Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1 | //===-- ExternalFunctions.cpp - Implement External Functions --------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file was developed by the LLVM research group and is distributed under |
| 6 | // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file contains both code to deal with invoking "external" functions, but |
| 11 | // also contains code that implements "exported" external functions. |
| 12 | // |
| 13 | // External functions in the interpreter are implemented by |
| 14 | // using the system's dynamic loader to look up the address of the function |
| 15 | // we want to invoke. If a function is found, then one of the |
| 16 | // many lle_* wrapper functions in this file will translate its arguments from |
| 17 | // GenericValues to the types the function is actually expecting, before the |
| 18 | // function is called. |
| 19 | // |
| 20 | //===----------------------------------------------------------------------===// |
| 21 | |
| 22 | #include "Interpreter.h" |
| 23 | #include "llvm/DerivedTypes.h" |
| 24 | #include "llvm/Module.h" |
| 25 | #include "llvm/Support/Streams.h" |
| 26 | #include "llvm/System/DynamicLibrary.h" |
| 27 | #include "llvm/Target/TargetData.h" |
| 28 | #include <csignal> |
| 29 | #include <map> |
| 30 | #include <cmath> |
| 31 | using std::vector; |
| 32 | |
| 33 | using namespace llvm; |
| 34 | |
| 35 | typedef GenericValue (*ExFunc)(FunctionType *, const vector<GenericValue> &); |
| 36 | static std::map<const Function *, ExFunc> Functions; |
| 37 | static std::map<std::string, ExFunc> FuncNames; |
| 38 | |
| 39 | static Interpreter *TheInterpreter; |
| 40 | |
| 41 | static char getTypeID(const Type *Ty) { |
| 42 | switch (Ty->getTypeID()) { |
| 43 | case Type::VoidTyID: return 'V'; |
| 44 | case Type::IntegerTyID: |
| 45 | switch (cast<IntegerType>(Ty)->getBitWidth()) { |
| 46 | case 1: return 'o'; |
| 47 | case 8: return 'B'; |
| 48 | case 16: return 'S'; |
| 49 | case 32: return 'I'; |
| 50 | case 64: return 'L'; |
| 51 | default: return 'N'; |
| 52 | } |
| 53 | case Type::FloatTyID: return 'F'; |
| 54 | case Type::DoubleTyID: return 'D'; |
| 55 | case Type::PointerTyID: return 'P'; |
| 56 | case Type::FunctionTyID:return 'M'; |
| 57 | case Type::StructTyID: return 'T'; |
| 58 | case Type::ArrayTyID: return 'A'; |
| 59 | case Type::OpaqueTyID: return 'O'; |
| 60 | default: return 'U'; |
| 61 | } |
| 62 | } |
| 63 | |
| 64 | static ExFunc lookupFunction(const Function *F) { |
| 65 | // Function not found, look it up... start by figuring out what the |
| 66 | // composite function name should be. |
| 67 | std::string ExtName = "lle_"; |
| 68 | const FunctionType *FT = F->getFunctionType(); |
| 69 | for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i) |
| 70 | ExtName += getTypeID(FT->getContainedType(i)); |
| 71 | ExtName += "_" + F->getName(); |
| 72 | |
| 73 | ExFunc FnPtr = FuncNames[ExtName]; |
| 74 | if (FnPtr == 0) |
| 75 | FnPtr = FuncNames["lle_X_"+F->getName()]; |
| 76 | if (FnPtr == 0) // Try calling a generic function... if it exists... |
| 77 | FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol( |
| 78 | ("lle_X_"+F->getName()).c_str()); |
| 79 | if (FnPtr == 0) |
| 80 | FnPtr = (ExFunc)(intptr_t) |
| 81 | sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName()); |
| 82 | if (FnPtr != 0) |
| 83 | Functions.insert(std::make_pair(F, FnPtr)); // Cache for later |
| 84 | return FnPtr; |
| 85 | } |
| 86 | |
| 87 | GenericValue Interpreter::callExternalFunction(Function *F, |
| 88 | const std::vector<GenericValue> &ArgVals) { |
| 89 | TheInterpreter = this; |
| 90 | |
| 91 | // Do a lookup to see if the function is in our cache... this should just be a |
| 92 | // deferred annotation! |
