blob: 4bd07b60b7f467f784c67d282a8ed680e2a065fe [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/Support/MathExtras.h"
23#include "llvm/Target/MRegisterInfo.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetLowering.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/ADT/SetVector.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/StringExtras.h"
32#include <algorithm>
33#include <cmath>
34using namespace llvm;
35
36/// makeVTList - Return an instance of the SDVTList struct initialized with the
37/// specified members.
38static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
39 SDVTList Res = {VTs, NumVTs};
40 return Res;
41}
42
43//===----------------------------------------------------------------------===//
44// ConstantFPSDNode Class
45//===----------------------------------------------------------------------===//
46
47/// isExactlyValue - We don't rely on operator== working on double values, as
48/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
49/// As such, this method can be used to do an exact bit-for-bit comparison of
50/// two floating point values.
Dale Johannesen7f2c1d12007-08-25 22:10:57 +000051bool ConstantFPSDNode::isExactlyValue(APFloat V) const {
52 return Value.bitwiseIsEqual(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000053}
54
55//===----------------------------------------------------------------------===//
56// ISD Namespace
57//===----------------------------------------------------------------------===//
58
59/// isBuildVectorAllOnes - Return true if the specified node is a
60/// BUILD_VECTOR where all of the elements are ~0 or undef.
61bool ISD::isBuildVectorAllOnes(const SDNode *N) {
62 // Look through a bit convert.
63 if (N->getOpcode() == ISD::BIT_CONVERT)
64 N = N->getOperand(0).Val;
65
66 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
67
68 unsigned i = 0, e = N->getNumOperands();
69
70 // Skip over all of the undef values.
71 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
72 ++i;
73
74 // Do not accept an all-undef vector.
75 if (i == e) return false;
76
77 // Do not accept build_vectors that aren't all constants or which have non-~0
78 // elements.
79 SDOperand NotZero = N->getOperand(i);
80 if (isa<ConstantSDNode>(NotZero)) {
81 if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
82 return false;
83 } else if (isa<ConstantFPSDNode>(NotZero)) {
84 MVT::ValueType VT = NotZero.getValueType();
85 if (VT== MVT::f64) {
86 if (DoubleToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
87 (uint64_t)-1)
88 return false;
89 } else {
90 if (FloatToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
91 (uint32_t)-1)
92 return false;
93 }
94 } else
95 return false;
96
97 // Okay, we have at least one ~0 value, check to see if the rest match or are
98 // undefs.
99 for (++i; i != e; ++i)
100 if (N->getOperand(i) != NotZero &&
101 N->getOperand(i).getOpcode() != ISD::UNDEF)
102 return false;
103 return true;
104}
105
106
107/// isBuildVectorAllZeros - Return true if the specified node is a
108/// BUILD_VECTOR where all of the elements are 0 or undef.
109bool ISD::isBuildVectorAllZeros(const SDNode *N) {
110 // Look through a bit convert.
111 if (N->getOpcode() == ISD::BIT_CONVERT)
112 N = N->getOperand(0).Val;
113
114 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
115
116 unsigned i = 0, e = N->getNumOperands();
117
118 // Skip over all of the undef values.
119 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
120 ++i;
121
122 // Do not accept an all-undef vector.
123 if (i == e) return false;
124
125 // Do not accept build_vectors that aren't all constants or which have non-~0
126 // elements.
127 SDOperand Zero = N->getOperand(i);
128 if (isa<ConstantSDNode>(Zero)) {
129 if (!cast<ConstantSDNode>(Zero)->isNullValue())
130 return false;
131 } else if (isa<ConstantFPSDNode>(Zero)) {
132 if (!cast<ConstantFPSDNode>(Zero)->isExactlyValue(0.0))
133 return false;
134 } else
135 return false;
136
137 // Okay, we have at least one ~0 value, check to see if the rest match or are
138 // undefs.
139 for (++i; i != e; ++i)
140 if (N->getOperand(i) != Zero &&
141 N->getOperand(i).getOpcode() != ISD::UNDEF)
142 return false;
143 return true;
144}
145
146/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
147/// when given the operation for (X op Y).
148ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
149 // To perform this operation, we just need to swap the L and G bits of the
150 // operation.
151 unsigned OldL = (Operation >> 2) & 1;
152 unsigned OldG = (Operation >> 1) & 1;
153 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
154 (OldL << 1) | // New G bit
155 (OldG << 2)); // New L bit.
156}
157
158/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
159/// 'op' is a valid SetCC operation.
160ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
161 unsigned Operation = Op;
162 if (isInteger)
163 Operation ^= 7; // Flip L, G, E bits, but not U.
164 else
165 Operation ^= 15; // Flip all of the condition bits.
166 if (Operation > ISD::SETTRUE2)
167 Operation &= ~8; // Don't let N and U bits get set.
168 return ISD::CondCode(Operation);
169}
170
171
172/// isSignedOp - For an integer comparison, return 1 if the comparison is a
173/// signed operation and 2 if the result is an unsigned comparison. Return zero
174/// if the operation does not depend on the sign of the input (setne and seteq).
175static int isSignedOp(ISD::CondCode Opcode) {
176 switch (Opcode) {
177 default: assert(0 && "Illegal integer setcc operation!");
178 case ISD::SETEQ:
179 case ISD::SETNE: return 0;
180 case ISD::SETLT:
181 case ISD::SETLE:
182 case ISD::SETGT:
183 case ISD::SETGE: return 1;
184 case ISD::SETULT:
185 case ISD::SETULE:
186 case ISD::SETUGT:
187 case ISD::SETUGE: return 2;
188 }
189}
190
191/// getSetCCOrOperation - Return the result of a logical OR between different
192/// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
193/// returns SETCC_INVALID if it is not possible to represent the resultant
194/// comparison.
195ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
196 bool isInteger) {
197 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
198 // Cannot fold a signed integer setcc with an unsigned integer setcc.
199 return ISD::SETCC_INVALID;
200
201 unsigned Op = Op1 | Op2; // Combine all of the condition bits.
202
203 // If the N and U bits get set then the resultant comparison DOES suddenly
204 // care about orderedness, and is true when ordered.
205 if (Op > ISD::SETTRUE2)
206 Op &= ~16; // Clear the U bit if the N bit is set.
207
208 // Canonicalize illegal integer setcc's.
209 if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
210 Op = ISD::SETNE;
211
212 return ISD::CondCode(Op);
213}
214
215/// getSetCCAndOperation - Return the result of a logical AND between different
216/// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
217/// function returns zero if it is not possible to represent the resultant
218/// comparison.
219ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
220 bool isInteger) {
221 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
222 // Cannot fold a signed setcc with an unsigned setcc.
223 return ISD::SETCC_INVALID;
224
225 // Combine all of the condition bits.
226 ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
227
228 // Canonicalize illegal integer setcc's.
229 if (isInteger) {
230 switch (Result) {
231 default: break;
232 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
233 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
234 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
235 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
236 }
237 }
238
239 return Result;
240}
241
242const TargetMachine &SelectionDAG::getTarget() const {
243 return TLI.getTargetMachine();
244}
245
246//===----------------------------------------------------------------------===//
247// SDNode Profile Support
248//===----------------------------------------------------------------------===//
249
250/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
251///
252static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
253 ID.AddInteger(OpC);
254}
255
256/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
257/// solely with their pointer.
258void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
259 ID.AddPointer(VTList.VTs);
260}
261
262/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
263///
264static void AddNodeIDOperands(FoldingSetNodeID &ID,
265 const SDOperand *Ops, unsigned NumOps) {
266 for (; NumOps; --NumOps, ++Ops) {
267 ID.AddPointer(Ops->Val);
268 ID.AddInteger(Ops->ResNo);
269 }
270}
271
272static void AddNodeIDNode(FoldingSetNodeID &ID,
273 unsigned short OpC, SDVTList VTList,
274 const SDOperand *OpList, unsigned N) {
275 AddNodeIDOpcode(ID, OpC);
276 AddNodeIDValueTypes(ID, VTList);
277 AddNodeIDOperands(ID, OpList, N);
278}
279
280/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
281/// data.
282static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
283 AddNodeIDOpcode(ID, N->getOpcode());
284 // Add the return value info.
