GV->setInitializer(Initializer);
757 GV->setLinkage(Linkage);
758 GV->setConstant(isConstantGlobal);
759 InsertValue(GV, CurModule.Values);
760 return GV;
761 }
762
763 // If this global has a name, check to see if there is already a definition
764 // of this global in the module and emit warnings if there are conflicts.
765 if (!Name.empty()) {
766 // The global has a name. See if there's an existing one of the same name.
767 if (CurModule.CurrentModule->getNamedGlobal(Name)) {
768 // We found an existing global ov the same name. This isn't allowed
769 // in LLVM 2.0. Consequently, we must alter the name of the global so it
770 // can at least compile. This can happen because of type planes
771 // There is alread a global of the same name which means there is a
772 // conflict. Let's see what we can do about it.
773 std::string NewName(makeNameUnique(Name));
774 if (Linkage == GlobalValue::InternalLinkage) {
775 // The linkage type is internal so just warn about the rename without
776 // invoking "scarey language" about linkage failures. GVars with
777 // InternalLinkage can be renamed at will.
778 warning("Global variable '" + Name + "' was renamed to '"+
779 NewName + "'");
780 } else {
781 // The linkage of this gval is external so we can't reliably rename
782 // it because it could potentially create a linking problem.
783 // However, we can't leave the name conflict in the output either or
784 // it won't assemble with LLVM 2.0. So, all we can do is rename
785 // this one to something unique and emit a warning about the problem.
786 warning("Renaming global variable '" + Name + "' to '" + NewName +
787 "' may cause linkage errors");
788 }
789
790 // Put the renaming in the global rename map
791 RenameMapKey Key = std::make_pair(Name,PointerType::get(Ty));
792 CurModule.RenameMap[Key] = NewName;
793
794 // Rename it
795 Name = NewName;
796 }
797 }
798
799 // Otherwise there is no existing GV to use, create one now.
800 GlobalVariable *GV =
801 new GlobalVariable(Ty, isConstantGlobal, Linkage, Initializer, Name,
802 CurModule.CurrentModule);
803 InsertValue(GV, CurModule.Values);
804 return GV;
805}
806
807// setTypeName - Set the specified type to the name given. The name may be
808// null potentially, in which case this is a noop. The string passed in is
809// assumed to be a malloc'd string buffer, and is freed by this function.
810//
811// This function returns true if the type has already been defined, but is
812// allowed to be redefined in the specified context. If the name is a new name
813// for the type plane, it is inserted and false is returned.
814static bool setTypeName(const Type *T, char *NameStr) {
815 assert(!inFunctionScope() && "Can't give types function-local names");
816 if (NameStr == 0) return false;
817
818 std::string Name(NameStr); // Copy string
819 free(NameStr); // Free old string
820
821 // We don't allow assigning names to void type
822 if (T == Type::VoidTy) {
823 error("Can't assign name '" + Name + "' to the void type");
824 return false;
825 }
826
827 // Set the type name, checking for conflicts as we do so.
828 bool AlreadyExists = CurModule.CurrentModule->addTypeName(Name, T);
829
830 if (AlreadyExists) { // Inserting a name that is already defined???
831 const Type *Existing = CurModule.CurrentModule->getTypeByName(Name);
832 assert(Existing && "Conflict but no matching type?");
833
834 // There is only one case where this is allowed: when we are refining an
835 // opaque type. In this case, Existing will be an opaque type.
836 if (const OpaqueType *OpTy = dyn_cast<OpaqueType>(Existing)) {
837 // We ARE replacing an opaque type!
838 const_cast<OpaqueType*>(OpTy)->refineAbstractTypeTo(T);
839 return true;
840 }
841
842 // Otherwise, this is an attempt to redefine a type. That's okay if
843 // the redefinition is identical to the original. This will be so if
844 // Existing and T point to the same Type object. In this one case we
845 // allow the equivalent redefinition.
846 if (Existing == T) return true; // Yes, it's equal.
847
848 // Any other kind of (non-equivalent) redefinition is an error.
849 error("Redefinition of type named '" + Name + "' in the '" +
850 T->getDescription() + "' type plane");
851 }
852
853 return false;
854}
855
856//===----------------------------------------------------------------------===//
857// Code for handling upreferences in type names...
858//
859
860// TypeContains - Returns true if Ty directly contains E in it.
861//
862static bool TypeContains(const Type *Ty, const Type *E) {
863 return std::find(Ty->subtype_begin(), Ty->subtype_end(),
864 E) != Ty->subtype_end();
865}
866
867namespace {
868 struct UpRefRecord {
869 // NestingLevel - The number of nesting levels that need to be popped before
870 // this type is resolved.
871 unsigned NestingLevel;
872
873 // LastContainedTy - This is the type at the current binding level for the
874 // type. Every time we reduce the nesting level, this gets updated.
875 const Type *LastContainedTy;
876
877 // UpRefTy - This is the actual opaque type that the upreference is
878 // represented with.
879 OpaqueType *UpRefTy;
880
881 UpRefRecord(unsigned NL, OpaqueType *URTy)
882 : NestingLevel(NL), LastContainedTy(URTy), UpRefTy(URTy) {}
883 };
884}
885
886// UpRefs - A list of the outstanding upreferences that need to be resolved.
887static std::vector<UpRefRecord> UpRefs;
888
889/// HandleUpRefs - Every time we finish a new layer of types, this function is
890/// called. It loops through the UpRefs vector, which is a list of the
891/// currently active types. For each type, if the up reference is contained in
892/// the newly completed type, we decrement the level count. When the level
893/// count reaches zero, the upreferenced type is the type that is passed in:
894/// thus we can complete the cycle.
895///
896static PATypeHolder HandleUpRefs(const Type *ty) {
897 // If Ty isn't abstract, or if there are no up-references in it, then there is
898 // nothing to resolve here.
899 if (!ty->isAbstract() || UpRefs.empty()) return ty;
900
901 PATypeHolder Ty(ty);
902 UR_OUT("Type '" << Ty->getDescription() <<
903 "' newly formed. Resolving upreferences.\n" <<
904 UpRefs.size() << " upreferences active!\n");
905
906 // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
907 // to zero), we resolve them all together before we resolve them to Ty. At
908 // the end of the loop, if there is anything to resolve to Ty, it will be in
909 // this variable.
910 OpaqueType *TypeToResolve = 0;
911
912 for (unsigned i = 0; i != UpRefs.size(); ++i) {
913 UR_OUT(" UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
914 << UpRefs[i].second->getDescription() << ") = "
915 << (TypeContains(Ty, UpRefs[i].second) ? "true" : "false") << "\n");
916 if (TypeContains(Ty, UpRefs[i].LastContainedTy)) {
917 // Decrement level of upreference
918 unsigned Level = --UpRefs[i].NestingLevel;
919 UpRefs[i].LastContainedTy = Ty;
920 UR_OUT(" Uplevel Ref Level = " << Level << "\n");
921 if (Level == 0) { // Upreference should be resolved!
922 if (!TypeToResolve) {
923 TypeToResolve = UpRefs[i].UpRefTy;
924 } else {
925 UR_OUT(" * Resolving upreference for "
926 << UpRefs[i].second->getDescription() << "\n";
927 std::string OldName = UpRefs[i].UpRefTy->getDescription());
928 UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
929 UR_OUT(" * Type '" << OldName << "' refined upreference to: "
930 << (const void*)Ty << ", " << Ty->getDescription() << "\n");
931 }
932 UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list...
933 --i; // Do not skip the next element...
934 }
935 }
936 }
937
938 if (TypeToResolve) {
939 UR_OUT(" * Resolving upreference for "
940 << UpRefs[i].second->getDescription() << "\n";
941 std::string OldName = TypeToResolve->getDescription());
942 TypeToResolve->refineAbstractTypeTo(Ty);
943 }
944
945 return Ty;
946}
947
948static inline Instruction::TermOps
949getTermOp(TermOps op) {
950 switch (op) {
951 default : assert(0 && "Invalid OldTermOp");
952 case RetOp : return Instruction::Ret;
953 case BrOp : return Instruction::Br;
954 case SwitchOp : return Instruction::Switch;
955 case InvokeOp : return Instruction::Invoke;
956 case UnwindOp : return Instruction::Unwind;
957 case UnreachableOp: return Instruction::Unreachable;
958 }
959}
960
961static inline Instruction::BinaryOps
962getBinaryOp(BinaryOps op, const Type *Ty, Signedness Sign) {
963 switch (op) {
964 default : assert(0 && "Invalid OldBinaryOps");
965 case SetEQ :
966 case SetNE :
967 case SetLE :
968 case SetGE :
969 case SetLT :
970 case SetGT : assert(0 && "Should use getCompareOp");
971 case AddOp : return Instruction::Add;
972 case SubOp : return Instruction::Sub;
973 case MulOp : return Instruction::Mul;
974 case DivOp : {
975 // This is an obsolete instruction so we must upgrade it based on the
976 // types of its operands.
977 bool isFP = Ty->isFloatingPoint();
978 if (const PackedType* PTy = dyn_cast<PackedType>(Ty))
979 // If its a packed type we want to use the element type
980 isFP = PTy->getElementType()->isFloatingPoint();
981 if (isFP)
982 return Instruction::FDiv;
983 else if (Sign == Signed)
984 return Instruction::SDiv;
985 return Instruction::UDiv;
986 }
987 case UDivOp : return Instruction::UDiv;
988 case SDivOp : return Instruction::SDiv;
989 case FDivOp : return Instruction::FDiv;
990 case RemOp : {
991 // This is an obsolete instruction so we must upgrade it based on the
992 // types of its operands.
993 bool isFP = Ty->isFloatingPoint();
994 if (const PackedType* PTy = dyn_cast<PackedType>(Ty))
995 // If its a packed type we want to use the element type
996 isFP = PTy->getElementType()->isFloatingPoint();
997 // Select correct opcode
998 if (isFP)
999 return Instruction::FRem;
1000 else if (Sign == Signed)
1001 return Instruction::SRem;
1002 return Instruction::URem;
1003 }
1004 case URemOp : return Instruction::URem;
1005 case SRemOp : return Instruction::SRem;
1006 case FRemOp : return Instruction::FRem;
Reid Spencer832254e2007-02-02 02:16:23 +00001007 case LShrOp : return Instruction::LShr;
1008 case AShrOp : return Instruction::AShr;
1009 case ShlOp : return Instruction::Shl;
1010 case ShrOp :
1011 if (Sign == Signed)
1012 return Instruction::AShr;
1013 return Instruction::LShr;
Reid Spencer950bf602007-01-26 08:19:09 +00001014 case AndOp : return Instruction::And;
1015 case OrOp : return Instruction::Or;
1016 case XorOp : return Instruction::Xor;
1017 }
1018}
1019
1020static inline Instruction::OtherOps
1021getCompareOp(BinaryOps op, unsigned short &predicate, const Type* &Ty,
1022 Signedness Sign) {
1023 bool isSigned = Sign == Signed;
1024 bool isFP = Ty->isFloatingPoint();
1025 switch (op) {
1026 default : assert(0 && "Invalid OldSetCC");
1027 case SetEQ :
1028 if (isFP) {
1029 predicate = FCmpInst::FCMP_OEQ;
1030 return Instruction::FCmp;
1031 } else {
1032 predicate = ICmpInst::ICMP_EQ;
1033 return Instruction::ICmp;
1034 }
1035 case SetNE :
1036 if (isFP) {
1037 predicate = FCmpInst::FCMP_UNE;
1038 return Instruction::FCmp;
1039 } else {
1040 predicate = ICmpInst::ICMP_NE;
1041 return Instruction::ICmp;
1042 }
1043 case SetLE :
1044 if (isFP) {
1045 predicate = FCmpInst::FCMP_OLE;
1046 return Instruction::FCmp;
1047 } else {
1048 if (isSigned)
1049 predicate = ICmpInst::ICMP_SLE;
1050 else
1051 predicate = ICmpInst::ICMP_ULE;
1052 return Instruction::ICmp;
1053 }
1054 case SetGE :
1055 if (isFP) {
1056 predicate = FCmpInst::FCMP_OGE;
1057 return Instruction::FCmp;
1058 } else {
1059 if (isSigned)
1060 predicate = ICmpInst::ICMP_SGE;
1061 else
1062 predicate = ICmpInst::ICMP_UGE;
1063 return Instruction::ICmp;
1064 }
1065 case SetLT :
1066 if (isFP) {
1067 predicate = FCmpInst::FCMP_OLT;
1068 return Instruction::FCmp;
1069 } else {
1070 if (isSigned)
1071 predicate = ICmpInst::ICMP_SLT;
1072 else
1073 predicate = ICmpInst::ICMP_ULT;
1074 return Instruction::ICmp;
1075 }
1076 case SetGT :
1077 if (isFP) {
1078 predicate = FCmpInst::FCMP_OGT;
1079 return Instruction::FCmp;
1080 } else {
1081 if (isSigned)
1082 predicate = ICmpInst::ICMP_SGT;
1083 else
1084 predicate = ICmpInst::ICMP_UGT;
1085 return Instruction::ICmp;
1086 }
1087 }
1088}
1089
1090static inline Instruction::MemoryOps getMemoryOp(MemoryOps op) {
1091 switch (op) {
1092 default : assert(0 && "Invalid OldMemoryOps");
1093 case MallocOp : return Instruction::Malloc;
1094 case FreeOp : return Instruction::Free;
1095 case AllocaOp : return Instruction::Alloca;
1096 case LoadOp : return Instruction::Load;
1097 case StoreOp : return Instruction::Store;
1098 case GetElementPtrOp : return Instruction::GetElementPtr;
1099 }
1100}
1101
1102static inline Instruction::OtherOps
1103getOtherOp(OtherOps op, Signedness Sign) {
1104 switch (op) {
1105 default : assert(0 && "Invalid OldOtherOps");
1106 case PHIOp : return Instruction::PHI;
1107 case CallOp : return Instruction::Call;
Reid Spencer950bf602007-01-26 08:19:09 +00001108 case SelectOp : return Instruction::Select;
1109 case UserOp1 : return Instruction::UserOp1;
1110 case UserOp2 : return Instruction::UserOp2;
1111 case VAArg : return Instruction::VAArg;
1112 case ExtractElementOp : return Instruction::ExtractElement;
1113 case InsertElementOp : return Instruction::InsertElement;
1114 case ShuffleVectorOp : return Instruction::ShuffleVector;
1115 case ICmpOp : return Instruction::ICmp;
1116 case FCmpOp : return Instruction::FCmp;
Reid Spencer950bf602007-01-26 08:19:09 +00001117 };
1118}
1119
1120static inline Value*
1121getCast(CastOps op, Value *Src, Signedness SrcSign, const Type *DstTy,
1122 Signedness DstSign, bool ForceInstruction = false) {
1123 Instruction::CastOps Opcode;
1124 const Type* SrcTy = Src->getType();
1125 if (op == CastOp) {
1126 if (SrcTy->isFloatingPoint() && isa<PointerType>(DstTy)) {
1127 // fp -> ptr cast is no longer supported but we must upgrade this
1128 // by doing a double cast: fp -> int -> ptr
1129 SrcTy = Type::Int64Ty;
1130 Opcode = Instruction::IntToPtr;
1131 if (isa<Constant>(Src)) {
1132 Src = ConstantExpr::getCast(Instruction::FPToUI,
1133 cast<Constant>(Src), SrcTy);
1134 } else {
1135 std::string NewName(makeNameUnique(Src->getName()));
1136 Src = new FPToUIInst(Src, SrcTy, NewName, CurBB);
1137 }
1138 } else if (isa<IntegerType>(DstTy) &&
1139 cast<IntegerType>(DstTy)->getBitWidth() == 1) {
1140 // cast type %x to bool was previously defined as setne type %x, null
1141 // The cast semantic is now to truncate, not compare so we must retain
1142 // the original intent by replacing the cast with a setne
1143 Constant* Null = Constant::getNullValue(SrcTy);
1144 Instruction::OtherOps Opcode = Instruction::ICmp;
1145 unsigned short predicate = ICmpInst::ICMP_NE;
1146 if (SrcTy->isFloatingPoint()) {
1147 Opcode = Instruction::FCmp;
1148 predicate = FCmpInst::FCMP_ONE;
1149 } else if (!SrcTy->isInteger() && !isa<PointerType>(SrcTy)) {
1150 error("Invalid cast to bool");
1151 }
1152 if (isa<Constant>(Src) && !ForceInstruction)
1153 return ConstantExpr::getCompare(predicate, cast<Constant>(Src), Null);
1154 else
1155 return CmpInst::create(Opcode, predicate, Src, Null);
1156 }
1157 // Determine the opcode to use by calling CastInst::getCastOpcode
1158 Opcode =
1159 CastInst::getCastOpcode(Src, SrcSign == Signed, DstTy, DstSign == Signed);
1160
1161 } else switch (op) {
1162 default: assert(0 && "Invalid cast token");
1163 case TruncOp: Opcode = Instruction::Trunc; break;
1164 case ZExtOp: Opcode = Instruction::ZExt; break;
1165 case SExtOp: Opcode = Instruction::SExt; break;
1166 case FPTruncOp: Opcode = Instruction::FPTrunc; break;
1167 case FPExtOp: Opcode = Instruction::FPExt; break;
1168 case FPToUIOp: Opcode = Instruction::FPToUI; break;
1169 case FPToSIOp: Opcode = Instruction::FPToSI; break;
1170 case UIToFPOp: Opcode = Instruction::UIToFP; break;
1171 case SIToFPOp: Opcode = Instruction::SIToFP; break;
1172 case PtrToIntOp: Opcode = Instruction::PtrToInt; break;
1173 case IntToPtrOp: Opcode = Instruction::IntToPtr; break;
1174 case BitCastOp: Opcode = Instruction::BitCast; break;
1175 }
1176
1177 if (isa<Constant>(Src) && !ForceInstruction)
1178 return ConstantExpr::getCast(Opcode, cast<Constant>(Src), DstTy);
1179 return CastInst::create(Opcode, Src, DstTy);
1180}
1181
1182static Instruction *
1183upgradeIntrinsicCall(const Type* RetTy, const ValID &ID,
1184 std::vector<Value*>& Args) {
1185
1186 std::string Name = ID.Type == ValID::NameVal ? ID.Name : "";
1187 if (Name == "llvm.isunordered.f32" || Name == "llvm.isunordered.f64") {
1188 if (Args.size() != 2)
1189 error("Invalid prototype for " + Name + " prototype");
1190 return new FCmpInst(FCmpInst::FCMP_UNO, Args[0], Args[1]);
1191 } else {
Reid Spencer950bf602007-01-26 08:19:09 +00001192 const Type* PtrTy = PointerType::get(Type::Int8Ty);
1193 std::vector<const Type*> Params;
1194 if (Name == "llvm.va_start" || Name == "llvm.va_end") {
1195 if (Args.size() != 1)
1196 error("Invalid prototype for " + Name + " prototype");
1197 Params.push_back(PtrTy);
1198 const FunctionType *FTy = FunctionType::get(Type::VoidTy, Params, false);
1199 const PointerType *PFTy = PointerType::get(FTy);
1200 Value* Func = getVal(PFTy, ID);
Reid Spencer832254e2007-02-02 02:16:23 +00001201 Args[0] = new BitCastInst(Args[0], PtrTy, makeNameUnique("va"), CurBB);
Reid Spencer950bf602007-01-26 08:19:09 +00001202 return new CallInst(Func, Args);
1203 } else if (Name == "llvm.va_copy") {
1204 if (Args.size() != 2)
1205 error("Invalid prototype for " + Name + " prototype");
1206 Params.push_back(PtrTy);
1207 Params.push_back(PtrTy);
1208 const FunctionType *FTy = FunctionType::get(Type::VoidTy, Params, false);
1209 const PointerType *PFTy = PointerType::get(FTy);
1210 Value* Func = getVal(PFTy, ID);
Reid Spencer832254e2007-02-02 02:16:23 +00001211 std::string InstName0(makeNameUnique("va0"));
1212 std::string InstName1(makeNameUnique("va1"));
Reid Spencer950bf602007-01-26 08:19:09 +00001213 Args[0] = new BitCastInst(Args[0], PtrTy, InstName0, CurBB);
1214 Args[1] = new BitCastInst(Args[1], PtrTy, InstName1, CurBB);
1215 return new CallInst(Func, Args);
1216 }
1217 }
1218 return 0;
1219}
1220
1221const Type* upgradeGEPIndices(const Type* PTy,
1222 std::vector<ValueInfo> *Indices,
1223 std::vector<Value*> &VIndices,
1224 std::vector<Constant*> *CIndices = 0) {
1225 // Traverse the indices with a gep_type_iterator so we can build the list
1226 // of constant and value indices for use later. Also perform upgrades
1227 VIndices.clear();
1228 if (CIndices) CIndices->clear();
1229 for (unsigned i = 0, e = Indices->size(); i != e; ++i)
1230 VIndices.push_back((*Indices)[i].V);
1231 generic_gep_type_iterator<std::vector<Value*>::iterator>
1232 GTI = gep_type_begin(PTy, VIndices.begin(), VIndices.end()),
1233 GTE = gep_type_end(PTy, VIndices.begin(), VIndices.end());
1234 for (unsigned i = 0, e = Indices->size(); i != e && GTI != GTE; ++i, ++GTI) {
1235 Value *Index = VIndices[i];
1236 if (CIndices && !isa<Constant>(Index))
1237 error("Indices to constant getelementptr must be constants");
1238 // LLVM 1.2 and earlier used ubyte struct indices. Convert any ubyte
1239 // struct indices to i32 struct indices with ZExt for compatibility.