| 93 | std::map<const Function *, ExFunc>::iterator FI = Functions.find(F); |
| 94 | ExFunc Fn = (FI == Functions.end()) ? lookupFunction(F) : FI->second; |
| 95 | if (Fn == 0) { |
| 96 | cerr << "Tried to execute an unknown external function: " |
| 97 | << F->getType()->getDescription() << " " << F->getName() << "\n"; |
| 98 | if (F->getName() == "__main") |
| 99 | return GenericValue(); |
| 100 | abort(); |
| 101 | } |
| 102 | |
| 103 | // TODO: FIXME when types are not const! |
| 104 | GenericValue Result = Fn(const_cast<FunctionType*>(F->getFunctionType()), |
| 105 | ArgVals); |
| 106 | return Result; |
| 107 | } |
| 108 | |
| 109 | |
| 110 | //===----------------------------------------------------------------------===// |
| 111 | // Functions "exported" to the running application... |
| 112 | // |
| 113 | extern "C" { // Don't add C++ manglings to llvm mangling :) |
| 114 | |
| 115 | // void putchar(ubyte) |
| 116 | GenericValue lle_X_putchar(FunctionType *FT, const vector<GenericValue> &Args){ |
| 117 | cout << ((char)Args[0].IntVal.getZExtValue()) << std::flush; |
| 118 | return Args[0]; |
| 119 | } |
| 120 | |
| 121 | // void _IO_putc(int c, FILE* fp) |
| 122 | GenericValue lle_X__IO_putc(FunctionType *FT, const vector<GenericValue> &Args){ |
| 123 | #ifdef __linux__ |
| 124 | _IO_putc((char)Args[0].IntVal.getZExtValue(), (FILE*) Args[1].PointerVal); |
| 125 | #else |
| 126 | assert(0 && "Can't call _IO_putc on this platform"); |
| 127 | #endif |
| 128 | return Args[0]; |
| 129 | } |
| 130 | |
| 131 | // void atexit(Function*) |
| 132 | GenericValue lle_X_atexit(FunctionType *FT, const vector<GenericValue> &Args) { |
| 133 | assert(Args.size() == 1); |
| 134 | TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0])); |
| 135 | GenericValue GV; |
| 136 | GV.IntVal = 0; |
| 137 | return GV; |
| 138 | } |
| 139 | |
| 140 | // void exit(int) |
| 141 | GenericValue lle_X_exit(FunctionType *FT, const vector<GenericValue> &Args) { |
| 142 | TheInterpreter->exitCalled(Args[0]); |
| 143 | return GenericValue(); |
| 144 | } |
| 145 | |
| 146 | // void abort(void) |
| 147 | GenericValue lle_X_abort(FunctionType *FT, const vector<GenericValue> &Args) { |
| 148 | raise (SIGABRT); |
| 149 | return GenericValue(); |
| 150 | } |
| 151 | |
| 152 | // void *malloc(uint) |
| 153 | GenericValue lle_X_malloc(FunctionType *FT, const vector<GenericValue> &Args) { |
| 154 | assert(Args.size() == 1 && "Malloc expects one argument!"); |
| 155 | assert(isa<PointerType>(FT->getReturnType()) && "malloc must return pointer"); |
| 156 | return PTOGV(malloc(Args[0].IntVal.getZExtValue())); |
| 157 | } |
| 158 | |
| 159 | // void *calloc(uint, uint) |
| 160 | GenericValue lle_X_calloc(FunctionType *FT, const vector<GenericValue> &Args) { |
| 161 | assert(Args.size() == 2 && "calloc expects two arguments!"); |
| 162 | assert(isa<PointerType>(FT->getReturnType()) && "calloc must return pointer"); |
| 163 | return PTOGV(calloc(Args[0].IntVal.getZExtValue(), |
| 164 | Args[1].IntVal.getZExtValue())); |
| 165 | } |
| 166 | |
| 167 | // void *calloc(uint, uint) |
| 168 | GenericValue lle_X_realloc(FunctionType *FT, const vector<GenericValue> &Args) { |
| 169 | assert(Args.size() == 2 && "calloc expects two arguments!"); |
| 170 | assert(isa<PointerType>(FT->getReturnType()) &&"realloc must return pointer"); |
| 171 | return PTOGV(realloc(GVTOP(Args[0]), Args[1].IntVal.getZExtValue())); |
| 172 | } |
| 173 | |
| 174 | // void free(void *) |
| 175 | GenericValue lle_X_free(FunctionType *FT, const vector<GenericValue> &Args) { |
| 176 | assert(Args.size() == 1); |
| 177 | free(GVTOP(Args[0])); |
| 178 | return GenericValue(); |
| 179 | } |
| 180 | |
| 181 | // int atoi(char *) |
| 182 | GenericValue lle_X_atoi(FunctionType *FT, const vector<GenericValue> &Args) { |
| 183 | assert(Args.size() == 1); |
