blob: 156c73959f7c2b2292dbee0be276719841e5f06f [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/Support/MathExtras.h"
23#include "llvm/Target/MRegisterInfo.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetLowering.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/ADT/SetVector.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/StringExtras.h"
32#include <algorithm>
33#include <cmath>
34using namespace llvm;
35
36/// makeVTList - Return an instance of the SDVTList struct initialized with the
37/// specified members.
38static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
39 SDVTList Res = {VTs, NumVTs};
40 return Res;
41}
42
43//===----------------------------------------------------------------------===//
44// ConstantFPSDNode Class
45//===----------------------------------------------------------------------===//
46
47/// isExactlyValue - We don't rely on operator== working on double values, as
48/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
49/// As such, this method can be used to do an exact bit-for-bit comparison of
50/// two floating point values.
Dale Johannesenc53301c2007-08-26 01:18:27 +000051bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
Dale Johannesen7f2c1d12007-08-25 22:10:57 +000052 return Value.bitwiseIsEqual(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000053}
54
Dale Johannesenbbe2b702007-08-30 00:23:21 +000055bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
56 const APFloat& Val) {
57 // convert modifies in place, so make a copy.
58 APFloat Val2 = APFloat(Val);
59 switch (VT) {
60 default:
61 return false; // These can't be represented as floating point!
62
63 // FIXME rounding mode needs to be more flexible
64 case MVT::f32:
65 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
66 Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) ==
67 APFloat::opOK;
68 case MVT::f64:
69 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
70 &Val2.getSemantics() == &APFloat::IEEEdouble ||
71 Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) ==
72 APFloat::opOK;
73 // TODO: Figure out how to test if we can use a shorter type instead!
74 case MVT::f80:
75 case MVT::f128:
76 case MVT::ppcf128:
77 return true;
78 }
79}
80
Dan Gohmanf17a25c2007-07-18 16:29:46 +000081//===----------------------------------------------------------------------===//
82// ISD Namespace
83//===----------------------------------------------------------------------===//
84
85/// isBuildVectorAllOnes - Return true if the specified node is a
86/// BUILD_VECTOR where all of the elements are ~0 or undef.
87bool ISD::isBuildVectorAllOnes(const SDNode *N) {
88 // Look through a bit convert.
89 if (N->getOpcode() == ISD::BIT_CONVERT)
90 N = N->getOperand(0).Val;
91
92 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
93
94 unsigned i = 0, e = N->getNumOperands();
95
96 // Skip over all of the undef values.
97 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
98 ++i;
99
100 // Do not accept an all-undef vector.
101 if (i == e) return false;
102
103 // Do not accept build_vectors that aren't all constants or which have non-~0
104 // elements.
105 SDOperand NotZero = N->getOperand(i);
106 if (isa<ConstantSDNode>(NotZero)) {
107 if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
108 return false;
109 } else if (isa<ConstantFPSDNode>(NotZero)) {
110 MVT::ValueType VT = NotZero.getValueType();
111 if (VT== MVT::f64) {
Dale Johannesendf8a8312007-08-31 04:03:46 +0000112 if (DoubleToBits(cast<ConstantFPSDNode>(NotZero)->
113 getValueAPF().convertToDouble()) !=
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000114 (uint64_t)-1)
115 return false;
116 } else {
Dale Johannesendf8a8312007-08-31 04:03:46 +0000117 if (FloatToBits(cast<ConstantFPSDNode>(NotZero)->
118 getValueAPF().convertToFloat()) !=
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000119 (uint32_t)-1)
120 return false;
121 }
122 } else
123 return false;
124
125 // Okay, we have at least one ~0 value, check to see if the rest match or are
126 // undefs.
127 for (++i; i != e; ++i)
128 if (N->getOperand(i) != NotZero &&
129 N->getOperand(i).getOpcode() != ISD::UNDEF)
130 return false;
131 return true;
132}
133
134
135/// isBuildVectorAllZeros - Return true if the specified node is a
136/// BUILD_VECTOR where all of the elements are 0 or undef.
137bool ISD::isBuildVectorAllZeros(const SDNode *N) {
138 // Look through a bit convert.
139 if (N->getOpcode() == ISD::BIT_CONVERT)
140 N = N->getOperand(0).Val;
141
142 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
143
144 unsigned i = 0, e = N->getNumOperands();
145
146 // Skip over all of the undef values.
147 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
148 ++i;
149
150 // Do not accept an all-undef vector.
151 if (i == e) return false;
152
153 // Do not accept build_vectors that aren't all constants or which have non-~0
154 // elements.
155 SDOperand Zero = N->getOperand(i);
156 if (isa<ConstantSDNode>(Zero)) {
157 if (!cast<ConstantSDNode>(Zero)->isNullValue())
158 return false;
159 } else if (isa<ConstantFPSDNode>(Zero)) {
Dale Johannesendf8a8312007-08-31 04:03:46 +0000160 if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000161 return false;
162 } else
163 return false;
164
165 // Okay, we have at least one ~0 value, check to see if the rest match or are
166 // undefs.
167 for (++i; i != e; ++i)
168 if (N->getOperand(i) != Zero &&
169 N->getOperand(i).getOpcode() != ISD::UNDEF)
170 return false;
171 return true;
172}
173
174/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
175/// when given the operation for (X op Y).
176ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
177 // To perform this operation, we just need to swap the L and G bits of the
178 // operation.
179 unsigned OldL = (Operation >> 2) & 1;
180 unsigned OldG = (Operation >> 1) & 1;
181 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
182 (OldL << 1) | // New G bit
183 (OldG << 2)); // New L bit.
184}
185
186/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
187/// 'op' is a valid SetCC operation.
188ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
189 unsigned Operation = Op;
190 if (isInteger)
191 Operation ^= 7; // Flip L, G, E bits, but not U.
192 else
193 Operation ^= 15; // Flip all of the condition bits.
194 if (Operation > ISD::SETTRUE2)
195 Operation &= ~8; // Don't let N and U bits get set.
196 return ISD::CondCode(Operation);
197}
198
199
200/// isSignedOp - For an integer comparison, return 1 if the comparison is a
201/// signed operation and 2 if the result is an unsigned comparison. Return zero
202/// if the operation does not depend on the sign of the input (setne and seteq).
203static int isSignedOp(ISD::CondCode Opcode) {
204 switch (Opcode) {
205 default: assert(0 && "Illegal integer setcc operation!");
206 case ISD::SETEQ:
207 case ISD::SETNE: return 0;
208 case ISD::SETLT:
209 case ISD::SETLE:
210 case ISD::SETGT:
211 case ISD::SETGE: return 1;
212 case ISD::SETULT:
213 case ISD::SETULE:
214 case ISD::SETUGT:
215 case ISD::SETUGE: return 2;
216 }
217}
218
219/// getSetCCOrOperation - Return the result of a logical OR between different
220/// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
221/// returns SETCC_INVALID if it is not possible to represent the resultant
222/// comparison.
223ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
224 bool isInteger) {
225 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
226 // Cannot fold a signed integer setcc with an unsigned integer setcc.
227 return ISD::SETCC_INVALID;
228
229 unsigned Op = Op1 | Op2; // Combine all of the condition bits.
230
231 // If the N and U bits get set then the resultant comparison DOES suddenly
232 // care about orderedness, and is true when ordered.
233 if (Op > ISD::SETTRUE2)
234 Op &= ~16; // Clear the U bit if the N bit is set.
235
236 // Canonicalize illegal integer setcc's.
237 if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
238 Op = ISD::SETNE;
239
240 return ISD::CondCode(Op);
241}
242
243/// getSetCCAndOperation - Return the result of a logical AND between different
244/// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
245/// function returns zero if it is not possible to represent the resultant
246/// comparison.
247ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
248 bool isInteger) {
249 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
250 // Cannot fold a signed setcc with an unsigned setcc.
251 return ISD::SETCC_INVALID;
252
253 // Combine all of the condition bits.
254 ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
255
256 // Canonicalize illegal integer setcc's.
257 if (isInteger) {
258 switch (Result) {
259 default: break;
260 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
261 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
262 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
263 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
264 }
265 }
266
267 return Result;
268}
269
270const TargetMachine &SelectionDAG::getTarget() const {
271 return TLI.getTargetMachine();
272}
273
274//===----------------------------------------------------------------------===//
275// SDNode Profile Support
276//===----------------------------------------------------------------------===//
277
278/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
279///
280static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
281 ID.AddInteger(OpC);
282}
283
284/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
285/// solely with their pointer.
286void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
287 ID.AddPointer(VTList.VTs);
288}
289
290/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
291///
292static void AddNodeIDOperands(FoldingSetNodeID &ID,
293 const SDOperand *Ops, unsigned NumOps) {
294 for (; NumOps; --NumOps, ++Ops) {
295 ID.AddPointer(Ops->Val);
296 ID.AddInteger(Ops->ResNo);
297 }
298}
299
300static void AddNodeIDNode(FoldingSetNodeID &ID,
301 unsigned short OpC, SDVTList VTList,
302 const SDOperand *OpList, unsigned N) {
303 AddNodeIDOpcode(ID, OpC);
304 AddNodeIDValueTypes(ID, VTList);
305 AddNodeIDOperands(ID, OpList, N);
306}
307
308/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
309/// data.
310static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
311 AddNodeIDOpcode(ID, N->getOpcode());
312 // Add the return value info.
313 AddNodeIDValueTypes(ID, N->getVTList());
314 // Add the operand info.
315 AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
316
317 // Handle SDNode leafs with special info.
318 switch (N->getOpcode()) {
319 default: break; // Normal nodes don't need extra info.
320 case ISD::TargetConstant:
321 case ISD::Constant:
322 ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
323 break;
324 case ISD::TargetConstantFP:
Dale Johannesendf8a8312007-08-31 04:03:46 +0000325 case ISD::ConstantFP: {
326 APFloat V = cast<ConstantFPSDNode>(N)->getValueAPF();
327 if (&V.getSemantics() == &APFloat::IEEEdouble)
328 ID.AddDouble(V.convertToDouble());
329 else if (&V.getSemantics() == &APFloat::IEEEsingle)
330 ID.AddDouble((double)V.convertToFloat());
331 else
332 assert(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000333 break;
Dale Johannesendf8a8312007-08-31 04:03:46 +0000334 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000335 case ISD::TargetGlobalAddress:
336 case ISD::GlobalAddress:
337 case ISD::TargetGlobalTLSAddress:
338 case ISD::GlobalTLSAddress: {
339 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
340 ID.AddPointer(GA->getGlobal());
341 ID.AddInteger(GA->getOffset());
342 break;
343 }
344 case ISD::BasicBlock:
345 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
346 break;
347 case ISD::Register:
348 ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
349 break;
350 case ISD::SRCVALUE: {
351 SrcValueSDNode *SV = cast<SrcValueSDNode>(N);
352 ID.AddPointer(SV->getValue());
353 ID.AddInteger(SV->getOffset());
354 break;
355 }
356 case ISD::FrameIndex:
357 case ISD::TargetFrameIndex:
358 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
359 break;
360 case ISD::JumpTable:
361 case ISD::TargetJumpTable:
362 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
363 break;
364 case ISD::ConstantPool:
365 case ISD::TargetConstantPool: {
366 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
367 ID.AddInteger(CP->getAlignment());
368 ID.AddInteger(CP->getOffset());
369 if (CP->isMachineConstantPoolEntry())
370 CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
371 else
372 ID.AddPointer(CP->getConstVal());
373 break;
374 }
375 case ISD::LOAD: {
376 LoadSDNode *LD = cast<LoadSDNode>(N);
377 ID.AddInteger(LD->getAddressingMode());
378 ID.AddInteger(LD->getExtensionType());
379 ID.AddInteger(LD->getLoadedVT());
380 ID.AddPointer(LD->getSrcValue());
381 ID.AddInteger(LD->getSrcValueOffset());
382 ID.AddInteger(LD->getAlignment());
383 ID.AddInteger(LD->isVolatile());
384 break;
385 }
386 case ISD::STORE: {
387 StoreSDNode *ST = cast<StoreSDNode>(N);
388 ID.AddInteger(ST->getAddressingMode());
389 ID.AddInteger(ST->isTruncatingStore());
390 ID.AddInteger(ST->getStoredVT());
391 ID.AddPointer(ST->getSrcValue());
392 ID.AddInteger(ST->getSrcValueOffset());
393 ID.AddInteger(ST->getAlignment());
394 ID.AddInteger(ST->isVolatile());
395 break;
396 }
397 }
398}
399
400//===----------------------------------------------------------------------===//
401// SelectionDAG Class
402//===----------------------------------------------------------------------===//
403
404/// RemoveDeadNodes - This method deletes all unreachable nodes in the
405/// SelectionDAG.
406void SelectionDAG::RemoveDeadNodes() {
407 // Create a dummy node (which is not added to allnodes), that adds a reference
408 // to the root node, preventing it from being deleted.
409 HandleSDNode Dummy(getRoot());
410
411 SmallVector<SDNode*, 128> DeadNodes;
412
413 // Add all obviously-dead nodes to the DeadNodes worklist.
414 for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
415 if (I->use_empty())
416 DeadNodes.push_back(I);
417
418 // Process the worklist, deleting the nodes and adding their uses to the
419 // worklist.
420 while (!DeadNodes.empty()) {
421 SDNode *N = DeadNodes.back();
422 DeadNodes.pop_back();
423
424 // Take the node out of the appropriate CSE map.
425 RemoveNodeFromCSEMaps(N);
426
427 // Next, brutally remove the operand list. This is safe to do, as there are
428 // no cycles in the graph.
429 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
430 SDNode *Operand = I->Val;
431 Operand->removeUser(N);
432
433 // Now that we removed this operand, see if there are no uses of it left.
434 if (Operand->use_empty())
435 DeadNodes.push_back(Operand);
436 }
437 if (N->OperandsNeedDelete)
438 delete[] N->OperandList;
439 N->OperandList = 0;
440 N->NumOperands = 0;
441
442 // Finally, remove N itself.
443 AllNodes.erase(N);
444 }
445
446 // If the root changed (e.g. it was a dead load, update the root).
447 setRoot(Dummy.getValue());
448}
449
450void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
451 SmallVector<SDNode*, 16> DeadNodes;
452 DeadNodes.push_back(N);
453
454 // Process the worklist, deleting the nodes and adding their uses to the
455 // worklist.
456 while (!DeadNodes.empty()) {
457 SDNode *N = DeadNodes.back();
458 DeadNodes.pop_back();
459
460 // Take the node out of the appropriate CSE map.
461 RemoveNodeFromCSEMaps(N);
462
463 // Next, brutally remove the operand list. This is safe to do, as there are
464 // no cycles in the graph.
465 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
466 SDNode *Operand = I->Val;
467 Operand->removeUser(N);
468
469 // Now that we removed this operand, see if there are no uses of it left.
470 if (Operand->use_empty())
471 DeadNodes.push_back(Operand);
472 }
473 if (N->OperandsNeedDelete)
474 delete[] N->OperandList;
475 N->OperandList = 0;
476 N->NumOperands = 0;
477
478 // Finally, remove N itself.
479 Deleted.push_back(N);
480 AllNodes.erase(N);
481 }
482}
483
484void SelectionDAG::DeleteNode(SDNode *N) {
485 assert(N->use_empty() && "Cannot delete a node that is not dead!");
486
487 // First take this out of the appropriate CSE map.
488 RemoveNodeFromCSEMaps(N);
489
490 // Finally, remove uses due to operands of this node, remove from the
491 // AllNodes list, and delete the node.
492 DeleteNodeNotInCSEMaps(N);
493}
494
495void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
496
497 // Remove it from the AllNodes list.
498 AllNodes.remove(N);
499
500 // Drop all of the operands and decrement used nodes use counts.
