blob: 72d764e7bfa89adf48d9a8f3edc06b426bfc9cb6 [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
2//
3// This file defines a simple peephole instruction selector for the x86 platform
4//
5//===----------------------------------------------------------------------===//
6
7#include "X86.h"
Chris Lattner055c9652002-10-29 21:05:24 +00008#include "X86InstrInfo.h"
Chris Lattner72614082002-10-25 22:55:53 +00009#include "llvm/Function.h"
10#include "llvm/iTerminators.h"
Brian Gaekea1719c92002-10-31 23:03:59 +000011#include "llvm/iOther.h"
Chris Lattner51b49a92002-11-02 19:45:49 +000012#include "llvm/iPHINode.h"
Chris Lattner72614082002-10-25 22:55:53 +000013#include "llvm/Type.h"
Chris Lattnerc5291f52002-10-27 21:16:59 +000014#include "llvm/Constants.h"
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000015#include "llvm/Pass.h"
Chris Lattner341a9372002-10-29 17:43:55 +000016#include "llvm/CodeGen/MachineFunction.h"
17#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner72614082002-10-25 22:55:53 +000018#include "llvm/Support/InstVisitor.h"
19#include <map>
20
21namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000022 struct ISel : public FunctionPass, InstVisitor<ISel> {
23 TargetMachine &TM;
Chris Lattner341a9372002-10-29 17:43:55 +000024 MachineFunction *F; // The function we are compiling into
25 MachineBasicBlock *BB; // The current MBB we are compiling
Chris Lattner72614082002-10-25 22:55:53 +000026
27 unsigned CurReg;
28 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
29
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000030 ISel(TargetMachine &tm)
31 : TM(tm), F(0), BB(0), CurReg(MRegisterInfo::FirstVirtualRegister) {}
Chris Lattner72614082002-10-25 22:55:53 +000032
33 /// runOnFunction - Top level implementation of instruction selection for
34 /// the entire function.
35 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000036 bool runOnFunction(Function &Fn) {
Chris Lattner36b36032002-10-29 23:40:58 +000037 F = &MachineFunction::construct(&Fn, TM);
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000038 visit(Fn);
Chris Lattner72614082002-10-25 22:55:53 +000039 RegMap.clear();
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000040 F = 0;
Chris Lattner72614082002-10-25 22:55:53 +000041 return false; // We never modify the LLVM itself.
42 }
43
44 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +000045 /// block. This simply creates a new MachineBasicBlock to emit code into
46 /// and adds it to the current MachineFunction. Subsequent visit* for
47 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +000048 ///
49 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner42c77862002-10-30 00:47:40 +000050 BB = new MachineBasicBlock(&LLVM_BB);
Chris Lattner72614082002-10-25 22:55:53 +000051 // FIXME: Use the auto-insert form when it's available
52 F->getBasicBlockList().push_back(BB);
53 }
54
55 // Visitation methods for various instructions. These methods simply emit
56 // fixed X86 code for each instruction.
57 //
58 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +000059 void visitBranchInst(BranchInst &BI);
Chris Lattnere2954c82002-11-02 20:04:26 +000060
61 // Arithmetic operators
Chris Lattner68aad932002-11-02 20:13:22 +000062 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
63 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattnere2954c82002-11-02 20:04:26 +000064
65 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +000066 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
67 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
68 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
69 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattnere2954c82002-11-02 20:04:26 +000070
71 // Binary comparison operators
72
73 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +000074 void visitShiftInst(ShiftInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +000075 void visitPHINode(PHINode &I);
Chris Lattner72614082002-10-25 22:55:53 +000076
77 void visitInstruction(Instruction &I) {
78 std::cerr << "Cannot instruction select: " << I;
79 abort();
80 }
81
Chris Lattnerc5291f52002-10-27 21:16:59 +000082
83 /// copyConstantToRegister - Output the instructions required to put the
84 /// specified constant into the specified register.
85 ///
86 void copyConstantToRegister(Constant *C, unsigned Reg);
87
Chris Lattner72614082002-10-25 22:55:53 +000088 /// getReg - This method turns an LLVM value into a register number. This
89 /// is guaranteed to produce the same register number for a particular value
90 /// every time it is queried.
91 ///
92 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
93 unsigned getReg(Value *V) {
94 unsigned &Reg = RegMap[V];
95 if (Reg == 0)
96 Reg = CurReg++;
97
Chris Lattner6f8fd252002-10-27 21:23:43 +000098 // If this operand is a constant, emit the code to copy the constant into
99 // the register here...
100 //
Chris Lattnerc5291f52002-10-27 21:16:59 +0000101 if (Constant *C = dyn_cast<Constant>(V))
102 copyConstantToRegister(C, Reg);
103
Chris Lattner72614082002-10-25 22:55:53 +0000104 return Reg;
105 }
Chris Lattner72614082002-10-25 22:55:53 +0000106 };
107}
108
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000109/// getClass - Turn a primitive type into a "class" number which is based on the
110/// size of the type, and whether or not it is floating point.