285 AddNodeIDValueTypes(ID, N->getVTList());
286 // Add the operand info.
287 AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
288
289 // Handle SDNode leafs with special info.
290 switch (N->getOpcode()) {
291 default: break; // Normal nodes don't need extra info.
292 case ISD::TargetConstant:
293 case ISD::Constant:
294 ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
295 break;
296 case ISD::TargetConstantFP:
297 case ISD::ConstantFP:
298 ID.AddDouble(cast<ConstantFPSDNode>(N)->getValue());
299 break;
300 case ISD::TargetGlobalAddress:
301 case ISD::GlobalAddress:
302 case ISD::TargetGlobalTLSAddress:
303 case ISD::GlobalTLSAddress: {
304 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
305 ID.AddPointer(GA->getGlobal());
306 ID.AddInteger(GA->getOffset());
307 break;
308 }
309 case ISD::BasicBlock:
310 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
311 break;
312 case ISD::Register:
313 ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
314 break;
315 case ISD::SRCVALUE: {
316 SrcValueSDNode *SV = cast<SrcValueSDNode>(N);
317 ID.AddPointer(SV->getValue());
318 ID.AddInteger(SV->getOffset());
319 break;
320 }
321 case ISD::FrameIndex:
322 case ISD::TargetFrameIndex:
323 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
324 break;
325 case ISD::JumpTable:
326 case ISD::TargetJumpTable:
327 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
328 break;
329 case ISD::ConstantPool:
330 case ISD::TargetConstantPool: {
331 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
332 ID.AddInteger(CP->getAlignment());
333 ID.AddInteger(CP->getOffset());
334 if (CP->isMachineConstantPoolEntry())
335 CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
336 else
337 ID.AddPointer(CP->getConstVal());
338 break;
339 }
340 case ISD::LOAD: {
341 LoadSDNode *LD = cast<LoadSDNode>(N);
342 ID.AddInteger(LD->getAddressingMode());
343 ID.AddInteger(LD->getExtensionType());
344 ID.AddInteger(LD->getLoadedVT());
345 ID.AddPointer(LD->getSrcValue());
346 ID.AddInteger(LD->getSrcValueOffset());
347 ID.AddInteger(LD->getAlignment());
348 ID.AddInteger(LD->isVolatile());
349 break;
350 }
351 case ISD::STORE: {
352 StoreSDNode *ST = cast<StoreSDNode>(N);
353 ID.AddInteger(ST->getAddressingMode());
354 ID.AddInteger(ST->isTruncatingStore());
355 ID.AddInteger(ST->getStoredVT());
356 ID.AddPointer(ST->getSrcValue());
357 ID.AddInteger(ST->getSrcValueOffset());
358 ID.AddInteger(ST->getAlignment());
359 ID.AddInteger(ST->isVolatile());
360 break;
361 }
362 }
363}
364
365//===----------------------------------------------------------------------===//
366// SelectionDAG Class
367//===----------------------------------------------------------------------===//
368
369/// RemoveDeadNodes - This method deletes all unreachable nodes in the
370/// SelectionDAG.
371void SelectionDAG::RemoveDeadNodes() {
372 // Create a dummy node (which is not added to allnodes), that adds a reference
373 // to the root node, preventing it from being deleted.
374 HandleSDNode Dummy(getRoot());
375
376 SmallVector<SDNode*, 128> DeadNodes;
377
378 // Add all obviously-dead nodes to the DeadNodes worklist.
379 for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
380 if (I->use_empty())
381 DeadNodes.push_back(I);
382
383 // Process the worklist, deleting the nodes and adding their uses to the
384 // worklist.
385 while (!DeadNodes.empty()) {
386 SDNode *N = DeadNodes.back();
387 DeadNodes.pop_back();
388
389 // Take the node out of the appropriate CSE map.
390 RemoveNodeFromCSEMaps(N);
391
392 // Next, brutally remove the operand list. This is safe to do, as there are
393 // no cycles in the graph.
394 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
395 SDNode *Operand = I->Val;
396 Operand->removeUser(N);
397
398 // Now that we removed this operand, see if there are no uses of it left.