501 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
502 I->Val->removeUser(N);
503 if (N->OperandsNeedDelete)
504 delete[] N->OperandList;
505 N->OperandList = 0;
506 N->NumOperands = 0;
507
508 delete N;
509}
510
511/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
512/// correspond to it. This is useful when we're about to delete or repurpose
513/// the node. We don't want future request for structurally identical nodes
514/// to return N anymore.
515void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
516 bool Erased = false;
517 switch (N->getOpcode()) {
518 case ISD::HANDLENODE: return; // noop.
519 case ISD::STRING:
520 Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
521 break;
522 case ISD::CONDCODE:
523 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
524 "Cond code doesn't exist!");
525 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
526 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
527 break;
528 case ISD::ExternalSymbol:
529 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
530 break;
531 case ISD::TargetExternalSymbol:
532 Erased =
533 TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
534 break;
535 case ISD::VALUETYPE:
536 Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
537 ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
538 break;
539 default:
540 // Remove it from the CSE Map.
541 Erased = CSEMap.RemoveNode(N);
542 break;
543 }
544#ifndef NDEBUG
545 // Verify that the node was actually in one of the CSE maps, unless it has a
546 // flag result (which cannot be CSE'd) or is one of the special cases that are
547 // not subject to CSE.
548 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
549 !N->isTargetOpcode()) {
550 N->dump(this);
551 cerr << "\n";
552 assert(0 && "Node is not in map!");
553 }
554#endif
555}
556
557/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps. It
558/// has been taken out and modified in some way. If the specified node already
559/// exists in the CSE maps, do not modify the maps, but return the existing node
560/// instead. If it doesn't exist, add it and return null.
561///
562SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
563 assert(N->getNumOperands() && "This is a leaf node!");
564 if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
565 return 0; // Never add these nodes.
566
567 // Check that remaining values produced are not flags.
568 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
569 if (N->getValueType(i) == MVT::Flag)
570 return 0; // Never CSE anything that produces a flag.
571
572 SDNode *New = CSEMap.GetOrInsertNode(N);
573 if (New != N) return New; // Node already existed.
574 return 0;
575}
576
577/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
578/// were replaced with those specified. If this node is never memoized,
579/// return null, otherwise return a pointer to the slot it would take. If a
580/// node already exists with these operands, the slot will be non-null.
581SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
582 void *&InsertPos) {
583 if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
584 return 0; // Never add these nodes.
585
586 // Check that remaining values produced are not flags.
587 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
588 if (N->getValueType(i) == MVT::Flag)
589 return 0; // Never CSE anything that produces a flag.
590
591 SDOperand Ops[] = { Op };
592 FoldingSetNodeID ID;
593 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
594 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
595}
596
597/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
598/// were replaced with those specified. If this node is never memoized,
599/// return null, otherwise return a pointer to the slot it would take. If a
600/// node already exists with these operands, the slot will be non-null.
601SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
602 SDOperand Op1, SDOperand Op2,
603 void *&InsertPos) {
604 if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
605 return 0; // Never add these nodes.
606
607 // Check that remaining values produced are not flags.
608 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
609 if (N->getValueType(i) == MVT::Flag)
610 return 0; // Never CSE anything that produces a flag.
611
612 SDOperand Ops[] = { Op1, Op2 };
613 FoldingSetNodeID ID;
614 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
615 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
616}
617
618
619/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
620/// were replaced with those specified. If this node is never memoized,
621/// return null, otherwise return a pointer to the slot it would take. If a
622/// node already exists with these operands, the slot will be non-null.
623SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
624 const SDOperand *Ops,unsigned NumOps,
625 void *&InsertPos) {
626 if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
627 return 0; // Never add these nodes.
628
629 // Check that remaining values produced are not flags.
630 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
631 if (N->getValueType(i) == MVT::Flag)
632 return 0; // Never CSE anything that produces a flag.
633
634 FoldingSetNodeID ID;
635 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
636
637 if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
638 ID.AddInteger(LD->getAddressingMode());
639 ID.AddInteger(LD->getExtensionType());
640 ID.AddInteger(LD->getLoadedVT());
641 ID.AddPointer(LD->getSrcValue());
642 ID.AddInteger(LD->getSrcValueOffset());
643 ID.AddInteger(LD->getAlignment());
644 ID.AddInteger(LD->isVolatile());
645 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
646 ID.AddInteger(ST->getAddressingMode());
647 ID.AddInteger(ST->isTruncatingStore());
648 ID.AddInteger(ST->getStoredVT());
649 ID.AddPointer(ST->getSrcValue());
650 ID.AddInteger(ST->getSrcValueOffset());
651 ID.AddInteger(ST->getAlignment());
652 ID.AddInteger(ST->isVolatile());
653 }
654
655 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
656}
657
658
659SelectionDAG::~SelectionDAG() {
660 while (!AllNodes.empty()) {
661 SDNode *N = AllNodes.begin();
662 N->SetNextInBucket(0);
663 if (N->OperandsNeedDelete)
664 delete [] N->OperandList;
665 N->OperandList = 0;
666 N->NumOperands = 0;
667 AllNodes.pop_front();
668 }
669}
670
671SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
672 if (Op.getValueType() == VT) return Op;
673 int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
674 return getNode(ISD::AND, Op.getValueType(), Op,
675 getConstant(Imm, Op.getValueType()));
676}
677
678SDOperand SelectionDAG::getString(const std::string &Val) {
679 StringSDNode *&N = StringNodes[Val];
680 if (!N) {
681 N = new StringSDNode(Val);
682 AllNodes.push_back(N);
683 }
684 return SDOperand(N, 0);
685}
686
687SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
688 assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
689 assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
690
691 // Mask out any bits that are not valid for this constant.
692 Val &= MVT::getIntVTBitMask(VT);
693
694 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
695 FoldingSetNodeID ID;
696 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
697 ID.AddInteger(Val);
698 void *IP = 0;
699 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
700 return SDOperand(E, 0);
701 SDNode *N = new ConstantSDNode(isT, Val, VT);
702 CSEMap.InsertNode(N, IP);
703 AllNodes.push_back(N);
704 return SDOperand(N, 0);
705}
706
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000707SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000708 bool isTarget) {
709 assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000710
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000711 MVT::ValueType EltVT =
712 MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000713 bool isDouble = (EltVT == MVT::f64);
714 double Val = isDouble ? V.convertToDouble() : (double)V.convertToFloat();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000715
716 // Do the map lookup using the actual bit pattern for the floating point
717 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
718 // we don't have issues with SNANs.
719 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000720 // ?? Should we store float/double/longdouble separately in ID?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000721 FoldingSetNodeID ID;
722 AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
723 ID.AddDouble(Val);
724 void *IP = 0;
725 SDNode *N = NULL;
726 if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
727 if (!MVT::isVector(VT))
728 return SDOperand(N, 0);
729 if (!N) {
730 N = new ConstantFPSDNode(isTarget, Val, EltVT);
731 CSEMap.InsertNode(N, IP);
732 AllNodes.push_back(N);
733 }
734
735 SDOperand Result(N, 0);
736 if (MVT::isVector(VT)) {
737 SmallVector<SDOperand, 8> Ops;
738 Ops.assign(MVT::getVectorNumElements(VT), Result);
739 Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
740 }
741 return Result;
742}
743
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000744SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
745 bool isTarget) {
746 MVT::ValueType EltVT =
747 MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
748 if (EltVT==MVT::f32)
749 return getConstantFP(APFloat((float)Val), VT, isTarget);
750 else
751 return getConstantFP(APFloat(Val), VT, isTarget);
752}
753
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000754SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
755 MVT::ValueType VT, int Offset,
756 bool isTargetGA) {
757 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
758 unsigned Opc;
759 if (GVar && GVar->isThreadLocal())
760 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
761 else
762 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
763 FoldingSetNodeID ID;
764 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
765 ID.AddPointer(GV);
766 ID.AddInteger(Offset);
767 void *IP = 0;
768 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
769 return SDOperand(E, 0);
770 SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
771 CSEMap.InsertNode(N, IP);
772 AllNodes.push_back(N);
773 return SDOperand(N, 0);
774}
775
776SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
777 bool isTarget) {
778 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
779 FoldingSetNodeID ID;
780 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
781 ID.AddInteger(FI);
782 void *IP = 0;
783 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
784 return SDOperand(E, 0);
785 SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
786 CSEMap.InsertNode(N, IP);
787 AllNodes.push_back(N);
788 return SDOperand(N, 0);
789}
790
791SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
792 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
793 FoldingSetNodeID ID;
794 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
795 ID.AddInteger(JTI);
796 void *IP = 0;
797 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
798 return SDOperand(E, 0);
799 SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
800 CSEMap.InsertNode(N, IP);
801 AllNodes.push_back(N);
802 return SDOperand(N, 0);
803}
804
805SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
806 unsigned Alignment, int Offset,
807 bool isTarget) {
808 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
809 FoldingSetNodeID ID;
810 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
811 ID.AddInteger(Alignment);
812 ID.AddInteger(Offset);
813 ID.AddPointer(C);
814 void *IP = 0;
815 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
816 return SDOperand(E, 0);
817 SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
818 CSEMap.InsertNode(N, IP);
819 AllNodes.push_back(N);
820 return SDOperand(N, 0);
821}
822
823
824SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
825 MVT::ValueType VT,
826 unsigned Alignment, int Offset,
827 bool isTarget) {
828 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
829 FoldingSetNodeID ID;
830 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
831 ID.AddInteger(Alignment);
832 ID.AddInteger(Offset);
833 C->AddSelectionDAGCSEId(ID);
834 void *IP = 0;
835 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
836 return SDOperand(E, 0);
837 SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
838 CSEMap.InsertNode(N, IP);
839 AllNodes.push_back(N);
840 return SDOperand(N, 0);
841}
842
843
844SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
845 FoldingSetNodeID ID;
846 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
847 ID.AddPointer(MBB);
848 void *IP = 0;
849 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
850 return SDOperand(E, 0);
851 SDNode *N = new BasicBlockSDNode(MBB);
852 CSEMap.InsertNode(N, IP);
853 AllNodes.push_back(N);
854 return SDOperand(N, 0);
855}
856
857SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
858 if ((unsigned)VT >= ValueTypeNodes.size())
859 ValueTypeNodes.resize(VT+1);
860 if (ValueTypeNodes[VT] == 0) {
861 ValueTypeNodes[VT] = new VTSDNode(VT);
862 AllNodes.push_back(ValueTypeNodes[VT]);
863 }
864
865 return SDOperand(ValueTypeNodes[VT], 0);
866}
867
868SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
869 SDNode *&N = ExternalSymbols[Sym];
870 if (N) return SDOperand(N, 0);
871 N = new ExternalSymbolSDNode(false, Sym, VT);
872 AllNodes.push_back(N);
873 return SDOperand(N, 0);
874}
875
876SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
877 MVT::ValueType VT) {
878 SDNode *&N = TargetExternalSymbols[Sym];
879 if (N) return SDOperand(N, 0);
880 N = new ExternalSymbolSDNode(true, Sym, VT);
881 AllNodes.push_back(N);
882 return SDOperand(N, 0);
883}
884
885SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
886 if ((unsigned)Cond >= CondCodeNodes.size())
887 CondCodeNodes.resize(Cond+1);
888
889 if (CondCodeNodes[Cond] == 0) {
890 CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
891 AllNodes.push_back(CondCodeNodes[Cond]);
892 }
893 return SDOperand(CondCodeNodes[Cond], 0);
894}
895
896SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
897 FoldingSetNodeID ID;
898 AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
899 ID.AddInteger(RegNo);
900 void *IP = 0;
901 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
902 return SDOperand(E, 0);
903 SDNode *N = new RegisterSDNode(RegNo, VT);
904 CSEMap.InsertNode(N, IP);
905 AllNodes.push_back(N);
906 return SDOperand(N, 0);
907}
908
909SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
910 assert((!V || isa<PointerType>(V->getType())) &&
911 "SrcValue is not a pointer?");
912
913 FoldingSetNodeID ID;
914 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
915 ID.AddPointer(V);
916 ID.AddInteger(Offset);
917 void *IP = 0;
918 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
919 return SDOperand(E, 0);
920 SDNode *N = new SrcValueSDNode(V, Offset);
921 CSEMap.InsertNode(N, IP);
922 AllNodes.push_back(N);
923 return SDOperand(N, 0);
924}
925
926SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
927 SDOperand N2, ISD::CondCode Cond) {
928 // These setcc operations always fold.
929 switch (Cond) {
930 default: break;
931 case ISD::SETFALSE:
932 case ISD::SETFALSE2: return getConstant(0, VT);
933 case ISD::SETTRUE:
934 case ISD::SETTRUE2: return getConstant(1, VT);
935
936 case ISD::SETOEQ:
937 case ISD::SETOGT:
938 case ISD::SETOGE:
939 case ISD::SETOLT:
940 case ISD::SETOLE:
941 case ISD::SETONE:
942 case ISD::SETO:
943 case ISD::SETUO:
944 case ISD::SETUEQ:
945 case ISD::SETUNE:
946 assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
947 break;
948 }
949
950 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
951 uint64_t C2 = N2C->getValue();
952 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
953 uint64_t C1 = N1C->getValue();
954
955 // Sign extend the operands if required
956 if (ISD::isSignedIntSetCC(Cond)) {
957 C1 = N1C->getSignExtended();
958 C2 = N2C->getSignExtended();
959 }
960
961 switch (Cond) {
962 default: assert(0 && "Unknown integer setcc!");
963 case ISD::SETEQ: return getConstant(C1 == C2, VT);
964 case ISD::SETNE: return getConstant(C1 != C2, VT);
965 case ISD::SETULT: return getConstant(C1 < C2, VT);
966 case ISD::SETUGT: return getConstant(C1 > C2, VT);
967 case ISD::SETULE: return getConstant(C1 <= C2, VT);
968 case ISD::SETUGE: return getConstant(C1 >= C2, VT);
969 case ISD::SETLT: return getConstant((int64_t)C1 < (int64_t)C2, VT);
970 case ISD::SETGT: return getConstant((int64_t)C1 > (int64_t)C2, VT);
971 case ISD::SETLE: return getConstant((int64_t)C1 <= (int64_t)C2, VT);
972 case ISD::SETGE: return getConstant((int64_t)C1 >= (int64_t)C2, VT);
973 }
974 }
975 }
976 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
977 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
Dale Johannesendf8a8312007-08-31 04:03:46 +0000978
979 APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000980 switch (Cond) {
Dale Johannesendf8a8312007-08-31 04:03:46 +0000981 default: break;
Dale Johannesen76844472007-08-31 17:03:33 +0000982 case ISD::SETEQ: if (R==APFloat::cmpUnordered)
983 return getNode(ISD::UNDEF, VT);
984 // fall through
985 case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
986 case ISD::SETNE: if (R==APFloat::cmpUnordered)
987 return getNode(ISD::UNDEF, VT);
988 // fall through
989 case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
Dale Johannesendf8a8312007-08-31 04:03:46 +0000990 R==APFloat::cmpLessThan, VT);
Dale Johannesen76844472007-08-31 17:03:33 +0000991 case ISD::SETLT: if (R==APFloat::cmpUnordered)
992 return getNode(ISD::UNDEF, VT);
993 // fall through
994 case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
995 case ISD::SETGT: if (R==APFloat::cmpUnordered)
996 return getNode(ISD::UNDEF, VT);
997 // fall through
998 case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
999 case ISD::SETLE: if (R==APFloat::cmpUnordered)
1000 return getNode(ISD::UNDEF, VT);
1001 // fall through
1002 case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
Dale Johannesendf8a8312007-08-31 04:03:46 +00001003 R==APFloat::cmpEqual, VT);
Dale Johannesen76844472007-08-31 17:03:33 +00001004 case ISD::SETGE: if (R==APFloat::cmpUnordered)
1005 return getNode(ISD::UNDEF, VT);
1006 // fall through
1007 case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
Dale Johannesendf8a8312007-08-31 04:03:46 +00001008 R==APFloat::cmpEqual, VT);
1009 case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, VT);
1010 case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, VT);
1011 case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1012 R==APFloat::cmpEqual, VT);
1013 case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1014 case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1015 R==APFloat::cmpLessThan, VT);
1016 case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1017 R==APFloat::cmpUnordered, VT);
1018 case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1019 case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001020 }
1021 } else {
1022 // Ensure that the constant occurs on the RHS.