111///
112static inline unsigned getClass(const Type *Ty) {
113 switch (Ty->getPrimitiveID()) {
114 case Type::SByteTyID:
115 case Type::UByteTyID: return 0; // Byte operands are class #0
116 case Type::ShortTyID:
117 case Type::UShortTyID: return 1; // Short operands are class #1
118 case Type::IntTyID:
119 case Type::UIntTyID:
120 case Type::PointerTyID: return 2; // Int's and pointers are class #2
121
122 case Type::LongTyID:
123 case Type::ULongTyID: return 3; // Longs are class #3
124 case Type::FloatTyID: return 4; // Float is class #4
125 case Type::DoubleTyID: return 5; // Doubles are class #5
126 default:
127 assert(0 && "Invalid type to getClass!");
128 return 0; // not reached
129 }
130}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000131
132/// copyConstantToRegister - Output the instructions required to put the
133/// specified constant into the specified register.
134///
135void ISel::copyConstantToRegister(Constant *C, unsigned R) {
136 assert (!isa<ConstantExpr>(C) && "Constant expressions not yet handled!\n");
137
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000138 if (C->getType()->isIntegral()) {
139 unsigned Class = getClass(C->getType());
140 assert(Class != 3 && "Type not handled yet!");
141
142 static const unsigned IntegralOpcodeTab[] = {
143 X86::MOVir8, X86::MOVir16, X86::MOVir32
144 };
145
146 if (C->getType()->isSigned()) {
147 ConstantSInt *CSI = cast<ConstantSInt>(C);
148 BuildMI(BB, IntegralOpcodeTab[Class], 1, R).addSImm(CSI->getValue());
149 } else {
150 ConstantUInt *CUI = cast<ConstantUInt>(C);
151 BuildMI(BB, IntegralOpcodeTab[Class], 1, R).addZImm(CUI->getValue());
152 }
153 } else {
154 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000155 }
156}
157
Chris Lattner51b49a92002-11-02 19:45:49 +0000158
Chris Lattnerc5291f52002-10-27 21:16:59 +0000159
Chris Lattner72614082002-10-25 22:55:53 +0000160/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
161/// we have the following possibilities:
162///
163/// ret void: No return value, simply emit a 'ret' instruction
164/// ret sbyte, ubyte : Extend value into EAX and return
165/// ret short, ushort: Extend value into EAX and return
166/// ret int, uint : Move value into EAX and return
167/// ret pointer : Move value into EAX and return
168/// ret long, ulong : Move value into EAX/EDX (?) and return
169/// ret float/double : ? Top of FP stack? XMM0?
170///
171void ISel::visitReturnInst(ReturnInst &I) {
172 if (I.getNumOperands() != 0) { // Not 'ret void'?
173 // Move result into a hard register... then emit a ret
174 visitInstruction(I); // abort
175 }
176
177 // Emit a simple 'ret' instruction... appending it to the end of the basic
178 // block
Chris Lattner341a9372002-10-29 17:43:55 +0000179 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +0000180}
181
Chris Lattner51b49a92002-11-02 19:45:49 +0000182/// visitBranchInst - Handle conditional and unconditional branches here. Note
183/// that since code layout is frozen at this point, that if we are trying to
184/// jump to a block that is the immediate successor of the current block, we can
185/// just make a fall-through. (but we don't currently).
186///
Chris Lattner2df035b2002-11-02 19:27:56 +0000187void ISel::visitBranchInst(BranchInst &BI) {
188 if (BI.isConditional()) // Only handles unconditional branches so far...
189 visitInstruction(BI);
190
191 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
192}
193
194
Chris Lattner68aad932002-11-02 20:13:22 +0000195/// visitSimpleBinary - Implement simple binary operators for integral types...
196/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or,
197/// 4 for Xor.
198///
199void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
200 if (B.getType() == Type::BoolTy) // FIXME: Handle bools for logicals
Chris Lattnere2954c82002-11-02 20:04:26 +0000201 visitInstruction(B);
202
203 unsigned Class = getClass(B.getType());
204 if (Class > 2) // FIXME: Handle longs
205 visitInstruction(B);
206
207 static const unsigned OpcodeTab[][4] = {
Chris Lattner68aad932002-11-02 20:13:22 +0000208 // Arithmetic operators
209 { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, 0 }, // ADD
210 { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, 0 }, // SUB
211
212 // Bitwise operators
Chris Lattnere2954c82002-11-02 20:04:26 +0000213 { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
214 { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
215 { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
216 };
217
218 unsigned Opcode = OpcodeTab[OperatorClass][Class];
219 unsigned Op0r = getReg(B.getOperand(0));
220 unsigned Op1r = getReg(B.getOperand(1));
221 BuildMI(BB, Opcode, 2, getReg(B)).addReg(Op0r).addReg(Op1r);
222}
223
224
225
Brian Gaekea1719c92002-10-31 23:03:59 +0000226/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
227/// for constant immediate shift values, and for constant immediate
228/// shift values equal to 1. Even the general case is sort of special,
229/// because the shift amount has to be in CL, not just any old register.