| 184 | GenericValue GV; |
| 185 | GV.IntVal = APInt(32, atoi((char*)GVTOP(Args[0]))); |
| 186 | return GV; |
| 187 | } |
| 188 | |
| 189 | // double pow(double, double) |
| 190 | GenericValue lle_X_pow(FunctionType *FT, const vector<GenericValue> &Args) { |
| 191 | assert(Args.size() == 2); |
| 192 | GenericValue GV; |
| 193 | GV.DoubleVal = pow(Args[0].DoubleVal, Args[1].DoubleVal); |
| 194 | return GV; |
| 195 | } |
| 196 | |
| 197 | // double exp(double) |
| 198 | GenericValue lle_X_exp(FunctionType *FT, const vector<GenericValue> &Args) { |
| 199 | assert(Args.size() == 1); |
| 200 | GenericValue GV; |
| 201 | GV.DoubleVal = exp(Args[0].DoubleVal); |
| 202 | return GV; |
| 203 | } |
| 204 | |
| 205 | // double sqrt(double) |
| 206 | GenericValue lle_X_sqrt(FunctionType *FT, const vector<GenericValue> &Args) { |
| 207 | assert(Args.size() == 1); |
| 208 | GenericValue GV; |
| 209 | GV.DoubleVal = sqrt(Args[0].DoubleVal); |
| 210 | return GV; |
| 211 | } |
| 212 | |
| 213 | // double log(double) |
| 214 | GenericValue lle_X_log(FunctionType *FT, const vector<GenericValue> &Args) { |
| 215 | assert(Args.size() == 1); |
| 216 | GenericValue GV; |
| 217 | GV.DoubleVal = log(Args[0].DoubleVal); |
| 218 | return GV; |
| 219 | } |
| 220 | |
| 221 | // double floor(double) |
| 222 | GenericValue lle_X_floor(FunctionType *FT, const vector<GenericValue> &Args) { |
| 223 | assert(Args.size() == 1); |
| 224 | GenericValue GV; |
| 225 | GV.DoubleVal = floor(Args[0].DoubleVal); |
| 226 | return GV; |
| 227 | } |
| 228 | |
| 229 | #ifdef HAVE_RAND48 |
| 230 | |
| 231 | // double drand48() |
| 232 | GenericValue lle_X_drand48(FunctionType *FT, const vector<GenericValue> &Args) { |
| 233 | assert(Args.size() == 0); |
| 234 | GenericValue GV; |
| 235 | GV.DoubleVal = drand48(); |
| 236 | return GV; |
| 237 | } |
| 238 | |
| 239 | // long lrand48() |
| 240 | GenericValue lle_X_lrand48(FunctionType *FT, const vector<GenericValue> &Args) { |
| 241 | assert(Args.size() == 0); |
| 242 | GenericValue GV; |
| 243 | GV.Int32Val = lrand48(); |
| 244 | return GV; |
| 245 | } |
| 246 | |
| 247 | // void srand48(long) |
| 248 | GenericValue lle_X_srand48(FunctionType *FT, const vector<GenericValue> &Args) { |
| 249 | assert(Args.size() == 1); |
| 250 | srand48(Args[0].Int32Val); |
| 251 | return GenericValue(); |
| 252 | } |
| 253 | |
| 254 | #endif |
| 255 | |
| 256 | // int rand() |
| 257 | GenericValue lle_X_rand(FunctionType *FT, const vector<GenericValue> &Args) { |
| 258 | assert(Args.size() == 0); |
| 259 | GenericValue GV; |
| 260 | GV.IntVal = APInt(32, rand()); |
| 261 | return GV; |
| 262 | } |
| 263 | |
| 264 | // void srand(uint) |
| 265 | GenericValue lle_X_srand(FunctionType *FT, const vector<GenericValue> &Args) { |
| 266 | assert(Args.size() == 1); |
| 267 | srand(Args[0].IntVal.getZExtValue()); |
| 268 | return GenericValue(); |
| 269 | } |
| 270 | |
| 271 | // int puts(const char*) |
| 272 | GenericValue lle_X_puts(FunctionType *FT, const vector<GenericValue> &Args) { |
| 273 | assert(Args.size() == 1); |
| 274 | GenericValue GV; |
| 275 | GV.IntVal = APInt(32, puts((char*)GVTOP(Args[0]))); |
| 276 | return GV; |
| 277 | } |
| 278 | |
| 279 | // int sprintf(sbyte *, sbyte *, ...) - a very rough implementation to make |
| 280 | // output useful. |
| 281 | GenericValue lle_X_sprintf(FunctionType *FT, const vector<GenericValue> &Args) { |
| 282 | char *OutputBuffer = (char *)GVTOP(Args[0]); |
| 283 | const char *FmtStr = (const char *)GVTOP(Args[1]); |
| 284 | unsigned ArgNo = 2; |
| 285 | |
| 286 | // printf should return # chars printed. This is completely incorrect, but |
| 287 | // close enough for now. |
| 288 | GenericValue GV; |
| 289 | GV.IntVal = APInt(32, strlen(FmtStr)); |
| 290 | while (1) { |
| 291 | switch (*FmtStr) { |