1240 else if (isa<StructType>(*GTI)) { // Only change struct indices
1241 if (ConstantInt *CUI = dyn_cast<ConstantInt>(Index))
1242 if (CUI->getType()->getBitWidth() == 8)
1243 Index =
1244 ConstantExpr::getCast(Instruction::ZExt, CUI, Type::Int32Ty);
1245 } else {
1246 // Make sure that unsigned SequentialType indices are zext'd to
1247 // 64-bits if they were smaller than that because LLVM 2.0 will sext
1248 // all indices for SequentialType elements. We must retain the same
1249 // semantic (zext) for unsigned types.
1250 if (const IntegerType *Ity = dyn_cast<IntegerType>(Index->getType()))
Reid Spencer38f682b2007-01-26 20:31:18 +00001251 if (Ity->getBitWidth() < 64 && (*Indices)[i].S == Unsigned) {
Reid Spencer950bf602007-01-26 08:19:09 +00001252 if (CIndices)
1253 Index = ConstantExpr::getCast(Instruction::ZExt,
1254 cast<Constant>(Index), Type::Int64Ty);
1255 else
1256 Index = CastInst::create(Instruction::ZExt, Index, Type::Int64Ty,
Reid Spencer832254e2007-02-02 02:16:23 +00001257 makeNameUnique("gep"), CurBB);
Reid Spencer38f682b2007-01-26 20:31:18 +00001258 VIndices[i] = Index;
1259 }
Reid Spencer950bf602007-01-26 08:19:09 +00001260 }
1261 // Add to the CIndices list, if requested.
1262 if (CIndices)
1263 CIndices->push_back(cast<Constant>(Index));
1264 }
1265
1266 const Type *IdxTy =
1267 GetElementPtrInst::getIndexedType(PTy, VIndices, true);
1268 if (!IdxTy)
1269 error("Index list invalid for constant getelementptr");
1270 return IdxTy;
1271}
1272
Reid Spencerb7046c72007-01-29 05:41:34 +00001273unsigned upgradeCallingConv(unsigned CC) {
1274 switch (CC) {
1275 case OldCallingConv::C : return CallingConv::C;
1276 case OldCallingConv::CSRet : return CallingConv::C;
1277 case OldCallingConv::Fast : return CallingConv::Fast;
1278 case OldCallingConv::Cold : return CallingConv::Cold;
1279 case OldCallingConv::X86_StdCall : return CallingConv::X86_StdCall;
1280 case OldCallingConv::X86_FastCall: return CallingConv::X86_FastCall;
1281 default:
1282 return CC;
1283 }
1284}
1285
Reid Spencer950bf602007-01-26 08:19:09 +00001286Module* UpgradeAssembly(const std::string &infile, std::istream& in,
1287 bool debug, bool addAttrs)
Reid Spencere7c3c602006-11-30 06:36:44 +00001288{
1289 Upgradelineno = 1;
1290 CurFilename = infile;
Reid Spencer96839be2006-11-30 16:50:26 +00001291 LexInput = &in;
Reid Spencere77e35e2006-12-01 20:26:20 +00001292 yydebug = debug;
Reid Spencer71d2ec92006-12-31 06:02:26 +00001293 AddAttributes = addAttrs;
Reid Spencer950bf602007-01-26 08:19:09 +00001294 ObsoleteVarArgs = false;
1295 NewVarArgs = false;
Reid Spencere7c3c602006-11-30 06:36:44 +00001296
Reid Spencer950bf602007-01-26 08:19:09 +00001297 CurModule.CurrentModule = new Module(CurFilename);
1298
1299 // Check to make sure the parser succeeded
Reid Spencere7c3c602006-11-30 06:36:44 +00001300 if (yyparse()) {
Reid Spencer950bf602007-01-26 08:19:09 +00001301 if (ParserResult)
1302 delete ParserResult;
Reid Spencer30d0c582007-01-15 00:26:18 +00001303 std::cerr << "llvm-upgrade: parse failed.\n";
Reid Spencer30d0c582007-01-15 00:26:18 +00001304 return 0;
1305 }
1306
Reid Spencer950bf602007-01-26 08:19:09 +00001307 // Check to make sure that parsing produced a result
1308 if (!ParserResult) {
1309 std::cerr << "llvm-upgrade: no parse result.\n";
1310 return 0;
Reid Spencer30d0c582007-01-15 00:26:18 +00001311 }
1312
Reid Spencer950bf602007-01-26 08:19:09 +00001313 // Reset ParserResult variable while saving its value for the result.
1314 Module *Result = ParserResult;
1315 ParserResult = 0;
Reid Spencer30d0c582007-01-15 00:26:18 +00001316
Reid Spencer950bf602007-01-26 08:19:09 +00001317 //Not all functions use vaarg, so make a second check for ObsoleteVarArgs
Reid Spencer30d0c582007-01-15 00:26:18 +00001318 {
Reid Spencer950bf602007-01-26 08:19:09 +00001319 Function* F;
Reid Spencer688b0492007-02-05 21:19:13 +00001320 if ((F = Result->getFunction("llvm.va_start"))
Reid Spencer950bf602007-01-26 08:19:09 +00001321 && F->getFunctionType()->getNumParams() == 0)
1322 ObsoleteVarArgs = true;
Reid Spencer688b0492007-02-05 21:19:13 +00001323 if((F = Result->getFunction("llvm.va_copy"))
Reid Spencer950bf602007-01-26 08:19:09 +00001324 && F->getFunctionType()->getNumParams() == 1)
1325 ObsoleteVarArgs = true;
Reid Spencer280d8012006-12-01 23:40:53 +00001326 }
Reid Spencer319a7302007-01-05 17:20:02 +00001327
Reid Spencer950bf602007-01-26 08:19:09 +00001328 if (ObsoleteVarArgs && NewVarArgs) {
1329 error("This file is corrupt: it uses both new and old style varargs");
1330 return 0;
Reid Spencer319a7302007-01-05 17:20:02 +00001331 }
Reid Spencer319a7302007-01-05 17:20:02 +00001332
Reid Spencer950bf602007-01-26 08:19:09 +00001333 if(ObsoleteVarArgs) {
Reid Spencer688b0492007-02-05 21:19:13 +00001334 if(Function* F = Result->getFunction("llvm.va_start")) {
Reid Spencer950bf602007-01-26 08:19:09 +00001335 if (F->arg_size() != 0) {
1336 error("Obsolete va_start takes 0 argument");
Reid Spencer319a7302007-01-05 17:20:02 +00001337 return 0;
1338 }
Reid Spencer950bf602007-01-26 08:19:09 +00001339
1340 //foo = va_start()
1341 // ->
1342 //bar = alloca typeof(foo)
1343 //va_start(bar)
1344 //foo = load bar
Reid Spencer319a7302007-01-05 17:20:02 +00001345
Reid Spencer950bf602007-01-26 08:19:09 +00001346 const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID);
1347 const Type* ArgTy = F->getFunctionType()->getReturnType();
1348 const Type* ArgTyPtr = PointerType::get(ArgTy);
1349 Function* NF = cast<Function>(Result->getOrInsertFunction(
1350 "llvm.va_start", RetTy, ArgTyPtr, (Type *)0));
1351
1352 while (!F->use_empty()) {
1353 CallInst* CI = cast<CallInst>(F->use_back());
1354 AllocaInst* bar = new AllocaInst(ArgTy, 0, "vastart.fix.1", CI);
1355 new CallInst(NF, bar, "", CI);
1356 Value* foo = new LoadInst(bar, "vastart.fix.2", CI);
1357 CI->replaceAllUsesWith(foo);
1358 CI->getParent()->getInstList().erase(CI);
Reid Spencerf8383de2007-01-06 06:04:32 +00001359 }
Reid Spencer950bf602007-01-26 08:19:09 +00001360 Result->getFunctionList().erase(F);
Reid Spencerf8383de2007-01-06 06:04:32 +00001361 }
Reid Spencer950bf602007-01-26 08:19:09 +00001362
Reid Spencer688b0492007-02-05 21:19:13 +00001363 if(Function* F = Result->getFunction("llvm.va_end")) {
Reid Spencer950bf602007-01-26 08:19:09 +00001364 if(F->arg_size() != 1) {
1365 error("Obsolete va_end takes 1 argument");
1366 return 0;
Reid Spencerf8383de2007-01-06 06:04:32 +00001367 }
Reid Spencerf8383de2007-01-06 06:04:32 +00001368
Reid Spencer950bf602007-01-26 08:19:09 +00001369 //vaend foo
1370 // ->
1371 //bar = alloca 1 of typeof(foo)
1372 //vaend bar
1373 const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID);
1374 const Type* ArgTy = F->getFunctionType()->getParamType(0);
1375 const Type* ArgTyPtr = PointerType::get(ArgTy);
1376 Function* NF = cast<Function>(Result->getOrInsertFunction(
1377 "llvm.va_end", RetTy, ArgTyPtr, (Type *)0));
Reid Spencerf8383de2007-01-06 06:04:32 +00001378
Reid Spencer950bf602007-01-26 08:19:09 +00001379 while (!F->use_empty()) {
1380 CallInst* CI = cast<CallInst>(F->use_back());
1381 AllocaInst* bar = new AllocaInst(ArgTy, 0, "vaend.fix.1", CI);
1382 new StoreInst(CI->getOperand(1), bar, CI);
1383 new CallInst(NF, bar, "", CI);
1384 CI->getParent()->getInstList().erase(CI);
Reid Spencere77e35e2006-12-01 20:26:20 +00001385 }
Reid Spencer950bf602007-01-26 08:19:09 +00001386 Result->getFunctionList().erase(F);
Reid Spencere77e35e2006-12-01 20:26:20 +00001387 }
Reid Spencer950bf602007-01-26 08:19:09 +00001388
Reid Spencer688b0492007-02-05 21:19:13 +00001389 if(Function* F = Result->getFunction("llvm.va_copy")) {
Reid Spencer950bf602007-01-26 08:19:09 +00001390 if(F->arg_size() != 1) {
1391 error("Obsolete va_copy takes 1 argument");
1392 return 0;
Reid Spencere77e35e2006-12-01 20:26:20 +00001393 }
Reid Spencer950bf602007-01-26 08:19:09 +00001394 //foo = vacopy(bar)
1395 // ->
1396 //a = alloca 1 of typeof(foo)
1397 //b = alloca 1 of typeof(foo)
1398 //store bar -> b
1399 //vacopy(a, b)
1400 //foo = load a
1401
1402 const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID);
1403 const Type* ArgTy = F->getFunctionType()->getReturnType();
1404 const Type* ArgTyPtr = PointerType::get(ArgTy);
1405 Function* NF = cast<Function>(Result->getOrInsertFunction(
1406 "llvm.va_copy", RetTy, ArgTyPtr, ArgTyPtr, (Type *)0));
Reid Spencere77e35e2006-12-01 20:26:20 +00001407
Reid Spencer950bf602007-01-26 08:19:09 +00001408 while (!F->use_empty()) {
1409 CallInst* CI = cast<CallInst>(F->use_back());
1410 AllocaInst* a = new AllocaInst(ArgTy, 0, "vacopy.fix.1", CI);
1411 AllocaInst* b = new AllocaInst(ArgTy, 0, "vacopy.fix.2", CI);
1412 new StoreInst(CI->getOperand(1), b, CI);
1413 new CallInst(NF, a, b, "", CI);
1414 Value* foo = new LoadInst(a, "vacopy.fix.3", CI);
1415 CI->replaceAllUsesWith(foo);
1416 CI->getParent()->getInstList().erase(CI);
1417 }
1418 Result->getFunctionList().erase(F);
Reid Spencer319a7302007-01-05 17:20:02 +00001419 }
1420 }
1421
Reid Spencer52402b02007-01-02 05:45:11 +00001422 return Result;
1423}
1424
Reid Spencer950bf602007-01-26 08:19:09 +00001425} // end llvm namespace
Reid Spencer319a7302007-01-05 17:20:02 +00001426
Reid Spencer950bf602007-01-26 08:19:09 +00001427using namespace llvm;
Reid Spencer30d0c582007-01-15 00:26:18 +00001428
Reid Spencere7c3c602006-11-30 06:36:44 +00001429%}
1430
Reid Spencere77e35e2006-12-01 20:26:20 +00001431%union {
Reid Spencer950bf602007-01-26 08:19:09 +00001432 llvm::Module *ModuleVal;
1433 llvm::Function *FunctionVal;
1434 std::pair<llvm::PATypeInfo, char*> *ArgVal;
1435 llvm::BasicBlock *BasicBlockVal;
1436 llvm::TerminatorInst *TermInstVal;
1437 llvm::InstrInfo InstVal;
1438 llvm::ConstInfo ConstVal;
1439 llvm::ValueInfo ValueVal;
1440 llvm::PATypeInfo TypeVal;
1441 llvm::TypeInfo PrimType;
1442 llvm::PHIListInfo PHIList;
1443 std::list<llvm::PATypeInfo> *TypeList;
1444 std::vector<llvm::ValueInfo> *ValueList;
1445 std::vector<llvm::ConstInfo> *ConstVector;
1446
1447
1448 std::vector<std::pair<llvm::PATypeInfo,char*> > *ArgList;
1449 // Represent the RHS of PHI node
1450 std::vector<std::pair<llvm::Constant*, llvm::BasicBlock*> > *JumpTable;
1451
1452 llvm::GlobalValue::LinkageTypes Linkage;
1453 int64_t SInt64Val;
1454 uint64_t UInt64Val;
1455 int SIntVal;
1456 unsigned UIntVal;
1457 double FPVal;
1458 bool BoolVal;
1459
1460 char *StrVal; // This memory is strdup'd!
1461 llvm::ValID ValIDVal; // strdup'd memory maybe!
1462
1463 llvm::BinaryOps BinaryOpVal;
1464 llvm::TermOps TermOpVal;
1465 llvm::MemoryOps MemOpVal;
1466 llvm::OtherOps OtherOpVal;
1467 llvm::CastOps CastOpVal;
1468 llvm::ICmpInst::Predicate IPred;
1469 llvm::FCmpInst::Predicate FPred;
1470 llvm::Module::Endianness Endianness;
Reid Spencere77e35e2006-12-01 20:26:20 +00001471}
1472
Reid Spencer950bf602007-01-26 08:19:09 +00001473%type <ModuleVal> Module FunctionList
1474%type <FunctionVal> Function FunctionProto FunctionHeader BasicBlockList
1475%type <BasicBlockVal> BasicBlock InstructionList
1476%type <TermInstVal> BBTerminatorInst
1477%type <InstVal> Inst InstVal MemoryInst
1478%type <ConstVal> ConstVal ConstExpr
1479%type <ConstVector> ConstVector
1480%type <ArgList> ArgList ArgListH
1481%type <ArgVal> ArgVal
1482%type <PHIList> PHIList
1483%type <ValueList> ValueRefList ValueRefListE // For call param lists
1484%type <ValueList> IndexList // For GEP derived indices
1485%type <TypeList> TypeListI ArgTypeListI
1486%type <JumpTable> JumpTable
1487%type <BoolVal> GlobalType // GLOBAL or CONSTANT?