1023 return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1024 }
1025
1026 // Could not fold it.
1027 return SDOperand();
1028}
1029
1030/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1031/// this predicate to simplify operations downstream. Mask is known to be zero
1032/// for bits that V cannot have.
1033bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
1034 unsigned Depth) const {
1035 // The masks are not wide enough to represent this type! Should use APInt.
1036 if (Op.getValueType() == MVT::i128)
1037 return false;
1038
1039 uint64_t KnownZero, KnownOne;
1040 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1041 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1042 return (KnownZero & Mask) == Mask;
1043}
1044
1045/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1046/// known to be either zero or one and return them in the KnownZero/KnownOne
1047/// bitsets. This code only analyzes bits in Mask, in order to short-circuit
1048/// processing.
1049void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
1050 uint64_t &KnownZero, uint64_t &KnownOne,
1051 unsigned Depth) const {
1052 KnownZero = KnownOne = 0; // Don't know anything.
1053 if (Depth == 6 || Mask == 0)
1054 return; // Limit search depth.
1055
1056 // The masks are not wide enough to represent this type! Should use APInt.
1057 if (Op.getValueType() == MVT::i128)
1058 return;
1059
1060 uint64_t KnownZero2, KnownOne2;
1061
1062 switch (Op.getOpcode()) {
1063 case ISD::Constant:
1064 // We know all of the bits for a constant!
1065 KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
1066 KnownZero = ~KnownOne & Mask;
1067 return;
1068 case ISD::AND:
1069 // If either the LHS or the RHS are Zero, the result is zero.
1070 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1071 Mask &= ~KnownZero;
1072 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1073 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1074 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1075
1076 // Output known-1 bits are only known if set in both the LHS & RHS.
1077 KnownOne &= KnownOne2;
1078 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1079 KnownZero |= KnownZero2;
1080 return;
1081 case ISD::OR:
1082 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1083 Mask &= ~KnownOne;
1084 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1085 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1086 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1087
1088 // Output known-0 bits are only known if clear in both the LHS & RHS.
1089 KnownZero &= KnownZero2;
1090 // Output known-1 are known to be set if set in either the LHS | RHS.
1091 KnownOne |= KnownOne2;
1092 return;
1093 case ISD::XOR: {
1094 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1095 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1096 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1097 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1098
1099 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1100 uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1101 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1102 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1103 KnownZero = KnownZeroOut;
1104 return;
1105 }
1106 case ISD::SELECT:
1107 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1108 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1109 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1110 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1111
1112 // Only known if known in both the LHS and RHS.
1113 KnownOne &= KnownOne2;
1114 KnownZero &= KnownZero2;
1115 return;
1116 case ISD::SELECT_CC:
1117 ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1118 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1119 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1120 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1121
1122 // Only known if known in both the LHS and RHS.
1123 KnownOne &= KnownOne2;
1124 KnownZero &= KnownZero2;
1125 return;
1126 case ISD::SETCC:
1127 // If we know the result of a setcc has the top bits zero, use this info.
1128 if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
1129 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
1130 return;
1131 case ISD::SHL:
1132 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
1133 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1134 ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
1135 KnownZero, KnownOne, Depth+1);
1136 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1137 KnownZero <<= SA->getValue();
1138 KnownOne <<= SA->getValue();
1139 KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
1140 }
1141 return;
1142 case ISD::SRL:
1143 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
1144 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1145 MVT::ValueType VT = Op.getValueType();
1146 unsigned ShAmt = SA->getValue();
1147
1148 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1149 ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
1150 KnownZero, KnownOne, Depth+1);
1151 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1152 KnownZero &= TypeMask;
1153 KnownOne &= TypeMask;
1154 KnownZero >>= ShAmt;
1155 KnownOne >>= ShAmt;
1156
1157 uint64_t HighBits = (1ULL << ShAmt)-1;
1158 HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
1159 KnownZero |= HighBits; // High bits known zero.
1160 }
1161 return;
1162 case ISD::SRA:
1163 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1164 MVT::ValueType VT = Op.getValueType();
1165 unsigned ShAmt = SA->getValue();
1166
1167 // Compute the new bits that are at the top now.
1168 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1169
1170 uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
1171 // If any of the demanded bits are produced by the sign extension, we also
1172 // demand the input sign bit.
1173 uint64_t HighBits = (1ULL << ShAmt)-1;
1174 HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
1175 if (HighBits & Mask)
1176 InDemandedMask |= MVT::getIntVTSignBit(VT);
1177
1178 ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1179 Depth+1);
1180 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1181 KnownZero &= TypeMask;
1182 KnownOne &= TypeMask;
1183 KnownZero >>= ShAmt;
1184 KnownOne >>= ShAmt;
1185
1186 // Handle the sign bits.
1187 uint64_t SignBit = MVT::getIntVTSignBit(VT);
1188 SignBit >>= ShAmt; // Adjust to where it is now in the mask.
1189
1190 if (KnownZero & SignBit) {
1191 KnownZero |= HighBits; // New bits are known zero.
1192 } else if (KnownOne & SignBit) {
1193 KnownOne |= HighBits; // New bits are known one.
1194 }
1195 }
1196 return;
1197 case ISD::SIGN_EXTEND_INREG: {
1198 MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1199
1200 // Sign extension. Compute the demanded bits in the result that are not
1201 // present in the input.
1202 uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
1203
1204 uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
1205 int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
1206
1207 // If the sign extended bits are demanded, we know that the sign
1208 // bit is demanded.
1209 if (NewBits)
1210 InputDemandedBits |= InSignBit;
1211
1212 ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1213 KnownZero, KnownOne, Depth+1);
1214 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1215
1216 // If the sign bit of the input is known set or clear, then we know the
1217 // top bits of the result.
1218 if (KnownZero & InSignBit) { // Input sign bit known clear
1219 KnownZero |= NewBits;
1220 KnownOne &= ~NewBits;
1221 } else if (KnownOne & InSignBit) { // Input sign bit known set
1222 KnownOne |= NewBits;
1223 KnownZero &= ~NewBits;
1224 } else { // Input sign bit unknown
1225 KnownZero &= ~NewBits;
1226 KnownOne &= ~NewBits;
1227 }
1228 return;
1229 }
1230 case ISD::CTTZ:
1231 case ISD::CTLZ:
1232 case ISD::CTPOP: {
1233 MVT::ValueType VT = Op.getValueType();
1234 unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
1235 KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
1236 KnownOne = 0;
1237 return;
1238 }
1239 case ISD::LOAD: {
1240 if (ISD::isZEXTLoad(Op.Val)) {
1241 LoadSDNode *LD = cast<LoadSDNode>(Op);
1242 MVT::ValueType VT = LD->getLoadedVT();
1243 KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
1244 }
1245 return;
1246 }
1247 case ISD::ZERO_EXTEND: {
1248 uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
1249 uint64_t NewBits = (~InMask) & Mask;
1250 ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1251 KnownOne, Depth+1);
1252 KnownZero |= NewBits & Mask;
1253 KnownOne &= ~NewBits;
1254 return;
1255 }
1256 case ISD::SIGN_EXTEND: {
1257 MVT::ValueType InVT = Op.getOperand(0).getValueType();
1258 unsigned InBits = MVT::getSizeInBits(InVT);
1259 uint64_t InMask = MVT::getIntVTBitMask(InVT);
1260 uint64_t InSignBit = 1ULL << (InBits-1);
1261 uint64_t NewBits = (~InMask) & Mask;
1262 uint64_t InDemandedBits = Mask & InMask;
1263
1264 // If any of the sign extended bits are demanded, we know that the sign
1265 // bit is demanded.
1266 if (NewBits & Mask)
1267 InDemandedBits |= InSignBit;
1268
1269 ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1270 KnownOne, Depth+1);
1271 // If the sign bit is known zero or one, the top bits match.
1272 if (KnownZero & InSignBit) {
1273 KnownZero |= NewBits;
1274 KnownOne &= ~NewBits;
1275 } else if (KnownOne & InSignBit) {
1276 KnownOne |= NewBits;
1277 KnownZero &= ~NewBits;
1278 } else { // Otherwise, top bits aren't known.
1279 KnownOne &= ~NewBits;
1280 KnownZero &= ~NewBits;
1281 }
1282 return;
1283 }
1284 case ISD::ANY_EXTEND: {
1285 MVT::ValueType VT = Op.getOperand(0).getValueType();
1286 ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
1287 KnownZero, KnownOne, Depth+1);
1288 return;
1289 }
1290 case ISD::TRUNCATE: {
1291 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1292 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1293 uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
1294 KnownZero &= OutMask;
1295 KnownOne &= OutMask;
1296 break;
1297 }
1298 case ISD::AssertZext: {
1299 MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1300 uint64_t InMask = MVT::getIntVTBitMask(VT);
1301 ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1302 KnownOne, Depth+1);
1303 KnownZero |= (~InMask) & Mask;
1304 return;
1305 }
1306 case ISD::ADD: {
1307 // If either the LHS or the RHS are Zero, the result is zero.
1308 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1309 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1310 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1311 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1312
1313 // Output known-0 bits are known if clear or set in both the low clear bits
1314 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
1315 // low 3 bits clear.
1316 uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
1317 CountTrailingZeros_64(~KnownZero2));
1318
1319 KnownZero = (1ULL << KnownZeroOut) - 1;
1320 KnownOne = 0;
1321 return;
1322 }
1323 case ISD::SUB: {
1324 ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1325 if (!CLHS) return;
1326
1327 // We know that the top bits of C-X are clear if X contains less bits
1328 // than C (i.e. no wrap-around can happen). For example, 20-X is
1329 // positive if we can prove that X is >= 0 and < 16.
1330 MVT::ValueType VT = CLHS->getValueType(0);
1331 if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) { // sign bit clear
1332 unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
1333 uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
1334 MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
1335 ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1336
1337 // If all of the MaskV bits are known to be zero, then we know the output
1338 // top bits are zero, because we now know that the output is from [0-C].
1339 if ((KnownZero & MaskV) == MaskV) {
1340 unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
1341 KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask; // Top bits known zero.
1342 KnownOne = 0; // No one bits known.
1343 } else {
1344 KnownZero = KnownOne = 0; // Otherwise, nothing known.
1345 }
1346 }
1347 return;
1348 }
1349 default:
1350 // Allow the target to implement this method for its nodes.
1351 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1352 case ISD::INTRINSIC_WO_CHAIN:
1353 case ISD::INTRINSIC_W_CHAIN:
1354 case ISD::INTRINSIC_VOID:
1355 TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1356 }
1357 return;
1358 }
1359}
1360
1361/// ComputeNumSignBits - Return the number of times the sign bit of the
1362/// register is replicated into the other bits. We know that at least 1 bit
1363/// is always equal to the sign bit (itself), but other cases can give us
1364/// information. For example, immediately after an "SRA X, 2", we know that
1365/// the top 3 bits are all equal to each other, so we return 3.
1366unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1367 MVT::ValueType VT = Op.getValueType();
1368 assert(MVT::isInteger(VT) && "Invalid VT!");
1369 unsigned VTBits = MVT::getSizeInBits(VT);
1370 unsigned Tmp, Tmp2;
1371
1372 if (Depth == 6)
1373 return 1; // Limit search depth.
1374
1375 switch (Op.getOpcode()) {
1376 default: break;
1377 case ISD::AssertSext:
1378 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1379 return VTBits-Tmp+1;
1380 case ISD::AssertZext:
1381 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1382 return VTBits-Tmp;
1383
1384 case ISD::Constant: {
1385 uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1386 // If negative, invert the bits, then look at it.
1387 if (Val & MVT::getIntVTSignBit(VT))
1388 Val = ~Val;
1389
1390 // Shift the bits so they are the leading bits in the int64_t.
1391 Val <<= 64-VTBits;
1392
1393 // Return # leading zeros. We use 'min' here in case Val was zero before
1394 // shifting. We don't want to return '64' as for an i32 "0".
1395 return std::min(VTBits, CountLeadingZeros_64(Val));
1396 }
1397
1398 case ISD::SIGN_EXTEND:
1399 Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1400 return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1401
1402 case ISD::SIGN_EXTEND_INREG:
1403 // Max of the input and what this extends.
1404 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1405 Tmp = VTBits-Tmp+1;
1406
1407 Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1408 return std::max(Tmp, Tmp2);
1409
1410 case ISD::SRA:
1411 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1412 // SRA X, C -> adds C sign bits.
1413 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1414 Tmp += C->getValue();
1415 if (Tmp > VTBits) Tmp = VTBits;
1416 }
1417 return Tmp;
1418 case ISD::SHL:
1419 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1420 // shl destroys sign bits.
1421 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1422 if (C->getValue() >= VTBits || // Bad shift.
1423 C->getValue() >= Tmp) break; // Shifted all sign bits out.
1424 return Tmp - C->getValue();
1425 }
1426 break;
1427 case ISD::AND:
1428 case ISD::OR:
1429 case ISD::XOR: // NOT is handled here.
1430 // Logical binary ops preserve the number of sign bits.
1431 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1432 if (Tmp == 1) return 1; // Early out.
1433 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1434 return std::min(Tmp, Tmp2);
1435
1436 case ISD::SELECT:
1437 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1438 if (Tmp == 1) return 1; // Early out.
1439 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1440 return std::min(Tmp, Tmp2);
1441
1442 case ISD::SETCC:
1443 // If setcc returns 0/-1, all bits are sign bits.
1444 if (TLI.getSetCCResultContents() ==
1445 TargetLowering::ZeroOrNegativeOneSetCCResult)
1446 return VTBits;
1447 break;
1448 case ISD::ROTL:
1449 case ISD::ROTR:
1450 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1451 unsigned RotAmt = C->getValue() & (VTBits-1);
1452
1453 // Handle rotate right by N like a rotate left by 32-N.
1454 if (Op.getOpcode() == ISD::ROTR)
1455 RotAmt = (VTBits-RotAmt) & (VTBits-1);
1456
1457 // If we aren't rotating out all of the known-in sign bits, return the
1458 // number that are left. This handles rotl(sext(x), 1) for example.
1459 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1460 if (Tmp > RotAmt+1) return Tmp-RotAmt;
1461 }
1462 break;
1463 case ISD::ADD:
1464 // Add can have at most one carry bit. Thus we know that the output
1465 // is, at worst, one more bit than the inputs.
1466 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1467 if (Tmp == 1) return 1; // Early out.
1468
1469 // Special case decrementing a value (ADD X, -1):
1470 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1471 if (CRHS->isAllOnesValue()) {
1472 uint64_t KnownZero, KnownOne;
1473 uint64_t Mask = MVT::getIntVTBitMask(VT);
1474 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1475
1476 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1477 // sign bits set.
1478 if ((KnownZero|1) == Mask)
1479 return VTBits;
1480
1481 // If we are subtracting one from a positive number, there is no carry
1482 // out of the result.
1483 if (KnownZero & MVT::getIntVTSignBit(VT))
1484 return Tmp;
1485 }
1486
1487 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1488 if (Tmp2 == 1) return 1;
1489 return std::min(Tmp, Tmp2)-1;
1490 break;
1491
1492 case ISD::SUB:
1493 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1494 if (Tmp2 == 1) return 1;
1495
1496 // Handle NEG.