| 292 | case 0: return GV; // Null terminator... |
| 293 | default: // Normal nonspecial character |
| 294 | sprintf(OutputBuffer++, "%c", *FmtStr++); |
| 295 | break; |
| 296 | case '\\': { // Handle escape codes |
| 297 | sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1)); |
| 298 | FmtStr += 2; OutputBuffer += 2; |
| 299 | break; |
| 300 | } |
| 301 | case '%': { // Handle format specifiers |
| 302 | char FmtBuf[100] = "", Buffer[1000] = ""; |
| 303 | char *FB = FmtBuf; |
| 304 | *FB++ = *FmtStr++; |
| 305 | char Last = *FB++ = *FmtStr++; |
| 306 | unsigned HowLong = 0; |
| 307 | while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' && |
| 308 | Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' && |
| 309 | Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' && |
| 310 | Last != 'p' && Last != 's' && Last != '%') { |
| 311 | if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's |
| 312 | Last = *FB++ = *FmtStr++; |
| 313 | } |
| 314 | *FB = 0; |
| 315 | |
| 316 | switch (Last) { |
| 317 | case '%': |
| 318 | sprintf(Buffer, FmtBuf); break; |
| 319 | case 'c': |
| 320 | sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue())); |
| 321 | break; |
| 322 | case 'd': case 'i': |
| 323 | case 'u': case 'o': |
| 324 | case 'x': case 'X': |
| 325 | if (HowLong >= 1) { |
| 326 | if (HowLong == 1 && |
| 327 | TheInterpreter->getTargetData()->getPointerSizeInBits() == 64 && |
| 328 | sizeof(long) < sizeof(int64_t)) { |
| 329 | // Make sure we use %lld with a 64 bit argument because we might be |
| 330 | // compiling LLI on a 32 bit compiler. |
| 331 | unsigned Size = strlen(FmtBuf); |
| 332 | FmtBuf[Size] = FmtBuf[Size-1]; |
| 333 | FmtBuf[Size+1] = 0; |
| 334 | FmtBuf[Size-1] = 'l'; |
| 335 | } |
| 336 | sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue()); |
| 337 | } else |
| 338 | sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue())); |
| 339 | break; |
| 340 | case 'e': case 'E': case 'g': case 'G': case 'f': |
| 341 | sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break; |
| 342 | case 'p': |
| 343 | sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break; |
| 344 | case 's': |
| 345 | sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break; |
| 346 | default: cerr << "<unknown printf code '" << *FmtStr << "'!>"; |
| 347 | ArgNo++; break; |
| 348 | } |
| 349 | strcpy(OutputBuffer, Buffer); |
| 350 | OutputBuffer += strlen(Buffer); |
| 351 | } |
| 352 | break; |
| 353 | } |
| 354 | } |
| 355 | return GV; |
| 356 | } |
| 357 | |
| 358 | // int printf(sbyte *, ...) - a very rough implementation to make output useful. |
| 359 | GenericValue lle_X_printf(FunctionType *FT, const vector<GenericValue> &Args) { |
| 360 | char Buffer[10000]; |
| 361 | vector<GenericValue> NewArgs; |
| 362 | NewArgs.push_back(PTOGV((void*)&Buffer[0])); |
| 363 | NewArgs.insert(NewArgs.end(), Args.begin(), Args.end()); |
| 364 | GenericValue GV = lle_X_sprintf(FT, NewArgs); |
| 365 | cout << Buffer; |
| 366 | return GV; |
| 367 | } |
| 368 | |
| 369 | static void ByteswapSCANFResults(const char *Fmt, void *Arg0, void *Arg1, |
| 370 | void *Arg2, void *Arg3, void *Arg4, void *Arg5, |
| 371 | void *Arg6, void *Arg7, void *Arg8) { |
| 372 | void *Args[] = { Arg0, Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, 0 }; |
| 373 | |
| 374 | // Loop over the format string, munging read values as appropriate (performs |
| 375 | // byteswaps as necessary). |
| 376 | unsigned ArgNo = 0; |
| 377 | while (*Fmt) { |
| 378 | if (*Fmt++ == '%') { |
| 379 | // Read any flag characters that may be present... |
| 380 | bool Suppress = false; |
| 381 | bool Half = false; |
| 382 | bool Long = false; |
| 383 | bool LongLong = false; // long long or long double |
| 384 | |
| 385 | while (1) { |
| 386 | switch (*Fmt++) { |
| 387 | case '*': Suppress = true; break; |