1488%type <BoolVal> OptVolatile // 'volatile' or not
1489%type <BoolVal> OptTailCall // TAIL CALL or plain CALL.
1490%type <BoolVal> OptSideEffect // 'sideeffect' or not.
1491%type <Linkage> OptLinkage
1492%type <Endianness> BigOrLittle
Reid Spencere77e35e2006-12-01 20:26:20 +00001493
Reid Spencer950bf602007-01-26 08:19:09 +00001494// ValueRef - Unresolved reference to a definition or BB
1495%type <ValIDVal> ValueRef ConstValueRef SymbolicValueRef
1496%type <ValueVal> ResolvedVal // <type> <valref> pair
Reid Spencerd7c4f8c2007-01-26 19:59:25 +00001497
Reid Spencer950bf602007-01-26 08:19:09 +00001498// Tokens and types for handling constant integer values
1499//
1500// ESINT64VAL - A negative number within long long range
1501%token <SInt64Val> ESINT64VAL
Reid Spencere77e35e2006-12-01 20:26:20 +00001502
Reid Spencer950bf602007-01-26 08:19:09 +00001503// EUINT64VAL - A positive number within uns. long long range
1504%token <UInt64Val> EUINT64VAL
1505%type <SInt64Val> EINT64VAL
Reid Spencere77e35e2006-12-01 20:26:20 +00001506
Reid Spencer950bf602007-01-26 08:19:09 +00001507%token <SIntVal> SINTVAL // Signed 32 bit ints...
1508%token <UIntVal> UINTVAL // Unsigned 32 bit ints...
1509%type <SIntVal> INTVAL
1510%token <FPVal> FPVAL // Float or Double constant
Reid Spencere77e35e2006-12-01 20:26:20 +00001511
Reid Spencer950bf602007-01-26 08:19:09 +00001512// Built in types...
1513%type <TypeVal> Types TypesV UpRTypes UpRTypesV
1514%type <PrimType> SIntType UIntType IntType FPType PrimType // Classifications
1515%token <PrimType> VOID BOOL SBYTE UBYTE SHORT USHORT INT UINT LONG ULONG
1516%token <PrimType> FLOAT DOUBLE TYPE LABEL
Reid Spencere77e35e2006-12-01 20:26:20 +00001517
Reid Spencer950bf602007-01-26 08:19:09 +00001518%token <StrVal> VAR_ID LABELSTR STRINGCONSTANT
1519%type <StrVal> Name OptName OptAssign
1520%type <UIntVal> OptAlign OptCAlign
1521%type <StrVal> OptSection SectionString
1522
1523%token IMPLEMENTATION ZEROINITIALIZER TRUETOK FALSETOK BEGINTOK ENDTOK
1524%token DECLARE GLOBAL CONSTANT SECTION VOLATILE
1525%token TO DOTDOTDOT NULL_TOK UNDEF CONST INTERNAL LINKONCE WEAK APPENDING
1526%token DLLIMPORT DLLEXPORT EXTERN_WEAK
1527%token OPAQUE NOT EXTERNAL TARGET TRIPLE ENDIAN POINTERSIZE LITTLE BIG ALIGN
1528%token DEPLIBS CALL TAIL ASM_TOK MODULE SIDEEFFECT
1529%token CC_TOK CCC_TOK CSRETCC_TOK FASTCC_TOK COLDCC_TOK
1530%token X86_STDCALLCC_TOK X86_FASTCALLCC_TOK
1531%token DATALAYOUT
1532%type <UIntVal> OptCallingConv
1533
1534// Basic Block Terminating Operators
1535%token <TermOpVal> RET BR SWITCH INVOKE UNREACHABLE
1536%token UNWIND EXCEPT
1537
1538// Binary Operators
1539%type <BinaryOpVal> ArithmeticOps LogicalOps SetCondOps // Binops Subcatagories
Reid Spencer832254e2007-02-02 02:16:23 +00001540%type <BinaryOpVal> ShiftOps
Reid Spencer950bf602007-01-26 08:19:09 +00001541%token <BinaryOpVal> ADD SUB MUL DIV UDIV SDIV FDIV REM UREM SREM FREM
Reid Spencer832254e2007-02-02 02:16:23 +00001542%token <BinaryOpVal> AND OR XOR SHL SHR ASHR LSHR
Reid Spencer950bf602007-01-26 08:19:09 +00001543%token <BinaryOpVal> SETLE SETGE SETLT SETGT SETEQ SETNE // Binary Comparators
1544%token <OtherOpVal> ICMP FCMP
1545
1546// Memory Instructions
1547%token <MemOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR
1548
1549// Other Operators
Reid Spencer832254e2007-02-02 02:16:23 +00001550%token <OtherOpVal> PHI_TOK SELECT VAARG
Reid Spencer950bf602007-01-26 08:19:09 +00001551%token <OtherOpVal> EXTRACTELEMENT INSERTELEMENT SHUFFLEVECTOR
1552%token VAARG_old VANEXT_old //OBSOLETE
1553
Reid Spencerd7c4f8c2007-01-26 19:59:25 +00001554// Support for ICmp/FCmp Predicates, which is 1.9++ but not 2.0
Reid Spencer950bf602007-01-26 08:19:09 +00001555%type <IPred> IPredicates
1556%type <FPred> FPredicates
1557%token EQ NE SLT SGT SLE SGE ULT UGT ULE UGE
1558%token OEQ ONE OLT OGT OLE OGE ORD UNO UEQ UNE
1559
1560%token <CastOpVal> CAST TRUNC ZEXT SEXT FPTRUNC FPEXT FPTOUI FPTOSI
1561%token <CastOpVal> UITOFP SITOFP PTRTOINT INTTOPTR BITCAST
1562%type <CastOpVal> CastOps
Reid Spencere7c3c602006-11-30 06:36:44 +00001563
1564%start Module
1565
1566%%
1567
1568// Handle constant integer size restriction and conversion...
Reid Spencer950bf602007-01-26 08:19:09 +00001569//
1570INTVAL
Reid Spencerd7c4f8c2007-01-26 19:59:25 +00001571 : SINTVAL
Reid Spencer950bf602007-01-26 08:19:09 +00001572 | UINTVAL {
1573 if ($1 > (uint32_t)INT32_MAX) // Outside of my range!
1574 error("Value too large for type");
1575 $$ = (int32_t)$1;
1576 }
1577 ;
1578
1579EINT64VAL
Reid Spencerd7c4f8c2007-01-26 19:59:25 +00001580 : ESINT64VAL // These have same type and can't cause problems...
Reid Spencer950bf602007-01-26 08:19:09 +00001581 | EUINT64VAL {
1582 if ($1 > (uint64_t)INT64_MAX) // Outside of my range!
1583 error("Value too large for type");
1584 $$ = (int64_t)$1;
1585 };
Reid Spencere7c3c602006-11-30 06:36:44 +00001586
1587// Operations that are notably excluded from this list include:
1588// RET, BR, & SWITCH because they end basic blocks and are treated specially.
Reid Spencer950bf602007-01-26 08:19:09 +00001589//
1590ArithmeticOps
1591 : ADD | SUB | MUL | DIV | UDIV | SDIV | FDIV | REM | UREM | SREM | FREM
1592 ;
1593
1594LogicalOps
1595 : AND | OR | XOR
1596 ;
1597
1598SetCondOps
1599 : SETLE | SETGE | SETLT | SETGT | SETEQ | SETNE
1600 ;
1601
1602IPredicates
1603 : EQ { $$ = ICmpInst::ICMP_EQ; } | NE { $$ = ICmpInst::ICMP_NE; }
1604 | SLT { $$ = ICmpInst::ICMP_SLT; } | SGT { $$ = ICmpInst::ICMP_SGT; }
1605 | SLE { $$ = ICmpInst::ICMP_SLE; } | SGE { $$ = ICmpInst::ICMP_SGE; }
1606 | ULT { $$ = ICmpInst::ICMP_ULT; } | UGT { $$ = ICmpInst::ICMP_UGT; }
1607 | ULE { $$ = ICmpInst::ICMP_ULE; } | UGE { $$ = ICmpInst::ICMP_UGE; }
1608 ;
1609
1610FPredicates
1611 : OEQ { $$ = FCmpInst::FCMP_OEQ; } | ONE { $$ = FCmpInst::FCMP_ONE; }
1612 | OLT { $$ = FCmpInst::FCMP_OLT; } | OGT { $$ = FCmpInst::FCMP_OGT; }
1613 | OLE { $$ = FCmpInst::FCMP_OLE; } | OGE { $$ = FCmpInst::FCMP_OGE; }
1614 | ORD { $$ = FCmpInst::FCMP_ORD; } | UNO { $$ = FCmpInst::FCMP_UNO; }
1615 | UEQ { $$ = FCmpInst::FCMP_UEQ; } | UNE { $$ = FCmpInst::FCMP_UNE; }
1616 | ULT { $$ = FCmpInst::FCMP_ULT; } | UGT { $$ = FCmpInst::FCMP_UGT; }
1617 | ULE { $$ = FCmpInst::FCMP_ULE; } | UGE { $$ = FCmpInst::FCMP_UGE; }
1618 | TRUETOK { $$ = FCmpInst::FCMP_TRUE; }
1619 | FALSETOK { $$ = FCmpInst::FCMP_FALSE; }
1620 ;
1621ShiftOps
1622 : SHL | SHR | ASHR | LSHR
1623 ;
1624
1625CastOps
1626 : TRUNC | ZEXT | SEXT | FPTRUNC | FPEXT | FPTOUI | FPTOSI
1627 | UITOFP | SITOFP | PTRTOINT | INTTOPTR | BITCAST | CAST
1628 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00001629
1630// These are some types that allow classification if we only want a particular
1631// thing... for example, only a signed, unsigned, or integral type.
Reid Spencer950bf602007-01-26 08:19:09 +00001632SIntType
1633 : LONG | INT | SHORT | SBYTE
1634 ;
1635
1636UIntType
1637 : ULONG | UINT | USHORT | UBYTE
1638 ;
1639
1640IntType
1641 : SIntType | UIntType
1642 ;
1643
1644FPType
1645 : FLOAT | DOUBLE
1646 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00001647
1648// OptAssign - Value producing statements have an optional assignment component
Reid Spencer950bf602007-01-26 08:19:09 +00001649OptAssign
1650 : Name '=' {
Reid Spencere7c3c602006-11-30 06:36:44 +00001651 $$ = $1;
1652 }
1653 | /*empty*/ {
Reid Spencer950bf602007-01-26 08:19:09 +00001654 $$ = 0;
Reid Spencere7c3c602006-11-30 06:36:44 +00001655 };
1656
1657OptLinkage
Reid Spencer950bf602007-01-26 08:19:09 +00001658 : INTERNAL { $$ = GlobalValue::InternalLinkage; }
1659 | LINKONCE { $$ = GlobalValue::LinkOnceLinkage; }
1660 | WEAK { $$ = GlobalValue::WeakLinkage; }
1661 | APPENDING { $$ = GlobalValue::AppendingLinkage; }
1662 | DLLIMPORT { $$ = GlobalValue::DLLImportLinkage; }
1663 | DLLEXPORT { $$ = GlobalValue::DLLExportLinkage; }
1664 | EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; }
1665 | /*empty*/ { $$ = GlobalValue::ExternalLinkage; }
1666 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00001667
1668OptCallingConv
Reid Spencerb7046c72007-01-29 05:41:34 +00001669 : /*empty*/ { CurFun.LastCC = $$ = OldCallingConv::C; }
1670 | CCC_TOK { CurFun.LastCC = $$ = OldCallingConv::C; }
1671 | CSRETCC_TOK { CurFun.LastCC = $$ = OldCallingConv::CSRet; }
1672 | FASTCC_TOK { CurFun.LastCC = $$ = OldCallingConv::Fast; }
1673 | COLDCC_TOK { CurFun.LastCC = $$ = OldCallingConv::Cold; }
1674 | X86_STDCALLCC_TOK { CurFun.LastCC = $$ = OldCallingConv::X86_StdCall; }
1675 | X86_FASTCALLCC_TOK { CurFun.LastCC = $$ = OldCallingConv::X86_FastCall; }
Reid Spencer950bf602007-01-26 08:19:09 +00001676 | CC_TOK EUINT64VAL {
1677 if ((unsigned)$2 != $2)
1678 error("Calling conv too large");
1679 $$ = $2;
1680 }
1681 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00001682
1683// OptAlign/OptCAlign - An optional alignment, and an optional alignment with
1684// a comma before it.
1685OptAlign
Reid Spencer950bf602007-01-26 08:19:09 +00001686 : /*empty*/ { $$ = 0; }
1687 | ALIGN EUINT64VAL {
1688 $$ = $2;
1689 if ($$ != 0 && !isPowerOf2_32($$))
1690 error("Alignment must be a power of two");
1691 }
1692 ;
Reid Spencerf0cf1322006-12-07 04:23:03 +00001693
Reid Spencere7c3c602006-11-30 06:36:44 +00001694OptCAlign
Reid Spencer950bf602007-01-26 08:19:09 +00001695 : /*empty*/ { $$ = 0; }
1696 | ',' ALIGN EUINT64VAL {
1697 $$ = $3;
1698 if ($$ != 0 && !isPowerOf2_32($$))
1699 error("Alignment must be a power of two");
1700 }
1701 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00001702
1703SectionString
Reid Spencer950bf602007-01-26 08:19:09 +00001704 : SECTION STRINGCONSTANT {
1705 for (unsigned i = 0, e = strlen($2); i != e; ++i)
1706 if ($2[i] == '"' || $2[i] == '\\')
1707 error("Invalid character in section name");
1708 $$ = $2;
1709 }
1710 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00001711
Reid Spencer950bf602007-01-26 08:19:09 +00001712OptSection
1713 : /*empty*/ { $$ = 0; }
1714 | SectionString { $$ = $1; }
1715 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00001716
Reid Spencer950bf602007-01-26 08:19:09 +00001717// GlobalVarAttributes - Used to pass the attributes string on a global. CurGV
1718// is set to be the global we are processing.
1719//
Reid Spencere7c3c602006-11-30 06:36:44 +00001720GlobalVarAttributes
Reid Spencer950bf602007-01-26 08:19:09 +00001721 : /* empty */ {}
1722 | ',' GlobalVarAttribute GlobalVarAttributes {}
1723 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00001724
Reid Spencer950bf602007-01-26 08:19:09 +00001725GlobalVarAttribute
1726 : SectionString {
1727 CurGV->setSection($1);
1728 free($1);
1729 }
1730 | ALIGN EUINT64VAL {
1731 if ($2 != 0 && !isPowerOf2_32($2))
1732 error("Alignment must be a power of two");
1733 CurGV->setAlignment($2);
1734
1735 }
1736 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00001737
1738//===----------------------------------------------------------------------===//
1739// Types includes all predefined types... except void, because it can only be
1740// used in specific contexts (function returning void for example). To have
1741// access to it, a user must explicitly use TypesV.
1742//
1743
1744// TypesV includes all of 'Types', but it also includes the void type.
Reid Spencer950bf602007-01-26 08:19:09 +00001745TypesV
1746 : Types
1747 | VOID {
1748 $$.T = new PATypeHolder($1.T);
1749 $$.S = Signless;
1750 }
1751 ;
1752
1753UpRTypesV
1754 : UpRTypes
1755 | VOID {
1756 $$.T = new PATypeHolder($1.T);
1757 $$.S = Signless;
1758 }
1759 ;
1760
1761Types
1762 : UpRTypes {
1763 if (!UpRefs.empty())
1764 error("Invalid upreference in type: " + (*$1.T)->getDescription());
1765 $$ = $1;
1766 }
1767 ;
1768
1769PrimType
1770 : BOOL | SBYTE | UBYTE | SHORT | USHORT | INT | UINT
1771 | LONG | ULONG | FLOAT | DOUBLE | LABEL
1772 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00001773
1774// Derived types are added later...
Reid Spencera50d5962006-12-02 04:11:07 +00001775UpRTypes
Reid Spencer950bf602007-01-26 08:19:09 +00001776 : PrimType {
1777 $$.T = new PATypeHolder($1.T);
1778 $$.S = $1.S;
Reid Spencera50d5962006-12-02 04:11:07 +00001779 }
Reid Spencer950bf602007-01-26 08:19:09 +00001780 | OPAQUE {
1781 $$.T = new PATypeHolder(OpaqueType::get());
1782 $$.S = Signless;
1783 }
1784 | SymbolicValueRef { // Named types are also simple types...
Reid Spencerd7c4f8c2007-01-26 19:59:25 +00001785 const Type* tmp = getType($1);
Reid Spencer950bf602007-01-26 08:19:09 +00001786 $$.T = new PATypeHolder(tmp);
1787 $$.S = Signless; // FIXME: what if its signed?
Reid Spencer78720742006-12-02 20:21:22 +00001788 }
1789 | '\\' EUINT64VAL { // Type UpReference
Reid Spencer950bf602007-01-26 08:19:09 +00001790 if ($2 > (uint64_t)~0U)
1791 error("Value out of range");
1792 OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder
1793 UpRefs.push_back(UpRefRecord((unsigned)$2, OT)); // Add to vector...
1794 $$.T = new PATypeHolder(OT);
1795 $$.S = Signless;
1796 UR_OUT("New Upreference!\n");
Reid Spencere7c3c602006-11-30 06:36:44 +00001797 }
1798 | UpRTypesV '(' ArgTypeListI ')' { // Function derived type?