1497 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1498 if (CLHS->getValue() == 0) {
1499 uint64_t KnownZero, KnownOne;
1500 uint64_t Mask = MVT::getIntVTBitMask(VT);
1501 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1502 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1503 // sign bits set.
1504 if ((KnownZero|1) == Mask)
1505 return VTBits;
1506
1507 // If the input is known to be positive (the sign bit is known clear),
1508 // the output of the NEG has the same number of sign bits as the input.
1509 if (KnownZero & MVT::getIntVTSignBit(VT))
1510 return Tmp2;
1511
1512 // Otherwise, we treat this like a SUB.
1513 }
1514
1515 // Sub can have at most one carry bit. Thus we know that the output
1516 // is, at worst, one more bit than the inputs.
1517 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1518 if (Tmp == 1) return 1; // Early out.
1519 return std::min(Tmp, Tmp2)-1;
1520 break;
1521 case ISD::TRUNCATE:
1522 // FIXME: it's tricky to do anything useful for this, but it is an important
1523 // case for targets like X86.
1524 break;
1525 }
1526
1527 // Handle LOADX separately here. EXTLOAD case will fallthrough.
1528 if (Op.getOpcode() == ISD::LOAD) {
1529 LoadSDNode *LD = cast<LoadSDNode>(Op);
1530 unsigned ExtType = LD->getExtensionType();
1531 switch (ExtType) {
1532 default: break;
1533 case ISD::SEXTLOAD: // '17' bits known
1534 Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1535 return VTBits-Tmp+1;
1536 case ISD::ZEXTLOAD: // '16' bits known
1537 Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1538 return VTBits-Tmp;
1539 }
1540 }
1541
1542 // Allow the target to implement this method for its nodes.
1543 if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1544 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1545 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1546 Op.getOpcode() == ISD::INTRINSIC_VOID) {
1547 unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1548 if (NumBits > 1) return NumBits;
1549 }
1550
1551 // Finally, if we can prove that the top bits of the result are 0's or 1's,
1552 // use this information.
1553 uint64_t KnownZero, KnownOne;
1554 uint64_t Mask = MVT::getIntVTBitMask(VT);
1555 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1556
1557 uint64_t SignBit = MVT::getIntVTSignBit(VT);
1558 if (KnownZero & SignBit) { // SignBit is 0
1559 Mask = KnownZero;
1560 } else if (KnownOne & SignBit) { // SignBit is 1;
1561 Mask = KnownOne;
1562 } else {
1563 // Nothing known.
1564 return 1;
1565 }
1566
1567 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
1568 // the number of identical bits in the top of the input value.
1569 Mask ^= ~0ULL;
1570 Mask <<= 64-VTBits;
1571 // Return # leading zeros. We use 'min' here in case Val was zero before
1572 // shifting. We don't want to return '64' as for an i32 "0".
1573 return std::min(VTBits, CountLeadingZeros_64(Mask));
1574}
1575
1576
1577/// getNode - Gets or creates the specified node.
1578///
1579SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1580 FoldingSetNodeID ID;
1581 AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1582 void *IP = 0;
1583 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1584 return SDOperand(E, 0);
1585 SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1586 CSEMap.InsertNode(N, IP);
1587
1588 AllNodes.push_back(N);
1589 return SDOperand(N, 0);
1590}
1591
1592SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1593 SDOperand Operand) {
1594 unsigned Tmp1;
1595 // Constant fold unary operations with an integer constant operand.
1596 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1597 uint64_t Val = C->getValue();
1598 switch (Opcode) {
1599 default: break;
1600 case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1601 case ISD::ANY_EXTEND:
1602 case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1603 case ISD::TRUNCATE: return getConstant(Val, VT);
1604 case ISD::SINT_TO_FP: return getConstantFP(C->getSignExtended(), VT);
1605 case ISD::UINT_TO_FP: return getConstantFP(C->getValue(), VT);
1606 case ISD::BIT_CONVERT:
1607 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1608 return getConstantFP(BitsToFloat(Val), VT);
1609 else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1610 return getConstantFP(BitsToDouble(Val), VT);
1611 break;
1612 case ISD::BSWAP:
1613 switch(VT) {
1614 default: assert(0 && "Invalid bswap!"); break;
1615 case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1616 case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1617 case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1618 }
1619 break;
1620 case ISD::CTPOP:
1621 switch(VT) {
1622 default: assert(0 && "Invalid ctpop!"); break;
1623 case MVT::i1: return getConstant(Val != 0, VT);
1624 case MVT::i8:
1625 Tmp1 = (unsigned)Val & 0xFF;
1626 return getConstant(CountPopulation_32(Tmp1), VT);
1627 case MVT::i16:
1628 Tmp1 = (unsigned)Val & 0xFFFF;
1629 return getConstant(CountPopulation_32(Tmp1), VT);
1630 case MVT::i32:
1631 return getConstant(CountPopulation_32((unsigned)Val), VT);
1632 case MVT::i64:
1633 return getConstant(CountPopulation_64(Val), VT);
1634 }
1635 case ISD::CTLZ:
1636 switch(VT) {
1637 default: assert(0 && "Invalid ctlz!"); break;
1638 case MVT::i1: return getConstant(Val == 0, VT);
1639 case MVT::i8:
1640 Tmp1 = (unsigned)Val & 0xFF;
1641 return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1642 case MVT::i16:
1643 Tmp1 = (unsigned)Val & 0xFFFF;
1644 return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1645 case MVT::i32:
1646 return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1647 case MVT::i64:
1648 return getConstant(CountLeadingZeros_64(Val), VT);
1649 }
1650 case ISD::CTTZ:
1651 switch(VT) {
1652 default: assert(0 && "Invalid cttz!"); break;
1653 case MVT::i1: return getConstant(Val == 0, VT);
1654 case MVT::i8:
1655 Tmp1 = (unsigned)Val | 0x100;
1656 return getConstant(CountTrailingZeros_32(Tmp1), VT);
1657 case MVT::i16:
1658 Tmp1 = (unsigned)Val | 0x10000;
1659 return getConstant(CountTrailingZeros_32(Tmp1), VT);
1660 case MVT::i32:
1661 return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1662 case MVT::i64:
1663 return getConstant(CountTrailingZeros_64(Val), VT);
1664 }
1665 }
1666 }
1667
1668 // Constant fold unary operations with an floating point constant operand.
1669 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
1670 switch (Opcode) {
1671 case ISD::FNEG:
1672 return getConstantFP(-C->getValue(), VT);
1673 case ISD::FABS:
1674 return getConstantFP(fabs(C->getValue()), VT);
1675 case ISD::FP_ROUND:
1676 case ISD::FP_EXTEND:
1677 return getConstantFP(C->getValue(), VT);
1678 case ISD::FP_TO_SINT:
1679 return getConstant((int64_t)C->getValue(), VT);
1680 case ISD::FP_TO_UINT:
1681 return getConstant((uint64_t)C->getValue(), VT);
1682 case ISD::BIT_CONVERT:
1683 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1684 return getConstant(FloatToBits(C->getValue()), VT);
1685 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1686 return getConstant(DoubleToBits(C->getValue()), VT);
1687 break;
1688 }
1689
1690 unsigned OpOpcode = Operand.Val->getOpcode();
1691 switch (Opcode) {
1692 case ISD::TokenFactor:
1693 return Operand; // Factor of one node? No factor.
1694 case ISD::FP_ROUND:
1695 case ISD::FP_EXTEND:
1696 assert(MVT::isFloatingPoint(VT) &&
1697 MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1698 break;
1699 case ISD::SIGN_EXTEND:
1700 assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1701 "Invalid SIGN_EXTEND!");
1702 if (Operand.getValueType() == VT) return Operand; // noop extension
1703 assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1704 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1705 return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1706 break;
1707 case ISD::ZERO_EXTEND:
1708 assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1709 "Invalid ZERO_EXTEND!");
1710 if (Operand.getValueType() == VT) return Operand; // noop extension
1711 assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1712 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
1713 return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1714 break;
1715 case ISD::ANY_EXTEND:
1716 assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1717 "Invalid ANY_EXTEND!");
1718 if (Operand.getValueType() == VT) return Operand; // noop extension
1719 assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1720 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1721 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
1722 return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1723 break;
1724 case ISD::TRUNCATE:
1725 assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1726 "Invalid TRUNCATE!");
1727 if (Operand.getValueType() == VT) return Operand; // noop truncate
1728 assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1729 if (OpOpcode == ISD::TRUNCATE)
1730 return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1731 else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1732 OpOpcode == ISD::ANY_EXTEND) {
1733 // If the source is smaller than the dest, we still need an extend.
1734 if (Operand.Val->getOperand(0).getValueType() < VT)
1735 return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1736 else if (Operand.Val->getOperand(0).getValueType() > VT)
1737 return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1738 else
1739 return Operand.Val->getOperand(0);
1740 }
1741 break;
1742 case ISD::BIT_CONVERT:
1743 // Basic sanity checking.
1744 assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1745 && "Cannot BIT_CONVERT between types of different sizes!");
1746 if (VT == Operand.getValueType()) return Operand; // noop conversion.
1747 if (OpOpcode == ISD::BIT_CONVERT) // bitconv(bitconv(x)) -> bitconv(x)
1748 return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1749 if (OpOpcode == ISD::UNDEF)
1750 return getNode(ISD::UNDEF, VT);
1751 break;
1752 case ISD::SCALAR_TO_VECTOR:
1753 assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1754 MVT::getVectorElementType(VT) == Operand.getValueType() &&
1755 "Illegal SCALAR_TO_VECTOR node!");
1756 break;
1757 case ISD::FNEG:
1758 if (OpOpcode == ISD::FSUB) // -(X-Y) -> (Y-X)
1759 return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1760 Operand.Val->getOperand(0));
1761 if (OpOpcode == ISD::FNEG) // --X -> X
1762 return Operand.Val->getOperand(0);
1763 break;
1764 case ISD::FABS:
1765 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
1766 return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1767 break;
1768 }
1769
1770 SDNode *N;
1771 SDVTList VTs = getVTList(VT);
1772 if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1773 FoldingSetNodeID ID;
1774 SDOperand Ops[1] = { Operand };
1775 AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1776 void *IP = 0;
1777 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1778 return SDOperand(E, 0);
1779 N = new UnarySDNode(Opcode, VTs, Operand);
1780 CSEMap.InsertNode(N, IP);
1781 } else {
1782 N = new UnarySDNode(Opcode, VTs, Operand);
1783 }
1784 AllNodes.push_back(N);
1785 return SDOperand(N, 0);
1786}
1787
1788
1789
1790SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1791 SDOperand N1, SDOperand N2) {
1792#ifndef NDEBUG
1793 switch (Opcode) {
1794 case ISD::TokenFactor:
1795 assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1796 N2.getValueType() == MVT::Other && "Invalid token factor!");
1797 break;
1798 case ISD::AND:
1799 case ISD::OR:
1800 case ISD::XOR:
1801 case ISD::UDIV:
1802 case ISD::UREM:
1803 case ISD::MULHU:
1804 case ISD::MULHS:
1805 assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1806 // fall through
1807 case ISD::ADD:
1808 case ISD::SUB:
1809 case ISD::MUL:
1810 case ISD::SDIV:
1811 case ISD::SREM:
1812 assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1813 // fall through.
1814 case ISD::FADD:
1815 case ISD::FSUB:
1816 case ISD::FMUL:
1817 case ISD::FDIV:
1818 case ISD::FREM:
1819 assert(N1.getValueType() == N2.getValueType() &&
1820 N1.getValueType() == VT && "Binary operator types must match!");
1821 break;
1822 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
1823 assert(N1.getValueType() == VT &&
1824 MVT::isFloatingPoint(N1.getValueType()) &&
1825 MVT::isFloatingPoint(N2.getValueType()) &&
1826 "Invalid FCOPYSIGN!");
1827 break;
1828 case ISD::SHL:
1829 case ISD::SRA:
1830 case ISD::SRL:
1831 case ISD::ROTL:
1832 case ISD::ROTR:
1833 assert(VT == N1.getValueType() &&
1834 "Shift operators return type must be the same as their first arg");
1835 assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1836 VT != MVT::i1 && "Shifts only work on integers");
1837 break;
1838 case ISD::FP_ROUND_INREG: {
1839 MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1840 assert(VT == N1.getValueType() && "Not an inreg round!");
1841 assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1842 "Cannot FP_ROUND_INREG integer types");
1843 assert(EVT <= VT && "Not rounding down!");
1844 break;
1845 }
1846 case ISD::AssertSext:
1847 case ISD::AssertZext:
1848 case ISD::SIGN_EXTEND_INREG: {
1849 MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1850 assert(VT == N1.getValueType() && "Not an inreg extend!");
1851 assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1852 "Cannot *_EXTEND_INREG FP types");
1853 assert(EVT <= VT && "Not extending!");
1854 }
1855
1856 default: break;
1857 }
1858#endif
1859
1860 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1861 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1862 if (N1C) {
1863 if (Opcode == ISD::SIGN_EXTEND_INREG) {
1864 int64_t Val = N1C->getValue();
1865 unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1866 Val <<= 64-FromBits;
1867 Val >>= 64-FromBits;
1868 return getConstant(Val, VT);
1869 }
1870
1871 if (N2C) {
1872 uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1873 switch (Opcode) {
1874 case ISD::ADD: return getConstant(C1 + C2, VT);
1875 case ISD::SUB: return getConstant(C1 - C2, VT);
1876 case ISD::MUL: return getConstant(C1 * C2, VT);
1877 case ISD::UDIV:
1878 if (C2) return getConstant(C1 / C2, VT);
1879 break;
1880 case ISD::UREM :
1881 if (C2) return getConstant(C1 % C2, VT);
1882 break;
1883 case ISD::SDIV :
1884 if (C2) return getConstant(N1C->getSignExtended() /
1885 N2C->getSignExtended(), VT);
1886 break;
1887 case ISD::SREM :
1888 if (C2) return getConstant(N1C->getSignExtended() %
1889 N2C->getSignExtended(), VT);
1890 break;
1891 case ISD::AND : return getConstant(C1 & C2, VT);
1892 case ISD::OR : return getConstant(C1 | C2, VT);
1893 case ISD::XOR : return getConstant(C1 ^ C2, VT);
1894 case ISD::SHL : return getConstant(C1 << C2, VT);
1895 case ISD::SRL : return getConstant(C1 >> C2, VT);
1896 case ISD::SRA : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1897 case ISD::ROTL :
1898 return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1899 VT);
1900 case ISD::ROTR :
1901 return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1902 VT);
1903 default: break;
1904 }
1905 } else { // Cannonicalize constant to RHS if commutative
1906 if (isCommutativeBinOp(Opcode)) {
1907 std::swap(N1C, N2C);
1908 std::swap(N1, N2);
1909 }
1910 }
1911 }
1912
1913 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1914 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1915 if (N1CFP) {
1916 if (N2CFP) {
1917 double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1918 switch (Opcode) {
1919 case ISD::FADD: return getConstantFP(C1 + C2, VT);
1920 case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1921 case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1922 case ISD::FDIV:
1923 if (C2) return getConstantFP(C1 / C2, VT);
1924 break;
1925 case ISD::FREM :
1926 if (C2) return getConstantFP(fmod(C1, C2), VT);
1927 break;
1928 case ISD::FCOPYSIGN: {
1929 union {
1930 double F;
1931 uint64_t I;
1932 } u1;
1933 u1.F = C1;
1934 if (int64_t(DoubleToBits(C2)) < 0) // Sign bit of RHS set?
1935 u1.I |= 1ULL << 63; // Set the sign bit of the LHS.
1936 else
1937 u1.I &= (1ULL << 63)-1; // Clear the sign bit of the LHS.