399 if (Operand->use_empty())
400 DeadNodes.push_back(Operand);
401 }
402 if (N->OperandsNeedDelete)
403 delete[] N->OperandList;
404 N->OperandList = 0;
405 N->NumOperands = 0;
406
407 // Finally, remove N itself.
408 AllNodes.erase(N);
409 }
410
411 // If the root changed (e.g. it was a dead load, update the root).
412 setRoot(Dummy.getValue());
413}
414
415void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
416 SmallVector<SDNode*, 16> DeadNodes;
417 DeadNodes.push_back(N);
418
419 // Process the worklist, deleting the nodes and adding their uses to the
420 // worklist.
421 while (!DeadNodes.empty()) {
422 SDNode *N = DeadNodes.back();
423 DeadNodes.pop_back();
424
425 // Take the node out of the appropriate CSE map.
426 RemoveNodeFromCSEMaps(N);
427
428 // Next, brutally remove the operand list. This is safe to do, as there are
429 // no cycles in the graph.
430 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
431 SDNode *Operand = I->Val;
432 Operand->removeUser(N);
433
434 // Now that we removed this operand, see if there are no uses of it left.
435 if (Operand->use_empty())
436 DeadNodes.push_back(Operand);
437 }
438 if (N->OperandsNeedDelete)
439 delete[] N->OperandList;
440 N->OperandList = 0;
441 N->NumOperands = 0;
442
443 // Finally, remove N itself.
444 Deleted.push_back(N);
445 AllNodes.erase(N);
446 }
447}
448
449void SelectionDAG::DeleteNode(SDNode *N) {
450 assert(N->use_empty() && "Cannot delete a node that is not dead!");
451
452 // First take this out of the appropriate CSE map.
453 RemoveNodeFromCSEMaps(N);
454
455 // Finally, remove uses due to operands of this node, remove from the
456 // AllNodes list, and delete the node.
457 DeleteNodeNotInCSEMaps(N);
458}
459
460void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
461
462 // Remove it from the AllNodes list.
463 AllNodes.remove(N);
464
465 // Drop all of the operands and decrement used nodes use counts.
466 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
467 I->Val->removeUser(N);
468 if (N->OperandsNeedDelete)
469 delete[] N->OperandList;
470 N->OperandList = 0;
471 N->NumOperands = 0;
472
473 delete N;
474}
475
476/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
477/// correspond to it. This is useful when we're about to delete or repurpose
478/// the node. We don't want future request for structurally identical nodes
479/// to return N anymore.
480void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
481 bool Erased = false;
482 switch (N->getOpcode()) {
483 case ISD::HANDLENODE: return; // noop.
484 case ISD::STRING:
485 Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
486 break;
487 case ISD::CONDCODE:
488 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
489 "Cond code doesn't exist!");
490 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
491 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
492 break;
493 case ISD::ExternalSymbol:
494 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
495 break;
496 case ISD::TargetExternalSymbol:
497 Erased =
498 TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
499 break;
500 case ISD::VALUETYPE:
501 Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
502 ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
503 break;
504 default:
505 // Remove it from the CSE Map.
506 Erased = CSEMap.RemoveNode(N);
507 break;
508 }
509#ifndef NDEBUG
510 // Verify that the node was actually in one of the CSE maps, unless it has a
511 // flag result (which cannot be CSE'd) or is one of the special cases that are
512 // not subject to CSE.
513 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
514 !N->isTargetOpcode()) {
515 N->dump(this);
516 cerr << "\n";
517 assert(0 && "Node is not in map!");
518 }
519#endif
520}
521
522/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps. It
523/// has been taken out and modified in some way. If the specified node already
524/// exists in the CSE maps, do not modify the maps, but return the existing node
525/// instead. If it doesn't exist, add it and return null.
526///
527SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
528 assert(N->getNumOperands() && "This is a leaf node!");
529 if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
530 return 0; // Never add these nodes.
531
532 // Check that remaining values produced are not flags.
533 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
534 if (N->getValueType(i) == MVT::Flag)
535 return 0; // Never CSE anything that produces a flag.
536
537 SDNode *New = CSEMap.GetOrInsertNode(N);
538 if (New != N) return New; // Node already existed.