Reid Spencer950bf602007-01-26 08:19:09 +00001799 std::vector<const Type*> Params;
1800 for (std::list<llvm::PATypeInfo>::iterator I = $3->begin(),
1801 E = $3->end(); I != E; ++I) {
1802 Params.push_back(I->T->get());
Reid Spencer52402b02007-01-02 05:45:11 +00001803 }
Reid Spencerb7046c72007-01-29 05:41:34 +00001804 FunctionType::ParamAttrsList ParamAttrs;
1805 if (CurFun.LastCC == OldCallingConv::CSRet) {
1806 ParamAttrs.push_back(FunctionType::NoAttributeSet);
1807 ParamAttrs.push_back(FunctionType::StructRetAttribute);
1808 }
Reid Spencer950bf602007-01-26 08:19:09 +00001809 bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
1810 if (isVarArg) Params.pop_back();
1811
Reid Spencerb7046c72007-01-29 05:41:34 +00001812 $$.T = new PATypeHolder(
1813 HandleUpRefs(FunctionType::get($1.T->get(),Params,isVarArg, ParamAttrs)));
Reid Spencer950bf602007-01-26 08:19:09 +00001814 $$.S = $1.S;
1815 delete $1.T; // Delete the return type handle
1816 delete $3; // Delete the argument list
Reid Spencere7c3c602006-11-30 06:36:44 +00001817 }
1818 | '[' EUINT64VAL 'x' UpRTypes ']' { // Sized array type?
Reid Spencer950bf602007-01-26 08:19:09 +00001819 $$.T = new PATypeHolder(HandleUpRefs(ArrayType::get($4.T->get(),
1820 (unsigned)$2)));
1821 $$.S = $4.S;
1822 delete $4.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00001823 }
1824 | '<' EUINT64VAL 'x' UpRTypes '>' { // Packed array type?
Reid Spencer950bf602007-01-26 08:19:09 +00001825 const llvm::Type* ElemTy = $4.T->get();
1826 if ((unsigned)$2 != $2)
1827 error("Unsigned result not equal to signed result");
1828 if (!(ElemTy->isInteger() || ElemTy->isFloatingPoint()))
1829 error("Elements of a PackedType must be integer or floating point");
1830 if (!isPowerOf2_32($2))
1831 error("PackedType length should be a power of 2");
1832 $$.T = new PATypeHolder(HandleUpRefs(PackedType::get(ElemTy,
1833 (unsigned)$2)));
1834 $$.S = $4.S;
1835 delete $4.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00001836 }
1837 | '{' TypeListI '}' { // Structure type?
Reid Spencer950bf602007-01-26 08:19:09 +00001838 std::vector<const Type*> Elements;
1839 for (std::list<llvm::PATypeInfo>::iterator I = $2->begin(),
1840 E = $2->end(); I != E; ++I)
1841 Elements.push_back(I->T->get());
1842 $$.T = new PATypeHolder(HandleUpRefs(StructType::get(Elements)));
1843 $$.S = Signless;
1844 delete $2;
Reid Spencere7c3c602006-11-30 06:36:44 +00001845 }
1846 | '{' '}' { // Empty structure type?
Reid Spencer950bf602007-01-26 08:19:09 +00001847 $$.T = new PATypeHolder(StructType::get(std::vector<const Type*>()));
1848 $$.S = Signless;
Reid Spencere7c3c602006-11-30 06:36:44 +00001849 }
Reid Spencer6fd36ab2006-12-29 20:35:03 +00001850 | '<' '{' TypeListI '}' '>' { // Packed Structure type?
Reid Spencer950bf602007-01-26 08:19:09 +00001851 std::vector<const Type*> Elements;
1852 for (std::list<llvm::PATypeInfo>::iterator I = $3->begin(),
1853 E = $3->end(); I != E; ++I) {
1854 Elements.push_back(I->T->get());
1855 delete I->T;
Reid Spencer52402b02007-01-02 05:45:11 +00001856 }
Reid Spencer950bf602007-01-26 08:19:09 +00001857 $$.T = new PATypeHolder(HandleUpRefs(StructType::get(Elements, true)));
1858 $$.S = Signless;
1859 delete $3;
Reid Spencer6fd36ab2006-12-29 20:35:03 +00001860 }
1861 | '<' '{' '}' '>' { // Empty packed structure type?
Reid Spencer950bf602007-01-26 08:19:09 +00001862 $$.T = new PATypeHolder(StructType::get(std::vector<const Type*>(),true));
1863 $$.S = Signless;
Reid Spencer6fd36ab2006-12-29 20:35:03 +00001864 }
Reid Spencere7c3c602006-11-30 06:36:44 +00001865 | UpRTypes '*' { // Pointer type?
Reid Spencer950bf602007-01-26 08:19:09 +00001866 if ($1.T->get() == Type::LabelTy)
1867 error("Cannot form a pointer to a basic block");
1868 $$.T = new PATypeHolder(HandleUpRefs(PointerType::get($1.T->get())));
1869 $$.S = $1.S;
1870 delete $1.T;
1871 }
1872 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00001873
1874// TypeList - Used for struct declarations and as a basis for function type
1875// declaration type lists
1876//
Reid Spencere77e35e2006-12-01 20:26:20 +00001877TypeListI
1878 : UpRTypes {
Reid Spencer950bf602007-01-26 08:19:09 +00001879 $$ = new std::list<PATypeInfo>();
1880 $$->push_back($1);
Reid Spencere77e35e2006-12-01 20:26:20 +00001881 }
1882 | TypeListI ',' UpRTypes {
Reid Spencer950bf602007-01-26 08:19:09 +00001883 ($$=$1)->push_back($3);
1884 }
1885 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00001886
1887// ArgTypeList - List of types for a function type declaration...
Reid Spencere77e35e2006-12-01 20:26:20 +00001888ArgTypeListI
Reid Spencer950bf602007-01-26 08:19:09 +00001889 : TypeListI
Reid Spencere7c3c602006-11-30 06:36:44 +00001890 | TypeListI ',' DOTDOTDOT {
Reid Spencer950bf602007-01-26 08:19:09 +00001891 PATypeInfo VoidTI;
1892 VoidTI.T = new PATypeHolder(Type::VoidTy);
1893 VoidTI.S = Signless;
1894 ($$=$1)->push_back(VoidTI);
Reid Spencere7c3c602006-11-30 06:36:44 +00001895 }
1896 | DOTDOTDOT {
Reid Spencer950bf602007-01-26 08:19:09 +00001897 $$ = new std::list<PATypeInfo>();
1898 PATypeInfo VoidTI;
1899 VoidTI.T = new PATypeHolder(Type::VoidTy);
1900 VoidTI.S = Signless;
1901 $$->push_back(VoidTI);
Reid Spencere7c3c602006-11-30 06:36:44 +00001902 }
1903 | /*empty*/ {
Reid Spencer950bf602007-01-26 08:19:09 +00001904 $$ = new std::list<PATypeInfo>();
1905 }
1906 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00001907
1908// ConstVal - The various declarations that go into the constant pool. This
1909// production is used ONLY to represent constants that show up AFTER a 'const',
1910// 'constant' or 'global' token at global scope. Constants that can be inlined
1911// into other expressions (such as integers and constexprs) are handled by the
1912// ResolvedVal, ValueRef and ConstValueRef productions.
1913//
Reid Spencer950bf602007-01-26 08:19:09 +00001914ConstVal
1915 : Types '[' ConstVector ']' { // Nonempty unsized arr
1916 const ArrayType *ATy = dyn_cast<ArrayType>($1.T->get());
1917 if (ATy == 0)
1918 error("Cannot make array constant with type: '" +
1919 $1.T->get()->getDescription() + "'");
1920 const Type *ETy = ATy->getElementType();
1921 int NumElements = ATy->getNumElements();
1922
1923 // Verify that we have the correct size...
1924 if (NumElements != -1 && NumElements != (int)$3->size())
1925 error("Type mismatch: constant sized array initialized with " +
1926 utostr($3->size()) + " arguments, but has size of " +
1927 itostr(NumElements) + "");
1928
1929 // Verify all elements are correct type!
1930 std::vector<Constant*> Elems;
1931 for (unsigned i = 0; i < $3->size(); i++) {
1932 Constant *C = (*$3)[i].C;
1933 const Type* ValTy = C->getType();
1934 if (ETy != ValTy)
1935 error("Element #" + utostr(i) + " is not of type '" +
1936 ETy->getDescription() +"' as required!\nIt is of type '"+
1937 ValTy->getDescription() + "'");
1938 Elems.push_back(C);
1939 }
1940 $$.C = ConstantArray::get(ATy, Elems);
1941 $$.S = $1.S;
1942 delete $1.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00001943 delete $3;
Reid Spencere7c3c602006-11-30 06:36:44 +00001944 }
1945 | Types '[' ']' {
Reid Spencer950bf602007-01-26 08:19:09 +00001946 const ArrayType *ATy = dyn_cast<ArrayType>($1.T->get());
1947 if (ATy == 0)
1948 error("Cannot make array constant with type: '" +
1949 $1.T->get()->getDescription() + "'");
1950 int NumElements = ATy->getNumElements();
1951 if (NumElements != -1 && NumElements != 0)
1952 error("Type mismatch: constant sized array initialized with 0"
1953 " arguments, but has size of " + itostr(NumElements) +"");
1954 $$.C = ConstantArray::get(ATy, std::vector<Constant*>());
1955 $$.S = $1.S;
1956 delete $1.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00001957 }
1958 | Types 'c' STRINGCONSTANT {
Reid Spencer950bf602007-01-26 08:19:09 +00001959 const ArrayType *ATy = dyn_cast<ArrayType>($1.T->get());
1960 if (ATy == 0)
1961 error("Cannot make array constant with type: '" +
1962 $1.T->get()->getDescription() + "'");
1963 int NumElements = ATy->getNumElements();
1964 const Type *ETy = dyn_cast<IntegerType>(ATy->getElementType());
1965 if (!ETy || cast<IntegerType>(ETy)->getBitWidth() != 8)
1966 error("String arrays require type i8, not '" + ETy->getDescription() +
1967 "'");
1968 char *EndStr = UnEscapeLexed($3, true);
1969 if (NumElements != -1 && NumElements != (EndStr-$3))
1970 error("Can't build string constant of size " +
1971 itostr((int)(EndStr-$3)) + " when array has size " +
1972 itostr(NumElements) + "");
1973 std::vector<Constant*> Vals;
1974 for (char *C = (char *)$3; C != (char *)EndStr; ++C)
1975 Vals.push_back(ConstantInt::get(ETy, *C));
1976 free($3);
1977 $$.C = ConstantArray::get(ATy, Vals);
1978 $$.S = $1.S;
1979 delete $1.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00001980 }
1981 | Types '<' ConstVector '>' { // Nonempty unsized arr
Reid Spencer950bf602007-01-26 08:19:09 +00001982 const PackedType *PTy = dyn_cast<PackedType>($1.T->get());
1983 if (PTy == 0)
1984 error("Cannot make packed constant with type: '" +
1985 $1.T->get()->getDescription() + "'");
1986 const Type *ETy = PTy->getElementType();
1987 int NumElements = PTy->getNumElements();
1988 // Verify that we have the correct size...
1989 if (NumElements != -1 && NumElements != (int)$3->size())
1990 error("Type mismatch: constant sized packed initialized with " +
1991 utostr($3->size()) + " arguments, but has size of " +
1992 itostr(NumElements) + "");
1993 // Verify all elements are correct type!
1994 std::vector<Constant*> Elems;
1995 for (unsigned i = 0; i < $3->size(); i++) {
1996 Constant *C = (*$3)[i].C;
1997 const Type* ValTy = C->getType();
1998 if (ETy != ValTy)
1999 error("Element #" + utostr(i) + " is not of type '" +
2000 ETy->getDescription() +"' as required!\nIt is of type '"+
2001 ValTy->getDescription() + "'");
2002 Elems.push_back(C);
2003 }
2004 $$.C = ConstantPacked::get(PTy, Elems);
2005 $$.S = $1.S;
2006 delete $1.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00002007 delete $3;
Reid Spencere7c3c602006-11-30 06:36:44 +00002008 }
2009 | Types '{' ConstVector '}' {
Reid Spencer950bf602007-01-26 08:19:09 +00002010 const StructType *STy = dyn_cast<StructType>($1.T->get());
2011 if (STy == 0)
2012 error("Cannot make struct constant with type: '" +
2013 $1.T->get()->getDescription() + "'");
2014 if ($3->size() != STy->getNumContainedTypes())
2015 error("Illegal number of initializers for structure type");
2016
2017 // Check to ensure that constants are compatible with the type initializer!
2018 std::vector<Constant*> Fields;
2019 for (unsigned i = 0, e = $3->size(); i != e; ++i) {
2020 Constant *C = (*$3)[i].C;
2021 if (C->getType() != STy->getElementType(i))
2022 error("Expected type '" + STy->getElementType(i)->getDescription() +
2023 "' for element #" + utostr(i) + " of structure initializer");
2024 Fields.push_back(C);
2025 }
2026 $$.C = ConstantStruct::get(STy, Fields);
2027 $$.S = $1.S;
2028 delete $1.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00002029 delete $3;
Reid Spencere7c3c602006-11-30 06:36:44 +00002030 }
2031 | Types '{' '}' {
Reid Spencer950bf602007-01-26 08:19:09 +00002032 const StructType *STy = dyn_cast<StructType>($1.T->get());
2033 if (STy == 0)
2034 error("Cannot make struct constant with type: '" +
2035 $1.T->get()->getDescription() + "'");
2036 if (STy->getNumContainedTypes() != 0)
2037 error("Illegal number of initializers for structure type");
2038 $$.C = ConstantStruct::get(STy, std::vector<Constant*>());
2039 $$.S = $1.S;
2040 delete $1.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00002041 }
Reid Spencer950bf602007-01-26 08:19:09 +00002042 | Types '<' '{' ConstVector '}' '>' {
2043 const StructType *STy = dyn_cast<StructType>($1.T->get());
2044 if (STy == 0)
2045 error("Cannot make packed struct constant with type: '" +
2046 $1.T->get()->getDescription() + "'");
2047 if ($4->size() != STy->getNumContainedTypes())
2048 error("Illegal number of initializers for packed structure type");
Reid Spencere7c3c602006-11-30 06:36:44 +00002049
Reid Spencer950bf602007-01-26 08:19:09 +00002050 // Check to ensure that constants are compatible with the type initializer!
2051 std::vector<Constant*> Fields;
2052 for (unsigned i = 0, e = $4->size(); i != e; ++i) {
2053 Constant *C = (*$4)[i].C;
2054 if (C->getType() != STy->getElementType(i))
2055 error("Expected type '" + STy->getElementType(i)->getDescription() +
2056 "' for element #" + utostr(i) + " of packed struct initializer");
2057 Fields.push_back(C);
Reid Spencer280d8012006-12-01 23:40:53 +00002058 }
Reid Spencer950bf602007-01-26 08:19:09 +00002059 $$.C = ConstantStruct::get(STy, Fields);
2060 $$.S = $1.S;
2061 delete $1.T;
Reid Spencere77e35e2006-12-01 20:26:20 +00002062 delete $4;
Reid Spencere7c3c602006-11-30 06:36:44 +00002063 }
Reid Spencer950bf602007-01-26 08:19:09 +00002064 | Types '<' '{' '}' '>' {
2065 const StructType *STy = dyn_cast<StructType>($1.T->get());
2066 if (STy == 0)
2067 error("Cannot make packed struct constant with type: '" +
2068 $1.T->get()->getDescription() + "'");
2069 if (STy->getNumContainedTypes() != 0)
2070 error("Illegal number of initializers for packed structure type");
2071 $$.C = ConstantStruct::get(STy, std::vector<Constant*>());
2072 $$.S = $1.S;
2073 delete $1.T;
2074 }
2075 | Types NULL_TOK {
2076 const PointerType *PTy = dyn_cast<PointerType>($1.T->get());
2077 if (PTy == 0)
2078 error("Cannot make null pointer constant with type: '" +
2079 $1.T->get()->getDescription() + "'");
2080 $$.C = ConstantPointerNull::get(PTy);
2081 $$.S = $1.S;
2082 delete $1.T;
2083 }
2084 | Types UNDEF {
2085 $$.C = UndefValue::get($1.T->get());
2086 $$.S = $1.S;
2087 delete $1.T;
2088 }
2089 | Types SymbolicValueRef {
2090 const PointerType *Ty = dyn_cast<PointerType>($1.T->get());
2091 if (Ty == 0)
2092 error("Global const reference must be a pointer type, not" +
2093 $1.T->get()->getDescription());
2094
2095 // ConstExprs can exist in the body of a function, thus creating
2096 // GlobalValues whenever they refer to a variable. Because we are in
2097 // the context of a function, getExistingValue will search the functions
2098 // symbol table instead of the module symbol table for the global symbol,
2099 // which throws things all off. To get around this, we just tell
2100 // getExistingValue that we are at global scope here.
2101 //
2102 Function *SavedCurFn = CurFun.CurrentFunction;
2103 CurFun.CurrentFunction = 0;
2104 Value *V = getExistingValue(Ty, $2);
2105 CurFun.CurrentFunction = SavedCurFn;
2106
2107 // If this is an initializer for a constant pointer, which is referencing a
2108 // (currently) undefined variable, create a stub now that shall be replaced
2109 // in the future with the right type of variable.
2110 //
2111 if (V == 0) {
2112 assert(isa<PointerType>(Ty) && "Globals may only be used as pointers");
2113 const PointerType *PT = cast<PointerType>(Ty);
2114
2115 // First check to see if the forward references value is already created!
2116 PerModuleInfo::GlobalRefsType::iterator I =
2117 CurModule.GlobalRefs.find(std::make_pair(PT, $2));
2118
2119 if (I != CurModule.GlobalRefs.end()) {
2120 V = I->second; // Placeholder already exists, use it...
2121 $2.destroy();
2122 } else {
2123 std::string Name;
2124 if ($2.Type == ValID::NameVal) Name = $2.Name;
2125
2126 // Create the forward referenced global.
