| Chris Lattner | c0b42e9 | 2007-10-23 06:27:55 +0000 | [diff] [blame] | 1 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" | 
 | 2 |                       "http://www.w3.org/TR/html4/strict.dtd"> | 
 | 3 |  | 
 | 4 | <html> | 
 | 5 | <head> | 
 | 6 |   <title>Kaleidoscope: Adding JIT and Optimizer Support</title> | 
 | 7 |   <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> | 
 | 8 |   <meta name="author" content="Chris Lattner"> | 
 | 9 |   <link rel="stylesheet" href="../llvm.css" type="text/css"> | 
 | 10 | </head> | 
 | 11 |  | 
 | 12 | <body> | 
 | 13 |  | 
 | 14 | <div class="doc_title">Kaleidoscope: Adding JIT and Optimizer Support</div> | 
 | 15 |  | 
| Chris Lattner | 128eb86 | 2007-11-05 19:06:59 +0000 | [diff] [blame] | 16 | <ul> | 
| Chris Lattner | 0e555b1 | 2007-11-05 20:04:56 +0000 | [diff] [blame] | 17 | <li><a href="index.html">Up to Tutorial Index</a></li> | 
| Chris Lattner | 128eb86 | 2007-11-05 19:06:59 +0000 | [diff] [blame] | 18 | <li>Chapter 4 | 
 | 19 |   <ol> | 
 | 20 |     <li><a href="#intro">Chapter 4 Introduction</a></li> | 
 | 21 |     <li><a href="#trivialconstfold">Trivial Constant Folding</a></li> | 
 | 22 |     <li><a href="#optimizerpasses">LLVM Optimization Passes</a></li> | 
 | 23 |     <li><a href="#jit">Adding a JIT Compiler</a></li> | 
 | 24 |     <li><a href="#code">Full Code Listing</a></li> | 
 | 25 |   </ol> | 
 | 26 | </li> | 
| Chris Lattner | 0e555b1 | 2007-11-05 20:04:56 +0000 | [diff] [blame] | 27 | <li><a href="LangImpl5.html">Chapter 5</a>: Extending the Language: Control  | 
 | 28 | Flow</li> | 
| Chris Lattner | 128eb86 | 2007-11-05 19:06:59 +0000 | [diff] [blame] | 29 | </ul> | 
 | 30 |  | 
| Chris Lattner | c0b42e9 | 2007-10-23 06:27:55 +0000 | [diff] [blame] | 31 | <div class="doc_author"> | 
 | 32 |   <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p> | 
 | 33 | </div> | 
 | 34 |  | 
 | 35 | <!-- *********************************************************************** --> | 
| Chris Lattner | 128eb86 | 2007-11-05 19:06:59 +0000 | [diff] [blame] | 36 | <div class="doc_section"><a name="intro">Chapter 4 Introduction</a></div> | 
| Chris Lattner | c0b42e9 | 2007-10-23 06:27:55 +0000 | [diff] [blame] | 37 | <!-- *********************************************************************** --> | 
 | 38 |  | 
 | 39 | <div class="doc_text"> | 
 | 40 |  | 
| Chris Lattner | 128eb86 | 2007-11-05 19:06:59 +0000 | [diff] [blame] | 41 | <p>Welcome to Chapter 4 of the "<a href="index.html">Implementing a language | 
 | 42 | with LLVM</a>" tutorial.  Parts 1-3 described the implementation of a simple | 
 | 43 | language and included support for generating LLVM IR.  This chapter describes | 
 | 44 | two new techniques: adding optimizer support to your language, and adding JIT | 
 | 45 | compiler support.  This shows how to get nice efficient code for your | 
 | 46 | language.</p> | 
| Chris Lattner | c0b42e9 | 2007-10-23 06:27:55 +0000 | [diff] [blame] | 47 |  | 
 | 48 | </div> | 
 | 49 |  | 
 | 50 | <!-- *********************************************************************** --> | 
| Chris Lattner | 118749e | 2007-10-25 06:23:36 +0000 | [diff] [blame] | 51 | <div class="doc_section"><a name="trivialconstfold">Trivial Constant | 
 | 52 | Folding</a></div> | 
| Chris Lattner | c0b42e9 | 2007-10-23 06:27:55 +0000 | [diff] [blame] | 53 | <!-- *********************************************************************** --> | 
 | 54 |  | 
 | 55 | <div class="doc_text"> | 
 | 56 |  | 
 | 57 | <p> | 
| Chris Lattner | 118749e | 2007-10-25 06:23:36 +0000 | [diff] [blame] | 58 | Our demonstration for Chapter 3 is elegant and easy to extend.  Unfortunately, | 
 | 59 | it does not produce wonderful code.  For example, when compiling simple code, | 
 | 60 | we don't get obvious optimizations:</p> | 
| Chris Lattner | c0b42e9 | 2007-10-23 06:27:55 +0000 | [diff] [blame] | 61 |  | 
 | 62 | <div class="doc_code"> | 
 | 63 | <pre> | 
| Chris Lattner | 118749e | 2007-10-25 06:23:36 +0000 | [diff] [blame] | 64 | ready> <b>def test(x) 1+2+x;</b> | 
 | 65 | Read function definition: | 
 | 66 | define double @test(double %x) { | 
 | 67 | entry: | 
 | 68 |         %addtmp = add double 1.000000e+00, 2.000000e+00 | 
 | 69 |         %addtmp1 = add double %addtmp, %x | 
 | 70 |         ret double %addtmp1 | 
 | 71 | } | 
 | 72 | </pre> | 
 | 73 | </div> | 
 | 74 |  | 
 | 75 | <p>This code is a very very literal transcription of the AST built by parsing | 
 | 76 | our code, and as such, lacks optimizations like constant folding (we'd like to  | 
 | 77 | get "<tt>add x, 3.0</tt>" in the example above) as well as other more important | 
 | 78 | optimizations.  Constant folding in particular is a very common and very | 
 | 79 | important optimization: so much so that many language implementors implement | 
 | 80 | constant folding support in their AST representation.</p> | 
 | 81 |  | 
 | 82 | <p>With LLVM, you don't need to.  Since all calls to build LLVM IR go through | 
 | 83 | the LLVM builder, it would be nice if the builder itself checked to see if there | 
 | 84 | was a constant folding opportunity when you call it.  If so, it could just do | 
 | 85 | the constant fold and return the constant instead of creating an instruction. | 
 | 86 | This is exactly what the <tt>LLVMFoldingBuilder</tt> class does.  Lets make one | 
 | 87 | change: | 
 | 88 |  | 
 | 89 | <div class="doc_code"> | 
 | 90 | <pre> | 
 | 91 | static LLVMFoldingBuilder Builder; | 
 | 92 | </pre> | 
 | 93 | </div> | 
 | 94 |  | 
 | 95 | <p>All we did was switch from <tt>LLVMBuilder</tt> to  | 
 | 96 | <tt>LLVMFoldingBuilder</tt>.  Though we change no other code, now all of our | 
 | 97 | instructions are implicitly constant folded without us having to do anything | 
 | 98 | about it.  For example, our example above now compiles to:</p> | 
 | 99 |  | 
 | 100 | <div class="doc_code"> | 
 | 101 | <pre> | 
 | 102 | ready> <b>def test(x) 1+2+x;</b> | 
 | 103 | Read function definition: | 
 | 104 | define double @test(double %x) { | 
 | 105 | entry: | 
 | 106 |         %addtmp = add double 3.000000e+00, %x | 
 | 107 |         ret double %addtmp | 
 | 108 | } | 
 | 109 | </pre> | 
 | 110 | </div> | 
 | 111 |  | 
 | 112 | <p>Well, that was easy.  :)  In practice, we recommend always using | 
| Owen Anderson | 6867aec | 2007-10-25 06:50:30 +0000 | [diff] [blame] | 113 | <tt>LLVMFoldingBuilder</tt> when generating code like this.  It has no | 
| Chris Lattner | 118749e | 2007-10-25 06:23:36 +0000 | [diff] [blame] | 114 | "syntactic overhead" for its use (you don't have to uglify your compiler with | 
 | 115 | constant checks everywhere) and it can dramatically reduce the amount of | 