539 return 0;
540}
541
542/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
543/// were replaced with those specified. If this node is never memoized,
544/// return null, otherwise return a pointer to the slot it would take. If a
545/// node already exists with these operands, the slot will be non-null.
546SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
547 void *&InsertPos) {
548 if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
549 return 0; // Never add these nodes.
550
551 // Check that remaining values produced are not flags.
552 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
553 if (N->getValueType(i) == MVT::Flag)
554 return 0; // Never CSE anything that produces a flag.
555
556 SDOperand Ops[] = { Op };
557 FoldingSetNodeID ID;
558 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
559 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
560}
561
562/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
563/// were replaced with those specified. If this node is never memoized,
564/// return null, otherwise return a pointer to the slot it would take. If a
565/// node already exists with these operands, the slot will be non-null.
566SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
567 SDOperand Op1, SDOperand Op2,
568 void *&InsertPos) {
569 if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
570 return 0; // Never add these nodes.
571
572 // Check that remaining values produced are not flags.
573 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
574 if (N->getValueType(i) == MVT::Flag)
575 return 0; // Never CSE anything that produces a flag.
576
577 SDOperand Ops[] = { Op1, Op2 };
578 FoldingSetNodeID ID;
579 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
580 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
581}
582
583
584/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
585/// were replaced with those specified. If this node is never memoized,
586/// return null, otherwise return a pointer to the slot it would take. If a
587/// node already exists with these operands, the slot will be non-null.
588SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
589 const SDOperand *Ops,unsigned NumOps,
590 void *&InsertPos) {
591 if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
592 return 0; // Never add these nodes.
593
594 // Check that remaining values produced are not flags.
595 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
596 if (N->getValueType(i) == MVT::Flag)
597 return 0; // Never CSE anything that produces a flag.
598
599 FoldingSetNodeID ID;
600 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
601
602 if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
603 ID.AddInteger(LD->getAddressingMode());
604 ID.AddInteger(LD->getExtensionType());
605 ID.AddInteger(LD->getLoadedVT());
606 ID.AddPointer(LD->getSrcValue());
607 ID.AddInteger(LD->getSrcValueOffset());
608 ID.AddInteger(LD->getAlignment());
609 ID.AddInteger(LD->isVolatile());
610 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
611 ID.AddInteger(ST->getAddressingMode());
612 ID.AddInteger(ST->isTruncatingStore());
613 ID.AddInteger(ST->getStoredVT());
614 ID.AddPointer(ST->getSrcValue());
615 ID.AddInteger(ST->getSrcValueOffset());
616 ID.AddInteger(ST->getAlignment());
617 ID.AddInteger(ST->isVolatile());
618 }
619
620 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
621}
622
623
624SelectionDAG::~SelectionDAG() {
625 while (!AllNodes.empty()) {
626 SDNode *N = AllNodes.begin();
627 N->SetNextInBucket(0);
628 if (N->OperandsNeedDelete)
629 delete [] N->OperandList;
630 N->OperandList = 0;
631 N->NumOperands = 0;
632 AllNodes.pop_front();
633 }
634}
635
636SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
637 if (Op.getValueType() == VT) return Op;
638 int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
639 return getNode(ISD::AND, Op.getValueType(), Op,
640 getConstant(Imm, Op.getValueType()));
641}
642
643SDOperand SelectionDAG::getString(const std::string &Val) {
644 StringSDNode *&N = StringNodes[Val];
645 if (!N) {
646 N = new StringSDNode(Val);
647 AllNodes.push_back(N);
648 }
649 return SDOperand(N, 0);
650}
651
652SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
653 assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
654 assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
655
656 // Mask out any bits that are not valid for this constant.
657 Val &= MVT::getIntVTBitMask(VT);
658
659 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
660 FoldingSetNodeID ID;
661 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
662 ID.AddInteger(Val);
663 void *IP = 0;
664 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
665 return SDOperand(E, 0);
666 SDNode *N = new ConstantSDNode(isT, Val, VT);
667 CSEMap.InsertNode(N, IP);
668 AllNodes.push_back(N);
669 return SDOperand(N, 0);
670}
671
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000672SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
673 bool isTarget) {
674 assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
675 MVT::ValueType EltVT =
676 MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
677 if (EltVT == MVT::f32)
678 Val = (float)Val; // Mask out extra precision.
679
680 // Do the map lookup using the actual bit pattern for the floating point
681 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
682 // we don't have issues with SNANs.