2127 GlobalValue *GV;
2128 if (const FunctionType *FTy =
2129 dyn_cast<FunctionType>(PT->getElementType())) {
2130 GV = new Function(FTy, GlobalValue::ExternalLinkage, Name,
2131 CurModule.CurrentModule);
2132 } else {
2133 GV = new GlobalVariable(PT->getElementType(), false,
2134 GlobalValue::ExternalLinkage, 0,
2135 Name, CurModule.CurrentModule);
2136 }
2137
2138 // Keep track of the fact that we have a forward ref to recycle it
2139 CurModule.GlobalRefs.insert(std::make_pair(std::make_pair(PT, $2), GV));
2140 V = GV;
2141 }
2142 }
2143 $$.C = cast<GlobalValue>(V);
2144 $$.S = $1.S;
2145 delete $1.T; // Free the type handle
2146 }
2147 | Types ConstExpr {
2148 if ($1.T->get() != $2.C->getType())
2149 error("Mismatched types for constant expression");
2150 $$ = $2;
2151 $$.S = $1.S;
2152 delete $1.T;
2153 }
2154 | Types ZEROINITIALIZER {
2155 const Type *Ty = $1.T->get();
2156 if (isa<FunctionType>(Ty) || Ty == Type::LabelTy || isa<OpaqueType>(Ty))
2157 error("Cannot create a null initialized value of this type");
2158 $$.C = Constant::getNullValue(Ty);
2159 $$.S = $1.S;
2160 delete $1.T;
2161 }
2162 | SIntType EINT64VAL { // integral constants
2163 const Type *Ty = $1.T;
2164 if (!ConstantInt::isValueValidForType(Ty, $2))
2165 error("Constant value doesn't fit in type");
2166 $$.C = ConstantInt::get(Ty, $2);
2167 $$.S = Signed;
2168 }
2169 | UIntType EUINT64VAL { // integral constants
2170 const Type *Ty = $1.T;
2171 if (!ConstantInt::isValueValidForType(Ty, $2))
2172 error("Constant value doesn't fit in type");
2173 $$.C = ConstantInt::get(Ty, $2);
2174 $$.S = Unsigned;
2175 }
2176 | BOOL TRUETOK { // Boolean constants
2177 $$.C = ConstantInt::get(Type::Int1Ty, true);
2178 $$.S = Unsigned;
2179 }
2180 | BOOL FALSETOK { // Boolean constants
2181 $$.C = ConstantInt::get(Type::Int1Ty, false);
2182 $$.S = Unsigned;
2183 }
2184 | FPType FPVAL { // Float & Double constants
2185 if (!ConstantFP::isValueValidForType($1.T, $2))
2186 error("Floating point constant invalid for type");
2187 $$.C = ConstantFP::get($1.T, $2);
2188 $$.S = Signless;
2189 }
2190 ;
2191
2192ConstExpr
2193 : CastOps '(' ConstVal TO Types ')' {
2194 const Type* SrcTy = $3.C->getType();
2195 const Type* DstTy = $5.T->get();
2196 Signedness SrcSign = $3.S;
2197 Signedness DstSign = $5.S;
2198 if (!SrcTy->isFirstClassType())
2199 error("cast constant expression from a non-primitive type: '" +
2200 SrcTy->getDescription() + "'");
2201 if (!DstTy->isFirstClassType())
2202 error("cast constant expression to a non-primitive type: '" +
2203 DstTy->getDescription() + "'");
2204 $$.C = cast<Constant>(getCast($1, $3.C, SrcSign, DstTy, DstSign));
2205 $$.S = DstSign;
2206 delete $5.T;
2207 }
2208 | GETELEMENTPTR '(' ConstVal IndexList ')' {
2209 const Type *Ty = $3.C->getType();
2210 if (!isa<PointerType>(Ty))
2211 error("GetElementPtr requires a pointer operand");
2212
2213 std::vector<Value*> VIndices;
2214 std::vector<Constant*> CIndices;
2215 upgradeGEPIndices($3.C->getType(), $4, VIndices, &CIndices);
2216
2217 delete $4;
2218 $$.C = ConstantExpr::getGetElementPtr($3.C, CIndices);
2219 $$.S = Signless;
2220 }
Reid Spencere7c3c602006-11-30 06:36:44 +00002221 | SELECT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
Reid Spencer950bf602007-01-26 08:19:09 +00002222 if (!$3.C->getType()->isInteger() ||
2223 cast<IntegerType>($3.C->getType())->getBitWidth() != 1)
2224 error("Select condition must be bool type");
2225 if ($5.C->getType() != $7.C->getType())
2226 error("Select operand types must match");
2227 $$.C = ConstantExpr::getSelect($3.C, $5.C, $7.C);
2228 $$.S = Unsigned;
Reid Spencere7c3c602006-11-30 06:36:44 +00002229 }
2230 | ArithmeticOps '(' ConstVal ',' ConstVal ')' {
Reid Spencer950bf602007-01-26 08:19:09 +00002231 const Type *Ty = $3.C->getType();
2232 if (Ty != $5.C->getType())
2233 error("Binary operator types must match");
2234 // First, make sure we're dealing with the right opcode by upgrading from
2235 // obsolete versions.
2236 Instruction::BinaryOps Opcode = getBinaryOp($1, Ty, $3.S);
2237
2238 // HACK: llvm 1.3 and earlier used to emit invalid pointer constant exprs.
2239 // To retain backward compatibility with these early compilers, we emit a
2240 // cast to the appropriate integer type automatically if we are in the
2241 // broken case. See PR424 for more information.
2242 if (!isa<PointerType>(Ty)) {
2243 $$.C = ConstantExpr::get(Opcode, $3.C, $5.C);
2244 } else {
2245 const Type *IntPtrTy = 0;
2246 switch (CurModule.CurrentModule->getPointerSize()) {
2247 case Module::Pointer32: IntPtrTy = Type::Int32Ty; break;
2248 case Module::Pointer64: IntPtrTy = Type::Int64Ty; break;
2249 default: error("invalid pointer binary constant expr");
2250 }
2251 $$.C = ConstantExpr::get(Opcode,
2252 ConstantExpr::getCast(Instruction::PtrToInt, $3.C, IntPtrTy),
2253 ConstantExpr::getCast(Instruction::PtrToInt, $5.C, IntPtrTy));
2254 $$.C = ConstantExpr::getCast(Instruction::IntToPtr, $$.C, Ty);
2255 }
2256 $$.S = $3.S;
Reid Spencere7c3c602006-11-30 06:36:44 +00002257 }
2258 | LogicalOps '(' ConstVal ',' ConstVal ')' {
Reid Spencer950bf602007-01-26 08:19:09 +00002259 const Type* Ty = $3.C->getType();
2260 if (Ty != $5.C->getType())
2261 error("Logical operator types must match");
2262 if (!Ty->isInteger()) {
2263 if (!isa<PackedType>(Ty) ||
2264 !cast<PackedType>(Ty)->getElementType()->isInteger())
2265 error("Logical operator requires integer operands");
2266 }
2267 Instruction::BinaryOps Opcode = getBinaryOp($1, Ty, $3.S);
2268 $$.C = ConstantExpr::get(Opcode, $3.C, $5.C);
2269 $$.S = $3.S;
Reid Spencere7c3c602006-11-30 06:36:44 +00002270 }
2271 | SetCondOps '(' ConstVal ',' ConstVal ')' {
Reid Spencer950bf602007-01-26 08:19:09 +00002272 const Type* Ty = $3.C->getType();
2273 if (Ty != $5.C->getType())
2274 error("setcc operand types must match");
2275 unsigned short pred;
2276 Instruction::OtherOps Opcode = getCompareOp($1, pred, Ty, $3.S);
2277 $$.C = ConstantExpr::getCompare(Opcode, $3.C, $5.C);
2278 $$.S = Unsigned;
Reid Spencere7c3c602006-11-30 06:36:44 +00002279 }
Reid Spencer57f28f92006-12-03 07:10:26 +00002280 | ICMP IPredicates '(' ConstVal ',' ConstVal ')' {
Reid Spencer950bf602007-01-26 08:19:09 +00002281 if ($4.C->getType() != $6.C->getType())
2282 error("icmp operand types must match");
2283 $$.C = ConstantExpr::getCompare($2, $4.C, $6.C);
2284 $$.S = Unsigned;
Reid Spencer57f28f92006-12-03 07:10:26 +00002285 }
2286 | FCMP FPredicates '(' ConstVal ',' ConstVal ')' {
Reid Spencer950bf602007-01-26 08:19:09 +00002287 if ($4.C->getType() != $6.C->getType())
2288 error("fcmp operand types must match");
2289 $$.C = ConstantExpr::getCompare($2, $4.C, $6.C);
2290 $$.S = Unsigned;
Reid Spencer229e9362006-12-02 22:14:11 +00002291 }
Reid Spencere7c3c602006-11-30 06:36:44 +00002292 | ShiftOps '(' ConstVal ',' ConstVal ')' {
Reid Spencer950bf602007-01-26 08:19:09 +00002293 if (!$5.C->getType()->isInteger() ||
2294 cast<IntegerType>($5.C->getType())->getBitWidth() != 8)
2295 error("Shift count for shift constant must be unsigned byte");
Reid Spencer832254e2007-02-02 02:16:23 +00002296 const Type* Ty = $3.C->getType();
Reid Spencer950bf602007-01-26 08:19:09 +00002297 if (!$3.C->getType()->isInteger())
2298 error("Shift constant expression requires integer operand");
Reid Spencer832254e2007-02-02 02:16:23 +00002299 Constant *ShiftAmt = ConstantExpr::getZExt($5.C, Ty);
2300 $$.C = ConstantExpr::get(getBinaryOp($1, Ty, $3.S), $3.C, ShiftAmt);
Reid Spencer950bf602007-01-26 08:19:09 +00002301 $$.S = $3.S;
Reid Spencere7c3c602006-11-30 06:36:44 +00002302 }
2303 | EXTRACTELEMENT '(' ConstVal ',' ConstVal ')' {
Reid Spencer950bf602007-01-26 08:19:09 +00002304 if (!ExtractElementInst::isValidOperands($3.C, $5.C))
2305 error("Invalid extractelement operands");
2306 $$.C = ConstantExpr::getExtractElement($3.C, $5.C);
2307 $$.S = $3.S;
Reid Spencere7c3c602006-11-30 06:36:44 +00002308 }
2309 | INSERTELEMENT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
Reid Spencer950bf602007-01-26 08:19:09 +00002310 if (!InsertElementInst::isValidOperands($3.C, $5.C, $7.C))
2311 error("Invalid insertelement operands");
2312 $$.C = ConstantExpr::getInsertElement($3.C, $5.C, $7.C);
2313 $$.S = $3.S;
Reid Spencere7c3c602006-11-30 06:36:44 +00002314 }
2315 | SHUFFLEVECTOR '(' ConstVal ',' ConstVal ',' ConstVal ')' {
Reid Spencer950bf602007-01-26 08:19:09 +00002316 if (!ShuffleVectorInst::isValidOperands($3.C, $5.C, $7.C))
2317 error("Invalid shufflevector operands");
2318 $$.C = ConstantExpr::getShuffleVector($3.C, $5.C, $7.C);
2319 $$.S = $3.S;
2320 }
2321 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002322
2323
2324// ConstVector - A list of comma separated constants.
Reid Spencere77e35e2006-12-01 20:26:20 +00002325ConstVector
Reid Spencer950bf602007-01-26 08:19:09 +00002326 : ConstVector ',' ConstVal { ($$ = $1)->push_back($3); }
2327 | ConstVal {
2328 $$ = new std::vector<ConstInfo>();
2329 $$->push_back($1);
Reid Spencere7c3c602006-11-30 06:36:44 +00002330 }
Reid Spencere77e35e2006-12-01 20:26:20 +00002331 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002332
2333
2334// GlobalType - Match either GLOBAL or CONSTANT for global declarations...
Reid Spencer950bf602007-01-26 08:19:09 +00002335GlobalType
2336 : GLOBAL { $$ = false; }
2337 | CONSTANT { $$ = true; }
2338 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002339
2340
2341//===----------------------------------------------------------------------===//
2342// Rules to match Modules
2343//===----------------------------------------------------------------------===//
2344
2345// Module rule: Capture the result of parsing the whole file into a result
2346// variable...
2347//
Reid Spencer950bf602007-01-26 08:19:09 +00002348Module
2349 : FunctionList {
2350 $$ = ParserResult = $1;
2351 CurModule.ModuleDone();
Reid Spencere7c3c602006-11-30 06:36:44 +00002352 }
Jeff Cohenac2dca92007-01-21 19:30:52 +00002353 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002354
Reid Spencer950bf602007-01-26 08:19:09 +00002355// FunctionList - A list of functions, preceeded by a constant pool.
2356//
2357FunctionList
2358 : FunctionList Function { $$ = $1; CurFun.FunctionDone(); }
2359 | FunctionList FunctionProto { $$ = $1; }
2360 | FunctionList MODULE ASM_TOK AsmBlock { $$ = $1; }
2361 | FunctionList IMPLEMENTATION { $$ = $1; }
2362 | ConstPool {
2363 $$ = CurModule.CurrentModule;
2364 // Emit an error if there are any unresolved types left.
2365 if (!CurModule.LateResolveTypes.empty()) {
2366 const ValID &DID = CurModule.LateResolveTypes.begin()->first;
2367 if (DID.Type == ValID::NameVal) {
2368 error("Reference to an undefined type: '"+DID.getName() + "'");
2369 } else {
2370 error("Reference to an undefined type: #" + itostr(DID.Num));
2371 }
2372 }
2373 }
2374 ;
Reid Spencer78720742006-12-02 20:21:22 +00002375
Reid Spencere7c3c602006-11-30 06:36:44 +00002376// ConstPool - Constants with optional names assigned to them.
Reid Spencer950bf602007-01-26 08:19:09 +00002377ConstPool
2378 : ConstPool OptAssign TYPE TypesV {
2379 // Eagerly resolve types. This is not an optimization, this is a
2380 // requirement that is due to the fact that we could have this:
2381 //
2382 // %list = type { %list * }
2383 // %list = type { %list * } ; repeated type decl
2384 //
2385 // If types are not resolved eagerly, then the two types will not be
2386 // determined to be the same type!
2387 //
2388 const Type* Ty = $4.T->get();
2389 ResolveTypeTo($2, Ty);
2390
2391 if (!setTypeName(Ty, $2) && !$2) {
2392 // If this is a named type that is not a redefinition, add it to the slot
2393 // table.