| 388 | case 'a': /*Allocate = true;*/ break; // We don't need to track this |
| 389 | case 'h': Half = true; break; |
| 390 | case 'l': Long = true; break; |
| 391 | case 'q': |
| 392 | case 'L': LongLong = true; break; |
| 393 | default: |
| 394 | if (Fmt[-1] > '9' || Fmt[-1] < '0') // Ignore field width specs |
| 395 | goto Out; |
| 396 | } |
| 397 | } |
| 398 | Out: |
| 399 | |
| 400 | // Read the conversion character |
| 401 | if (!Suppress && Fmt[-1] != '%') { // Nothing to do? |
| 402 | unsigned Size = 0; |
| 403 | const Type *Ty = 0; |
| 404 | |
| 405 | switch (Fmt[-1]) { |
| 406 | case 'i': case 'o': case 'u': case 'x': case 'X': case 'n': case 'p': |
| 407 | case 'd': |
| 408 | if (Long || LongLong) { |
| 409 | Size = 8; Ty = Type::Int64Ty; |
| 410 | } else if (Half) { |
| 411 | Size = 4; Ty = Type::Int16Ty; |
| 412 | } else { |
| 413 | Size = 4; Ty = Type::Int32Ty; |
| 414 | } |
| 415 | break; |
| 416 | |
| 417 | case 'e': case 'g': case 'E': |
| 418 | case 'f': |
| 419 | if (Long || LongLong) { |
| 420 | Size = 8; Ty = Type::DoubleTy; |
| 421 | } else { |
| 422 | Size = 4; Ty = Type::FloatTy; |
| 423 | } |
| 424 | break; |
| 425 | |
| 426 | case 's': case 'c': case '[': // No byteswap needed |
| 427 | Size = 1; |
| 428 | Ty = Type::Int8Ty; |
| 429 | break; |
| 430 | |
| 431 | default: break; |
| 432 | } |
| 433 | |
| 434 | if (Size) { |
| 435 | GenericValue GV; |
| 436 | void *Arg = Args[ArgNo++]; |
| 437 | memcpy(&GV, Arg, Size); |
| 438 | TheInterpreter->StoreValueToMemory(GV, (GenericValue*)Arg, Ty); |
| 439 | } |
| 440 | } |
| 441 | } |
| 442 | } |
| 443 | } |
| 444 | |
| 445 | // int sscanf(const char *format, ...); |
| 446 | GenericValue lle_X_sscanf(FunctionType *FT, const vector<GenericValue> &args) { |
| 447 | assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!"); |
| 448 | |
| 449 | char *Args[10]; |
| 450 | for (unsigned i = 0; i < args.size(); ++i) |
| 451 | Args[i] = (char*)GVTOP(args[i]); |
| 452 | |
| 453 | GenericValue GV; |
| 454 | GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4], |
| 455 | Args[5], Args[6], Args[7], Args[8], Args[9])); |
| 456 | ByteswapSCANFResults(Args[1], Args[2], Args[3], Args[4], |
| 457 | Args[5], Args[6], Args[7], Args[8], Args[9], 0); |
| 458 | return GV; |
| 459 | } |
| 460 | |
| 461 | // int scanf(const char *format, ...); |
| 462 | GenericValue lle_X_scanf(FunctionType *FT, const vector<GenericValue> &args) { |
| 463 | assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!"); |
| 464 | |
| 465 | char *Args[10]; |
| 466 | for (unsigned i = 0; i < args.size(); ++i) |
| 467 | Args[i] = (char*)GVTOP(args[i]); |
| 468 | |
| 469 | GenericValue GV; |
| 470 | GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4], |
| 471 | Args[5], Args[6], Args[7], Args[8], Args[9])); |
| 472 | ByteswapSCANFResults(Args[0], Args[1], Args[2], Args[3], Args[4], |
| 473 | Args[5], Args[6], Args[7], Args[8], Args[9]); |
| 474 | return GV; |
| 475 | } |
| 476 | |
| 477 | |
| 478 | // int clock(void) - Profiling implementation |
| 479 | GenericValue lle_i_clock(FunctionType *FT, const vector<GenericValue> &Args) { |
| 480 | extern unsigned int clock(void); |
| 481 | GenericValue GV; |
| 482 | GV.IntVal = APInt(32, clock()); |
| 483 | return GV; |
| 484 | } |
| 485 | |
| 486 | |
| 487 | //===----------------------------------------------------------------------===// |
| 488 | // String Functions... |
| 489 | //===----------------------------------------------------------------------===// |
| 490 | |
| 491 | // int strcmp(const char *S1, const char *S2); |
| 492 | GenericValue lle_X_strcmp(FunctionType *FT, const vector<GenericValue> &Args) { |
| 493 | assert(Args.size() == 2); |
| 494 | GenericValue Ret; |
| 495 | Ret.IntVal = APInt(32, strcmp((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]))); |