230///
231void
232ISel::visitShiftInst (ShiftInst & I)
233{
234 unsigned Op0r = getReg (I.getOperand (0));
235 unsigned DestReg = getReg (I);
Chris Lattnere9913f22002-11-02 01:41:55 +0000236 bool isLeftShift = I.getOpcode() == Instruction::Shl;
237 bool isOperandSigned = I.getType()->isUnsigned();
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000238 unsigned OperandClass = getClass(I.getType());
239
240 if (OperandClass > 2)
241 visitInstruction(I); // Can't handle longs yet!
Chris Lattner796df732002-11-02 00:44:25 +0000242
Brian Gaekea1719c92002-10-31 23:03:59 +0000243 if (ConstantUInt *CUI = dyn_cast <ConstantUInt> (I.getOperand (1)))
244 {
Chris Lattner796df732002-11-02 00:44:25 +0000245 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
246 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
247 unsigned char shAmt = CUI->getValue();
248
Chris Lattnere9913f22002-11-02 01:41:55 +0000249 static const unsigned ConstantOperand[][4] = {
250 { X86::SHRir8, X86::SHRir16, X86::SHRir32, 0 }, // SHR
251 { X86::SARir8, X86::SARir16, X86::SARir32, 0 }, // SAR
252 { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SHL
253 { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SAL = SHL
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000254 };
255
Chris Lattnere9913f22002-11-02 01:41:55 +0000256 const unsigned *OpTab = // Figure out the operand table to use
257 ConstantOperand[isLeftShift*2+isOperandSigned];
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000258
Brian Gaekea1719c92002-10-31 23:03:59 +0000259 // Emit: <insn> reg, shamt (shift-by-immediate opcode "ir" form.)
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000260 BuildMI(BB, OpTab[OperandClass], 2, DestReg).addReg(Op0r).addZImm(shAmt);
Brian Gaekea1719c92002-10-31 23:03:59 +0000261 }
262 else
263 {
264 // The shift amount is non-constant.
265 //
266 // In fact, you can only shift with a variable shift amount if
267 // that amount is already in the CL register, so we have to put it
268 // there first.
269 //
Chris Lattnere9913f22002-11-02 01:41:55 +0000270
Brian Gaekea1719c92002-10-31 23:03:59 +0000271 // Emit: move cl, shiftAmount (put the shift amount in CL.)
Chris Lattnere9913f22002-11-02 01:41:55 +0000272 BuildMI (BB, X86::MOVrr8, 2, X86::CL).addReg(getReg(I.getOperand(1)));
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000273
274 // This is a shift right (SHR).
Chris Lattnere9913f22002-11-02 01:41:55 +0000275 static const unsigned NonConstantOperand[][4] = {
276 { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32, 0 }, // SHR
277 { X86::SARrr8, X86::SARrr16, X86::SARrr32, 0 }, // SAR
278 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SHL
279 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SAL = SHL
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000280 };
281
Chris Lattnere9913f22002-11-02 01:41:55 +0000282 const unsigned *OpTab = // Figure out the operand table to use
283 NonConstantOperand[isLeftShift*2+isOperandSigned];
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000284
Chris Lattnere9913f22002-11-02 01:41:55 +0000285 BuildMI(BB, OpTab[OperandClass], 2, DestReg).addReg(Op0r).addReg(X86::CL);
Brian Gaekea1719c92002-10-31 23:03:59 +0000286 }
287}
288
Chris Lattnere2954c82002-11-02 20:04:26 +0000289/// visitPHINode - Turn an LLVM PHI node into an X86 PHI node...
290///
291void ISel::visitPHINode(PHINode &PN) {
292 MachineInstr *MI = BuildMI(BB, X86::PHI, PN.getNumOperands(), getReg(PN));
Chris Lattner72614082002-10-25 22:55:53 +0000293
Chris Lattnere2954c82002-11-02 20:04:26 +0000294 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
295 // FIXME: This will put constants after the PHI nodes in the block, which
296 // is invalid. They should be put inline into the PHI node eventually.
297 //
298 MI->addRegOperand(getReg(PN.getIncomingValue(i)));
299 MI->addPCDispOperand(PN.getIncomingBlock(i));
300 }
Chris Lattner72614082002-10-25 22:55:53 +0000301}
302
Brian Gaekea1719c92002-10-31 23:03:59 +0000303
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000304/// createSimpleX86InstructionSelector - This pass converts an LLVM function
305/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +0000306/// generated code sucks but the implementation is nice and simple.
307///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000308Pass *createSimpleX86InstructionSelector(TargetMachine &TM) {
309 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +0000310}