2394 CurModule.Types.push_back(Ty);
Reid Spencera50d5962006-12-02 04:11:07 +00002395 }
Reid Spencer950bf602007-01-26 08:19:09 +00002396 delete $4.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00002397 }
2398 | ConstPool FunctionProto { // Function prototypes can be in const pool
Reid Spencere7c3c602006-11-30 06:36:44 +00002399 }
2400 | ConstPool MODULE ASM_TOK AsmBlock { // Asm blocks can be in the const pool
Reid Spencere7c3c602006-11-30 06:36:44 +00002401 }
Reid Spencer950bf602007-01-26 08:19:09 +00002402 | ConstPool OptAssign OptLinkage GlobalType ConstVal {
2403 if ($5.C == 0)
2404 error("Global value initializer is not a constant");
2405 CurGV = ParseGlobalVariable($2, $3, $4, $5.C->getType(), $5.C);
2406 } GlobalVarAttributes {
2407 CurGV = 0;
Reid Spencere7c3c602006-11-30 06:36:44 +00002408 }
Reid Spencer950bf602007-01-26 08:19:09 +00002409 | ConstPool OptAssign EXTERNAL GlobalType Types {
2410 const Type *Ty = $5.T->get();
2411 CurGV = ParseGlobalVariable($2, GlobalValue::ExternalLinkage, $4, Ty, 0);
2412 delete $5.T;
2413 } GlobalVarAttributes {
2414 CurGV = 0;
Reid Spencere7c3c602006-11-30 06:36:44 +00002415 }
Reid Spencer950bf602007-01-26 08:19:09 +00002416 | ConstPool OptAssign DLLIMPORT GlobalType Types {
2417 const Type *Ty = $5.T->get();
2418 CurGV = ParseGlobalVariable($2, GlobalValue::DLLImportLinkage, $4, Ty, 0);
2419 delete $5.T;
2420 } GlobalVarAttributes {
2421 CurGV = 0;
Reid Spencere7c3c602006-11-30 06:36:44 +00002422 }
Reid Spencer950bf602007-01-26 08:19:09 +00002423 | ConstPool OptAssign EXTERN_WEAK GlobalType Types {
2424 const Type *Ty = $5.T->get();
2425 CurGV =
2426 ParseGlobalVariable($2, GlobalValue::ExternalWeakLinkage, $4, Ty, 0);
2427 delete $5.T;
2428 } GlobalVarAttributes {
2429 CurGV = 0;
Reid Spencere7c3c602006-11-30 06:36:44 +00002430 }
2431 | ConstPool TARGET TargetDefinition {
Reid Spencere7c3c602006-11-30 06:36:44 +00002432 }
2433 | ConstPool DEPLIBS '=' LibrariesDefinition {
Reid Spencere7c3c602006-11-30 06:36:44 +00002434 }
2435 | /* empty: end of list */ {
Reid Spencer950bf602007-01-26 08:19:09 +00002436 }
2437 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002438
Reid Spencer950bf602007-01-26 08:19:09 +00002439AsmBlock
2440 : STRINGCONSTANT {
2441 const std::string &AsmSoFar = CurModule.CurrentModule->getModuleInlineAsm();
2442 char *EndStr = UnEscapeLexed($1, true);
2443 std::string NewAsm($1, EndStr);
2444 free($1);
Reid Spencere7c3c602006-11-30 06:36:44 +00002445
Reid Spencer950bf602007-01-26 08:19:09 +00002446 if (AsmSoFar.empty())
2447 CurModule.CurrentModule->setModuleInlineAsm(NewAsm);
2448 else
2449 CurModule.CurrentModule->setModuleInlineAsm(AsmSoFar+"\n"+NewAsm);
2450 }
2451 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002452
Reid Spencer950bf602007-01-26 08:19:09 +00002453BigOrLittle
Reid Spencerd7c4f8c2007-01-26 19:59:25 +00002454 : BIG { $$ = Module::BigEndian; }
Reid Spencer950bf602007-01-26 08:19:09 +00002455 | LITTLE { $$ = Module::LittleEndian; }
2456 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002457
2458TargetDefinition
2459 : ENDIAN '=' BigOrLittle {
Reid Spencer950bf602007-01-26 08:19:09 +00002460 CurModule.setEndianness($3);
Reid Spencere7c3c602006-11-30 06:36:44 +00002461 }
2462 | POINTERSIZE '=' EUINT64VAL {
Reid Spencer950bf602007-01-26 08:19:09 +00002463 if ($3 == 32)
2464 CurModule.setPointerSize(Module::Pointer32);
2465 else if ($3 == 64)
2466 CurModule.setPointerSize(Module::Pointer64);
2467 else
2468 error("Invalid pointer size: '" + utostr($3) + "'");
Reid Spencere7c3c602006-11-30 06:36:44 +00002469 }
2470 | TRIPLE '=' STRINGCONSTANT {
Reid Spencer950bf602007-01-26 08:19:09 +00002471 CurModule.CurrentModule->setTargetTriple($3);
2472 free($3);
Reid Spencere7c3c602006-11-30 06:36:44 +00002473 }
2474 | DATALAYOUT '=' STRINGCONSTANT {
Reid Spencer950bf602007-01-26 08:19:09 +00002475 CurModule.CurrentModule->setDataLayout($3);
2476 free($3);
2477 }
2478 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002479
2480LibrariesDefinition
Reid Spencer950bf602007-01-26 08:19:09 +00002481 : '[' LibList ']'
2482 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002483
2484LibList
2485 : LibList ',' STRINGCONSTANT {
Reid Spencer950bf602007-01-26 08:19:09 +00002486 CurModule.CurrentModule->addLibrary($3);
2487 free($3);
Reid Spencere7c3c602006-11-30 06:36:44 +00002488 }
Reid Spencer950bf602007-01-26 08:19:09 +00002489 | STRINGCONSTANT {
2490 CurModule.CurrentModule->addLibrary($1);
2491 free($1);
2492 }
2493 | /* empty: end of list */ { }
2494 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002495
2496//===----------------------------------------------------------------------===//
2497// Rules to match Function Headers
2498//===----------------------------------------------------------------------===//
2499
Reid Spencer950bf602007-01-26 08:19:09 +00002500Name
2501 : VAR_ID | STRINGCONSTANT
2502 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002503
Reid Spencer950bf602007-01-26 08:19:09 +00002504OptName
2505 : Name
2506 | /*empty*/ { $$ = 0; }
2507 ;
2508
2509ArgVal
2510 : Types OptName {
2511 if ($1.T->get() == Type::VoidTy)
2512 error("void typed arguments are invalid");
2513 $$ = new std::pair<PATypeInfo, char*>($1, $2);
Reid Spencer52402b02007-01-02 05:45:11 +00002514 }
Reid Spencer950bf602007-01-26 08:19:09 +00002515 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002516
Reid Spencer950bf602007-01-26 08:19:09 +00002517ArgListH
2518 : ArgListH ',' ArgVal {
2519 $$ = $1;
2520 $$->push_back(*$3);
Reid Spencere77e35e2006-12-01 20:26:20 +00002521 delete $3;
Reid Spencere7c3c602006-11-30 06:36:44 +00002522 }
2523 | ArgVal {
Reid Spencer950bf602007-01-26 08:19:09 +00002524 $$ = new std::vector<std::pair<PATypeInfo,char*> >();
2525 $$->push_back(*$1);
2526 delete $1;
Reid Spencere7c3c602006-11-30 06:36:44 +00002527 }
Reid Spencer950bf602007-01-26 08:19:09 +00002528 ;
2529
2530ArgList
2531 : ArgListH { $$ = $1; }
Reid Spencere7c3c602006-11-30 06:36:44 +00002532 | ArgListH ',' DOTDOTDOT {
Reid Spencere7c3c602006-11-30 06:36:44 +00002533 $$ = $1;
Reid Spencer950bf602007-01-26 08:19:09 +00002534 PATypeInfo VoidTI;
2535 VoidTI.T = new PATypeHolder(Type::VoidTy);
2536 VoidTI.S = Signless;
2537 $$->push_back(std::pair<PATypeInfo, char*>(VoidTI, 0));
Reid Spencere7c3c602006-11-30 06:36:44 +00002538 }
2539 | DOTDOTDOT {
Reid Spencer950bf602007-01-26 08:19:09 +00002540 $$ = new std::vector<std::pair<PATypeInfo,char*> >();
2541 PATypeInfo VoidTI;
2542 VoidTI.T = new PATypeHolder(Type::VoidTy);
2543 VoidTI.S = Signless;
2544 $$->push_back(std::pair<PATypeInfo, char*>(VoidTI, 0));
Reid Spencere7c3c602006-11-30 06:36:44 +00002545 }
Reid Spencer950bf602007-01-26 08:19:09 +00002546 | /* empty */ { $$ = 0; }
2547 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002548
Reid Spencer71d2ec92006-12-31 06:02:26 +00002549FunctionHeaderH
2550 : OptCallingConv TypesV Name '(' ArgList ')' OptSection OptAlign {
Reid Spencer950bf602007-01-26 08:19:09 +00002551 UnEscapeLexed($3);
2552 std::string FunctionName($3);
2553 free($3); // Free strdup'd memory!
Reid Spencere7c3c602006-11-30 06:36:44 +00002554
Reid Spencer950bf602007-01-26 08:19:09 +00002555 const Type* RetTy = $2.T->get();
2556
2557 if (!RetTy->isFirstClassType() && RetTy != Type::VoidTy)
2558 error("LLVM functions cannot return aggregate types");
2559
Reid Spenceref9b9a72007-02-05 20:47:22 +00002560 std::vector<const Type*> ParamTyList;
Reid Spencer950bf602007-01-26 08:19:09 +00002561
2562 // In LLVM 2.0 the signatures of three varargs intrinsics changed to take
2563 // i8*. We check here for those names and override the parameter list
2564 // types to ensure the prototype is correct.
2565 if (FunctionName == "llvm.va_start" || FunctionName == "llvm.va_end") {
Reid Spenceref9b9a72007-02-05 20:47:22 +00002566 ParamTyList.push_back(PointerType::get(Type::Int8Ty));
Reid Spencer950bf602007-01-26 08:19:09 +00002567 } else if (FunctionName == "llvm.va_copy") {
Reid Spenceref9b9a72007-02-05 20:47:22 +00002568 ParamTyList.push_back(PointerType::get(Type::Int8Ty));
2569 ParamTyList.push_back(PointerType::get(Type::Int8Ty));
Reid Spencer950bf602007-01-26 08:19:09 +00002570 } else if ($5) { // If there are arguments...
2571 for (std::vector<std::pair<PATypeInfo,char*> >::iterator
2572 I = $5->begin(), E = $5->end(); I != E; ++I) {
2573 const Type *Ty = I->first.T->get();
Reid Spenceref9b9a72007-02-05 20:47:22 +00002574 ParamTyList.push_back(Ty);
Reid Spencer950bf602007-01-26 08:19:09 +00002575 }
2576 }
2577
Reid Spenceref9b9a72007-02-05 20:47:22 +00002578 bool isVarArg = ParamTyList.size() && ParamTyList.back() == Type::VoidTy;
2579 if (isVarArg)
2580 ParamTyList.pop_back();
Reid Spencer950bf602007-01-26 08:19:09 +00002581
Reid Spencerb7046c72007-01-29 05:41:34 +00002582 // Convert the CSRet calling convention into the corresponding parameter
2583 // attribute.
2584 FunctionType::ParamAttrsList ParamAttrs;
2585 if ($1 == OldCallingConv::CSRet) {
2586 ParamAttrs.push_back(FunctionType::NoAttributeSet); // result
2587 ParamAttrs.push_back(FunctionType::StructRetAttribute); // first arg
2588 }
2589
Reid Spenceref9b9a72007-02-05 20:47:22 +00002590 const FunctionType *FT = FunctionType::get(RetTy, ParamTyList, isVarArg,
Reid Spencerb7046c72007-01-29 05:41:34 +00002591 ParamAttrs);
Reid Spencer950bf602007-01-26 08:19:09 +00002592 const PointerType *PFT = PointerType::get(FT);
2593 delete $2.T;
2594
2595 ValID ID;
2596 if (!FunctionName.empty()) {
2597 ID = ValID::create((char*)FunctionName.c_str());
2598 } else {
2599 ID = ValID::create((int)CurModule.Values[PFT].size());
2600 }
2601
2602 Function *Fn = 0;
2603 // See if this function was forward referenced. If so, recycle the object.
2604 if (GlobalValue *FWRef = CurModule.GetForwardRefForGlobal(PFT, ID)) {
2605 // Move the function to the end of the list, from whereever it was
2606 // previously inserted.
2607 Fn = cast<Function>(FWRef);
2608 CurModule.CurrentModule->getFunctionList().remove(Fn);
2609 CurModule.CurrentModule->getFunctionList().push_back(Fn);
2610 } else if (!FunctionName.empty() && // Merge with an earlier prototype?
Reid Spenceref9b9a72007-02-05 20:47:22 +00002611 (Fn = CurModule.CurrentModule->getFunction(FunctionName))) {
2612 if (Fn->getFunctionType() != FT ) {
2613 // The existing function doesn't have the same type. Previously this was
2614 // permitted because the symbol tables had "type planes" and names were
2615 // distinct within a type plane. After PR411 was fixed, this is no
2616 // longer the case. To resolve this we must rename this function.
2617 // However, renaming it can cause problems if its linkage is external
2618 // because it could cause a link failure. We warn about this.
2619 std::string NewName = makeNameUnique(FunctionName);
2620 warning("Renaming function '" + FunctionName + "' as '" + NewName +
2621 "' may cause linkage errors");
2622
2623 Fn = new Function(FT, GlobalValue::ExternalLinkage, NewName,
2624 CurModule.CurrentModule);
2625 InsertValue(Fn, CurModule.Values);
2626 RenameMapKey Key = std::make_pair(FunctionName,PFT);
2627 CurModule.RenameMap[Key] = NewName;
2628 } else {
2629 // The types are the same. Either the existing or the current function
2630 // needs to be a forward declaration. If not, they're attempting to
2631 // redefine a function.
2632 if (!CurFun.isDeclare && !Fn->isDeclaration())
2633 error("Redefinition of function '" + FunctionName + "'");
Reid Spencer950bf602007-01-26 08:19:09 +00002634
Reid Spenceref9b9a72007-02-05 20:47:22 +00002635 // Make sure to strip off any argument names so we can't get conflicts.
2636 if (Fn->isDeclaration())
2637 for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2638 AI != AE; ++AI)
2639 AI->setName("");
2640 }
2641 } else { // Not already defined?
Reid Spencer950bf602007-01-26 08:19:09 +00002642 Fn = new Function(FT, GlobalValue::ExternalLinkage, FunctionName,
2643 CurModule.CurrentModule);
2644
2645 InsertValue(Fn, CurModule.Values);
2646 }
2647
2648 CurFun.FunctionStart(Fn);
2649
2650 if (CurFun.isDeclare) {
2651 // If we have declaration, always overwrite linkage. This will allow us
2652 // to correctly handle cases, when pointer to function is passed as
2653 // argument to another function.
2654 Fn->setLinkage(CurFun.Linkage);
2655 }
Reid Spencerb7046c72007-01-29 05:41:34 +00002656 Fn->setCallingConv(upgradeCallingConv($1));
Reid Spencer950bf602007-01-26 08:19:09 +00002657 Fn->setAlignment($8);
2658 if ($7) {
2659 Fn->setSection($7);
2660 free($7);
2661 }
2662
2663 // Add all of the arguments we parsed to the function...
2664 if ($5) { // Is null if empty...
2665 if (isVarArg) { // Nuke the last entry
2666 assert($5->back().first.T->get() == Type::VoidTy &&
2667 $5->back().second == 0 && "Not a varargs marker");
2668 delete $5->back().first.T;
2669 $5->pop_back(); // Delete the last entry
2670 }
2671 Function::arg_iterator ArgIt = Fn->arg_begin();
Reid Spenceref9b9a72007-02-05 20:47:22 +00002672 Function::arg_iterator ArgEnd = Fn->arg_end();
2673 std::vector<std::pair<PATypeInfo,char*> >::iterator I = $5->begin();
2674 std::vector<std::pair<PATypeInfo,char*> >::iterator E = $5->end();
2675 for ( ; I != E && ArgIt != ArgEnd; ++I, ++ArgIt) {
Reid Spencer950bf602007-01-26 08:19:09 +00002676 delete I->first.T; // Delete the typeholder...
2677 setValueName(ArgIt, I->second); // Insert arg into symtab...
2678 InsertValue(ArgIt);
2679 }
2680 delete $5; // We're now done with the argument list
2681 }
2682 }
2683 ;
2684
2685BEGIN
2686 : BEGINTOK | '{' // Allow BEGIN or '{' to start a function
Jeff Cohenac2dca92007-01-21 19:30:52 +00002687 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002688
Reid Spencer6fd36ab2006-12-29 20:35:03 +00002689FunctionHeader
2690 : OptLinkage FunctionHeaderH BEGIN {
Reid Spencer950bf602007-01-26 08:19:09 +00002691 $$ = CurFun.CurrentFunction;
2692
2693 // Make sure that we keep track of the linkage type even if there was a
2694 // previous "declare".
2695 $$->setLinkage($1);
Reid Spencere7c3c602006-11-30 06:36:44 +00002696 }
Reid Spencer6fd36ab2006-12-29 20:35:03 +00002697 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002698
Reid Spencer950bf602007-01-26 08:19:09 +00002699END
2700 : ENDTOK | '}' // Allow end of '}' to end a function
2701 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002702
Reid Spencer950bf602007-01-26 08:19:09 +00002703Function
2704 : BasicBlockList END {
2705 $$ = $1;
2706 };
Reid Spencere7c3c602006-11-30 06:36:44 +00002707
Reid Spencere77e35e2006-12-01 20:26:20 +00002708FnDeclareLinkage
Reid Spencer950bf602007-01-26 08:19:09 +00002709 : /*default*/
2710 | DLLIMPORT { CurFun.Linkage = GlobalValue::DLLImportLinkage; }
2711 | EXTERN_WEAK { CurFun.Linkage = GlobalValue::ExternalWeakLinkage; }
Reid Spencere7c3c602006-11-30 06:36:44 +00002712 ;
2713
2714FunctionProto
Reid Spencer950bf602007-01-26 08:19:09 +00002715 : DECLARE { CurFun.isDeclare = true; } FnDeclareLinkage FunctionHeaderH {
2716 $$ = CurFun.CurrentFunction;
2717 CurFun.FunctionDone();
2718
2719 }
2720 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002721
2722//===----------------------------------------------------------------------===//
2723// Rules to match Basic Blocks
2724//===----------------------------------------------------------------------===//
2725
Reid Spencer950bf602007-01-26 08:19:09 +00002726OptSideEffect
2727 : /* empty */ { $$ = false; }
2728 | SIDEEFFECT { $$ = true; }
2729 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002730
Reid Spencere77e35e2006-12-01 20:26:20 +00002731ConstValueRef
Reid Spencer950bf602007-01-26 08:19:09 +00002732 // A reference to a direct constant
2733 : ESINT64VAL { $$ = ValID::create($1); }
2734 | EUINT64VAL { $$ = ValID::create($1); }
2735 | FPVAL { $$ = ValID::create($1); }
2736 | TRUETOK { $$ = ValID::create(ConstantInt::get(Type::Int1Ty, true)); }
2737 | FALSETOK { $$ = ValID::create(ConstantInt::get(Type::Int1Ty, false)); }
2738 | NULL_TOK { $$ = ValID::createNull(); }
2739 | UNDEF { $$ = ValID::createUndef(); }
2740 | ZEROINITIALIZER { $$ = ValID::createZeroInit(); }
2741 | '<' ConstVector '>' { // Nonempty unsized packed vector
2742 const Type *ETy = (*$2)[0].C->getType();
2743 int NumElements = $2->size();
2744 PackedType* pt = PackedType::get(ETy, NumElements);
2745 PATypeHolder* PTy = new PATypeHolder(
2746 HandleUpRefs(PackedType::get(ETy, NumElements)));
2747
2748 // Verify all elements are correct type!
2749 std::vector<Constant*> Elems;
2750 for (unsigned i = 0; i < $2->size(); i++) {
2751 Constant *C = (*$2)[i].C;
2752 const Type *CTy = C->getType();
2753 if (ETy != CTy)
2754 error("Element #" + utostr(i) + " is not of type '" +
2755 ETy->getDescription() +"' as required!\nIt is of type '" +
2756 CTy->getDescription() + "'");
2757 Elems.push_back(C);
Reid Spencere7c3c602006-11-30 06:36:44 +00002758 }
Reid Spencer950bf602007-01-26 08:19:09 +00002759 $$ = ValID::create(ConstantPacked::get(pt, Elems));
2760 delete PTy; delete $2;
2761 }
2762 | ConstExpr {
2763 $$ = ValID::create($1.C);
2764 }
2765 | ASM_TOK OptSideEffect STRINGCONSTANT ',' STRINGCONSTANT {
2766 char *End = UnEscapeLexed($3, true);
2767 std::string AsmStr = std::string($3, End);
2768 End = UnEscapeLexed($5, true);
2769 std::string Constraints = std::string($5, End);
2770 $$ = ValID::createInlineAsm(AsmStr, Constraints, $2);
2771 free($3);
2772 free($5);
2773 }
2774 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002775
Reid Spencer950bf602007-01-26 08:19:09 +00002776// SymbolicValueRef - Reference to one of two ways of symbolically refering to
2777// another value.