1938 return getConstantFP(u1.F, VT);
1939 }
1940 default: break;
1941 }
1942 } else { // Cannonicalize constant to RHS if commutative
1943 if (isCommutativeBinOp(Opcode)) {
1944 std::swap(N1CFP, N2CFP);
1945 std::swap(N1, N2);
1946 }
1947 }
1948 }
1949
1950 // Canonicalize an UNDEF to the RHS, even over a constant.
1951 if (N1.getOpcode() == ISD::UNDEF) {
1952 if (isCommutativeBinOp(Opcode)) {
1953 std::swap(N1, N2);
1954 } else {
1955 switch (Opcode) {
1956 case ISD::FP_ROUND_INREG:
1957 case ISD::SIGN_EXTEND_INREG:
1958 case ISD::SUB:
1959 case ISD::FSUB:
1960 case ISD::FDIV:
1961 case ISD::FREM:
1962 case ISD::SRA:
1963 return N1; // fold op(undef, arg2) -> undef
1964 case ISD::UDIV:
1965 case ISD::SDIV:
1966 case ISD::UREM:
1967 case ISD::SREM:
1968 case ISD::SRL:
1969 case ISD::SHL:
1970 if (!MVT::isVector(VT))
1971 return getConstant(0, VT); // fold op(undef, arg2) -> 0
1972 // For vectors, we can't easily build an all zero vector, just return
1973 // the LHS.
1974 return N2;
1975 }
1976 }
1977 }
1978
1979 // Fold a bunch of operators when the RHS is undef.
1980 if (N2.getOpcode() == ISD::UNDEF) {
1981 switch (Opcode) {
1982 case ISD::ADD:
1983 case ISD::ADDC:
1984 case ISD::ADDE:
1985 case ISD::SUB:
1986 case ISD::FADD:
1987 case ISD::FSUB:
1988 case ISD::FMUL:
1989 case ISD::FDIV:
1990 case ISD::FREM:
1991 case ISD::UDIV:
1992 case ISD::SDIV:
1993 case ISD::UREM:
1994 case ISD::SREM:
1995 case ISD::XOR:
1996 return N2; // fold op(arg1, undef) -> undef
1997 case ISD::MUL:
1998 case ISD::AND:
1999 case ISD::SRL:
2000 case ISD::SHL:
2001 if (!MVT::isVector(VT))
2002 return getConstant(0, VT); // fold op(arg1, undef) -> 0
2003 // For vectors, we can't easily build an all zero vector, just return
2004 // the LHS.
2005 return N1;
2006 case ISD::OR:
2007 if (!MVT::isVector(VT))
2008 return getConstant(MVT::getIntVTBitMask(VT), VT);
2009 // For vectors, we can't easily build an all one vector, just return
2010 // the LHS.
2011 return N1;
2012 case ISD::SRA:
2013 return N1;
2014 }
2015 }
2016
2017 // Fold operations.
2018 switch (Opcode) {
2019 case ISD::TokenFactor:
2020 // Fold trivial token factors.
2021 if (N1.getOpcode() == ISD::EntryToken) return N2;
2022 if (N2.getOpcode() == ISD::EntryToken) return N1;
2023 break;
2024
2025 case ISD::AND:
2026 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
2027 // worth handling here.
2028 if (N2C && N2C->getValue() == 0)
2029 return N2;
2030 break;
2031 case ISD::OR:
2032 case ISD::XOR:
2033 // (X ^| 0) -> X. This commonly occurs when legalizing i64 values, so it's
2034 // worth handling here.
2035 if (N2C && N2C->getValue() == 0)
2036 return N1;
2037 break;
2038 case ISD::FP_ROUND_INREG:
2039 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
2040 break;
2041 case ISD::SIGN_EXTEND_INREG: {
2042 MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2043 if (EVT == VT) return N1; // Not actually extending
2044 break;
2045 }
2046 case ISD::EXTRACT_VECTOR_ELT:
2047 assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2048
2049 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2050 // expanding copies of large vectors from registers.
2051 if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2052 N1.getNumOperands() > 0) {
2053 unsigned Factor =
2054 MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2055 return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2056 N1.getOperand(N2C->getValue() / Factor),
2057 getConstant(N2C->getValue() % Factor, N2.getValueType()));
2058 }
2059
2060 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2061 // expanding large vector constants.
2062 if (N1.getOpcode() == ISD::BUILD_VECTOR)
2063 return N1.getOperand(N2C->getValue());
2064
2065 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2066 // operations are lowered to scalars.
2067 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2068 if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2069 if (IEC == N2C)
2070 return N1.getOperand(1);
2071 else
2072 return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2073 }
2074 break;
2075 case ISD::EXTRACT_ELEMENT:
2076 assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2077
2078 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2079 // 64-bit integers into 32-bit parts. Instead of building the extract of
2080 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2081 if (N1.getOpcode() == ISD::BUILD_PAIR)
2082 return N1.getOperand(N2C->getValue());
2083
2084 // EXTRACT_ELEMENT of a constant int is also very common.
2085 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2086 unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2087 return getConstant(C->getValue() >> Shift, VT);
2088 }
2089 break;
2090
2091 // FIXME: figure out how to safely handle things like
2092 // int foo(int x) { return 1 << (x & 255); }
2093 // int bar() { return foo(256); }
2094#if 0
2095 case ISD::SHL:
2096 case ISD::SRL:
2097 case ISD::SRA:
2098 if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2099 cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
2100 return getNode(Opcode, VT, N1, N2.getOperand(0));
2101 else if (N2.getOpcode() == ISD::AND)
2102 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
2103 // If the and is only masking out bits that cannot effect the shift,
2104 // eliminate the and.
2105 unsigned NumBits = MVT::getSizeInBits(VT);
2106 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2107 return getNode(Opcode, VT, N1, N2.getOperand(0));
2108 }
2109 break;
2110#endif
2111 }
2112
2113 // Memoize this node if possible.
2114 SDNode *N;
2115 SDVTList VTs = getVTList(VT);
2116 if (VT != MVT::Flag) {
2117 SDOperand Ops[] = { N1, N2 };
2118 FoldingSetNodeID ID;
2119 AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2120 void *IP = 0;
2121 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2122 return SDOperand(E, 0);
2123 N = new BinarySDNode(Opcode, VTs, N1, N2);
2124 CSEMap.InsertNode(N, IP);
2125 } else {
2126 N = new BinarySDNode(Opcode, VTs, N1, N2);
2127 }
2128
2129 AllNodes.push_back(N);
2130 return SDOperand(N, 0);
2131}
2132
2133SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2134 SDOperand N1, SDOperand N2, SDOperand N3) {
2135 // Perform various simplifications.
2136 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2137 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2138 switch (Opcode) {
2139 case ISD::SETCC: {
2140 // Use FoldSetCC to simplify SETCC's.
2141 SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2142 if (Simp.Val) return Simp;
2143 break;
2144 }
2145 case ISD::SELECT:
2146 if (N1C)
2147 if (N1C->getValue())
2148 return N2; // select true, X, Y -> X
2149 else
2150 return N3; // select false, X, Y -> Y
2151
2152 if (N2 == N3) return N2; // select C, X, X -> X
2153 break;
2154 case ISD::BRCOND:
2155 if (N2C)
2156 if (N2C->getValue()) // Unconditional branch
2157 return getNode(ISD::BR, MVT::Other, N1, N3);
2158 else
2159 return N1; // Never-taken branch
2160 break;
2161 case ISD::VECTOR_SHUFFLE:
2162 assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2163 MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2164 N3.getOpcode() == ISD::BUILD_VECTOR &&
2165 MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2166 "Illegal VECTOR_SHUFFLE node!");
2167 break;
2168 case ISD::BIT_CONVERT:
2169 // Fold bit_convert nodes from a type to themselves.
2170 if (N1.getValueType() == VT)
2171 return N1;
2172 break;
2173 }
2174
2175 // Memoize node if it doesn't produce a flag.
2176 SDNode *N;
2177 SDVTList VTs = getVTList(VT);
2178 if (VT != MVT::Flag) {
2179 SDOperand Ops[] = { N1, N2, N3 };
2180 FoldingSetNodeID ID;
2181 AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2182 void *IP = 0;
2183 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2184 return SDOperand(E, 0);
2185 N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2186 CSEMap.InsertNode(N, IP);
2187 } else {
2188 N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2189 }
2190 AllNodes.push_back(N);
2191 return SDOperand(N, 0);
2192}
2193
2194SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2195 SDOperand N1, SDOperand N2, SDOperand N3,
2196 SDOperand N4) {
2197 SDOperand Ops[] = { N1, N2, N3, N4 };
2198 return getNode(Opcode, VT, Ops, 4);
2199}
2200
2201SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2202 SDOperand N1, SDOperand N2, SDOperand N3,
2203 SDOperand N4, SDOperand N5) {
2204 SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2205 return getNode(Opcode, VT, Ops, 5);
2206}
2207
2208SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2209 SDOperand Chain, SDOperand Ptr,
2210 const Value *SV, int SVOffset,
2211 bool isVolatile, unsigned Alignment) {
2212 if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2213 const Type *Ty = 0;
2214 if (VT != MVT::iPTR) {
2215 Ty = MVT::getTypeForValueType(VT);
2216 } else if (SV) {
2217 const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2218 assert(PT && "Value for load must be a pointer");
2219 Ty = PT->getElementType();
2220 }
2221 assert(Ty && "Could not get type information for load");
2222 Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2223 }
2224 SDVTList VTs = getVTList(VT, MVT::Other);
2225 SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2226 SDOperand Ops[] = { Chain, Ptr, Undef };
2227 FoldingSetNodeID ID;
2228 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2229 ID.AddInteger(ISD::UNINDEXED);
2230 ID.AddInteger(ISD::NON_EXTLOAD);
2231 ID.AddInteger(VT);
2232 ID.AddPointer(SV);
2233 ID.AddInteger(SVOffset);
2234 ID.AddInteger(Alignment);
2235 ID.AddInteger(isVolatile);
2236 void *IP = 0;
2237 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2238 return SDOperand(E, 0);
2239 SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2240 ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2241 isVolatile);
2242 CSEMap.InsertNode(N, IP);
2243 AllNodes.push_back(N);
2244 return SDOperand(N, 0);
2245}
2246
2247SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2248 SDOperand Chain, SDOperand Ptr,
2249 const Value *SV,
2250 int SVOffset, MVT::ValueType EVT,
2251 bool isVolatile, unsigned Alignment) {
2252 // If they are asking for an extending load from/to the same thing, return a
2253 // normal load.
2254 if (VT == EVT)
2255 ExtType = ISD::NON_EXTLOAD;
2256
2257 if (MVT::isVector(VT))
2258 assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2259 else
2260 assert(EVT < VT && "Should only be an extending load, not truncating!");
2261 assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2262 "Cannot sign/zero extend a FP/Vector load!");
2263 assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2264 "Cannot convert from FP to Int or Int -> FP!");
2265
2266 if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2267 const Type *Ty = 0;
2268 if (VT != MVT::iPTR) {
2269 Ty = MVT::getTypeForValueType(VT);
2270 } else if (SV) {
2271 const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2272 assert(PT && "Value for load must be a pointer");
2273 Ty = PT->getElementType();
2274 }
2275 assert(Ty && "Could not get type information for load");
2276 Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2277 }
2278 SDVTList VTs = getVTList(VT, MVT::Other);
2279 SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2280 SDOperand Ops[] = { Chain, Ptr, Undef };
2281 FoldingSetNodeID ID;
2282 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2283 ID.AddInteger(ISD::UNINDEXED);
2284 ID.AddInteger(ExtType);
2285 ID.AddInteger(EVT);
2286 ID.AddPointer(SV);
2287 ID.AddInteger(SVOffset);
2288 ID.AddInteger(Alignment);
2289 ID.AddInteger(isVolatile);
2290 void *IP = 0;
2291 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2292 return SDOperand(E, 0);
2293 SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2294 SV, SVOffset, Alignment, isVolatile);
2295 CSEMap.InsertNode(N, IP);
2296 AllNodes.push_back(N);
2297 return SDOperand(N, 0);
2298}
2299
2300SDOperand
2301SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2302 SDOperand Offset, ISD::MemIndexedMode AM) {
2303 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2304 assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2305 "Load is already a indexed load!");
2306 MVT::ValueType VT = OrigLoad.getValueType();
2307 SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2308 SDOperand Ops[] = { LD->getChain(), Base, Offset };
2309 FoldingSetNodeID ID;
2310 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2311 ID.AddInteger(AM);
2312 ID.AddInteger(LD->getExtensionType());
2313 ID.AddInteger(LD->getLoadedVT());
2314 ID.AddPointer(LD->getSrcValue());
2315 ID.AddInteger(LD->getSrcValueOffset());
2316 ID.AddInteger(LD->getAlignment());
2317 ID.AddInteger(LD->isVolatile());
2318 void *IP = 0;
2319 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2320 return SDOperand(E, 0);
2321 SDNode *N = new LoadSDNode(Ops, VTs, AM,
2322 LD->getExtensionType(), LD->getLoadedVT(),
2323 LD->getSrcValue(), LD->getSrcValueOffset(),
2324 LD->getAlignment(), LD->isVolatile());
2325 CSEMap.InsertNode(N, IP);
2326 AllNodes.push_back(N);
2327 return SDOperand(N, 0);
2328}
2329
2330SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2331 SDOperand Ptr, const Value *SV, int SVOffset,
2332 bool isVolatile, unsigned Alignment) {
2333 MVT::ValueType VT = Val.getValueType();
2334
2335 if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2336 const Type *Ty = 0;
2337 if (VT != MVT::iPTR) {
2338 Ty = MVT::getTypeForValueType(VT);
2339 } else if (SV) {
2340 const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2341 assert(PT && "Value for store must be a pointer");
2342 Ty = PT->getElementType();
2343 }
2344 assert(Ty && "Could not get type information for store");
2345 Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2346 }
2347 SDVTList VTs = getVTList(MVT::Other);
2348 SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2349 SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2350 FoldingSetNodeID ID;
2351 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2352 ID.AddInteger(ISD::UNINDEXED);
2353 ID.AddInteger(false);
2354 ID.AddInteger(VT);
2355 ID.AddPointer(SV);
2356 ID.AddInteger(SVOffset);
2357 ID.AddInteger(Alignment);
2358 ID.AddInteger(isVolatile);
2359 void *IP = 0;
2360 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2361 return SDOperand(E, 0);
2362 SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2363 VT, SV, SVOffset, Alignment, isVolatile);
2364 CSEMap.InsertNode(N, IP);
2365 AllNodes.push_back(N);
2366 return SDOperand(N, 0);
2367}
2368
2369SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2370 SDOperand Ptr, const Value *SV,
2371 int SVOffset, MVT::ValueType SVT,
2372 bool isVolatile, unsigned Alignment) {
2373 MVT::ValueType VT = Val.getValueType();
2374 bool isTrunc = VT != SVT;
2375
2376 assert(VT > SVT && "Not a truncation?");
2377 assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2378 "Can't do FP-INT conversion!");
2379
2380 if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2381 const Type *Ty = 0;
2382 if (VT != MVT::iPTR) {
2383 Ty = MVT::getTypeForValueType(VT);
2384 } else if (SV) {
2385 const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2386 assert(PT && "Value for store must be a pointer");
2387 Ty = PT->getElementType();
2388 }
2389 assert(Ty && "Could not get type information for store");
2390 Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2391 }
2392 SDVTList VTs = getVTList(MVT::Other);
2393 SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2394 SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2395 FoldingSetNodeID ID;
2396 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2397 ID.AddInteger(ISD::UNINDEXED);
2398 ID.AddInteger(isTrunc);
2399 ID.AddInteger(SVT);
2400 ID.AddPointer(SV);
2401 ID.AddInteger(SVOffset);
2402 ID.AddInteger(Alignment);
2403 ID.AddInteger(isVolatile);
2404 void *IP = 0;
2405 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2406 return SDOperand(E, 0);
2407 SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, isTrunc,
2408 SVT, SV, SVOffset, Alignment, isVolatile);
2409 CSEMap.InsertNode(N, IP);
2410 AllNodes.push_back(N);
2411 return SDOperand(N, 0);
2412}
2413
2414SDOperand
2415SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2416 SDOperand Offset, ISD::MemIndexedMode AM) {
2417 StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2418 assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2419 "Store is already a indexed store!");
2420 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2421 SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2422 FoldingSetNodeID ID;
2423 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2424 ID.AddInteger(AM);
2425 ID.AddInteger(ST->isTruncatingStore());
2426 ID.AddInteger(ST->getStoredVT());
2427 ID.AddPointer(ST->getSrcValue());
2428 ID.AddInteger(ST->getSrcValueOffset());
2429 ID.AddInteger(ST->getAlignment());
2430 ID.AddInteger(ST->isVolatile());
2431 void *IP = 0;
2432 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2433 return SDOperand(E, 0);
2434 SDNode *N = new StoreSDNode(Ops, VTs, AM,
2435 ST->isTruncatingStore(), ST->getStoredVT(),
2436 ST->getSrcValue(), ST->getSrcValueOffset(),
2437 ST->getAlignment(), ST->isVolatile());
2438 CSEMap.InsertNode(N, IP);
2439 AllNodes.push_back(N);
2440 return SDOperand(N, 0);
2441}
2442
2443SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2444 SDOperand Chain, SDOperand Ptr,
2445 SDOperand SV) {
2446 SDOperand Ops[] = { Chain, Ptr, SV };
2447 return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2448}
2449
2450SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2451 const SDOperand *Ops, unsigned NumOps) {
2452 switch (NumOps) {
2453 case 0: return getNode(Opcode, VT);
2454 case 1: return getNode(Opcode, VT, Ops[0]);
2455 case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2456 case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2457 default: break;
2458 }
2459
2460 switch (Opcode) {
2461 default: break;
2462 case ISD::SELECT_CC: {
2463 assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2464 assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2465 "LHS and RHS of condition must have same type!");
2466 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2467 "True and False arms of SelectCC must have same type!");
2468 assert(Ops[2].getValueType() == VT &&
2469 "select_cc node must be of same type as true and false value!");
2470 break;
2471 }
2472 case ISD::BR_CC: {
2473 assert(NumOps == 5 && "BR_CC takes 5 operands!");
2474 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2475 "LHS/RHS of comparison should match types!");
2476 break;
2477 }
2478 }
2479
2480 // Memoize nodes.