683 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
684 FoldingSetNodeID ID;
685 AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
686 ID.AddDouble(Val);
687 void *IP = 0;
688 SDNode *N = NULL;
689 if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
690 if (!MVT::isVector(VT))
691 return SDOperand(N, 0);
692 if (!N) {
693 N = new ConstantFPSDNode(isTarget, Val, EltVT);
694 CSEMap.InsertNode(N, IP);
695 AllNodes.push_back(N);
696 }
697
698 SDOperand Result(N, 0);
699 if (MVT::isVector(VT)) {
700 SmallVector<SDOperand, 8> Ops;
701 Ops.assign(MVT::getVectorNumElements(VT), Result);
702 Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
703 }
704 return Result;
705}
706
707SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
708 MVT::ValueType VT, int Offset,
709 bool isTargetGA) {
710 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
711 unsigned Opc;
712 if (GVar && GVar->isThreadLocal())
713 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
714 else
715 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
716 FoldingSetNodeID ID;
717 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
718 ID.AddPointer(GV);
719 ID.AddInteger(Offset);
720 void *IP = 0;
721 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
722 return SDOperand(E, 0);
723 SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
724 CSEMap.InsertNode(N, IP);
725 AllNodes.push_back(N);
726 return SDOperand(N, 0);
727}
728
729SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
730 bool isTarget) {
731 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
732 FoldingSetNodeID ID;
733 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
734 ID.AddInteger(FI);
735 void *IP = 0;
736 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
737 return SDOperand(E, 0);
738 SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
739 CSEMap.InsertNode(N, IP);
740 AllNodes.push_back(N);
741 return SDOperand(N, 0);
742}
743
744SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
745 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
746 FoldingSetNodeID ID;
747 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
748 ID.AddInteger(JTI);
749 void *IP = 0;
750 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
751 return SDOperand(E, 0);
752 SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
753 CSEMap.InsertNode(N, IP);
754 AllNodes.push_back(N);
755 return SDOperand(N, 0);
756}
757
758SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
759 unsigned Alignment, int Offset,
760 bool isTarget) {
761 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
762 FoldingSetNodeID ID;
763 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
764 ID.AddInteger(Alignment);
765 ID.AddInteger(Offset);
766 ID.AddPointer(C);
767 void *IP = 0;
768 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
769 return SDOperand(E, 0);
770 SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
771 CSEMap.InsertNode(N, IP);
772 AllNodes.push_back(N);
773 return SDOperand(N, 0);
774}
775
776
777SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
778 MVT::ValueType VT,
779 unsigned Alignment, int Offset,
780 bool isTarget) {
781 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
782 FoldingSetNodeID ID;
783 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
784 ID.AddInteger(Alignment);
785 ID.AddInteger(Offset);
786 C->AddSelectionDAGCSEId(ID);
787 void *IP = 0;
788 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
789 return SDOperand(E, 0);
790 SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
791 CSEMap.InsertNode(N, IP);
792 AllNodes.push_back(N);
793 return SDOperand(N, 0);
794}
795
796
797SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
798 FoldingSetNodeID ID;
799 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
800 ID.AddPointer(MBB);
801 void *IP = 0;
802 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
803 return SDOperand(E, 0);
804 SDNode *N = new BasicBlockSDNode(MBB);
805 CSEMap.InsertNode(N, IP);
806 AllNodes.push_back(N);
807 return SDOperand(N, 0);
808}
809
810SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
811 if ((unsigned)VT >= ValueTypeNodes.size())
812 ValueTypeNodes.resize(VT+1);
813 if (ValueTypeNodes[VT] == 0) {
814 ValueTypeNodes[VT] = new VTSDNode(VT);
815 AllNodes.push_back(ValueTypeNodes[VT]);
816 }
817
818 return SDOperand(ValueTypeNodes[VT], 0);
819}
820
821SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
822 SDNode *&N = ExternalSymbols[Sym];
823 if (N) return SDOperand(N, 0);
824 N = new ExternalSymbolSDNode(false, Sym, VT);
825 AllNodes.push_back(N);
826 return SDOperand(N, 0);
827}
828
829SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
830 MVT::ValueType VT) {
831 SDNode *&N = TargetExternalSymbols[Sym];
832 if (N) return SDOperand(N, 0);
833 N = new ExternalSymbolSDNode(true, Sym, VT);
834 AllNodes.push_back(N);
835 return SDOperand(N, 0);
836}
837
838SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
839 if ((unsigned)Cond >= CondCodeNodes.size())
840 CondCodeNodes.resize(Cond+1);
841
842 if (CondCodeNodes[Cond] == 0) {
843 CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
844 AllNodes.push_back(CondCodeNodes[Cond]);
845 }
846 return SDOperand(CondCodeNodes[Cond], 0);
847}
848
849SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
850 FoldingSetNodeID ID;
851 AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
852 ID.AddInteger(RegNo);
853 void *IP = 0;
854 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
855 return SDOperand(E, 0);
856 SDNode *N = new RegisterSDNode(RegNo, VT);
857 CSEMap.InsertNode(N, IP);
858 AllNodes.push_back(N);
859 return SDOperand(N, 0);
860}
861
862SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
863 assert((!V || isa<PointerType>(V->getType())) &&
864 "SrcValue is not a pointer?");
865
866 FoldingSetNodeID ID;
867 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
868 ID.AddPointer(V);
869 ID.AddInteger(Offset);
870 void *IP = 0;
871 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
872 return SDOperand(E, 0);
873 SDNode *N = new SrcValueSDNode(V, Offset);
874 CSEMap.InsertNode(N, IP);
875 AllNodes.push_back(N);
876 return SDOperand(N, 0);
877}
878
879SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
880 SDOperand N2, ISD::CondCode Cond) {
881 // These setcc operations always fold.
882 switch (Cond) {
883 default: break;
884 case ISD::SETFALSE:
885 case ISD::SETFALSE2: return getConstant(0, VT);
886 case ISD::SETTRUE:
887 case ISD::SETTRUE2: return getConstant(1, VT);
888
889 case ISD::SETOEQ:
890 case ISD::SETOGT:
891 case ISD::SETOGE:
892 case ISD::SETOLT:
893 case ISD::SETOLE:
894 case ISD::SETONE:
895 case ISD::SETO:
896 case ISD::SETUO:
897 case ISD::SETUEQ:
898 case ISD::SETUNE:
899 assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
900 break;
901 }
902
903 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
904 uint64_t C2 = N2C->getValue();
905 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
906 uint64_t C1 = N1C->getValue();
907
908 // Sign extend the operands if required
909 if (ISD::isSignedIntSetCC(Cond)) {
910 C1 = N1C->getSignExtended();
911 C2 = N2C->getSignExtended();
912 }
913
914 switch (Cond) {
915 default: assert(0 && "Unknown integer setcc!");
916 case ISD::SETEQ: return getConstant(C1 == C2, VT);
917 case ISD::SETNE: return getConstant(C1 != C2, VT);
918 case ISD::SETULT: return getConstant(C1 < C2, VT);
919 case ISD::SETUGT: return getConstant(C1 > C2, VT);
920 case ISD::SETULE: return getConstant(C1 <= C2, VT);
921 case ISD::SETUGE: return getConstant(C1 >= C2, VT);
922 case ISD::SETLT: return getConstant((int64_t)C1 < (int64_t)C2, VT);
923 case ISD::SETGT: return getConstant((int64_t)C1 > (int64_t)C2, VT);
924 case ISD::SETLE: return getConstant((int64_t)C1 <= (int64_t)C2, VT);
925 case ISD::SETGE: return getConstant((int64_t)C1 >= (int64_t)C2, VT);
926 }
927 }
928 }
929 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
930 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
931 double C1 = N1C->getValue(), C2 = N2C->getValue();
932
933 switch (Cond) {
934 default: break; // FIXME: Implement the rest of these!