2778//
2779SymbolicValueRef
2780 : INTVAL { $$ = ValID::create($1); }
2781 | Name { $$ = ValID::create($1); }
2782 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002783
2784// ValueRef - A reference to a definition... either constant or symbolic
Reid Spencerf459d392006-12-02 16:19:52 +00002785ValueRef
Reid Spencer950bf602007-01-26 08:19:09 +00002786 : SymbolicValueRef | ConstValueRef
Reid Spencerf459d392006-12-02 16:19:52 +00002787 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002788
Reid Spencer950bf602007-01-26 08:19:09 +00002789
Reid Spencere7c3c602006-11-30 06:36:44 +00002790// ResolvedVal - a <type> <value> pair. This is used only in cases where the
2791// type immediately preceeds the value reference, and allows complex constant
2792// pool references (for things like: 'ret [2 x int] [ int 12, int 42]')
Reid Spencer950bf602007-01-26 08:19:09 +00002793ResolvedVal
2794 : Types ValueRef {
2795 const Type *Ty = $1.T->get();
2796 $$.S = $1.S;
2797 $$.V = getVal(Ty, $2);
2798 delete $1.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00002799 }
Reid Spencer950bf602007-01-26 08:19:09 +00002800 ;
2801
2802BasicBlockList
2803 : BasicBlockList BasicBlock {
2804 $$ = $1;
2805 }
2806 | FunctionHeader BasicBlock { // Do not allow functions with 0 basic blocks
2807 $$ = $1;
Reid Spencere7c3c602006-11-30 06:36:44 +00002808 };
2809
2810
2811// Basic blocks are terminated by branching instructions:
2812// br, br/cc, switch, ret
2813//
Reid Spencer950bf602007-01-26 08:19:09 +00002814BasicBlock
2815 : InstructionList OptAssign BBTerminatorInst {
2816 setValueName($3, $2);
2817 InsertValue($3);
2818 $1->getInstList().push_back($3);
2819 InsertValue($1);
Reid Spencere7c3c602006-11-30 06:36:44 +00002820 $$ = $1;
2821 }
Reid Spencer950bf602007-01-26 08:19:09 +00002822 ;
2823
2824InstructionList
2825 : InstructionList Inst {
2826 if ($2.I)
2827 $1->getInstList().push_back($2.I);
2828 $$ = $1;
2829 }
2830 | /* empty */ {
2831 $$ = CurBB = getBBVal(ValID::create((int)CurFun.NextBBNum++), true);
2832 // Make sure to move the basic block to the correct location in the
2833 // function, instead of leaving it inserted wherever it was first
2834 // referenced.
2835 Function::BasicBlockListType &BBL =
2836 CurFun.CurrentFunction->getBasicBlockList();
2837 BBL.splice(BBL.end(), BBL, $$);
2838 }
2839 | LABELSTR {
2840 $$ = CurBB = getBBVal(ValID::create($1), true);
2841 // Make sure to move the basic block to the correct location in the
2842 // function, instead of leaving it inserted wherever it was first
2843 // referenced.
2844 Function::BasicBlockListType &BBL =
2845 CurFun.CurrentFunction->getBasicBlockList();
2846 BBL.splice(BBL.end(), BBL, $$);
2847 }
2848 ;
2849
2850Unwind : UNWIND | EXCEPT;
2851
2852BBTerminatorInst
2853 : RET ResolvedVal { // Return with a result...
2854 $$ = new ReturnInst($2.V);
2855 }
2856 | RET VOID { // Return with no result...
2857 $$ = new ReturnInst();
2858 }
2859 | BR LABEL ValueRef { // Unconditional Branch...
2860 BasicBlock* tmpBB = getBBVal($3);
2861 $$ = new BranchInst(tmpBB);
2862 } // Conditional Branch...
2863 | BR BOOL ValueRef ',' LABEL ValueRef ',' LABEL ValueRef {
2864 BasicBlock* tmpBBA = getBBVal($6);
2865 BasicBlock* tmpBBB = getBBVal($9);
2866 Value* tmpVal = getVal(Type::Int1Ty, $3);
2867 $$ = new BranchInst(tmpBBA, tmpBBB, tmpVal);
2868 }
2869 | SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' {
2870 Value* tmpVal = getVal($2.T, $3);
2871 BasicBlock* tmpBB = getBBVal($6);
2872 SwitchInst *S = new SwitchInst(tmpVal, tmpBB, $8->size());
2873 $$ = S;
2874 std::vector<std::pair<Constant*,BasicBlock*> >::iterator I = $8->begin(),
2875 E = $8->end();
2876 for (; I != E; ++I) {
2877 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->first))
2878 S->addCase(CI, I->second);
2879 else
2880 error("Switch case is constant, but not a simple integer");
2881 }
2882 delete $8;
2883 }
2884 | SWITCH IntType ValueRef ',' LABEL ValueRef '[' ']' {
2885 Value* tmpVal = getVal($2.T, $3);
2886 BasicBlock* tmpBB = getBBVal($6);
2887 SwitchInst *S = new SwitchInst(tmpVal, tmpBB, 0);
2888 $$ = S;
2889 }
2890 | INVOKE OptCallingConv TypesV ValueRef '(' ValueRefListE ')'
2891 TO LABEL ValueRef Unwind LABEL ValueRef {
2892 const PointerType *PFTy;
2893 const FunctionType *Ty;
2894
2895 if (!(PFTy = dyn_cast<PointerType>($3.T->get())) ||
2896 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2897 // Pull out the types of all of the arguments...
2898 std::vector<const Type*> ParamTypes;
2899 if ($6) {
2900 for (std::vector<ValueInfo>::iterator I = $6->begin(), E = $6->end();
2901 I != E; ++I)
2902 ParamTypes.push_back((*I).V->getType());
2903 }
Reid Spencerb7046c72007-01-29 05:41:34 +00002904 FunctionType::ParamAttrsList ParamAttrs;
2905 if ($2 == OldCallingConv::CSRet) {
2906 ParamAttrs.push_back(FunctionType::NoAttributeSet);
2907 ParamAttrs.push_back(FunctionType::StructRetAttribute);
2908 }
Reid Spencer950bf602007-01-26 08:19:09 +00002909 bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
2910 if (isVarArg) ParamTypes.pop_back();
Reid Spencerb7046c72007-01-29 05:41:34 +00002911 Ty = FunctionType::get($3.T->get(), ParamTypes, isVarArg, ParamAttrs);
Reid Spencer950bf602007-01-26 08:19:09 +00002912 PFTy = PointerType::get(Ty);
2913 }
2914 Value *V = getVal(PFTy, $4); // Get the function we're calling...
2915 BasicBlock *Normal = getBBVal($10);
2916 BasicBlock *Except = getBBVal($13);
2917
2918 // Create the call node...
2919 if (!$6) { // Has no arguments?
2920 $$ = new InvokeInst(V, Normal, Except, std::vector<Value*>());
2921 } else { // Has arguments?
2922 // Loop through FunctionType's arguments and ensure they are specified
2923 // correctly!
2924 //
2925 FunctionType::param_iterator I = Ty->param_begin();
2926 FunctionType::param_iterator E = Ty->param_end();
2927 std::vector<ValueInfo>::iterator ArgI = $6->begin(), ArgE = $6->end();
2928
2929 std::vector<Value*> Args;
2930 for (; ArgI != ArgE && I != E; ++ArgI, ++I) {
2931 if ((*ArgI).V->getType() != *I)
2932 error("Parameter " +(*ArgI).V->getName()+ " is not of type '" +
2933 (*I)->getDescription() + "'");
2934 Args.push_back((*ArgI).V);
2935 }
2936
2937 if (I != E || (ArgI != ArgE && !Ty->isVarArg()))
2938 error("Invalid number of parameters detected");
2939
2940 $$ = new InvokeInst(V, Normal, Except, Args);
2941 }
Reid Spencerb7046c72007-01-29 05:41:34 +00002942 cast<InvokeInst>($$)->setCallingConv(upgradeCallingConv($2));
Reid Spencer950bf602007-01-26 08:19:09 +00002943 delete $3.T;
2944 delete $6;
2945 }
2946 | Unwind {
2947 $$ = new UnwindInst();
2948 }
2949 | UNREACHABLE {
2950 $$ = new UnreachableInst();
2951 }
2952 ;
2953
2954JumpTable
2955 : JumpTable IntType ConstValueRef ',' LABEL ValueRef {
2956 $$ = $1;
2957 Constant *V = cast<Constant>(getExistingValue($2.T, $3));
2958
2959 if (V == 0)
2960 error("May only switch on a constant pool value");
2961
2962 BasicBlock* tmpBB = getBBVal($6);
2963 $$->push_back(std::make_pair(V, tmpBB));
2964 }
Reid Spencere7c3c602006-11-30 06:36:44 +00002965 | IntType ConstValueRef ',' LABEL ValueRef {
Reid Spencer950bf602007-01-26 08:19:09 +00002966 $$ = new std::vector<std::pair<Constant*, BasicBlock*> >();
2967 Constant *V = cast<Constant>(getExistingValue($1.T, $2));
2968
2969 if (V == 0)
2970 error("May only switch on a constant pool value");
2971
2972 BasicBlock* tmpBB = getBBVal($5);
2973 $$->push_back(std::make_pair(V, tmpBB));
2974 }
2975 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00002976
2977Inst
2978 : OptAssign InstVal {
Reid Spencer950bf602007-01-26 08:19:09 +00002979 bool omit = false;
2980 if ($1)
2981 if (BitCastInst *BCI = dyn_cast<BitCastInst>($2.I))
2982 if (BCI->getSrcTy() == BCI->getDestTy() &&
2983 BCI->getOperand(0)->getName() == $1)
2984 // This is a useless bit cast causing a name redefinition. It is
2985 // a bit cast from a type to the same type of an operand with the
2986 // same name as the name we would give this instruction. Since this
2987 // instruction results in no code generation, it is safe to omit
2988 // the instruction. This situation can occur because of collapsed
2989 // type planes. For example:
2990 // %X = add int %Y, %Z
2991 // %X = cast int %Y to uint
2992 // After upgrade, this looks like:
2993 // %X = add i32 %Y, %Z
2994 // %X = bitcast i32 to i32
2995 // The bitcast is clearly useless so we omit it.
2996 omit = true;
2997 if (omit) {
2998 $$.I = 0;
2999 $$.S = Signless;
3000 } else {
3001 setValueName($2.I, $1);
3002 InsertValue($2.I);
3003 $$ = $2;
Reid Spencerf5626a32007-01-01 01:20:41 +00003004 }
Reid Spencere7c3c602006-11-30 06:36:44 +00003005 };
3006
Reid Spencer950bf602007-01-26 08:19:09 +00003007PHIList : Types '[' ValueRef ',' ValueRef ']' { // Used for PHI nodes
3008 $$.P = new std::list<std::pair<Value*, BasicBlock*> >();
3009 $$.S = $1.S;
3010 Value* tmpVal = getVal($1.T->get(), $3);
3011 BasicBlock* tmpBB = getBBVal($5);
3012 $$.P->push_back(std::make_pair(tmpVal, tmpBB));
3013 delete $1.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00003014 }
3015 | PHIList ',' '[' ValueRef ',' ValueRef ']' {
Reid Spencere7c3c602006-11-30 06:36:44 +00003016 $$ = $1;
Reid Spencer950bf602007-01-26 08:19:09 +00003017 Value* tmpVal = getVal($1.P->front().first->getType(), $4);
3018 BasicBlock* tmpBB = getBBVal($6);
3019 $1.P->push_back(std::make_pair(tmpVal, tmpBB));
3020 }
3021 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00003022
Reid Spencer950bf602007-01-26 08:19:09 +00003023ValueRefList : ResolvedVal { // Used for call statements, and memory insts...
3024 $$ = new std::vector<ValueInfo>();
Reid Spencerf8483652006-12-02 15:16:01 +00003025 $$->push_back($1);
3026 }
Reid Spencere7c3c602006-11-30 06:36:44 +00003027 | ValueRefList ',' ResolvedVal {
Reid Spencere7c3c602006-11-30 06:36:44 +00003028 $$ = $1;
Reid Spencer950bf602007-01-26 08:19:09 +00003029 $1->push_back($3);
Reid Spencere7c3c602006-11-30 06:36:44 +00003030 };
3031
3032// ValueRefListE - Just like ValueRefList, except that it may also be empty!
3033ValueRefListE
Reid Spencer950bf602007-01-26 08:19:09 +00003034 : ValueRefList
3035 | /*empty*/ { $$ = 0; }
Reid Spencere7c3c602006-11-30 06:36:44 +00003036 ;
3037
3038OptTailCall
3039 : TAIL CALL {
Reid Spencer950bf602007-01-26 08:19:09 +00003040 $$ = true;
Reid Spencere7c3c602006-11-30 06:36:44 +00003041 }
Reid Spencer950bf602007-01-26 08:19:09 +00003042 | CALL {
3043 $$ = false;
3044 }
Reid Spencere7c3c602006-11-30 06:36:44 +00003045 ;
3046
Reid Spencer950bf602007-01-26 08:19:09 +00003047InstVal
3048 : ArithmeticOps Types ValueRef ',' ValueRef {
3049 const Type* Ty = $2.T->get();
3050 if (!Ty->isInteger() && !Ty->isFloatingPoint() && !isa<PackedType>(Ty))
3051 error("Arithmetic operator requires integer, FP, or packed operands");
3052 if (isa<PackedType>(Ty) &&
3053 ($1 == URemOp || $1 == SRemOp || $1 == FRemOp || $1 == RemOp))
3054 error("Remainder not supported on packed types");
3055 // Upgrade the opcode from obsolete versions before we do anything with it.