2481 SDNode *N;
2482 SDVTList VTs = getVTList(VT);
2483 if (VT != MVT::Flag) {
2484 FoldingSetNodeID ID;
2485 AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2486 void *IP = 0;
2487 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2488 return SDOperand(E, 0);
2489 N = new SDNode(Opcode, VTs, Ops, NumOps);
2490 CSEMap.InsertNode(N, IP);
2491 } else {
2492 N = new SDNode(Opcode, VTs, Ops, NumOps);
2493 }
2494 AllNodes.push_back(N);
2495 return SDOperand(N, 0);
2496}
2497
2498SDOperand SelectionDAG::getNode(unsigned Opcode,
2499 std::vector<MVT::ValueType> &ResultTys,
2500 const SDOperand *Ops, unsigned NumOps) {
2501 return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2502 Ops, NumOps);
2503}
2504
2505SDOperand SelectionDAG::getNode(unsigned Opcode,
2506 const MVT::ValueType *VTs, unsigned NumVTs,
2507 const SDOperand *Ops, unsigned NumOps) {
2508 if (NumVTs == 1)
2509 return getNode(Opcode, VTs[0], Ops, NumOps);
2510 return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2511}
2512
2513SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2514 const SDOperand *Ops, unsigned NumOps) {
2515 if (VTList.NumVTs == 1)
2516 return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2517
2518 switch (Opcode) {
2519 // FIXME: figure out how to safely handle things like
2520 // int foo(int x) { return 1 << (x & 255); }
2521 // int bar() { return foo(256); }
2522#if 0
2523 case ISD::SRA_PARTS:
2524 case ISD::SRL_PARTS:
2525 case ISD::SHL_PARTS:
2526 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2527 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2528 return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2529 else if (N3.getOpcode() == ISD::AND)
2530 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2531 // If the and is only masking out bits that cannot effect the shift,
2532 // eliminate the and.
2533 unsigned NumBits = MVT::getSizeInBits(VT)*2;
2534 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2535 return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2536 }
2537 break;
2538#endif
2539 }
2540
2541 // Memoize the node unless it returns a flag.
2542 SDNode *N;
2543 if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2544 FoldingSetNodeID ID;
2545 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2546 void *IP = 0;
2547 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2548 return SDOperand(E, 0);
2549 if (NumOps == 1)
2550 N = new UnarySDNode(Opcode, VTList, Ops[0]);
2551 else if (NumOps == 2)
2552 N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2553 else if (NumOps == 3)
2554 N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2555 else
2556 N = new SDNode(Opcode, VTList, Ops, NumOps);
2557 CSEMap.InsertNode(N, IP);
2558 } else {
2559 if (NumOps == 1)
2560 N = new UnarySDNode(Opcode, VTList, Ops[0]);
2561 else if (NumOps == 2)
2562 N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2563 else if (NumOps == 3)
2564 N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2565 else
2566 N = new SDNode(Opcode, VTList, Ops, NumOps);
2567 }
2568 AllNodes.push_back(N);
2569 return SDOperand(N, 0);
2570}
2571
2572SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2573 if (!MVT::isExtendedVT(VT))
2574 return makeVTList(SDNode::getValueTypeList(VT), 1);
2575
2576 for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2577 E = VTList.end(); I != E; ++I) {
2578 if (I->size() == 1 && (*I)[0] == VT)
2579 return makeVTList(&(*I)[0], 1);
2580 }
2581 std::vector<MVT::ValueType> V;
2582 V.push_back(VT);
2583 VTList.push_front(V);
2584 return makeVTList(&(*VTList.begin())[0], 1);
2585}
2586
2587SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2588 for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2589 E = VTList.end(); I != E; ++I) {
2590 if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2591 return makeVTList(&(*I)[0], 2);
2592 }
2593 std::vector<MVT::ValueType> V;
2594 V.push_back(VT1);
2595 V.push_back(VT2);
2596 VTList.push_front(V);
2597 return makeVTList(&(*VTList.begin())[0], 2);
2598}
2599SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2600 MVT::ValueType VT3) {
2601 for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2602 E = VTList.end(); I != E; ++I) {
2603 if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2604 (*I)[2] == VT3)
2605 return makeVTList(&(*I)[0], 3);
2606 }
2607 std::vector<MVT::ValueType> V;
2608 V.push_back(VT1);
2609 V.push_back(VT2);
2610 V.push_back(VT3);
2611 VTList.push_front(V);
2612 return makeVTList(&(*VTList.begin())[0], 3);
2613}
2614
2615SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2616 switch (NumVTs) {
2617 case 0: assert(0 && "Cannot have nodes without results!");
2618 case 1: return getVTList(VTs[0]);
2619 case 2: return getVTList(VTs[0], VTs[1]);
2620 case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2621 default: break;
2622 }
2623
2624 for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2625 E = VTList.end(); I != E; ++I) {
2626 if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2627
2628 bool NoMatch = false;
2629 for (unsigned i = 2; i != NumVTs; ++i)
2630 if (VTs[i] != (*I)[i]) {
2631 NoMatch = true;
2632 break;
2633 }
2634 if (!NoMatch)
2635 return makeVTList(&*I->begin(), NumVTs);
2636 }
2637
2638 VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2639 return makeVTList(&*VTList.begin()->begin(), NumVTs);
2640}
2641
2642
2643/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2644/// specified operands. If the resultant node already exists in the DAG,
2645/// this does not modify the specified node, instead it returns the node that
2646/// already exists. If the resultant node does not exist in the DAG, the
2647/// input node is returned. As a degenerate case, if you specify the same
2648/// input operands as the node already has, the input node is returned.
2649SDOperand SelectionDAG::
2650UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2651 SDNode *N = InN.Val;
2652 assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2653
2654 // Check to see if there is no change.
2655 if (Op == N->getOperand(0)) return InN;
2656
2657 // See if the modified node already exists.
2658 void *InsertPos = 0;
2659 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2660 return SDOperand(Existing, InN.ResNo);
2661
2662 // Nope it doesn't. Remove the node from it's current place in the maps.
2663 if (InsertPos)
2664 RemoveNodeFromCSEMaps(N);
2665
2666 // Now we update the operands.
2667 N->OperandList[0].Val->removeUser(N);
2668 Op.Val->addUser(N);
2669 N->OperandList[0] = Op;
2670
2671 // If this gets put into a CSE map, add it.
2672 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2673 return InN;
2674}
2675
2676SDOperand SelectionDAG::
2677UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2678 SDNode *N = InN.Val;
2679 assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2680
2681 // Check to see if there is no change.
2682 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2683 return InN; // No operands changed, just return the input node.
2684
2685 // See if the modified node already exists.
2686 void *InsertPos = 0;
2687 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2688 return SDOperand(Existing, InN.ResNo);
2689
2690 // Nope it doesn't. Remove the node from it's current place in the maps.
2691 if (InsertPos)
2692 RemoveNodeFromCSEMaps(N);
2693
2694 // Now we update the operands.
2695 if (N->OperandList[0] != Op1) {
2696 N->OperandList[0].Val->removeUser(N);
2697 Op1.Val->addUser(N);
2698 N->OperandList[0] = Op1;
2699 }
2700 if (N->OperandList[1] != Op2) {
2701 N->OperandList[1].Val->removeUser(N);
2702 Op2.Val->addUser(N);
2703 N->OperandList[1] = Op2;
2704 }
2705
2706 // If this gets put into a CSE map, add it.
2707 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2708 return InN;
2709}
2710
2711SDOperand SelectionDAG::
2712UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2713 SDOperand Ops[] = { Op1, Op2, Op3 };
2714 return UpdateNodeOperands(N, Ops, 3);
2715}
2716
2717SDOperand SelectionDAG::
2718UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2719 SDOperand Op3, SDOperand Op4) {
2720 SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2721 return UpdateNodeOperands(N, Ops, 4);
2722}
2723
2724SDOperand SelectionDAG::
2725UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2726 SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2727 SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2728 return UpdateNodeOperands(N, Ops, 5);
2729}
2730
2731
2732SDOperand SelectionDAG::
2733UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2734 SDNode *N = InN.Val;
2735 assert(N->getNumOperands() == NumOps &&
2736 "Update with wrong number of operands");
2737
2738 // Check to see if there is no change.
2739 bool AnyChange = false;
2740 for (unsigned i = 0; i != NumOps; ++i) {
2741 if (Ops[i] != N->getOperand(i)) {
2742 AnyChange = true;
2743 break;
2744 }
2745 }
2746
2747 // No operands changed, just return the input node.
2748 if (!AnyChange) return InN;
2749
2750 // See if the modified node already exists.
2751 void *InsertPos = 0;
2752 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2753 return SDOperand(Existing, InN.ResNo);
2754
2755 // Nope it doesn't. Remove the node from it's current place in the maps.
2756 if (InsertPos)
2757 RemoveNodeFromCSEMaps(N);
2758
2759 // Now we update the operands.
2760 for (unsigned i = 0; i != NumOps; ++i) {
2761 if (N->OperandList[i] != Ops[i]) {
2762 N->OperandList[i].Val->removeUser(N);
2763 Ops[i].Val->addUser(N);
2764 N->OperandList[i] = Ops[i];
2765 }
2766 }
2767
2768 // If this gets put into a CSE map, add it.
2769 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2770 return InN;
2771}
2772
2773
2774/// MorphNodeTo - This frees the operands of the current node, resets the
2775/// opcode, types, and operands to the specified value. This should only be
2776/// used by the SelectionDAG class.
2777void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2778 const SDOperand *Ops, unsigned NumOps) {
2779 NodeType = Opc;
2780 ValueList = L.VTs;
2781 NumValues = L.NumVTs;
2782
2783 // Clear the operands list, updating used nodes to remove this from their
2784 // use list.
2785 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2786 I->Val->removeUser(this);
2787
2788 // If NumOps is larger than the # of operands we currently have, reallocate
2789 // the operand list.
2790 if (NumOps > NumOperands) {
2791 if (OperandsNeedDelete)
2792 delete [] OperandList;
2793 OperandList = new SDOperand[NumOps];
2794 OperandsNeedDelete = true;
2795 }
2796
2797 // Assign the new operands.
2798 NumOperands = NumOps;
2799
2800 for (unsigned i = 0, e = NumOps; i != e; ++i) {
2801 OperandList[i] = Ops[i];
2802 SDNode *N = OperandList[i].Val;
2803 N->Uses.push_back(this);
2804 }
2805}
2806
2807/// SelectNodeTo - These are used for target selectors to *mutate* the
2808/// specified node to have the specified return type, Target opcode, and
2809/// operands. Note that target opcodes are stored as
2810/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2811///
2812/// Note that SelectNodeTo returns the resultant node. If there is already a
2813/// node of the specified opcode and operands, it returns that node instead of
2814/// the current one.
2815SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2816 MVT::ValueType VT) {
2817 SDVTList VTs = getVTList(VT);
2818 FoldingSetNodeID ID;
2819 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2820 void *IP = 0;
2821 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2822 return ON;
2823
2824 RemoveNodeFromCSEMaps(N);
2825
2826 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2827
2828 CSEMap.InsertNode(N, IP);
2829 return N;
2830}
2831
2832SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2833 MVT::ValueType VT, SDOperand Op1) {
2834 // If an identical node already exists, use it.
2835 SDVTList VTs = getVTList(VT);
2836 SDOperand Ops[] = { Op1 };
2837
2838 FoldingSetNodeID ID;
2839 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2840 void *IP = 0;
2841 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2842 return ON;
2843
2844 RemoveNodeFromCSEMaps(N);
2845 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2846 CSEMap.InsertNode(N, IP);
2847 return N;
2848}
2849
2850SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2851 MVT::ValueType VT, SDOperand Op1,
2852 SDOperand Op2) {
2853 // If an identical node already exists, use it.
2854 SDVTList VTs = getVTList(VT);
2855 SDOperand Ops[] = { Op1, Op2 };
2856
2857 FoldingSetNodeID ID;
2858 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2859 void *IP = 0;
2860 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2861 return ON;
2862
2863 RemoveNodeFromCSEMaps(N);
2864
2865 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2866
2867 CSEMap.InsertNode(N, IP); // Memoize the new node.
2868 return N;
2869}
2870
2871SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2872 MVT::ValueType VT, SDOperand Op1,
2873 SDOperand Op2, SDOperand Op3) {
2874 // If an identical node already exists, use it.
2875 SDVTList VTs = getVTList(VT);
2876 SDOperand Ops[] = { Op1, Op2, Op3 };
2877 FoldingSetNodeID ID;
2878 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2879 void *IP = 0;
2880 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2881 return ON;
2882
2883 RemoveNodeFromCSEMaps(N);
2884
2885 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2886
2887 CSEMap.InsertNode(N, IP); // Memoize the new node.
2888 return N;
2889}
2890
2891SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2892 MVT::ValueType VT, const SDOperand *Ops,
2893 unsigned NumOps) {
2894 // If an identical node already exists, use it.