 | 116 | LLVM IR that is generated in some cases (particular for languages with a macro | 
 | 117 | preprocessor or that use a lot of constants).</p> | 
 | 118 |  | 
 | 119 | <p>On the other hand, the <tt>LLVMFoldingBuilder</tt> is limited by the fact | 
 | 120 | that it does all of its analysis inline with the code as it is built.  If you | 
 | 121 | take a slightly more complex example:</p> | 
 | 122 |  | 
 | 123 | <div class="doc_code"> | 
 | 124 | <pre> | 
 | 125 | ready> <b>def test(x) (1+2+x)*(x+(1+2));</b> | 
 | 126 | ready> Read function definition: | 
 | 127 | define double @test(double %x) { | 
 | 128 | entry: | 
 | 129 |         %addtmp = add double 3.000000e+00, %x | 
 | 130 |         %addtmp1 = add double %x, 3.000000e+00 | 
 | 131 |         %multmp = mul double %addtmp, %addtmp1 | 
 | 132 |         ret double %multmp | 
 | 133 | } | 
 | 134 | </pre> | 
 | 135 | </div> | 
 | 136 |  | 
 | 137 | <p>In this case, the LHS and RHS of the multiplication are the same value.  We'd | 
 | 138 | really like to see this generate "<tt>tmp = x+3; result = tmp*tmp;</tt>" instead | 
 | 139 | of computing "<tt>x*3</tt>" twice.</p> | 
 | 140 |  | 
 | 141 | <p>Unfortunately, no amount of local analysis will be able to detect and correct | 
 | 142 | this.  This requires two transformations: reassociation of expressions (to  | 
 | 143 | make the add's lexically identical) and Common Subexpression Elimination (CSE) | 
 | 144 | to  delete the redundant add instruction.  Fortunately, LLVM provides a broad | 
 | 145 | range of optimizations that you can use, in the form of "passes".</p> | 
 | 146 |  | 
 | 147 | </div> | 
 | 148 |  | 
 | 149 | <!-- *********************************************************************** --> | 
 | 150 | <div class="doc_section"><a name="optimizerpasses">LLVM Optimization | 
 | 151 |  Passes</a></div> | 
 | 152 | <!-- *********************************************************************** --> | 
 | 153 |  | 
 | 154 | <div class="doc_text"> | 
 | 155 |  | 
 | 156 | <p>LLVM provides many optimization passes which do many different sorts of | 
 | 157 | things and have different tradeoffs.  Unlike other systems, LLVM doesn't hold | 
 | 158 | to the mistaken notion that one set of optimizations is right for all languages | 
 | 159 | and for all situations.  LLVM allows a compiler implementor to make complete | 
 | 160 | decisions about what optimizations to use, in which order, and in what | 
 | 161 | situation.</p> | 
 | 162 |  | 
 | 163 | <p>As a concrete example, LLVM supports both "whole module" passes, which look | 
 | 164 | across as large of body of code as they can (often a whole file, but if run  | 
 | 165 | at link time, this can be a substantial portion of the whole program).  It also | 
 | 166 | supports and includes "per-function" passes which just operate on a single | 
 | 167 | function at a time, without looking at other functions.  For more information | 
 | 168 | on passes and how the get run, see the <a href="../WritingAnLLVMPass.html">How | 
 | 169 | to Write a Pass</a> document.</p> | 
 | 170 |  | 
 | 171 | <p>For Kaleidoscope, we are currently generating functions on the fly, one at | 
 | 172 | a time, as the user types them in.  We aren't shooting for the ultimate | 
 | 173 | optimization experience in this setting, but we also want to catch the easy and | 
 | 174 | quick stuff where possible.  As such, we will choose to run a few per-function | 
 | 175 | optimizations as the user types the function in.  If we wanted to make a "static | 
 | 176 | Kaleidoscope compiler", we would use exactly the code we have now, except that | 
 | 177 | we would defer running the optimizer until the entire file has been parsed.</p> | 
 | 178 |  | 
 | 179 | <p>In order to get per-function optimizations going, we need to set up a | 
 | 180 | <a href="../WritingAnLLVMPass.html#passmanager">FunctionPassManager</a> to hold and | 
 | 181 | organize the LLVM optimizations that we want to run.  Once we have that, we can | 
 | 182 | add a set of optimizations to run.  The code looks like this:</p> | 
 | 183 |  | 
 | 184 | <div class="doc_code"> | 
 | 185 | <pre> | 
 | 186 |     ExistingModuleProvider OurModuleProvider(TheModule); | 
 | 187 |     FunctionPassManager OurFPM(&OurModuleProvider); | 
 | 188 |        | 
 | 189 |     // Set up the optimizer pipeline.  Start with registering info about how the | 
 | 190 |     // target lays out data structures. | 
 | 191 |     OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData())); | 
 | 192 |     // Do simple "peephole" optimizations and bit-twiddling optzns. | 
 | 193 |     OurFPM.add(createInstructionCombiningPass()); | 
 | 194 |     // Reassociate expressions. | 
 | 195 |     OurFPM.add(createReassociatePass()); | 
 | 196 |     // Eliminate Common SubExpressions. | 
 | 197 |     OurFPM.add(createGVNPass()); | 
 | 198 |     // Simplify the control flow graph (deleting unreachable blocks, etc). | 
 | 199 |     OurFPM.add(createCFGSimplificationPass()); | 
 | 200 |  | 
 | 201 |     // Set the global so the code gen can use this. | 
 | 202 |     TheFPM = &OurFPM; | 
 | 203 |  | 
 | 204 |     // Run the main "interpreter loop" now. | 
 | 205 |     MainLoop(); | 
 | 206 | </pre> | 
 | 207 | </div> | 
 | 208 |  | 
 | 209 | <p>This code defines two objects, a <tt>ExistingModuleProvider</tt> and a | 
 | 210 | <tt>FunctionPassManager</tt>.  The former is basically a wrapper around our | 
 | 211 | <tt>Module</tt> that the PassManager requires.  It provides certain flexibility | 
 | 212 | that we're not going to take advantage of here, so I won't dive into what it is | 
 | 213 | all about.</p> | 
 | 214 |  | 
 | 215 | <p>The meat of the matter is the definition of the "<tt>OurFPM</tt>".  It | 
 | 216 | requires a pointer to the <tt>Module</tt> (through the <tt>ModuleProvider</tt>) | 
 | 217 | to construct itself.  Once it is set up, we use a series of "add" calls to add | 
 | 218 | a bunch of LLVM passes.  The first pass is basically boilerplate, it adds a pass | 
 | 219 | so that later optimizations know how the data structures in the program are | 
 | 220 | layed out.  The "<tt>TheExecutionEngine</tt>" variable is related to the JIT, | 
 | 221 | which we will get to in the next section.</p> | 
 | 222 |  | 
 | 223 | <p>In this case, we choose to add 4 optimization passes.  The passes we chose | 
 | 224 | here are a pretty standard set of "cleanup" optimizations that are useful for | 
 | 225 | a wide variety of code.  I won't delve into what they do, but believe that they | 
 | 226 | are a good starting place.</p> | 
 | 227 |  | 