3056 Instruction::BinaryOps Opcode = getBinaryOp($1, Ty, $2.S);
3057 Value* val1 = getVal(Ty, $3);
3058 Value* val2 = getVal(Ty, $5);
3059 $$.I = BinaryOperator::create(Opcode, val1, val2);
3060 if ($$.I == 0)
3061 error("binary operator returned null");
3062 $$.S = $2.S;
3063 delete $2.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00003064 }
3065 | LogicalOps Types ValueRef ',' ValueRef {
Reid Spencer950bf602007-01-26 08:19:09 +00003066 const Type *Ty = $2.T->get();
3067 if (!Ty->isInteger()) {
3068 if (!isa<PackedType>(Ty) ||
3069 !cast<PackedType>(Ty)->getElementType()->isInteger())
3070 error("Logical operator requires integral operands");
3071 }
3072 Instruction::BinaryOps Opcode = getBinaryOp($1, Ty, $2.S);
3073 Value* tmpVal1 = getVal(Ty, $3);
3074 Value* tmpVal2 = getVal(Ty, $5);
3075 $$.I = BinaryOperator::create(Opcode, tmpVal1, tmpVal2);
3076 if ($$.I == 0)
3077 error("binary operator returned null");
3078 $$.S = $2.S;
3079 delete $2.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00003080 }
3081 | SetCondOps Types ValueRef ',' ValueRef {
Reid Spencer950bf602007-01-26 08:19:09 +00003082 const Type* Ty = $2.T->get();
3083 if(isa<PackedType>(Ty))
3084 error("PackedTypes currently not supported in setcc instructions");
3085 unsigned short pred;
3086 Instruction::OtherOps Opcode = getCompareOp($1, pred, Ty, $2.S);
3087 Value* tmpVal1 = getVal(Ty, $3);
3088 Value* tmpVal2 = getVal(Ty, $5);
3089 $$.I = CmpInst::create(Opcode, pred, tmpVal1, tmpVal2);
3090 if ($$.I == 0)
3091 error("binary operator returned null");
3092 $$.S = Unsigned;
3093 delete $2.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00003094 }
Reid Spencer6fd36ab2006-12-29 20:35:03 +00003095 | ICMP IPredicates Types ValueRef ',' ValueRef {
Reid Spencer950bf602007-01-26 08:19:09 +00003096 const Type *Ty = $3.T->get();
3097 if (isa<PackedType>(Ty))
3098 error("PackedTypes currently not supported in icmp instructions");
3099 else if (!Ty->isInteger() && !isa<PointerType>(Ty))
3100 error("icmp requires integer or pointer typed operands");
3101 Value* tmpVal1 = getVal(Ty, $4);
3102 Value* tmpVal2 = getVal(Ty, $6);
3103 $$.I = new ICmpInst($2, tmpVal1, tmpVal2);
3104 $$.S = Unsigned;
3105 delete $3.T;
Reid Spencer57f28f92006-12-03 07:10:26 +00003106 }
Reid Spencer6fd36ab2006-12-29 20:35:03 +00003107 | FCMP FPredicates Types ValueRef ',' ValueRef {
Reid Spencer950bf602007-01-26 08:19:09 +00003108 const Type *Ty = $3.T->get();
3109 if (isa<PackedType>(Ty))
3110 error("PackedTypes currently not supported in fcmp instructions");
3111 else if (!Ty->isFloatingPoint())
3112 error("fcmp instruction requires floating point operands");
3113 Value* tmpVal1 = getVal(Ty, $4);
3114 Value* tmpVal2 = getVal(Ty, $6);
3115 $$.I = new FCmpInst($2, tmpVal1, tmpVal2);
3116 $$.S = Unsigned;
3117 delete $3.T;
3118 }
3119 | NOT ResolvedVal {
3120 warning("Use of obsolete 'not' instruction: Replacing with 'xor");
3121 const Type *Ty = $2.V->getType();
3122 Value *Ones = ConstantInt::getAllOnesValue(Ty);
3123 if (Ones == 0)
3124 error("Expected integral type for not instruction");
3125 $$.I = BinaryOperator::create(Instruction::Xor, $2.V, Ones);
3126 if ($$.I == 0)
3127 error("Could not create a xor instruction");
3128 $$.S = $2.S
Reid Spencer229e9362006-12-02 22:14:11 +00003129 }
Reid Spencere7c3c602006-11-30 06:36:44 +00003130 | ShiftOps ResolvedVal ',' ResolvedVal {
Reid Spencer950bf602007-01-26 08:19:09 +00003131 if (!$4.V->getType()->isInteger() ||
3132 cast<IntegerType>($4.V->getType())->getBitWidth() != 8)
3133 error("Shift amount must be int8");
Reid Spencer832254e2007-02-02 02:16:23 +00003134 const Type* Ty = $2.V->getType();
3135 if (!Ty->isInteger())
Reid Spencer950bf602007-01-26 08:19:09 +00003136 error("Shift constant expression requires integer operand");
Reid Spencer832254e2007-02-02 02:16:23 +00003137 Value* ShiftAmt = 0;
3138 if (cast<IntegerType>(Ty)->getBitWidth() > Type::Int8Ty->getBitWidth())
3139 if (Constant *C = dyn_cast<Constant>($4.V))
3140 ShiftAmt = ConstantExpr::getZExt(C, Ty);
3141 else
3142 ShiftAmt = new ZExtInst($4.V, Ty, makeNameUnique("shift"), CurBB);
3143 else
3144 ShiftAmt = $4.V;
3145 $$.I = BinaryOperator::create(getBinaryOp($1, Ty, $2.S), $2.V, ShiftAmt);
Reid Spencer950bf602007-01-26 08:19:09 +00003146 $$.S = $2.S;
Reid Spencere7c3c602006-11-30 06:36:44 +00003147 }
Reid Spencerfcb5df82006-12-01 22:34:43 +00003148 | CastOps ResolvedVal TO Types {
Reid Spencer950bf602007-01-26 08:19:09 +00003149 const Type *DstTy = $4.T->get();
3150 if (!DstTy->isFirstClassType())
3151 error("cast instruction to a non-primitive type: '" +
3152 DstTy->getDescription() + "'");
3153 $$.I = cast<Instruction>(getCast($1, $2.V, $2.S, DstTy, $4.S, true));
3154 $$.S = $4.S;
3155 delete $4.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00003156 }
3157 | SELECT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
Reid Spencer950bf602007-01-26 08:19:09 +00003158 if (!$2.V->getType()->isInteger() ||
3159 cast<IntegerType>($2.V->getType())->getBitWidth() != 1)
3160 error("select condition must be bool");
3161 if ($4.V->getType() != $6.V->getType())
3162 error("select value types should match");
3163 $$.I = new SelectInst($2.V, $4.V, $6.V);
3164 $$.S = $2.S;
Reid Spencere7c3c602006-11-30 06:36:44 +00003165 }
3166 | VAARG ResolvedVal ',' Types {
Reid Spencer950bf602007-01-26 08:19:09 +00003167 const Type *Ty = $4.T->get();
3168 NewVarArgs = true;
3169 $$.I = new VAArgInst($2.V, Ty);
3170 $$.S = $4.S;
3171 delete $4.T;
3172 }
3173 | VAARG_old ResolvedVal ',' Types {
3174 const Type* ArgTy = $2.V->getType();
3175 const Type* DstTy = $4.T->get();
3176 ObsoleteVarArgs = true;
3177 Function* NF = cast<Function>(CurModule.CurrentModule->
3178 getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy, (Type *)0));
3179
3180 //b = vaarg a, t ->
3181 //foo = alloca 1 of t
3182 //bar = vacopy a
3183 //store bar -> foo
3184 //b = vaarg foo, t
3185 AllocaInst* foo = new AllocaInst(ArgTy, 0, "vaarg.fix");
3186 CurBB->getInstList().push_back(foo);
3187 CallInst* bar = new CallInst(NF, $2.V);
3188 CurBB->getInstList().push_back(bar);
3189 CurBB->getInstList().push_back(new StoreInst(bar, foo));
3190 $$.I = new VAArgInst(foo, DstTy);
3191 $$.S = $4.S;
3192 delete $4.T;
3193 }
3194 | VANEXT_old ResolvedVal ',' Types {
3195 const Type* ArgTy = $2.V->getType();
3196 const Type* DstTy = $4.T->get();
3197 ObsoleteVarArgs = true;
3198 Function* NF = cast<Function>(CurModule.CurrentModule->
3199 getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy, (Type *)0));
3200
3201 //b = vanext a, t ->
3202 //foo = alloca 1 of t
3203 //bar = vacopy a
3204 //store bar -> foo
3205 //tmp = vaarg foo, t
3206 //b = load foo
3207 AllocaInst* foo = new AllocaInst(ArgTy, 0, "vanext.fix");
3208 CurBB->getInstList().push_back(foo);
3209 CallInst* bar = new CallInst(NF, $2.V);
3210 CurBB->getInstList().push_back(bar);
3211 CurBB->getInstList().push_back(new StoreInst(bar, foo));
3212 Instruction* tmp = new VAArgInst(foo, DstTy);
3213 CurBB->getInstList().push_back(tmp);
3214 $$.I = new LoadInst(foo);
3215 $$.S = $4.S;
3216 delete $4.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00003217 }
3218 | EXTRACTELEMENT ResolvedVal ',' ResolvedVal {
Reid Spencer950bf602007-01-26 08:19:09 +00003219 if (!ExtractElementInst::isValidOperands($2.V, $4.V))
3220 error("Invalid extractelement operands");
3221 $$.I = new ExtractElementInst($2.V, $4.V);
3222 $$.S = $2.S;
Reid Spencere7c3c602006-11-30 06:36:44 +00003223 }
3224 | INSERTELEMENT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
Reid Spencer950bf602007-01-26 08:19:09 +00003225 if (!InsertElementInst::isValidOperands($2.V, $4.V, $6.V))
3226 error("Invalid insertelement operands");
3227 $$.I = new InsertElementInst($2.V, $4.V, $6.V);
3228 $$.S = $2.S;
Reid Spencere7c3c602006-11-30 06:36:44 +00003229 }
3230 | SHUFFLEVECTOR ResolvedVal ',' ResolvedVal ',' ResolvedVal {
Reid Spencer950bf602007-01-26 08:19:09 +00003231 if (!ShuffleVectorInst::isValidOperands($2.V, $4.V, $6.V))
3232 error("Invalid shufflevector operands");
3233 $$.I = new ShuffleVectorInst($2.V, $4.V, $6.V);
3234 $$.S = $2.S;
Reid Spencere7c3c602006-11-30 06:36:44 +00003235 }
3236 | PHI_TOK PHIList {
Reid Spencer950bf602007-01-26 08:19:09 +00003237 const Type *Ty = $2.P->front().first->getType();
3238 if (!Ty->isFirstClassType())
3239 error("PHI node operands must be of first class type");
3240 PHINode *PHI = new PHINode(Ty);
3241 PHI->reserveOperandSpace($2.P->size());
3242 while ($2.P->begin() != $2.P->end()) {
3243 if ($2.P->front().first->getType() != Ty)
3244 error("All elements of a PHI node must be of the same type");
3245 PHI->addIncoming($2.P->front().first, $2.P->front().second);
3246 $2.P->pop_front();
3247 }
3248 $$.I = PHI;
3249 $$.S = $2.S;
3250 delete $2.P; // Free the list...
Reid Spencere7c3c602006-11-30 06:36:44 +00003251 }
3252 | OptTailCall OptCallingConv TypesV ValueRef '(' ValueRefListE ')' {
Reid Spencer950bf602007-01-26 08:19:09 +00003253
3254 // Handle the short call syntax
3255 const PointerType *PFTy;
3256 const FunctionType *FTy;
3257 if (!(PFTy = dyn_cast<PointerType>($3.T->get())) ||
3258 !(FTy = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3259 // Pull out the types of all of the arguments...
3260 std::vector<const Type*> ParamTypes;
3261 if ($6) {
3262 for (std::vector<ValueInfo>::iterator I = $6->begin(), E = $6->end();
3263 I != E; ++I)
3264 ParamTypes.push_back((*I).V->getType());
Reid Spencerc4d96252007-01-13 00:03:30 +00003265 }
Reid Spencer950bf602007-01-26 08:19:09 +00003266
Reid Spencerb7046c72007-01-29 05:41:34 +00003267 FunctionType::ParamAttrsList ParamAttrs;
3268 if ($2 == OldCallingConv::CSRet) {
3269 ParamAttrs.push_back(FunctionType::NoAttributeSet);
3270 ParamAttrs.push_back(FunctionType::StructRetAttribute);
3271 }
Reid Spencer950bf602007-01-26 08:19:09 +00003272 bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
3273 if (isVarArg) ParamTypes.pop_back();
3274
3275 const Type *RetTy = $3.T->get();
3276 if (!RetTy->isFirstClassType() && RetTy != Type::VoidTy)
3277 error("Functions cannot return aggregate types");
3278
Reid Spencerb7046c72007-01-29 05:41:34 +00003279 FTy = FunctionType::get(RetTy, ParamTypes, isVarArg, ParamAttrs);
Reid Spencer950bf602007-01-26 08:19:09 +00003280 PFTy = PointerType::get(FTy);
Reid Spencerf8483652006-12-02 15:16:01 +00003281 }
Reid Spencer950bf602007-01-26 08:19:09 +00003282
3283 // First upgrade any intrinsic calls.
3284 std::vector<Value*> Args;
3285 if ($6)
3286 for (unsigned i = 0, e = $6->size(); i < e; ++i)
3287 Args.push_back((*$6)[i].V);
3288 Instruction *Inst = upgradeIntrinsicCall(FTy, $4, Args);
3289
3290 // If we got an upgraded intrinsic
3291 if (Inst) {
3292 $$.I = Inst;
3293 $$.S = Signless;
3294 } else {
3295 // Get the function we're calling
3296 Value *V = getVal(PFTy, $4);
3297
3298 // Check the argument values match
3299 if (!$6) { // Has no arguments?
3300 // Make sure no arguments is a good thing!
3301 if (FTy->getNumParams() != 0)
3302 error("No arguments passed to a function that expects arguments");
3303 } else { // Has arguments?
3304 // Loop through FunctionType's arguments and ensure they are specified
3305 // correctly!
3306 //
3307 FunctionType::param_iterator I = FTy->param_begin();
3308 FunctionType::param_iterator E = FTy->param_end();
3309 std::vector<ValueInfo>::iterator ArgI = $6->begin(), ArgE = $6->end();
3310
3311 for (; ArgI != ArgE && I != E; ++ArgI, ++I)
3312 if ((*ArgI).V->getType() != *I)
3313 error("Parameter " +(*ArgI).V->getName()+ " is not of type '" +
3314 (*I)->getDescription() + "'");
3315
3316 if (I != E || (ArgI != ArgE && !FTy->isVarArg()))
3317 error("Invalid number of parameters detected");
3318 }
3319
3320 // Create the call instruction
3321 CallInst *CI = new CallInst(V, Args);
3322 CI->setTailCall($1);
Reid Spencerb7046c72007-01-29 05:41:34 +00003323 CI->setCallingConv(upgradeCallingConv($2));
Reid Spencer950bf602007-01-26 08:19:09 +00003324 $$.I = CI;
3325 $$.S = $3.S;
3326 }
3327 delete $3.T;
3328 delete $6;
Reid Spencere7c3c602006-11-30 06:36:44 +00003329 }
Reid Spencer950bf602007-01-26 08:19:09 +00003330 | MemoryInst {
3331 $$ = $1;
3332 }
3333 ;
Reid Spencere7c3c602006-11-30 06:36:44 +00003334
3335
3336// IndexList - List of indices for GEP based instructions...
3337IndexList
Reid Spencer950bf602007-01-26 08:19:09 +00003338 : ',' ValueRefList { $$ = $2; }
3339 | /* empty */ { $$ = new std::vector<ValueInfo>(); }
Reid Spencere7c3c602006-11-30 06:36:44 +00003340 ;
3341
3342OptVolatile
Reid Spencer950bf602007-01-26 08:19:09 +00003343 : VOLATILE { $$ = true; }
3344 | /* empty */ { $$ = false; }
Reid Spencere7c3c602006-11-30 06:36:44 +00003345 ;
3346
Reid Spencer950bf602007-01-26 08:19:09 +00003347MemoryInst
3348 : MALLOC Types OptCAlign {
3349 const Type *Ty = $2.T->get();
3350 $$.S = $2.S;
3351 $$.I = new MallocInst(Ty, 0, $3);
3352 delete $2.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00003353 }
3354 | MALLOC Types ',' UINT ValueRef OptCAlign {
Reid Spencer950bf602007-01-26 08:19:09 +00003355 const Type *Ty = $2.T->get();
3356 $$.S = $2.S;
3357 $$.I = new MallocInst(Ty, getVal($4.T, $5), $6);
3358 delete $2.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00003359 }
3360 | ALLOCA Types OptCAlign {
Reid Spencer950bf602007-01-26 08:19:09 +00003361 const Type *Ty = $2.T->get();
3362 $$.S = $2.S;
3363 $$.I = new AllocaInst(Ty, 0, $3);
3364 delete $2.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00003365 }
3366 | ALLOCA Types ',' UINT ValueRef OptCAlign {
Reid Spencer950bf602007-01-26 08:19:09 +00003367 const Type *Ty = $2.T->get();
3368 $$.S = $2.S;
3369 $$.I = new AllocaInst(Ty, getVal($4.T, $5), $6);
3370 delete $2.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00003371 }
3372 | FREE ResolvedVal {
Reid Spencer950bf602007-01-26 08:19:09 +00003373 const Type *PTy = $2.V->getType();
3374 if (!isa<PointerType>(PTy))
3375 error("Trying to free nonpointer type '" + PTy->getDescription() + "'");
3376 $$.I = new FreeInst($2.V);
3377 $$.S = Signless;
Reid Spencere7c3c602006-11-30 06:36:44 +00003378 }
3379 | OptVolatile LOAD Types ValueRef {
Reid Spencer950bf602007-01-26 08:19:09 +00003380 const Type* Ty = $3.T->get();
3381 $$.S = $3.S;
3382 if (!isa<PointerType>(Ty))
3383 error("Can't load from nonpointer type: " + Ty->getDescription());
3384 if (!cast<PointerType>(Ty)->getElementType()->isFirstClassType())
3385 error("Can't load from pointer of non-first-class type: " +
3386 Ty->getDescription());
3387 Value* tmpVal = getVal(Ty, $4);
3388 $$.I = new LoadInst(tmpVal, "", $1);
3389 delete $3.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00003390 }
3391 | OptVolatile STORE ResolvedVal ',' Types ValueRef {
Reid Spencer950bf602007-01-26 08:19:09 +00003392 const PointerType *PTy = dyn_cast<PointerType>($5.T->get());
3393 if (!PTy)
3394 error("Can't store to a nonpointer type: " +
3395 $5.T->get()->getDescription());
3396 const Type *ElTy = PTy->getElementType();
3397 if (ElTy != $3.V->getType())
3398 error("Can't store '" + $3.V->getType()->getDescription() +
3399 "' into space of type '" + ElTy->getDescription() + "'");
3400 Value* tmpVal = getVal(PTy, $6);
3401 $$.I = new StoreInst($3.V, tmpVal, $1);
3402 $$.S = Signless;
3403 delete $5.T;
Reid Spencere7c3c602006-11-30 06:36:44 +00003404 }
3405 | GETELEMENTPTR Types ValueRef IndexList {
Reid Spencer950bf602007-01-26 08:19:09 +00003406 const Type* Ty = $2.T->get();
3407 if (!isa<PointerType>(Ty))
3408 error("getelementptr insn requires pointer operand");
3409
3410 std::vector<Value*> VIndices;
3411 upgradeGEPIndices(Ty, $4, VIndices);
3412
3413 Value* tmpVal = getVal(Ty, $3);
3414 $$.I = new GetElementPtrInst(tmpVal, VIndices);
3415 $$.S = Signless;
3416 delete $2.T;
Reid Spencer30d0c582007-01-15 00:26:18 +00003417 delete $4;
Reid Spencere7c3c602006-11-30 06:36:44 +00003418 };
3419
Reid Spencer950bf602007-01-26 08:19:09 +00003420
Reid Spencere7c3c602006-11-30 06:36:44 +00003421%%
3422
3423int yyerror(const char *ErrorMsg) {
3424 std::string where
3425 = std::string((CurFilename == "-") ? std::string("<stdin>") : CurFilename)
Reid Spencer950bf602007-01-26 08:19:09 +00003426 + ":" + llvm::utostr((unsigned) Upgradelineno-1) + ": ";
3427 std::string errMsg = where + "error: " + std::string(ErrorMsg);
3428 if (yychar != YYEMPTY && yychar != 0)
3429 errMsg += " while reading token '" + std::string(Upgradetext, Upgradeleng) +
3430 "'.";
Reid Spencer71d2ec92006-12-31 06:02:26 +00003431 std::cerr << "llvm-upgrade: " << errMsg << '\n';
Reid Spencer950bf602007-01-26 08:19:09 +00003432 std::cout << "llvm-upgrade: parse failed.\n";
Reid Spencere7c3c602006-11-30 06:36:44 +00003433 exit(1);
3434}
Reid Spencer319a7302007-01-05 17:20:02 +00003435
Reid Spencer30d0c582007-01-15 00:26:18 +00003436void warning(const std::string& ErrorMsg) {
Reid Spencer319a7302007-01-05 17:20:02 +00003437 std::string where
3438 = std::string((CurFilename == "-") ? std::string("<stdin>") : CurFilename)
Reid Spencer950bf602007-01-26 08:19:09 +00003439 + ":" + llvm::utostr((unsigned) Upgradelineno-1) + ": ";
3440 std::string errMsg = where + "warning: " + std::string(ErrorMsg);
3441 if (yychar != YYEMPTY && yychar != 0)
3442 errMsg += " while reading token '" + std::string(Upgradetext, Upgradeleng) +
3443 "'.";
Reid Spencer319a7302007-01-05 17:20:02 +00003444 std::cerr << "llvm-upgrade: " << errMsg << '\n';
3445}
Reid Spencer950bf602007-01-26 08:19:09 +00003446
3447void error(const std::string& ErrorMsg, int LineNo) {
3448 if (LineNo == -1) LineNo = Upgradelineno;
3449 Upgradelineno = LineNo;
3450 yyerror(ErrorMsg.c_str());
3451}
3452