2895 SDVTList VTs = getVTList(VT);
2896 FoldingSetNodeID ID;
2897 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2898 void *IP = 0;
2899 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2900 return ON;
2901
2902 RemoveNodeFromCSEMaps(N);
2903 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2904
2905 CSEMap.InsertNode(N, IP); // Memoize the new node.
2906 return N;
2907}
2908
2909SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2910 MVT::ValueType VT1, MVT::ValueType VT2,
2911 SDOperand Op1, SDOperand Op2) {
2912 SDVTList VTs = getVTList(VT1, VT2);
2913 FoldingSetNodeID ID;
2914 SDOperand Ops[] = { Op1, Op2 };
2915 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2916 void *IP = 0;
2917 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2918 return ON;
2919
2920 RemoveNodeFromCSEMaps(N);
2921 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2922 CSEMap.InsertNode(N, IP); // Memoize the new node.
2923 return N;
2924}
2925
2926SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2927 MVT::ValueType VT1, MVT::ValueType VT2,
2928 SDOperand Op1, SDOperand Op2,
2929 SDOperand Op3) {
2930 // If an identical node already exists, use it.
2931 SDVTList VTs = getVTList(VT1, VT2);
2932 SDOperand Ops[] = { Op1, Op2, Op3 };
2933 FoldingSetNodeID ID;
2934 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2935 void *IP = 0;
2936 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2937 return ON;
2938
2939 RemoveNodeFromCSEMaps(N);
2940
2941 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2942 CSEMap.InsertNode(N, IP); // Memoize the new node.
2943 return N;
2944}
2945
2946
2947/// getTargetNode - These are used for target selectors to create a new node
2948/// with specified return type(s), target opcode, and operands.
2949///
2950/// Note that getTargetNode returns the resultant node. If there is already a
2951/// node of the specified opcode and operands, it returns that node instead of
2952/// the current one.
2953SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
2954 return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
2955}
2956SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2957 SDOperand Op1) {
2958 return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
2959}
2960SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2961 SDOperand Op1, SDOperand Op2) {
2962 return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
2963}
2964SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2965 SDOperand Op1, SDOperand Op2,
2966 SDOperand Op3) {
2967 return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
2968}
2969SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2970 const SDOperand *Ops, unsigned NumOps) {
2971 return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
2972}
2973SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2974 MVT::ValueType VT2, SDOperand Op1) {
2975 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2976 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
2977}
2978SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2979 MVT::ValueType VT2, SDOperand Op1,
2980 SDOperand Op2) {
2981 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2982 SDOperand Ops[] = { Op1, Op2 };
2983 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
2984}
2985SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2986 MVT::ValueType VT2, SDOperand Op1,
2987 SDOperand Op2, SDOperand Op3) {
2988 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2989 SDOperand Ops[] = { Op1, Op2, Op3 };
2990 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
2991}
2992SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2993 MVT::ValueType VT2,
2994 const SDOperand *Ops, unsigned NumOps) {
2995 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2996 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
2997}
2998SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2999 MVT::ValueType VT2, MVT::ValueType VT3,
3000 SDOperand Op1, SDOperand Op2) {
3001 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3002 SDOperand Ops[] = { Op1, Op2 };
3003 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3004}
3005SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3006 MVT::ValueType VT2, MVT::ValueType VT3,
3007 SDOperand Op1, SDOperand Op2,
3008 SDOperand Op3) {
3009 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3010 SDOperand Ops[] = { Op1, Op2, Op3 };
3011 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3012}
3013SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3014 MVT::ValueType VT2, MVT::ValueType VT3,
3015 const SDOperand *Ops, unsigned NumOps) {
3016 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3017 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3018}
3019
3020/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3021/// This can cause recursive merging of nodes in the DAG.
3022///
3023/// This version assumes From/To have a single result value.
3024///
3025void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
3026 std::vector<SDNode*> *Deleted) {
3027 SDNode *From = FromN.Val, *To = ToN.Val;
3028 assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
3029 "Cannot replace with this method!");
3030 assert(From != To && "Cannot replace uses of with self");
3031
3032 while (!From->use_empty()) {
3033 // Process users until they are all gone.
3034 SDNode *U = *From->use_begin();
3035
3036 // This node is about to morph, remove its old self from the CSE maps.
3037 RemoveNodeFromCSEMaps(U);
3038
3039 for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3040 I != E; ++I)
3041 if (I->Val == From) {
3042 From->removeUser(U);
3043 I->Val = To;
3044 To->addUser(U);
3045 }
3046
3047 // Now that we have modified U, add it back to the CSE maps. If it already
3048 // exists there, recursively merge the results together.
3049 if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3050 ReplaceAllUsesWith(U, Existing, Deleted);
3051 // U is now dead.
3052 if (Deleted) Deleted->push_back(U);
3053 DeleteNodeNotInCSEMaps(U);
3054 }
3055 }
3056}
3057
3058/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3059/// This can cause recursive merging of nodes in the DAG.
3060///
3061/// This version assumes From/To have matching types and numbers of result
3062/// values.
3063///
3064void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3065 std::vector<SDNode*> *Deleted) {
3066 assert(From != To && "Cannot replace uses of with self");
3067 assert(From->getNumValues() == To->getNumValues() &&
3068 "Cannot use this version of ReplaceAllUsesWith!");
3069 if (From->getNumValues() == 1) { // If possible, use the faster version.
3070 ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
3071 return;
3072 }
3073
3074 while (!From->use_empty()) {
3075 // Process users until they are all gone.
3076 SDNode *U = *From->use_begin();
3077
3078 // This node is about to morph, remove its old self from the CSE maps.
3079 RemoveNodeFromCSEMaps(U);
3080
3081 for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3082 I != E; ++I)
3083 if (I->Val == From) {
3084 From->removeUser(U);
3085 I->Val = To;
3086 To->addUser(U);
3087 }
3088
3089 // Now that we have modified U, add it back to the CSE maps. If it already
3090 // exists there, recursively merge the results together.
3091 if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3092 ReplaceAllUsesWith(U, Existing, Deleted);
3093 // U is now dead.
3094 if (Deleted) Deleted->push_back(U);
3095 DeleteNodeNotInCSEMaps(U);
3096 }
3097 }
3098}
3099
3100/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3101/// This can cause recursive merging of nodes in the DAG.
3102///
3103/// This version can replace From with any result values. To must match the
3104/// number and types of values returned by From.
3105void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3106 const SDOperand *To,
3107 std::vector<SDNode*> *Deleted) {
3108 if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
3109 // Degenerate case handled above.
3110 ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
3111 return;
3112 }
3113
3114 while (!From->use_empty()) {
3115 // Process users until they are all gone.
3116 SDNode *U = *From->use_begin();
3117
3118 // This node is about to morph, remove its old self from the CSE maps.
3119 RemoveNodeFromCSEMaps(U);
3120
3121 for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3122 I != E; ++I)
3123 if (I->Val == From) {
3124 const SDOperand &ToOp = To[I->ResNo];
3125 From->removeUser(U);
3126 *I = ToOp;
3127 ToOp.Val->addUser(U);
3128 }
3129
3130 // Now that we have modified U, add it back to the CSE maps. If it already
3131 // exists there, recursively merge the results together.
3132 if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3133 ReplaceAllUsesWith(U, Existing, Deleted);
3134 // U is now dead.
3135 if (Deleted) Deleted->push_back(U);
3136 DeleteNodeNotInCSEMaps(U);
3137 }
3138 }
3139}
3140
3141/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3142/// uses of other values produced by From.Val alone. The Deleted vector is
3143/// handled the same was as for ReplaceAllUsesWith.
3144void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3145 std::vector<SDNode*> &Deleted) {
3146 assert(From != To && "Cannot replace a value with itself");
3147 // Handle the simple, trivial, case efficiently.
3148 if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
3149 ReplaceAllUsesWith(From, To, &Deleted);
3150 return;
3151 }
3152
3153 // Get all of the users of From.Val. We want these in a nice,
3154 // deterministically ordered and uniqued set, so we use a SmallSetVector.
3155 SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3156
3157 while (!Users.empty()) {
3158 // We know that this user uses some value of From. If it is the right
3159 // value, update it.
3160 SDNode *User = Users.back();
3161 Users.pop_back();
3162
3163 for (SDOperand *Op = User->OperandList,
3164 *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
3165 if (*Op == From) {
3166 // Okay, we know this user needs to be updated. Remove its old self
3167 // from the CSE maps.
3168 RemoveNodeFromCSEMaps(User);
3169
3170 // Update all operands that match "From".
3171 for (; Op != E; ++Op) {
3172 if (*Op == From) {
3173 From.Val->removeUser(User);
3174 *Op = To;
3175 To.Val->addUser(User);
3176 }
3177 }
3178
3179 // Now that we have modified User, add it back to the CSE maps. If it
3180 // already exists there, recursively merge the results together.
3181 if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
3182 unsigned NumDeleted = Deleted.size();
3183 ReplaceAllUsesWith(User, Existing, &Deleted);
3184
3185 // User is now dead.
3186 Deleted.push_back(User);
3187 DeleteNodeNotInCSEMaps(User);
3188
3189 // We have to be careful here, because ReplaceAllUsesWith could have
3190 // deleted a user of From, which means there may be dangling pointers
3191 // in the "Users" setvector. Scan over the deleted node pointers and
3192 // remove them from the setvector.
3193 for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
3194 Users.remove(Deleted[i]);
3195 }
3196 break; // Exit the operand scanning loop.
3197 }
3198 }
3199 }
3200}
3201
3202
3203/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3204/// their allnodes order. It returns the maximum id.
3205unsigned SelectionDAG::AssignNodeIds() {
3206 unsigned Id = 0;
3207 for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3208 SDNode *N = I;
3209 N->setNodeId(Id++);
3210 }
3211 return Id;
3212}
3213
3214/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3215/// based on their topological order. It returns the maximum id and a vector
3216/// of the SDNodes* in assigned order by reference.
3217unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3218 unsigned DAGSize = AllNodes.size();
3219 std::vector<unsigned> InDegree(DAGSize);
3220 std::vector<SDNode*> Sources;
3221
3222 // Use a two pass approach to avoid using a std::map which is slow.
3223 unsigned Id = 0;
3224 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3225 SDNode *N = I;
3226 N->setNodeId(Id++);
3227 unsigned Degree = N->use_size();
3228 InDegree[N->getNodeId()] = Degree;
3229 if (Degree == 0)
3230 Sources.push_back(N);
3231 }
3232
3233 TopOrder.clear();
3234 while (!Sources.empty()) {
3235 SDNode *N = Sources.back();
3236 Sources.pop_back();
3237 TopOrder.push_back(N);
3238 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3239 SDNode *P = I->Val;
3240 unsigned Degree = --InDegree[P->getNodeId()];
3241 if (Degree == 0)
3242 Sources.push_back(P);
3243 }
3244 }
3245
3246 // Second pass, assign the actual topological order as node ids.
3247 Id = 0;
3248 for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3249 TI != TE; ++TI)
3250 (*TI)->setNodeId(Id++);
3251
3252 return Id;
3253}
3254
3255
3256
3257//===----------------------------------------------------------------------===//
3258// SDNode Class
3259//===----------------------------------------------------------------------===//
3260
3261// Out-of-line virtual method to give class a home.
3262void SDNode::ANCHOR() {}
3263void UnarySDNode::ANCHOR() {}
3264void BinarySDNode::ANCHOR() {}
3265void TernarySDNode::ANCHOR() {}
3266void HandleSDNode::ANCHOR() {}
3267void StringSDNode::ANCHOR() {}
3268void ConstantSDNode::ANCHOR() {}
3269void ConstantFPSDNode::ANCHOR() {}
3270void GlobalAddressSDNode::ANCHOR() {}
3271void FrameIndexSDNode::ANCHOR() {}
3272void JumpTableSDNode::ANCHOR() {}
3273void ConstantPoolSDNode::ANCHOR() {}
3274void BasicBlockSDNode::ANCHOR() {}
3275void SrcValueSDNode::ANCHOR() {}
3276void RegisterSDNode::ANCHOR() {}
3277void ExternalSymbolSDNode::ANCHOR() {}
3278void CondCodeSDNode::ANCHOR() {}
3279void VTSDNode::ANCHOR() {}
3280void LoadSDNode::ANCHOR() {}
3281void StoreSDNode::ANCHOR() {}
3282
3283HandleSDNode::~HandleSDNode() {
3284 SDVTList VTs = { 0, 0 };
3285 MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0); // Drops operand uses.
3286}
3287
3288GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3289 MVT::ValueType VT, int o)
3290 : SDNode(isa<GlobalVariable>(GA) &&
Dan Gohman53491e92007-07-23 20:24:29 +00003291 cast<GlobalVariable>(GA)->isThreadLocal() ?
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003292 // Thread Local
3293 (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3294 // Non Thread Local
3295 (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3296 getSDVTList(VT)), Offset(o) {
3297 TheGlobal = const_cast<GlobalValue*>(GA);
3298}
3299
3300/// Profile - Gather unique data for the node.
3301///
3302void SDNode::Profile(FoldingSetNodeID &ID) {
3303 AddNodeIDNode(ID, this);
3304}
3305
3306/// getValueTypeList - Return a pointer to the specified value type.
3307///
3308MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3309 static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3310 VTs[VT] = VT;
3311 return &VTs[VT];
3312}
3313
3314/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3315/// indicated value. This method ignores uses of other values defined by this
3316/// operation.
3317bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3318 assert(Value < getNumValues() && "Bad value!");
3319
3320 // If there is only one value, this is easy.
3321 if (getNumValues() == 1)
3322 return use_size() == NUses;
Evan Cheng0af04f72007-08-02 05:29:38 +00003323 if (use_size() < NUses) return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003324
3325 SDOperand TheValue(const_cast<SDNode *>(this), Value);
3326
3327 SmallPtrSet<SDNode*, 32> UsersHandled;
3328
3329 for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3330 SDNode *User = *UI;
3331 if (User->getNumOperands() == 1 ||
3332 UsersHandled.insert(User)) // First time we've seen this?
3333 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3334 if (User->getOperand(i) == TheValue) {
3335 if (NUses == 0)
3336 return false; // too many uses
3337 --NUses;
3338 }
3339 }
3340
3341 // Found exactly the right number of uses?
3342 return NUses == 0;
3343}
3344
3345
Evan Cheng0af04f72007-08-02 05:29:38 +00003346/// hasAnyUseOfValue - Return true if there are any use of the indicated
3347/// value. This method ignores uses of other values defined by this operation.
3348bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3349 assert(Value < getNumValues() && "Bad value!");
3350
3351 if (use_size() == 0) return false;
3352
3353 SDOperand TheValue(const_cast<SDNode *>(this), Value);
3354
3355 SmallPtrSet<SDNode*, 32> UsersHandled;
3356
3357 for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3358 SDNode *User = *UI;
3359 if (User->getNumOperands() == 1 ||
3360 UsersHandled.insert(User)) // First time we've seen this?
3361 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3362 if (User->getOperand(i) == TheValue) {
3363 return true;
3364 }
3365 }
3366
3367 return false;
3368}
3369
3370
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003371/// isOnlyUse - Return true if this node is the only use of N.
3372///
3373bool SDNode::isOnlyUse(SDNode *N) const {
3374 bool Seen = false;
3375 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3376 SDNode *User = *I;
3377 if (User == this)
3378 Seen = true;
3379 else
3380 return false;
3381 }
3382
3383 return Seen;
3384}
3385
3386/// isOperand - Return true if this node is an operand of N.