| 496 | return Ret; |
| 497 | } |
| 498 | |
| 499 | // char *strcat(char *Dest, const char *src); |
| 500 | GenericValue lle_X_strcat(FunctionType *FT, const vector<GenericValue> &Args) { |
| 501 | assert(Args.size() == 2); |
| 502 | assert(isa<PointerType>(FT->getReturnType()) &&"strcat must return pointer"); |
| 503 | return PTOGV(strcat((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]))); |
| 504 | } |
| 505 | |
| 506 | // char *strcpy(char *Dest, const char *src); |
| 507 | GenericValue lle_X_strcpy(FunctionType *FT, const vector<GenericValue> &Args) { |
| 508 | assert(Args.size() == 2); |
| 509 | assert(isa<PointerType>(FT->getReturnType()) &&"strcpy must return pointer"); |
| 510 | return PTOGV(strcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]))); |
| 511 | } |
| 512 | |
| 513 | static GenericValue size_t_to_GV (size_t n) { |
| 514 | GenericValue Ret; |
| 515 | if (sizeof (size_t) == sizeof (uint64_t)) { |
| 516 | Ret.IntVal = APInt(64, n); |
| 517 | } else { |
| 518 | assert (sizeof (size_t) == sizeof (unsigned int)); |
| 519 | Ret.IntVal = APInt(32, n); |
| 520 | } |
| 521 | return Ret; |
| 522 | } |
| 523 | |
| 524 | static size_t GV_to_size_t (GenericValue GV) { |
| 525 | size_t count; |
| 526 | if (sizeof (size_t) == sizeof (uint64_t)) { |
| 527 | count = (size_t)GV.IntVal.getZExtValue(); |
| 528 | } else { |
| 529 | assert (sizeof (size_t) == sizeof (unsigned int)); |
| 530 | count = (size_t)GV.IntVal.getZExtValue(); |
| 531 | } |
| 532 | return count; |
| 533 | } |
| 534 | |
| 535 | // size_t strlen(const char *src); |
| 536 | GenericValue lle_X_strlen(FunctionType *FT, const vector<GenericValue> &Args) { |
| 537 | assert(Args.size() == 1); |
| 538 | size_t strlenResult = strlen ((char *) GVTOP (Args[0])); |
| 539 | return size_t_to_GV (strlenResult); |
| 540 | } |
| 541 | |
| 542 | // char *strdup(const char *src); |
| 543 | GenericValue lle_X_strdup(FunctionType *FT, const vector<GenericValue> &Args) { |
| 544 | assert(Args.size() == 1); |
| 545 | assert(isa<PointerType>(FT->getReturnType()) && "strdup must return pointer"); |
| 546 | return PTOGV(strdup((char*)GVTOP(Args[0]))); |
| 547 | } |
| 548 | |
| 549 | // char *__strdup(const char *src); |
| 550 | GenericValue lle_X___strdup(FunctionType *FT, const vector<GenericValue> &Args) { |
| 551 | assert(Args.size() == 1); |
| 552 | assert(isa<PointerType>(FT->getReturnType()) &&"_strdup must return pointer"); |
| 553 | return PTOGV(strdup((char*)GVTOP(Args[0]))); |
| 554 | } |
| 555 | |
| 556 | // void *memset(void *S, int C, size_t N) |
| 557 | GenericValue lle_X_memset(FunctionType *FT, const vector<GenericValue> &Args) { |
| 558 | assert(Args.size() == 3); |
| 559 | size_t count = GV_to_size_t (Args[2]); |
| 560 | assert(isa<PointerType>(FT->getReturnType()) && "memset must return pointer"); |
| 561 | return PTOGV(memset(GVTOP(Args[0]), uint32_t(Args[1].IntVal.getZExtValue()), |
| 562 | count)); |
| 563 | } |
| 564 | |
| 565 | // void *memcpy(void *Dest, void *src, size_t Size); |
| 566 | GenericValue lle_X_memcpy(FunctionType *FT, const vector<GenericValue> &Args) { |
| 567 | assert(Args.size() == 3); |
| 568 | assert(isa<PointerType>(FT->getReturnType()) && "memcpy must return pointer"); |
| 569 | size_t count = GV_to_size_t (Args[2]); |
| 570 | return PTOGV(memcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]), count)); |
| 571 | } |
| 572 | |
| 573 | //===----------------------------------------------------------------------===// |
| 574 | // IO Functions... |
| 575 | //===----------------------------------------------------------------------===// |
| 576 | |
| 577 | // getFILE - Turn a pointer in the host address space into a legit pointer in |
| 578 | // the interpreter address space. This is an identity transformation. |