 | 228 | <p>Once the passmanager, is set up, we need to make use of it.  We do this by | 
 | 229 | running it after our newly created function is constructed (in  | 
 | 230 | <tt>FunctionAST::Codegen</tt>), but before it is returned to the client:</p> | 
 | 231 |  | 
 | 232 | <div class="doc_code"> | 
 | 233 | <pre> | 
 | 234 |   if (Value *RetVal = Body->Codegen()) { | 
 | 235 |     // Finish off the function. | 
 | 236 |     Builder.CreateRet(RetVal); | 
 | 237 |  | 
 | 238 |     // Validate the generated code, checking for consistency. | 
 | 239 |     verifyFunction(*TheFunction); | 
 | 240 |  | 
 | 241 |     // Optimize the function. | 
 | 242 |     TheFPM->run(*TheFunction); | 
 | 243 |      | 
 | 244 |     return TheFunction; | 
 | 245 |   } | 
 | 246 | </pre> | 
 | 247 | </div> | 
 | 248 |  | 
 | 249 | <p>As you can see, this is pretty straight-forward.  The  | 
 | 250 | <tt>FunctionPassManager</tt> optimizes and updates the LLVM Function* in place, | 
 | 251 | improving (hopefully) its body.  With this in place, we can try our test above | 
 | 252 | again:</p> | 
 | 253 |  | 
 | 254 | <div class="doc_code"> | 
 | 255 | <pre> | 
 | 256 | ready> <b>def test(x) (1+2+x)*(x+(1+2));</b> | 
 | 257 | ready> Read function definition: | 
 | 258 | define double @test(double %x) { | 
 | 259 | entry: | 
 | 260 |         %addtmp = add double %x, 3.000000e+00 | 
 | 261 |         %multmp = mul double %addtmp, %addtmp | 
 | 262 |         ret double %multmp | 
 | 263 | } | 
 | 264 | </pre> | 
 | 265 | </div> | 
 | 266 |  | 
 | 267 | <p>As expected, we now get our nicely optimized code, saving a floating point | 
 | 268 | add from the program.</p> | 
 | 269 |  | 
 | 270 | <p>LLVM provides a wide variety of optimizations that can be used in certain | 
| Chris Lattner | 7271423 | 2007-10-25 17:52:39 +0000 | [diff] [blame] | 271 | circumstances.  Some <a href="../Passes.html">documentation about the various  | 
 | 272 | passes</a> is available, but it isn't very complete.  Another good source of | 
 | 273 | ideas is to look at the passes that <tt>llvm-gcc</tt> or | 
| Chris Lattner | 118749e | 2007-10-25 06:23:36 +0000 | [diff] [blame] | 274 | <tt>llvm-ld</tt> run to get started.  The "<tt>opt</tt>" tool allows you to  | 
 | 275 | experiment with passes from the command line, so you can see if they do | 
 | 276 | anything.</p> | 
 | 277 |  | 
 | 278 | <p>Now that we have reasonable code coming out of our front-end, lets talk about | 
 | 279 | executing it!</p> | 
 | 280 |  | 
 | 281 | </div> | 
 | 282 |  | 
 | 283 | <!-- *********************************************************************** --> | 
 | 284 | <div class="doc_section"><a name="jit">Adding a JIT Compiler</a></div> | 
 | 285 | <!-- *********************************************************************** --> | 
 | 286 |  | 
 | 287 | <div class="doc_text"> | 
 | 288 |  | 
 | 289 | <p>Once the code is available in LLVM IR form a wide variety of tools can be | 
 | 290 | applied to it.  For example, you can run optimizations on it (as we did above), | 
 | 291 | you can dump it out in textual or binary forms, you can compile the code to an | 
 | 292 | assembly file (.s) for some target, or you can JIT compile it.  The nice thing | 
 | 293 | about the LLVM IR representation is that it is the common currency between many | 
 | 294 | different parts of the compiler. | 
 | 295 | </p> | 
 | 296 |  | 
 | 297 | <p>In this chapter, we'll add JIT compiler support to our interpreter.  The | 
 | 298 | basic idea that we want for Kaleidoscope is to have the user enter function | 
 | 299 | bodies as they do now, but immediately evaluate the top-level expressions they | 
 | 300 | type in.  For example, if they type in "1 + 2;", we should evaluate and print | 
 | 301 | out 3.  If they define a function, they should be able to call it from the  | 
 | 302 | command line.</p> | 
 | 303 |  | 
 | 304 | <p>In order to do this, we first declare and initialize the JIT.  This is done | 
 | 305 | by adding a global variable and a call in <tt>main</tt>:</p> | 
 | 306 |  | 
 | 307 | <div class="doc_code"> | 
 | 308 | <pre> | 
 | 309 | static ExecutionEngine *TheExecutionEngine; | 
 | 310 | ... | 
 | 311 | int main() { | 
 | 312 |   .. | 
 | 313 |   // Create the JIT. | 
 | 314 |   TheExecutionEngine = ExecutionEngine::create(TheModule); | 
 | 315 |   .. | 
 | 316 | } | 
 | 317 | </pre> | 
 | 318 | </div> | 
 | 319 |  | 
 | 320 | <p>This creates an abstract "Execution Engine" which can be either a JIT | 
 | 321 | compiler or the LLVM interpreter.  LLVM will automatically pick a JIT compiler | 
 | 322 | for you if one is available for your platform, otherwise it will fall back to | 
 | 323 | the interpreter.</p> | 
 | 324 |  | 
 | 325 | <p>Once the <tt>ExecutionEngine</tt> is created, the JIT is ready to be used. | 
 | 326 | There are a variety of APIs that are useful, but the most simple one is the | 
 | 327 | "<tt>getPointerToFunction(F)</tt>" method.  This method JIT compiles the | 
 | 328 | specified LLVM Function and returns a function pointer to the generated machine | 
 | 329 | code.  In our case, this means that we can change the code that parses a | 
 | 330 | top-level expression to look like this:</p> | 
 | 331 |  | 
 | 332 | <div class="doc_code"> | 
 | 333 | <pre> | 
 | 334 | static void HandleTopLevelExpression() { | 
 | 335 |   // Evaluate a top level expression into an anonymous function. | 
 | 336 |   if (FunctionAST *F = ParseTopLevelExpr()) { | 
 | 337 |     if (Function *LF = F->Codegen()) { | 
 | 338 |       LF->dump();  // Dump the function for exposition purposes. | 
 | 339 |      | 
 | 340 |       // JIT the function, returning a function pointer. | 
 | 341 |       void *FPtr = TheExecutionEngine->getPointerToFunction(LF); | 
 | 342 |        | 
 | 343 |       // Cast it to the right type (takes no arguments, returns a double) so we | 
 | 344 |       // can call it as a native function. | 
 | 345 |       double (*FP)() = (double (*)())FPtr; | 
 | 346 |       fprintf(stderr, "Evaluated to %f\n", FP()); | 
 | 347 |     } | 
 | 348 | </pre> | 
 | 349 | </div> | 
 | 350 |  | 
 | 351 | <p>Recall that we compile top-level expressions into a self-contained LLVM | 
 | 352 | function that takes no arguments and returns the computed double.  Because the  | 
 | 353 | LLVM JIT compiler matches the native platform ABI, this means that you can just | 
 | 354 | cast the result pointer to a function pointer of that type and call it directly. | 
 | 355 | As such, there is no difference between JIT compiled code and native machine | 
 | 356 | code that is statically linked into your application.</p> | 
 | 357 |  | 