3387///
3388bool SDOperand::isOperand(SDNode *N) const {
3389 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3390 if (*this == N->getOperand(i))
3391 return true;
3392 return false;
3393}
3394
3395bool SDNode::isOperand(SDNode *N) const {
3396 for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3397 if (this == N->OperandList[i].Val)
3398 return true;
3399 return false;
3400}
3401
3402static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3403 SmallPtrSet<SDNode *, 32> &Visited) {
3404 if (found || !Visited.insert(N))
3405 return;
3406
3407 for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3408 SDNode *Op = N->getOperand(i).Val;
3409 if (Op == P) {
3410 found = true;
3411 return;
3412 }
3413 findPredecessor(Op, P, found, Visited);
3414 }
3415}
3416
3417/// isPredecessor - Return true if this node is a predecessor of N. This node
3418/// is either an operand of N or it can be reached by recursively traversing
3419/// up the operands.
3420/// NOTE: this is an expensive method. Use it carefully.
3421bool SDNode::isPredecessor(SDNode *N) const {
3422 SmallPtrSet<SDNode *, 32> Visited;
3423 bool found = false;
3424 findPredecessor(N, this, found, Visited);
3425 return found;
3426}
3427
3428uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3429 assert(Num < NumOperands && "Invalid child # of SDNode!");
3430 return cast<ConstantSDNode>(OperandList[Num])->getValue();
3431}
3432
3433std::string SDNode::getOperationName(const SelectionDAG *G) const {
3434 switch (getOpcode()) {
3435 default:
3436 if (getOpcode() < ISD::BUILTIN_OP_END)
3437 return "<<Unknown DAG Node>>";
3438 else {
3439 if (G) {
3440 if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3441 if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3442 return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
3443
3444 TargetLowering &TLI = G->getTargetLoweringInfo();
3445 const char *Name =
3446 TLI.getTargetNodeName(getOpcode());
3447 if (Name) return Name;
3448 }
3449
3450 return "<<Unknown Target Node>>";
3451 }
3452
3453 case ISD::PCMARKER: return "PCMarker";
3454 case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3455 case ISD::SRCVALUE: return "SrcValue";
3456 case ISD::EntryToken: return "EntryToken";
3457 case ISD::TokenFactor: return "TokenFactor";
3458 case ISD::AssertSext: return "AssertSext";
3459 case ISD::AssertZext: return "AssertZext";
3460
3461 case ISD::STRING: return "String";
3462 case ISD::BasicBlock: return "BasicBlock";
3463 case ISD::VALUETYPE: return "ValueType";
3464 case ISD::Register: return "Register";
3465
3466 case ISD::Constant: return "Constant";
3467 case ISD::ConstantFP: return "ConstantFP";
3468 case ISD::GlobalAddress: return "GlobalAddress";
3469 case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3470 case ISD::FrameIndex: return "FrameIndex";
3471 case ISD::JumpTable: return "JumpTable";
3472 case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3473 case ISD::RETURNADDR: return "RETURNADDR";
3474 case ISD::FRAMEADDR: return "FRAMEADDR";
3475 case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3476 case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3477 case ISD::EHSELECTION: return "EHSELECTION";
3478 case ISD::EH_RETURN: return "EH_RETURN";
3479 case ISD::ConstantPool: return "ConstantPool";
3480 case ISD::ExternalSymbol: return "ExternalSymbol";
3481 case ISD::INTRINSIC_WO_CHAIN: {
3482 unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3483 return Intrinsic::getName((Intrinsic::ID)IID);
3484 }
3485 case ISD::INTRINSIC_VOID:
3486 case ISD::INTRINSIC_W_CHAIN: {
3487 unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3488 return Intrinsic::getName((Intrinsic::ID)IID);
3489 }
3490
3491 case ISD::BUILD_VECTOR: return "BUILD_VECTOR";
3492 case ISD::TargetConstant: return "TargetConstant";
3493 case ISD::TargetConstantFP:return "TargetConstantFP";
3494 case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3495 case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3496 case ISD::TargetFrameIndex: return "TargetFrameIndex";
3497 case ISD::TargetJumpTable: return "TargetJumpTable";
3498 case ISD::TargetConstantPool: return "TargetConstantPool";
3499 case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3500
3501 case ISD::CopyToReg: return "CopyToReg";
3502 case ISD::CopyFromReg: return "CopyFromReg";
3503 case ISD::UNDEF: return "undef";
3504 case ISD::MERGE_VALUES: return "merge_values";
3505 case ISD::INLINEASM: return "inlineasm";
3506 case ISD::LABEL: return "label";
3507 case ISD::HANDLENODE: return "handlenode";
3508 case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3509 case ISD::CALL: return "call";
3510
3511 // Unary operators
3512 case ISD::FABS: return "fabs";
3513 case ISD::FNEG: return "fneg";
3514 case ISD::FSQRT: return "fsqrt";
3515 case ISD::FSIN: return "fsin";
3516 case ISD::FCOS: return "fcos";
3517 case ISD::FPOWI: return "fpowi";
3518
3519 // Binary operators
3520 case ISD::ADD: return "add";
3521 case ISD::SUB: return "sub";
3522 case ISD::MUL: return "mul";
3523 case ISD::MULHU: return "mulhu";
3524 case ISD::MULHS: return "mulhs";
3525 case ISD::SDIV: return "sdiv";
3526 case ISD::UDIV: return "udiv";
3527 case ISD::SREM: return "srem";
3528 case ISD::UREM: return "urem";
3529 case ISD::AND: return "and";
3530 case ISD::OR: return "or";
3531 case ISD::XOR: return "xor";
3532 case ISD::SHL: return "shl";
3533 case ISD::SRA: return "sra";
3534 case ISD::SRL: return "srl";
3535 case ISD::ROTL: return "rotl";
3536 case ISD::ROTR: return "rotr";
3537 case ISD::FADD: return "fadd";
3538 case ISD::FSUB: return "fsub";
3539 case ISD::FMUL: return "fmul";
3540 case ISD::FDIV: return "fdiv";
3541 case ISD::FREM: return "frem";
3542 case ISD::FCOPYSIGN: return "fcopysign";
3543
3544 case ISD::SETCC: return "setcc";
3545 case ISD::SELECT: return "select";
3546 case ISD::SELECT_CC: return "select_cc";
3547 case ISD::INSERT_VECTOR_ELT: return "insert_vector_elt";
3548 case ISD::EXTRACT_VECTOR_ELT: return "extract_vector_elt";
3549 case ISD::CONCAT_VECTORS: return "concat_vectors";
3550 case ISD::EXTRACT_SUBVECTOR: return "extract_subvector";
3551 case ISD::SCALAR_TO_VECTOR: return "scalar_to_vector";
3552 case ISD::VECTOR_SHUFFLE: return "vector_shuffle";
3553 case ISD::CARRY_FALSE: return "carry_false";
3554 case ISD::ADDC: return "addc";
3555 case ISD::ADDE: return "adde";
3556 case ISD::SUBC: return "subc";
3557 case ISD::SUBE: return "sube";
3558 case ISD::SHL_PARTS: return "shl_parts";
3559 case ISD::SRA_PARTS: return "sra_parts";
3560 case ISD::SRL_PARTS: return "srl_parts";
Christopher Lambb768c2e2007-07-26 07:34:40 +00003561
3562 case ISD::EXTRACT_SUBREG: return "extract_subreg";
3563 case ISD::INSERT_SUBREG: return "insert_subreg";
3564
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003565 // Conversion operators.
3566 case ISD::SIGN_EXTEND: return "sign_extend";
3567 case ISD::ZERO_EXTEND: return "zero_extend";
3568 case ISD::ANY_EXTEND: return "any_extend";
3569 case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3570 case ISD::TRUNCATE: return "truncate";
3571 case ISD::FP_ROUND: return "fp_round";
3572 case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3573 case ISD::FP_EXTEND: return "fp_extend";
3574
3575 case ISD::SINT_TO_FP: return "sint_to_fp";
3576 case ISD::UINT_TO_FP: return "uint_to_fp";
3577 case ISD::FP_TO_SINT: return "fp_to_sint";
3578 case ISD::FP_TO_UINT: return "fp_to_uint";
3579 case ISD::BIT_CONVERT: return "bit_convert";
3580
3581 // Control flow instructions
3582 case ISD::BR: return "br";
3583 case ISD::BRIND: return "brind";
3584 case ISD::BR_JT: return "br_jt";
3585 case ISD::BRCOND: return "brcond";
3586 case ISD::BR_CC: return "br_cc";
3587 case ISD::RET: return "ret";
3588 case ISD::CALLSEQ_START: return "callseq_start";
3589 case ISD::CALLSEQ_END: return "callseq_end";
3590
3591 // Other operators
3592 case ISD::LOAD: return "load";
3593 case ISD::STORE: return "store";
3594 case ISD::VAARG: return "vaarg";
3595 case ISD::VACOPY: return "vacopy";
3596 case ISD::VAEND: return "vaend";
3597 case ISD::VASTART: return "vastart";
3598 case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3599 case ISD::EXTRACT_ELEMENT: return "extract_element";
3600 case ISD::BUILD_PAIR: return "build_pair";
3601 case ISD::STACKSAVE: return "stacksave";
3602 case ISD::STACKRESTORE: return "stackrestore";
3603
3604 // Block memory operations.
3605 case ISD::MEMSET: return "memset";
3606 case ISD::MEMCPY: return "memcpy";
3607 case ISD::MEMMOVE: return "memmove";
3608
3609 // Bit manipulation
3610 case ISD::BSWAP: return "bswap";
3611 case ISD::CTPOP: return "ctpop";
3612 case ISD::CTTZ: return "cttz";
3613 case ISD::CTLZ: return "ctlz";
3614
3615 // Debug info
3616 case ISD::LOCATION: return "location";
3617 case ISD::DEBUG_LOC: return "debug_loc";
3618
Duncan Sands38947cd2007-07-27 12:58:54 +00003619 // Trampolines
3620 case ISD::ADJUST_TRAMP: return "adjust_tramp";
3621 case ISD::TRAMPOLINE: return "trampoline";
3622
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003623 case ISD::CONDCODE:
3624 switch (cast<CondCodeSDNode>(this)->get()) {
3625 default: assert(0 && "Unknown setcc condition!");
3626 case ISD::SETOEQ: return "setoeq";
3627 case ISD::SETOGT: return "setogt";
3628 case ISD::SETOGE: return "setoge";
3629 case ISD::SETOLT: return "setolt";
3630 case ISD::SETOLE: return "setole";
3631 case ISD::SETONE: return "setone";
3632
3633 case ISD::SETO: return "seto";
3634 case ISD::SETUO: return "setuo";
3635 case ISD::SETUEQ: return "setue";
3636 case ISD::SETUGT: return "setugt";
3637 case ISD::SETUGE: return "setuge";
3638 case ISD::SETULT: return "setult";
3639 case ISD::SETULE: return "setule";
3640 case ISD::SETUNE: return "setune";
3641
3642 case ISD::SETEQ: return "seteq";
3643 case ISD::SETGT: return "setgt";
3644 case ISD::SETGE: return "setge";
3645 case ISD::SETLT: return "setlt";
3646 case ISD::SETLE: return "setle";
3647 case ISD::SETNE: return "setne";
3648 }
3649 }
3650}
3651
3652const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
3653 switch (AM) {
3654 default:
3655 return "";
3656 case ISD::PRE_INC:
3657 return "<pre-inc>";
3658 case ISD::PRE_DEC:
3659 return "<pre-dec>";
3660 case ISD::POST_INC:
3661 return "<post-inc>";
3662 case ISD::POST_DEC:
3663 return "<post-dec>";
3664 }
3665}
3666
3667void SDNode::dump() const { dump(0); }
3668void SDNode::dump(const SelectionDAG *G) const {
3669 cerr << (void*)this << ": ";
3670
3671 for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
3672 if (i) cerr << ",";
3673 if (getValueType(i) == MVT::Other)
3674 cerr << "ch";
3675 else
3676 cerr << MVT::getValueTypeString(getValueType(i));
3677 }
3678 cerr << " = " << getOperationName(G);
3679
3680 cerr << " ";
3681 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3682 if (i) cerr << ", ";
3683 cerr << (void*)getOperand(i).Val;
3684 if (unsigned RN = getOperand(i).ResNo)
3685 cerr << ":" << RN;
3686 }
3687
3688 if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
3689 cerr << "<" << CSDN->getValue() << ">";
3690 } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
3691 cerr << "<" << CSDN->getValue() << ">";
3692 } else if (const GlobalAddressSDNode *GADN =
3693 dyn_cast<GlobalAddressSDNode>(this)) {
3694 int offset = GADN->getOffset();
3695 cerr << "<";
3696 WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
3697 if (offset > 0)
3698 cerr << " + " << offset;
3699 else
3700 cerr << " " << offset;
3701 } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
3702 cerr << "<" << FIDN->getIndex() << ">";
3703 } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
3704 cerr << "<" << JTDN->getIndex() << ">";
3705 } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
3706 int offset = CP->getOffset();
3707 if (CP->isMachineConstantPoolEntry())
3708 cerr << "<" << *CP->getMachineCPVal() << ">";
3709 else
3710 cerr << "<" << *CP->getConstVal() << ">";
3711 if (offset > 0)
3712 cerr << " + " << offset;
3713 else
3714 cerr << " " << offset;
3715 } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
3716 cerr << "<";
3717 const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
3718 if (LBB)
3719 cerr << LBB->getName() << " ";
3720 cerr << (const void*)BBDN->getBasicBlock() << ">";
3721 } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
3722 if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
3723 cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
3724 } else {
3725 cerr << " #" << R->getReg();
3726 }
3727 } else if (const ExternalSymbolSDNode *ES =
3728 dyn_cast<ExternalSymbolSDNode>(this)) {
3729 cerr << "'" << ES->getSymbol() << "'";
3730 } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
3731 if (M->getValue())
3732 cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
3733 else
3734 cerr << "<null:" << M->getOffset() << ">";
3735 } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
3736 cerr << ":" << MVT::getValueTypeString(N->getVT());
3737 } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
3738 bool doExt = true;
3739 switch (LD->getExtensionType()) {
3740 default: doExt = false; break;
3741 case ISD::EXTLOAD:
3742 cerr << " <anyext ";
3743 break;
3744 case ISD::SEXTLOAD:
3745 cerr << " <sext ";
3746 break;
3747 case ISD::ZEXTLOAD:
3748 cerr << " <zext ";
3749 break;
3750 }
3751 if (doExt)
3752 cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">";
3753
3754 const char *AM = getIndexedModeName(LD->getAddressingMode());
Duncan Sandsf9a44972007-07-19 07:31:58 +00003755 if (*AM)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003756 cerr << " " << AM;
3757 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
3758 if (ST->isTruncatingStore())
3759 cerr << " <trunc "
3760 << MVT::getValueTypeString(ST->getStoredVT()) << ">";
3761
3762 const char *AM = getIndexedModeName(ST->getAddressingMode());
Duncan Sandsf9a44972007-07-19 07:31:58 +00003763 if (*AM)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003764 cerr << " " << AM;
3765 }
3766}
3767
3768static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
3769 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3770 if (N->getOperand(i).Val->hasOneUse())
3771 DumpNodes(N->getOperand(i).Val, indent+2, G);
3772 else
3773 cerr << "\n" << std::string(indent+2, ' ')
3774 << (void*)N->getOperand(i).Val << ": <multiple use>";
3775
3776
3777 cerr << "\n" << std::string(indent, ' ');
3778 N->dump(G);
3779}
3780
3781void SelectionDAG::dump() const {
3782 cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
3783 std::vector<const SDNode*> Nodes;
3784 for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
3785 I != E; ++I)
3786 Nodes.push_back(I);
3787
3788 std::sort(Nodes.begin(), Nodes.end());
3789
3790 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3791 if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
3792 DumpNodes(Nodes[i], 2, this);
3793 }
3794
3795 if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
3796
3797 cerr << "\n\n";
3798}
3799
3800const Type *ConstantPoolSDNode::getType() const {
3801 if (isMachineConstantPoolEntry())
3802 return Val.MachineCPVal->getType();
3803 return Val.ConstVal->getType();
3804}