blob: 73f4e7fe57176b73b8a211ee95fdfcb494619ae9 [file] [log] [blame]
Chris Lattner0bbe58f2001-11-26 18:41:20 +00001//===- llvm/Analysis/InductionVariable.h - Induction variable ----*- C++ -*--=//
2//
3// This interface is used to identify and classify induction variables that
4// exist in the program. Induction variables must contain a PHI node that
5// exists in a loop header. Because of this, they are identified an managed by
6// this PHI node.
7//
8// Induction variables are classified into a type. Knowing that an induction
9// variable is of a specific type can constrain the values of the start and
10// step. For example, a SimpleLinear induction variable must have a start and
11// step values that are constants.
12//
13// Induction variables can be created with or without loop information. If no
14// loop information is available, induction variables cannot be recognized to be
15// more than SimpleLinear variables.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Analysis/InductionVariable.h"
20#include "llvm/Analysis/LoopInfo.h"
21#include "llvm/Analysis/Expressions.h"
Chris Lattner7061dc52001-12-03 18:02:31 +000022#include "llvm/iPHINode.h"
23#include "llvm/InstrTypes.h"
Chris Lattner0bbe58f2001-11-26 18:41:20 +000024#include "llvm/Type.h"
25#include "llvm/ConstPoolVals.h"
26
27using analysis::ExprType;
28
29
30static bool isLoopInvariant(const Value *V, const cfg::Loop *L) {
31 if (isa<ConstPoolVal>(V) || isa<MethodArgument>(V) || isa<GlobalValue>(V))
32 return true;
33
34 const Instruction *I = cast<Instruction>(V);
35 const BasicBlock *BB = I->getParent();
36
37 return !L->contains(BB);
38}
39
40enum InductionVariable::iType
41InductionVariable::Classify(const Value *Start, const Value *Step,
42 const cfg::Loop *L = 0) {
43 // Check for cannonical and simple linear expressions now...
44 if (ConstPoolInt *CStart = dyn_cast<ConstPoolInt>(Start))
45 if (ConstPoolInt *CStep = dyn_cast<ConstPoolInt>(Step)) {
46 if (CStart->equalsInt(0) && CStep->equalsInt(1))
47 return Cannonical;
48 else
49 return SimpleLinear;
50 }
51
52 // Without loop information, we cannot do any better, so bail now...
53 if (L == 0) return Unknown;
54
55 if (isLoopInvariant(Start, L) && isLoopInvariant(Step, L))
56 return Linear;
57 return Unknown;
58}
59
60// Create an induction variable for the specified value. If it is a PHI, and
61// if it's recognizable, classify it and fill in instance variables.
62//
Chris Lattnerdf89f6e2001-12-03 17:27:42 +000063InductionVariable::InductionVariable(PHINode *P, cfg::LoopInfo *LoopInfo) {
Chris Lattner0bbe58f2001-11-26 18:41:20 +000064 InductionType = Unknown; // Assume the worst
Chris Lattnerdf89f6e2001-12-03 17:27:42 +000065 Phi = P;
Chris Lattner0bbe58f2001-11-26 18:41:20 +000066
Chris Lattnerdf89f6e2001-12-03 17:27:42 +000067 // If the PHI node has more than two predecessors, we don't know how to
Chris Lattner0bbe58f2001-11-26 18:41:20 +000068 // handle it.
69 //
Chris Lattnerdf89f6e2001-12-03 17:27:42 +000070 if (Phi->getNumIncomingValues() != 2) return;
Chris Lattner0bbe58f2001-11-26 18:41:20 +000071
72 // If we have loop information, make sure that this PHI node is in the header
73 // of a loop...
74 //
75 const cfg::Loop *L = LoopInfo ? LoopInfo->getLoopFor(Phi->getParent()) : 0;
76 if (L && L->getHeader() != Phi->getParent())
77 return;
78
79 Value *V1 = Phi->getIncomingValue(0);
80 Value *V2 = Phi->getIncomingValue(1);
81
82 if (L == 0) { // No loop information? Base everything on expression analysis
83 ExprType E1 = analysis::ClassifyExpression(V1);
84 ExprType E2 = analysis::ClassifyExpression(V2);
85
86 if (E1.ExprTy > E2.ExprTy) // Make E1 be the simpler expression
87 swap(E1, E2);
88
89 // E1 must be a constant incoming value, and E2 must be a linear expression
90 // with respect to the PHI node.
91 //
92 if (E1.ExprTy > ExprType::Constant || E2.ExprTy != ExprType::Linear ||
93 E2.Var != Phi)
94 return;
95
96 // Okay, we have found an induction variable. Save the start and step values
97 const Type *ETy = Phi->getType();
98 if (ETy->isPointerType()) ETy = Type::ULongTy;
99
100 Start = (Value*)(E1.Offset ? E1.Offset : ConstPoolInt::get(ETy, 0));
101 Step = (Value*)(E2.Offset ? E2.Offset : ConstPoolInt::get(ETy, 0));
102 } else {
103 // Okay, at this point, we know that we have loop information...
104
105 // Make sure that V1 is the incoming value, and V2 is from the backedge of
106 // the loop.
107 if (L->contains(Phi->getIncomingBlock(0))) // Wrong order. Swap now.
108 swap(V1, V2);
109
110 Start = V1; // We know that Start has to be loop invariant...
111 Step = 0;
112
113 if (V2 == Phi) { // referencing the PHI directly? Must have zero step
114 Step = ConstPoolVal::getNullConstant(Phi->getType());
115 } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(V2)) {
116 // TODO: This could be much better...
117 if (I->getOpcode() == Instruction::Add) {
118 if (I->getOperand(0) == Phi)
119 Step = I->getOperand(1);
120 else if (I->getOperand(1) == Phi)
121 Step = I->getOperand(0);
122 }
123 }
124
125 if (Step == 0) { // Unrecognized step value...
126 ExprType StepE = analysis::ClassifyExpression(V2);
127 if (StepE.ExprTy != ExprType::Linear ||
128 StepE.Var != Phi) return;
129
130 const Type *ETy = Phi->getType();
131 if (ETy->isPointerType()) ETy = Type::ULongTy;
132 Step = (Value*)(StepE.Offset ? StepE.Offset : ConstPoolInt::get(ETy, 0));
133 }
134 }
135
136 // Classify the induction variable type now...
137 InductionType = InductionVariable::Classify(Start, Step, L);
138}