 | 358 | <p>With just these two changes, lets see how Kaleidoscope works now!</p> | 
 | 359 |  | 
 | 360 | <div class="doc_code"> | 
 | 361 | <pre> | 
 | 362 | ready> <b>4+5;</b> | 
 | 363 | define double @""() { | 
 | 364 | entry: | 
 | 365 |         ret double 9.000000e+00 | 
 | 366 | } | 
 | 367 |  | 
 | 368 | <em>Evaluated to 9.000000</em> | 
 | 369 | </pre> | 
 | 370 | </div> | 
 | 371 |  | 
 | 372 | <p>Well this looks like it is basically working.  The dump of the function | 
 | 373 | shows the "no argument function that always returns double" that we synthesize | 
 | 374 | for each top level expression that is typed it.  This demonstrates very basic | 
 | 375 | functionality, but can we do more?</p> | 
 | 376 |  | 
 | 377 | <div class="doc_code"> | 
 | 378 | <pre> | 
| Chris Lattner | 2e89f3a | 2007-10-31 07:30:39 +0000 | [diff] [blame] | 379 | ready> <b>def testfunc(x y) x + y*2; </b>  | 
| Chris Lattner | 118749e | 2007-10-25 06:23:36 +0000 | [diff] [blame] | 380 | Read function definition: | 
 | 381 | define double @testfunc(double %x, double %y) { | 
 | 382 | entry: | 
 | 383 |         %multmp = mul double %y, 2.000000e+00 | 
 | 384 |         %addtmp = add double %multmp, %x | 
 | 385 |         ret double %addtmp | 
 | 386 | } | 
 | 387 |  | 
 | 388 | ready> <b>testfunc(4, 10);</b> | 
 | 389 | define double @""() { | 
 | 390 | entry: | 
 | 391 |         %calltmp = call double @testfunc( double 4.000000e+00, double 1.000000e+01 ) | 
 | 392 |         ret double %calltmp | 
 | 393 | } | 
 | 394 |  | 
 | 395 | <em>Evaluated to 24.000000</em> | 
 | 396 | </pre> | 
 | 397 | </div> | 
 | 398 |  | 
 | 399 | <p>This illustrates that we can now call user code, but it is a bit subtle what | 
 | 400 | is going on here.  Note that we only invoke the JIT on the anonymous functions | 
 | 401 | that <em>calls testfunc</em>, but we never invoked it on <em>testfunc | 
 | 402 | itself</em>.</p> | 
 | 403 |  | 
 | 404 | <p>What actually happened here is that the anonymous function is | 
 | 405 | JIT'd when requested.  When the Kaleidoscope app calls through the function | 
 | 406 | pointer that is returned, the anonymous function starts executing.  It ends up | 
 | 407 | making the call for the "testfunc" function, and ends up in a stub that invokes | 
 | 408 | the JIT, lazily, on testfunc.  Once the JIT finishes lazily compiling testfunc, | 
 | 409 | it returns and the code reexecutes the call.</p> | 
 | 410 |  | 
 | 411 | <p>In summary, the JIT will lazily JIT code on the fly as it is needed.  The | 
 | 412 | JIT provides a number of other more advanced interfaces for things like freeing | 
 | 413 | allocated machine code, rejit'ing functions to update them, etc.  However, even | 
 | 414 | with this simple code, we get some surprisingly powerful capabilities - check | 
 | 415 | this out (I removed the dump of the anonymous functions, you should get the idea | 
 | 416 | by now :) :</p> | 
 | 417 |  | 
 | 418 | <div class="doc_code"> | 
 | 419 | <pre> | 
 | 420 | ready> <b>extern sin(x);</b> | 
 | 421 | Read extern:  | 
 | 422 | declare double @sin(double) | 
 | 423 |  | 
 | 424 | ready> <b>extern cos(x);</b> | 
 | 425 | Read extern:  | 
 | 426 | declare double @cos(double) | 
 | 427 |  | 
 | 428 | ready> <b>sin(1.0);</b> | 
 | 429 | <em>Evaluated to 0.841471</em> | 
| Chris Lattner | 7271423 | 2007-10-25 17:52:39 +0000 | [diff] [blame] | 430 |  | 
| Chris Lattner | 118749e | 2007-10-25 06:23:36 +0000 | [diff] [blame] | 431 | ready> <b>def foo(x) sin(x)*sin(x) + cos(x)*cos(x);</b> | 
 | 432 | Read function definition: | 
 | 433 | define double @foo(double %x) { | 
 | 434 | entry: | 
 | 435 |         %calltmp = call double @sin( double %x ) | 
 | 436 |         %multmp = mul double %calltmp, %calltmp | 
 | 437 |         %calltmp2 = call double @cos( double %x ) | 
 | 438 |         %multmp4 = mul double %calltmp2, %calltmp2 | 
 | 439 |         %addtmp = add double %multmp, %multmp4 | 
 | 440 |         ret double %addtmp | 
 | 441 | } | 
 | 442 |  | 
 | 443 | ready> <b>foo(4.0);</b> | 
 | 444 | <em>Evaluated to 1.000000</em> | 
 | 445 | </pre> | 
 | 446 | </div> | 
 | 447 |  | 
 | 448 | <p>Whoa, how does the JIT know about sin and cos?  The answer is simple: in this | 
 | 449 | example, the JIT started execution of a function and got to a function call.  It | 
 | 450 | realized that the function was not yet JIT compiled and invoked the standard set | 
 | 451 | of routines to resolve the function.  In this case, there is no body defined | 
 | 452 | for the function, so the JIT ended up calling "<tt>dlsym("sin")</tt>" on itself. | 
 | 453 | Since "<tt>sin</tt>" is defined within the JIT's address space, it simply | 
 | 454 | patches up calls in the module to call the libm version of <tt>sin</tt> | 
 | 455 | directly.</p> | 
 | 456 |  | 
 | 457 | <p>The LLVM JIT provides a number of interfaces (look in the  | 
 | 458 | <tt>ExecutionEngine.h</tt> file) for controlling how unknown functions get | 
 | 459 | resolved.  It allows you to establish explicit mappings between IR objects and | 
 | 460 | addresses (useful for LLVM global variables that you want to map to static | 
 | 461 | tables, for example), allows you to dynamically decide on the fly based on the | 
 | 462 | function name, and even allows you to have the JIT abort itself if any lazy | 
 | 463 | compilation is attempted.</p> | 
 | 464 |  | 
| Chris Lattner | 7271423 | 2007-10-25 17:52:39 +0000 | [diff] [blame] | 465 | <p>One interesting application of this is that we can now extend the language | 
 | 466 | by writing arbitrary C++ code to implement operations.  For example, if we add: | 
 | 467 | </p> | 
 | 468 |  | 
 | 469 | <div class="doc_code"> | 
 | 470 | <pre> | 
 | 471 | /// putchard - putchar that takes a double and returns 0. | 
 | 472 | extern "C"  | 
 | 473 | double putchard(double X) { | 
 | 474 |   putchar((char)X); | 
 | 475 |   return 0; | 
 | 476 | } | 
 | 477 | </pre> | 
 | 478 | </div> | 
 | 479 |  | 
 | 480 | <p>Now we can produce simple output to the console by using things like: | 
 | 481 | "<tt>extern putchard(x); putchard(120);</tt>", which prints a lowercase 'x' on | 
 | 482 | the console (120 is the ascii code for 'x').  Similar code could be used to  | 
 | 483 | implement file I/O, console input, and many other capabilities in | 
 | 484 | Kaleidoscope.</p> | 
 | 485 |  | 
| Chris Lattner | 118749e | 2007-10-25 06:23:36 +0000 | [diff] [blame] | 486 | <p>This completes the JIT and optimizer chapter of the Kaleidoscope tutorial. At | 
 | 487 | this point, we can compile a non-Turing-complete programming language, optimize | 