| 579 | #define getFILE(ptr) ((FILE*)ptr) |
| 580 | |
| 581 | // FILE *fopen(const char *filename, const char *mode); |
| 582 | GenericValue lle_X_fopen(FunctionType *FT, const vector<GenericValue> &Args) { |
| 583 | assert(Args.size() == 2); |
| 584 | assert(isa<PointerType>(FT->getReturnType()) && "fopen must return pointer"); |
| 585 | return PTOGV(fopen((const char *)GVTOP(Args[0]), |
| 586 | (const char *)GVTOP(Args[1]))); |
| 587 | } |
| 588 | |
| 589 | // int fclose(FILE *F); |
| 590 | GenericValue lle_X_fclose(FunctionType *FT, const vector<GenericValue> &Args) { |
| 591 | assert(Args.size() == 1); |
| 592 | GenericValue GV; |
| 593 | GV.IntVal = APInt(32, fclose(getFILE(GVTOP(Args[0])))); |
| 594 | return GV; |
| 595 | } |
| 596 | |
| 597 | // int feof(FILE *stream); |
| 598 | GenericValue lle_X_feof(FunctionType *FT, const vector<GenericValue> &Args) { |
| 599 | assert(Args.size() == 1); |
| 600 | GenericValue GV; |
| 601 | |
| 602 | GV.IntVal = APInt(32, feof(getFILE(GVTOP(Args[0])))); |
| 603 | return GV; |
| 604 | } |
| 605 | |
| 606 | // size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream); |
| 607 | GenericValue lle_X_fread(FunctionType *FT, const vector<GenericValue> &Args) { |
| 608 | assert(Args.size() == 4); |
| 609 | size_t result; |
| 610 | |
| 611 | result = fread((void*)GVTOP(Args[0]), GV_to_size_t (Args[1]), |
| 612 | GV_to_size_t (Args[2]), getFILE(GVTOP(Args[3]))); |
| 613 | return size_t_to_GV (result); |
| 614 | } |
| 615 | |
| 616 | // size_t fwrite(const void *ptr, size_t size, size_t nitems, FILE *stream); |
| 617 | GenericValue lle_X_fwrite(FunctionType *FT, const vector<GenericValue> &Args) { |
| 618 | assert(Args.size() == 4); |
| 619 | size_t result; |
| 620 | |
| 621 | result = fwrite((void*)GVTOP(Args[0]), GV_to_size_t (Args[1]), |
| 622 | GV_to_size_t (Args[2]), getFILE(GVTOP(Args[3]))); |
| 623 | return size_t_to_GV (result); |
| 624 | } |
| 625 | |
| 626 | // char *fgets(char *s, int n, FILE *stream); |
| 627 | GenericValue lle_X_fgets(FunctionType *FT, const vector<GenericValue> &Args) { |
| 628 | assert(Args.size() == 3); |
| 629 | return GVTOP(fgets((char*)GVTOP(Args[0]), Args[1].IntVal.getZExtValue(), |
| 630 | getFILE(GVTOP(Args[2])))); |
| 631 | } |
| 632 | |
| 633 | // FILE *freopen(const char *path, const char *mode, FILE *stream); |
| 634 | GenericValue lle_X_freopen(FunctionType *FT, const vector<GenericValue> &Args) { |
| 635 | assert(Args.size() == 3); |
| 636 | assert(isa<PointerType>(FT->getReturnType()) &&"freopen must return pointer"); |
| 637 | return PTOGV(freopen((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]), |
| 638 | getFILE(GVTOP(Args[2])))); |
| 639 | } |
| 640 | |
| 641 | // int fflush(FILE *stream); |
| 642 | GenericValue lle_X_fflush(FunctionType *FT, const vector<GenericValue> &Args) { |
| 643 | assert(Args.size() == 1); |
| 644 | GenericValue GV; |
| 645 | GV.IntVal = APInt(32, fflush(getFILE(GVTOP(Args[0])))); |
| 646 | return GV; |
| 647 | } |
| 648 | |
| 649 | // int getc(FILE *stream); |
| 650 | GenericValue lle_X_getc(FunctionType *FT, const vector<GenericValue> &Args) { |
| 651 | assert(Args.size() == 1); |
| 652 | GenericValue GV; |
| 653 | GV.IntVal = APInt(32, getc(getFILE(GVTOP(Args[0])))); |
| 654 | return GV; |
| 655 | } |
| 656 | |
| 657 | // int _IO_getc(FILE *stream); |
| 658 | GenericValue lle_X__IO_getc(FunctionType *F, const vector<GenericValue> &Args) { |
| 659 | return lle_X_getc(F, Args); |
| 660 | } |
| 661 | |
| 662 | // int fputc(int C, FILE *stream); |
| 663 | GenericValue lle_X_fputc(FunctionType *FT, const vector<GenericValue> &Args) { |
| 664 | assert(Args.size() == 2); |
| 665 | GenericValue GV; |
| 666 | GV.IntVal = APInt(32, fputc(Args[0].IntVal.getZExtValue(), |
| 667 | getFILE(GVTOP(Args[1])))); |
| 668 | return GV; |