 | 488 | and JIT compile it in a user-driven way.  Next up we'll look into <a  | 
 | 489 | href="LangImpl5.html">extending the language with control flow constructs</a>, | 
 | 490 | tackling some interesting LLVM IR issues along the way.</p> | 
 | 491 |  | 
 | 492 | </div> | 
 | 493 |  | 
 | 494 | <!-- *********************************************************************** --> | 
 | 495 | <div class="doc_section"><a name="code">Full Code Listing</a></div> | 
 | 496 | <!-- *********************************************************************** --> | 
 | 497 |  | 
 | 498 | <div class="doc_text"> | 
 | 499 |  | 
 | 500 | <p> | 
 | 501 | Here is the complete code listing for our running example, enhanced with the | 
 | 502 | LLVM JIT and optimizer.  To build this example, use: | 
 | 503 | </p> | 
 | 504 |  | 
 | 505 | <div class="doc_code"> | 
 | 506 | <pre> | 
 | 507 |    # Compile | 
 | 508 |    g++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy | 
 | 509 |    # Run | 
 | 510 |    ./toy | 
 | 511 | </pre> | 
 | 512 | </div> | 
 | 513 |  | 
 | 514 | <p>Here is the code:</p> | 
 | 515 |  | 
 | 516 | <div class="doc_code"> | 
 | 517 | <pre> | 
 | 518 | #include "llvm/DerivedTypes.h" | 
 | 519 | #include "llvm/ExecutionEngine/ExecutionEngine.h" | 
 | 520 | #include "llvm/Module.h" | 
 | 521 | #include "llvm/ModuleProvider.h" | 
 | 522 | #include "llvm/PassManager.h" | 
 | 523 | #include "llvm/Analysis/Verifier.h" | 
 | 524 | #include "llvm/Target/TargetData.h" | 
 | 525 | #include "llvm/Transforms/Scalar.h" | 
 | 526 | #include "llvm/Support/LLVMBuilder.h" | 
 | 527 | #include <cstdio> | 
 | 528 | #include <string> | 
 | 529 | #include <map> | 
 | 530 | #include <vector> | 
 | 531 | using namespace llvm; | 
 | 532 |  | 
 | 533 | //===----------------------------------------------------------------------===// | 
 | 534 | // Lexer | 
 | 535 | //===----------------------------------------------------------------------===// | 
 | 536 |  | 
 | 537 | // The lexer returns tokens [0-255] if it is an unknown character, otherwise one | 
 | 538 | // of these for known things. | 
 | 539 | enum Token { | 
 | 540 |   tok_eof = -1, | 
 | 541 |  | 
 | 542 |   // commands | 
 | 543 |   tok_def = -2, tok_extern = -3, | 
 | 544 |  | 
 | 545 |   // primary | 
 | 546 |   tok_identifier = -4, tok_number = -5, | 
 | 547 | }; | 
 | 548 |  | 
 | 549 | static std::string IdentifierStr;  // Filled in if tok_identifier | 
 | 550 | static double NumVal;              // Filled in if tok_number | 
 | 551 |  | 
 | 552 | /// gettok - Return the next token from standard input. | 
 | 553 | static int gettok() { | 
 | 554 |   static int LastChar = ' '; | 
 | 555 |  | 
 | 556 |   // Skip any whitespace. | 
 | 557 |   while (isspace(LastChar)) | 
 | 558 |     LastChar = getchar(); | 
 | 559 |  | 
 | 560 |   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* | 
 | 561 |     IdentifierStr = LastChar; | 
 | 562 |     while (isalnum((LastChar = getchar()))) | 
 | 563 |       IdentifierStr += LastChar; | 
 | 564 |  | 
 | 565 |     if (IdentifierStr == "def") return tok_def; | 
 | 566 |     if (IdentifierStr == "extern") return tok_extern; | 
 | 567 |     return tok_identifier; | 
 | 568 |   } | 
 | 569 |  | 
 | 570 |   if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+ | 
 | 571 |     std::string NumStr; | 
 | 572 |     do { | 
 | 573 |       NumStr += LastChar; | 
 | 574 |       LastChar = getchar(); | 
 | 575 |     } while (isdigit(LastChar) || LastChar == '.'); | 
 | 576 |  | 
 | 577 |     NumVal = strtod(NumStr.c_str(), 0); | 
 | 578 |     return tok_number; | 
 | 579 |   } | 
 | 580 |  | 
 | 581 |   if (LastChar == '#') { | 
 | 582 |     // Comment until end of line. | 
 | 583 |     do LastChar = getchar(); | 
 | 584 |     while (LastChar != EOF && LastChar != '\n' & LastChar != '\r'); | 
 | 585 |      | 
 | 586 |     if (LastChar != EOF) | 
 | 587 |       return gettok(); | 
 | 588 |   } | 
 | 589 |    | 
 | 590 |   // Check for end of file.  Don't eat the EOF. | 
 | 591 |   if (LastChar == EOF) | 
 | 592 |     return tok_eof; | 
 | 593 |  | 
 | 594 |   // Otherwise, just return the character as its ascii value. | 
 | 595 |   int ThisChar = LastChar; | 
 | 596 |   LastChar = getchar(); | 
 | 597 |   return ThisChar; | 
 | 598 | } | 
 | 599 |  | 
 | 600 | //===----------------------------------------------------------------------===// | 
 | 601 | // Abstract Syntax Tree (aka Parse Tree) | 
 | 602 | //===----------------------------------------------------------------------===// | 
 | 603 |  | 
| Chris Lattner | c0b42e9 | 2007-10-23 06:27:55 +0000 | [diff] [blame] | 604 | /// ExprAST - Base class for all expression nodes. | 
 | 605 | class ExprAST { | 
 | 606 | public: | 
 | 607 |   virtual ~ExprAST() {} | 
 | 608 |   virtual Value *Codegen() = 0; | 
 | 609 | }; | 
 | 610 |  | 
 | 611 | /// NumberExprAST - Expression class for numeric literals like "1.0". | 
 | 612 | class NumberExprAST : public ExprAST { | 
 | 613 |   double Val; | 
 | 614 | public: | 
| Chris Lattner | 118749e | 2007-10-25 06:23:36 +0000 | [diff] [blame] | 615 |   NumberExprAST(double val) : Val(val) {} | 
| Chris Lattner | c0b42e9 | 2007-10-23 06:27:55 +0000 | [diff] [blame] | 616 |   virtual Value *Codegen(); | 
 | 617 | }; | 
| Chris Lattner | 118749e | 2007-10-25 06:23:36 +0000 | [diff] [blame] | 618 |  | 
 | 619 | /// VariableExprAST - Expression class for referencing a variable, like "a". | 
 | 620 | class VariableExprAST : public ExprAST { | 
 | 621 |   std::string Name; | 
 | 622 | public: | 
 | 623 |   VariableExprAST(const std::string &name) : Name(name) {} | 
 | 624 |   virtual Value *Codegen(); | 
 | 625 | }; | 
 | 626 |  | 
 | 627 | /// BinaryExprAST - Expression class for a binary operator. | 
 | 628 | class BinaryExprAST : public ExprAST { | 
 | 629 |   char Op; | 
 | 630 |   ExprAST *LHS, *RHS; | 
 | 631 | public: | 
 | 632 |   BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)  | 
 | 633 |     : Op(op), LHS(lhs), RHS(rhs) {} | 
 | 634 |   virtual Value *Codegen(); | 
 | 635 | }; | 
 | 636 |  | 
 | 637 | /// CallExprAST - Expression class for function calls. | 
 | 638 | class CallExprAST : public ExprAST { | 
 | 639 |   std::string Callee; | 
 | 640 |   std::vector<ExprAST*> Args; | 
 | 641 | public: | 
 | 642 |   CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) | 
 | 643 |     : Callee(callee), Args(args) {} | 
 | 644 |   virtual Value *Codegen(); | 
 | 645 | }; | 
 | 646 |  | 
 | 647 | /// PrototypeAST - This class represents the "prototype" for a function, | 
 | 648 | /// which captures its argument names as well as if it is an operator. | 
 | 649 | class PrototypeAST { | 
 | 650 |   std::string Name; | 
 | 651 |   std::vector<std::string> Args; | 
 | 652 | public: | 
 | 653 |   PrototypeAST(const std::string &name, const std::vector<std::string> &args) | 
 | 654 |     : Name(name), Args(args) {} | 
 | 655 |    | 
 | 656 |   Function *Codegen(); | 
 | 657 | }; | 
 | 658 |  | 
 | 659 | /// FunctionAST - This class represents a function definition itself. | 
 | 660 | class FunctionAST { | 
 | 661 |   PrototypeAST *Proto; | 
 | 662 |   ExprAST *Body; | 
 | 663 | public: | 
 | 664 |   FunctionAST(PrototypeAST *proto, ExprAST *body) | 
 | 665 |     : Proto(proto), Body(body) {} | 
 | 666 |    | 
 | 667 |   Function *Codegen(); | 
 | 668 | }; | 
 | 669 |  | 
 | 670 | //===----------------------------------------------------------------------===// | 
 | 671 | // Parser | 
 | 672 | //===----------------------------------------------------------------------===// | 
 | 673 |  | 
 | 674 | /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current | 
 | 675 | /// token the parser it looking at.  getNextToken reads another token from the | 
 | 676 | /// lexer and updates CurTok with its results. | 
 | 677 | static int CurTok; | 
 | 678 | static int getNextToken() { | 
 | 679 |   return CurTok = gettok(); | 
 | 680 | } | 
 | 681 |  | 
 | 682 | /// BinopPrecedence - This holds the precedence for each binary operator that is | 
 | 683 | /// defined. | 
 | 684 | static std::map<char, int> BinopPrecedence; | 
 | 685 |  | 
 | 686 | /// GetTokPrecedence - Get the precedence of the pending binary operator token. | 
 | 687 | static int GetTokPrecedence() { | 
 | 688 |   if (!isascii(CurTok)) | 
 | 689 |     return -1; | 
 | 690 |    | 
 | 691 |   // Make sure it's a declared binop. | 
 | 692 |   int TokPrec = BinopPrecedence[CurTok]; | 
 | 693 |   if (TokPrec <= 0) return -1; | 
 | 694 |   return TokPrec; | 
 | 695 | } | 
 | 696 |  | 
 | 697 | /// Error* - These are little helper functions for error handling. | 
 | 698 | ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} | 
 | 699 | PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } | 
 | 700 | FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } | 
 | 701 |  | 
 | 702 | static ExprAST *ParseExpression(); | 
 | 703 |  | 
 | 704 | /// identifierexpr | 
| Chris Lattner | 20a0c80 | 2007-11-05 17:54:34 +0000 | [diff] [blame] | 705 | ///   ::= identifier | 
 | 706 | ///   ::= identifier '(' expression* ')' | 
| Chris Lattner | 118749e | 2007-10-25 06:23:36 +0000 | [diff] [blame] | 707 | static ExprAST *ParseIdentifierExpr() { | 
 | 708 |   std::string IdName = IdentifierStr; | 
 | 709 |    | 
| Chris Lattner | 20a0c80 | 2007-11-05 17:54:34 +0000 | [diff] [blame] | 710 |   getNextToken();  // eat identifier. | 
| Chris Lattner | 118749e | 2007-10-25 06:23:36 +0000 | [diff] [blame] | 711 |    | 
 | 712 |   if (CurTok != '(') // Simple variable ref. | 
 | 713 |     return new VariableExprAST(IdName); | 
 | 714 |    | 
 | 715 |   // Call. | 
 | 716 |   getNextToken();  // eat ( | 
 | 717 |   std::vector<ExprAST*> Args; | 
 | 718 |   while (1) { | 
 | 719 |     ExprAST *Arg = ParseExpression(); | 
 | 720 |     if (!Arg) return 0; | 
 | 721 |     Args.push_back(Arg); | 
 | 722 |      | 
 | 723 |     if (CurTok == ')') break; | 
 | 724 |      | 
 | 725 |     if (CurTok != ',') | 
 | 726 |       return Error("Expected ')'"); | 
 | 727 |     getNextToken(); | 
 | 728 |   } | 
 | 729 |  | 
 | 730 |   // Eat the ')'. | 
 | 731 |   getNextToken(); | 
 | 732 |    | 
 | 733 |   return new CallExprAST(IdName, Args); | 
 | 734 | } | 
 | 735 |  | 
 | 736 | /// numberexpr ::= number | 
 | 737 | static ExprAST *ParseNumberExpr() { | 
 | 738 |   ExprAST *Result = new NumberExprAST(NumVal); | 
 | 739 |   getNextToken(); // consume the number | 
 | 740 |   return Result; | 
 | 741 | } | 
 | 742 |  | 
 | 743 | /// parenexpr ::= '(' expression ')' | 
 | 744 | static ExprAST *ParseParenExpr() { | 
 | 745 |   getNextToken();  // eat (. | 
 | 746 |   ExprAST *V = ParseExpression(); | 
 | 747 |   if (!V) return 0; | 
 | 748 |    | 
 | 749 |   if (CurTok != ')') | 
 | 750 |     return Error("expected ')'"); | 
 | 751 |   getNextToken();  // eat ). | 
 | 752 |   return V; | 
 | 753 | } | 
 | 754 |  | 
 | 755 | /// primary | 
 | 756 | ///   ::= identifierexpr | 
 | 757 | ///   ::= numberexpr | 
 | 758 | ///   ::= parenexpr | 
 | 759 | static ExprAST *ParsePrimary() { | 
 | 760 |   switch (CurTok) { | 
 | 761 |   default: return Error("unknown token when expecting an expression"); | 
 | 762 |   case tok_identifier: return ParseIdentifierExpr(); | 
 | 763 |   case tok_number:     return ParseNumberExpr(); | 
 | 764 |   case '(':            return ParseParenExpr(); | 
 | 765 |   } | 
 | 766 | } | 
 | 767 |  | 
 | 768 | /// binoprhs | 
 | 769 | ///   ::= ('+' primary)* | 
 | 770 | static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { | 
 | 771 |   // If this is a binop, find its precedence. | 
 | 772 |   while (1) { | 
 | 773 |     int TokPrec = GetTokPrecedence(); | 
 | 774 |      | 
 | 775 |     // If this is a binop that binds at least as tightly as the current binop, | 
 | 776 |     // consume it, otherwise we are done. | 
 | 777 |     if (TokPrec < ExprPrec) | 
 | 778 |       return LHS; | 
 | 779 |      | 
 | 780 |     // Okay, we know this is a binop. | 
 | 781 |     int BinOp = CurTok; | 
 | 782 |     getNextToken();  // eat binop | 
 | 783 |      | 
 | 784 |     // Parse the primary expression after the binary operator. | 
 | 785 |     ExprAST *RHS = ParsePrimary(); | 
 | 786 |     if (!RHS) return 0; | 
 | 787 |      | 
 | 788 |     // If BinOp binds less tightly with RHS than the operator after RHS, let | 
 | 789 |     // the pending operator take RHS as its LHS. | 
 | 790 |     int NextPrec = GetTokPrecedence(); | 
 | 791 |     if (TokPrec < NextPrec) { | 
 | 792 |       RHS = ParseBinOpRHS(TokPrec+1, RHS); | 
 | 793 |       if (RHS == 0) return 0; | 
 | 794 |     } | 
 | 795 |      | 
 | 796 |     // Merge LHS/RHS. | 
 | 797 |     LHS = new BinaryExprAST(BinOp, LHS, RHS); | 
 | 798 |   } | 
 | 799 | } | 
 | 800 |  | 
 | 801 | /// expression | 
 | 802 | ///   ::= primary binoprhs | 
 | 803 | /// | 
 | 804 | static ExprAST *ParseExpression() { | 
 | 805 |   ExprAST *LHS = ParsePrimary(); | 
 | 806 |   if (!LHS) return 0; | 
 | 807 |    | 
 | 808 |   return ParseBinOpRHS(0, LHS); | 
 | 809 | } | 
 | 810 |  | 
 | 811 | /// prototype | 
 | 812 | ///   ::= id '(' id* ')' | 
 | 813 | static PrototypeAST *ParsePrototype() { | 
 | 814 |   if (CurTok != tok_identifier) | 
 | 815 |     return ErrorP("Expected function name in prototype"); | 
 | 816 |  | 
 | 817 |   std::string FnName = IdentifierStr; | 