| 669 | } |
| 670 | |
| 671 | // int ungetc(int C, FILE *stream); |
| 672 | GenericValue lle_X_ungetc(FunctionType *FT, const vector<GenericValue> &Args) { |
| 673 | assert(Args.size() == 2); |
| 674 | GenericValue GV; |
| 675 | GV.IntVal = APInt(32, ungetc(Args[0].IntVal.getZExtValue(), |
| 676 | getFILE(GVTOP(Args[1])))); |
| 677 | return GV; |
| 678 | } |
| 679 | |
| 680 | // int ferror (FILE *stream); |
| 681 | GenericValue lle_X_ferror(FunctionType *FT, const vector<GenericValue> &Args) { |
| 682 | assert(Args.size() == 1); |
| 683 | GenericValue GV; |
| 684 | GV.IntVal = APInt(32, ferror (getFILE(GVTOP(Args[0])))); |
| 685 | return GV; |
| 686 | } |
| 687 | |
| 688 | // int fprintf(FILE *,sbyte *, ...) - a very rough implementation to make output |
| 689 | // useful. |
| 690 | GenericValue lle_X_fprintf(FunctionType *FT, const vector<GenericValue> &Args) { |
| 691 | assert(Args.size() >= 2); |
| 692 | char Buffer[10000]; |
| 693 | vector<GenericValue> NewArgs; |
| 694 | NewArgs.push_back(PTOGV(Buffer)); |
| 695 | NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end()); |
| 696 | GenericValue GV = lle_X_sprintf(FT, NewArgs); |
| 697 | |
| 698 | fputs(Buffer, getFILE(GVTOP(Args[0]))); |
| 699 | return GV; |
| 700 | } |
| 701 | |
| 702 | } // End extern "C" |
| 703 | |
| 704 | |
| 705 | void Interpreter::initializeExternalFunctions() { |
| 706 | FuncNames["lle_X_putchar"] = lle_X_putchar; |
| 707 | FuncNames["lle_X__IO_putc"] = lle_X__IO_putc; |
| 708 | FuncNames["lle_X_exit"] = lle_X_exit; |
| 709 | FuncNames["lle_X_abort"] = lle_X_abort; |
| 710 | FuncNames["lle_X_malloc"] = lle_X_malloc; |
| 711 | FuncNames["lle_X_calloc"] = lle_X_calloc; |
| 712 | FuncNames["lle_X_realloc"] = lle_X_realloc; |
| 713 | FuncNames["lle_X_free"] = lle_X_free; |
| 714 | FuncNames["lle_X_atoi"] = lle_X_atoi; |
| 715 | FuncNames["lle_X_pow"] = lle_X_pow; |
| 716 | FuncNames["lle_X_exp"] = lle_X_exp; |
| 717 | FuncNames["lle_X_log"] = lle_X_log; |
| 718 | FuncNames["lle_X_floor"] = lle_X_floor; |
| 719 | FuncNames["lle_X_srand"] = lle_X_srand; |
| 720 | FuncNames["lle_X_rand"] = lle_X_rand; |
| 721 | #ifdef HAVE_RAND48 |
| 722 | FuncNames["lle_X_drand48"] = lle_X_drand48; |
| 723 | FuncNames["lle_X_srand48"] = lle_X_srand48; |
| 724 | FuncNames["lle_X_lrand48"] = lle_X_lrand48; |
| 725 | #endif |
| 726 | FuncNames["lle_X_sqrt"] = lle_X_sqrt; |
| 727 | FuncNames["lle_X_puts"] = lle_X_puts; |
| 728 | FuncNames["lle_X_printf"] = lle_X_printf; |
| 729 | FuncNames["lle_X_sprintf"] = lle_X_sprintf; |
| 730 | FuncNames["lle_X_sscanf"] = lle_X_sscanf; |
| 731 | FuncNames["lle_X_scanf"] = lle_X_scanf; |
| 732 | FuncNames["lle_i_clock"] = lle_i_clock; |
| 733 | |
| 734 | FuncNames["lle_X_strcmp"] = lle_X_strcmp; |
| 735 | FuncNames["lle_X_strcat"] = lle_X_strcat; |
| 736 | FuncNames["lle_X_strcpy"] = lle_X_strcpy; |
| 737 | FuncNames["lle_X_strlen"] = lle_X_strlen; |
| 738 | FuncNames["lle_X___strdup"] = lle_X___strdup; |
| 739 | FuncNames["lle_X_memset"] = lle_X_memset; |
| 740 | FuncNames["lle_X_memcpy"] = lle_X_memcpy; |
| 741 | |
| 742 | FuncNames["lle_X_fopen"] = lle_X_fopen; |
| 743 | FuncNames["lle_X_fclose"] = lle_X_fclose; |
| 744 | FuncNames["lle_X_feof"] = lle_X_feof; |
| 745 | FuncNames["lle_X_fread"] = lle_X_fread; |
| 746 | FuncNames["lle_X_fwrite"] = lle_X_fwrite; |
| 747 | FuncNames["lle_X_fgets"] = lle_X_fgets; |
| 748 | FuncNames["lle_X_fflush"] = lle_X_fflush; |
| 749 | FuncNames["lle_X_fgetc"] = lle_X_getc; |
| 750 | FuncNames["lle_X_getc"] = lle_X_getc; |
| 751 | FuncNames["lle_X__IO_getc"] = lle_X__IO_getc; |
| 752 | FuncNames["lle_X_fputc"] = lle_X_fputc; |
| 753 | FuncNames["lle_X_ungetc"] = lle_X_ungetc; |
| 754 | FuncNames["lle_X_fprintf"] = lle_X_fprintf; |
| 755 | FuncNames["lle_X_freopen"] = lle_X_freopen; |
| 756 | } |
| 757 | |