 | 818 |   getNextToken(); | 
 | 819 |    | 
 | 820 |   if (CurTok != '(') | 
 | 821 |     return ErrorP("Expected '(' in prototype"); | 
 | 822 |    | 
 | 823 |   std::vector<std::string> ArgNames; | 
 | 824 |   while (getNextToken() == tok_identifier) | 
 | 825 |     ArgNames.push_back(IdentifierStr); | 
 | 826 |   if (CurTok != ')') | 
 | 827 |     return ErrorP("Expected ')' in prototype"); | 
 | 828 |    | 
 | 829 |   // success. | 
 | 830 |   getNextToken();  // eat ')'. | 
 | 831 |    | 
 | 832 |   return new PrototypeAST(FnName, ArgNames); | 
 | 833 | } | 
 | 834 |  | 
 | 835 | /// definition ::= 'def' prototype expression | 
 | 836 | static FunctionAST *ParseDefinition() { | 
 | 837 |   getNextToken();  // eat def. | 
 | 838 |   PrototypeAST *Proto = ParsePrototype(); | 
 | 839 |   if (Proto == 0) return 0; | 
 | 840 |  | 
 | 841 |   if (ExprAST *E = ParseExpression()) | 
 | 842 |     return new FunctionAST(Proto, E); | 
 | 843 |   return 0; | 
 | 844 | } | 
 | 845 |  | 
 | 846 | /// toplevelexpr ::= expression | 
 | 847 | static FunctionAST *ParseTopLevelExpr() { | 
 | 848 |   if (ExprAST *E = ParseExpression()) { | 
 | 849 |     // Make an anonymous proto. | 
 | 850 |     PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); | 
 | 851 |     return new FunctionAST(Proto, E); | 
 | 852 |   } | 
 | 853 |   return 0; | 
 | 854 | } | 
 | 855 |  | 
 | 856 | /// external ::= 'extern' prototype | 
 | 857 | static PrototypeAST *ParseExtern() { | 
 | 858 |   getNextToken();  // eat extern. | 
 | 859 |   return ParsePrototype(); | 
 | 860 | } | 
 | 861 |  | 
 | 862 | //===----------------------------------------------------------------------===// | 
 | 863 | // Code Generation | 
 | 864 | //===----------------------------------------------------------------------===// | 
 | 865 |  | 
 | 866 | static Module *TheModule; | 
 | 867 | static LLVMFoldingBuilder Builder; | 
 | 868 | static std::map<std::string, Value*> NamedValues; | 
 | 869 | static FunctionPassManager *TheFPM; | 
 | 870 |  | 
 | 871 | Value *ErrorV(const char *Str) { Error(Str); return 0; } | 
 | 872 |  | 
 | 873 | Value *NumberExprAST::Codegen() { | 
 | 874 |   return ConstantFP::get(Type::DoubleTy, APFloat(Val)); | 
 | 875 | } | 
 | 876 |  | 
 | 877 | Value *VariableExprAST::Codegen() { | 
 | 878 |   // Look this variable up in the function. | 
 | 879 |   Value *V = NamedValues[Name]; | 
 | 880 |   return V ? V : ErrorV("Unknown variable name"); | 
 | 881 | } | 
 | 882 |  | 
 | 883 | Value *BinaryExprAST::Codegen() { | 
 | 884 |   Value *L = LHS->Codegen(); | 
 | 885 |   Value *R = RHS->Codegen(); | 
 | 886 |   if (L == 0 || R == 0) return 0; | 
 | 887 |    | 
 | 888 |   switch (Op) { | 
 | 889 |   case '+': return Builder.CreateAdd(L, R, "addtmp"); | 
 | 890 |   case '-': return Builder.CreateSub(L, R, "subtmp"); | 
 | 891 |   case '*': return Builder.CreateMul(L, R, "multmp"); | 
 | 892 |   case '<': | 
 | 893 |     L = Builder.CreateFCmpULT(L, R, "multmp"); | 
 | 894 |     // Convert bool 0/1 to double 0.0 or 1.0 | 
 | 895 |     return Builder.CreateUIToFP(L, Type::DoubleTy, "booltmp"); | 
 | 896 |   default: return ErrorV("invalid binary operator"); | 
 | 897 |   } | 
 | 898 | } | 
 | 899 |  | 
 | 900 | Value *CallExprAST::Codegen() { | 
 | 901 |   // Look up the name in the global module table. | 
 | 902 |   Function *CalleeF = TheModule->getFunction(Callee); | 
 | 903 |   if (CalleeF == 0) | 
 | 904 |     return ErrorV("Unknown function referenced"); | 
 | 905 |    | 
 | 906 |   // If argument mismatch error. | 
 | 907 |   if (CalleeF->arg_size() != Args.size()) | 
 | 908 |     return ErrorV("Incorrect # arguments passed"); | 
 | 909 |  | 
 | 910 |   std::vector<Value*> ArgsV; | 
 | 911 |   for (unsigned i = 0, e = Args.size(); i != e; ++i) { | 
 | 912 |     ArgsV.push_back(Args[i]->Codegen()); | 
 | 913 |     if (ArgsV.back() == 0) return 0; | 
 | 914 |   } | 
 | 915 |    | 
 | 916 |   return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp"); | 
 | 917 | } | 
 | 918 |  | 
 | 919 | Function *PrototypeAST::Codegen() { | 
 | 920 |   // Make the function type:  double(double,double) etc. | 
 | 921 |   std::vector<const Type*> Doubles(Args.size(), Type::DoubleTy); | 
 | 922 |   FunctionType *FT = FunctionType::get(Type::DoubleTy, Doubles, false); | 
 | 923 |    | 
 | 924 |   Function *F = new Function(FT, Function::ExternalLinkage, Name, TheModule); | 
 | 925 |    | 
 | 926 |   // If F conflicted, there was already something named 'Name'.  If it has a | 
 | 927 |   // body, don't allow redefinition or reextern. | 
 | 928 |   if (F->getName() != Name) { | 
 | 929 |     // Delete the one we just made and get the existing one. | 
 | 930 |     F->eraseFromParent(); | 
 | 931 |     F = TheModule->getFunction(Name); | 
 | 932 |      | 
 | 933 |     // If F already has a body, reject this. | 
 | 934 |     if (!F->empty()) { | 
 | 935 |       ErrorF("redefinition of function"); | 
 | 936 |       return 0; | 
 | 937 |     } | 
 | 938 |      | 
 | 939 |     // If F took a different number of args, reject. | 
 | 940 |     if (F->arg_size() != Args.size()) { | 
 | 941 |       ErrorF("redefinition of function with different # args"); | 
 | 942 |       return 0; | 
 | 943 |     } | 
 | 944 |   } | 
 | 945 |    | 
 | 946 |   // Set names for all arguments. | 
 | 947 |   unsigned Idx = 0; | 
 | 948 |   for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); | 
 | 949 |        ++AI, ++Idx) { | 
 | 950 |     AI->setName(Args[Idx]); | 
 | 951 |      | 
 | 952 |     // Add arguments to variable symbol table. | 
 | 953 |     NamedValues[Args[Idx]] = AI; | 
 | 954 |   } | 
 | 955 |    | 
 | 956 |   return F; | 
 | 957 | } | 
 | 958 |  | 
 | 959 | Function *FunctionAST::Codegen() { | 
 | 960 |   NamedValues.clear(); | 
 | 961 |    | 
 | 962 |   Function *TheFunction = Proto->Codegen(); | 
 | 963 |   if (TheFunction == 0) | 
 | 964 |     return 0; | 
 | 965 |    | 
 | 966 |   // Create a new basic block to start insertion into. | 
 | 967 |   BasicBlock *BB = new BasicBlock("entry", TheFunction); | 
 | 968 |   Builder.SetInsertPoint(BB); | 
 | 969 |    | 
 | 970 |   if (Value *RetVal = Body->Codegen()) { | 
 | 971 |     // Finish off the function. | 
 | 972 |     Builder.CreateRet(RetVal); | 
 | 973 |  | 
 | 974 |     // Validate the generated code, checking for consistency. | 
 | 975 |     verifyFunction(*TheFunction); | 
 | 976 |  | 
 | 977 |     // Optimize the function. | 
 | 978 |     TheFPM->run(*TheFunction); | 
 | 979 |      | 
 | 980 |     return TheFunction; | 
 | 981 |   } | 
 | 982 |    | 
 | 983 |   // Error reading body, remove function. | 
 | 984 |   TheFunction->eraseFromParent(); | 
 | 985 |   return 0; | 
 | 986 | } | 
 | 987 |  | 
 | 988 | //===----------------------------------------------------------------------===// | 
 | 989 | // Top-Level parsing and JIT Driver | 
 | 990 | //===----------------------------------------------------------------------===// | 
 | 991 |  | 
 | 992 | static ExecutionEngine *TheExecutionEngine; | 
 | 993 |  | 
 | 994 | static void HandleDefinition() { | 
 | 995 |   if (FunctionAST *F = ParseDefinition()) { | 
 | 996 |     if (Function *LF = F->Codegen()) { | 
 | 997 |       fprintf(stderr, "Read function definition:"); | 
 | 998 |       LF->dump(); | 
 | 999 |     } | 
 | 1000 |   } else { | 
 | 1001 |     // Skip token for error recovery. | 
 | 1002 |     getNextToken(); | 
 | 1003 |   } | 
 | 1004 | } | 
 | 1005 |  | 
 | 1006 | static void HandleExtern() { | 
 | 1007 |   if (PrototypeAST *P = ParseExtern()) { | 
 | 1008 |     if (Function *F = P->Codegen()) { | 
 | 1009 |       fprintf(stderr, "Read extern: "); | 
 | 1010 |       F->dump(); | 
 | 1011 |     } | 
 | 1012 |   } else { | 
 | 1013 |     // Skip token for error recovery. | 
 | 1014 |     getNextToken(); | 
 | 1015 |   } | 
 | 1016 | } | 
 | 1017 |  | 
 | 1018 | static void HandleTopLevelExpression() { | 
 | 1019 |   // Evaluate a top level expression into an anonymous function. | 
 | 1020 |   if (FunctionAST *F = ParseTopLevelExpr()) { | 
 | 1021 |     if (Function *LF = F->Codegen()) { | 
 | 1022 |       // JIT the function, returning a function pointer. | 
 | 1023 |       void *FPtr = TheExecutionEngine->getPointerToFunction(LF); | 
 | 1024 |        | 
 | 1025 |       // Cast it to the right type (takes no arguments, returns a double) so we | 
 | 1026 |       // can call it as a native function. | 
 | 1027 |       double (*FP)() = (double (*)())FPtr; | 
 | 1028 |       fprintf(stderr, "Evaluated to %f\n", FP()); | 
 | 1029 |     } | 
 | 1030 |   } else { | 
 | 1031 |     // Skip token for error recovery. | 
 | 1032 |     getNextToken(); | 
 | 1033 |   } | 
 | 1034 | } | 
 | 1035 |  | 
 | 1036 | /// top ::= definition | external | expression | ';' | 
 | 1037 | static void MainLoop() { | 
 | 1038 |   while (1) { | 
 | 1039 |     fprintf(stderr, "ready> "); | 
 | 1040 |     switch (CurTok) { | 
 | 1041 |     case tok_eof:    return; | 
 | 1042 |     case ';':        getNextToken(); break;  // ignore top level semicolons. | 
 | 1043 |     case tok_def:    HandleDefinition(); break; | 
 | 1044 |     case tok_extern: HandleExtern(); break; | 
 | 1045 |     default:         HandleTopLevelExpression(); break; | 
 | 1046 |     } | 
 | 1047 |   } | 
 | 1048 | } | 
 | 1049 |  | 
 | 1050 |  | 
 | 1051 |  | 
 | 1052 | //===----------------------------------------------------------------------===// | 
 | 1053 | // "Library" functions that can be "extern'd" from user code. | 
 | 1054 | //===----------------------------------------------------------------------===// | 
 | 1055 |  | 
 | 1056 | /// putchard - putchar that takes a double and returns 0. | 
 | 1057 | extern "C"  | 
 | 1058 | double putchard(double X) { | 
 | 1059 |   putchar((char)X); | 
 | 1060 |   return 0; | 
 | 1061 | } | 
 | 1062 |  | 
 | 1063 | //===----------------------------------------------------------------------===// | 
 | 1064 | // Main driver code. | 
 | 1065 | //===----------------------------------------------------------------------===// | 
 | 1066 |  | 
 | 1067 | int main() { | 
 | 1068 |   // Install standard binary operators. | 
 | 1069 |   // 1 is lowest precedence. | 
 | 1070 |   BinopPrecedence['<'] = 10; | 
 | 1071 |   BinopPrecedence['+'] = 20; | 
 | 1072 |   BinopPrecedence['-'] = 20; | 
 | 1073 |   BinopPrecedence['*'] = 40;  // highest. | 
 | 1074 |  | 
 | 1075 |   // Prime the first token. | 
 | 1076 |   fprintf(stderr, "ready> "); | 
 | 1077 |   getNextToken(); | 
 | 1078 |  | 
 | 1079 |   // Make the module, which holds all the code. | 
 | 1080 |   TheModule = new Module("my cool jit"); | 
 | 1081 |    | 
 | 1082 |   // Create the JIT. | 
 | 1083 |   TheExecutionEngine = ExecutionEngine::create(TheModule); | 
 | 1084 |  | 
 | 1085 |   { | 
 | 1086 |     ExistingModuleProvider OurModuleProvider(TheModule); | 
 | 1087 |     FunctionPassManager OurFPM(&OurModuleProvider); | 
 | 1088 |        | 
 | 1089 |     // Set up the optimizer pipeline.  Start with registering info about how the | 
 | 1090 |     // target lays out data structures. | 
 | 1091 |     OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData())); | 
 | 1092 |     // Do simple "peephole" optimizations and bit-twiddling optzns. | 
 | 1093 |     OurFPM.add(createInstructionCombiningPass()); | 
 | 1094 |     // Reassociate expressions. | 
 | 1095 |     OurFPM.add(createReassociatePass()); | 
 | 1096 |     // Eliminate Common SubExpressions. | 
 | 1097 |     OurFPM.add(createGVNPass()); | 
 | 1098 |     // Simplify the control flow graph (deleting unreachable blocks, etc). | 
 | 1099 |     OurFPM.add(createCFGSimplificationPass()); | 
 | 1100 |  | 
 | 1101 |     // Set the global so the code gen can use this. | 
 | 1102 |     TheFPM = &OurFPM; | 
 | 1103 |  | 
 | 1104 |     // Run the main "interpreter loop" now. | 
 | 1105 |     MainLoop(); | 
 | 1106 |      | 
 | 1107 |     TheFPM = 0; | 
 | 1108 |   }  // Free module provider and pass manager. | 
 | 1109 |                                     | 
 | 1110 |                                     | 
 | 1111 |   // Print out all of the generated code. | 
 | 1112 |   TheModule->dump(); | 
 | 1113 |   return 0; | 
 | 1114 | } | 
| Chris Lattner | c0b42e9 | 2007-10-23 06:27:55 +0000 | [diff] [blame] | 1115 | </pre> | 
 | 1116 | </div> | 
 | 1117 |  | 
| Chris Lattner | c0b42e9 | 2007-10-23 06:27:55 +0000 | [diff] [blame] | 1118 | </div> | 
 | 1119 |  | 
 | 1120 | <!-- *********************************************************************** --> | 
 | 1121 | <hr> | 
 | 1122 | <address> | 
 | 1123 |   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img | 
 | 1124 |   src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a> | 
 | 1125 |   <a href="http://validator.w3.org/check/referer"><img | 
| Chris Lattner | 8eef4b2 | 2007-10-23 06:30:50 +0000 | [diff] [blame] | 1126 |   src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a> | 
| Chris Lattner | c0b42e9 | 2007-10-23 06:27:55 +0000 | [diff] [blame] | 1127 |  | 
 | 1128 |   <a href="mailto:sabre@nondot.org">Chris Lattner</a><br> | 
 | 1129 |   <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br> | 
 | 1130 |   Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $ | 
 | 1131 | </address> | 
 | 1132 | </body> | 
 | 1133 | </html> |