935 case ISD::SETEQ: return getConstant(C1 == C2, VT);
936 case ISD::SETNE: return getConstant(C1 != C2, VT);
937 case ISD::SETLT: return getConstant(C1 < C2, VT);
938 case ISD::SETGT: return getConstant(C1 > C2, VT);
939 case ISD::SETLE: return getConstant(C1 <= C2, VT);
940 case ISD::SETGE: return getConstant(C1 >= C2, VT);
941 }
942 } else {
943 // Ensure that the constant occurs on the RHS.
944 return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
945 }
946
947 // Could not fold it.
948 return SDOperand();
949}
950
951/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
952/// this predicate to simplify operations downstream. Mask is known to be zero
953/// for bits that V cannot have.
954bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
955 unsigned Depth) const {
956 // The masks are not wide enough to represent this type! Should use APInt.
957 if (Op.getValueType() == MVT::i128)
958 return false;
959
960 uint64_t KnownZero, KnownOne;
961 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
962 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
963 return (KnownZero & Mask) == Mask;
964}
965
966/// ComputeMaskedBits - Determine which of the bits specified in Mask are
967/// known to be either zero or one and return them in the KnownZero/KnownOne
968/// bitsets. This code only analyzes bits in Mask, in order to short-circuit
969/// processing.
970void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
971 uint64_t &KnownZero, uint64_t &KnownOne,
972 unsigned Depth) const {
973 KnownZero = KnownOne = 0; // Don't know anything.
974 if (Depth == 6 || Mask == 0)
975 return; // Limit search depth.
976
977 // The masks are not wide enough to represent this type! Should use APInt.
978 if (Op.getValueType() == MVT::i128)
979 return;
980
981 uint64_t KnownZero2, KnownOne2;
982
983 switch (Op.getOpcode()) {
984 case ISD::Constant:
985 // We know all of the bits for a constant!
986 KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
987 KnownZero = ~KnownOne & Mask;
988 return;
989 case ISD::AND:
990 // If either the LHS or the RHS are Zero, the result is zero.
991 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
992 Mask &= ~KnownZero;
993 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
994 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
995 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
996
997 // Output known-1 bits are only known if set in both the LHS & RHS.
998 KnownOne &= KnownOne2;
999 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1000 KnownZero |= KnownZero2;
1001 return;
1002 case ISD::OR:
1003 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1004 Mask &= ~KnownOne;
1005 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1006 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1007 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1008
1009 // Output known-0 bits are only known if clear in both the LHS & RHS.
1010 KnownZero &= KnownZero2;
1011 // Output known-1 are known to be set if set in either the LHS | RHS.
1012 KnownOne |= KnownOne2;
1013 return;
1014 case ISD::XOR: {
1015 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1016 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1017 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1018 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1019
1020 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1021 uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1022 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1023 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1024 KnownZero = KnownZeroOut;
1025 return;
1026 }
1027 case ISD::SELECT:
1028 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1029 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1030 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1031 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1032
1033 // Only known if known in both the LHS and RHS.
1034 KnownOne &= KnownOne2;
1035 KnownZero &= KnownZero2;
1036 return;
1037 case ISD::SELECT_CC:
1038 ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1039 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1040 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1041 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1042
1043 // Only known if known in both the LHS and RHS.
1044 KnownOne &= KnownOne2;
1045 KnownZero &= KnownZero2;
1046 return;
1047 case ISD::SETCC:
1048 // If we know the result of a setcc has the top bits zero, use this info.
1049 if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
1050 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
1051 return;
1052 case ISD::SHL:
1053 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
1054 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1055 ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
1056 KnownZero, KnownOne, Depth+1);
1057 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1058 KnownZero <<= SA->getValue();
1059 KnownOne <<= SA->getValue();
1060 KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
1061 }
1062 return;
1063 case ISD::SRL:
1064 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
1065 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1066 MVT::ValueType VT = Op.getValueType();
1067 unsigned ShAmt = SA->getValue();
1068
1069 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1070 ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
1071 KnownZero, KnownOne, Depth+1);
1072 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1073 KnownZero &= TypeMask;
1074 KnownOne &= TypeMask;
1075 KnownZero >>= ShAmt;
1076 KnownOne >>= ShAmt;
1077
1078 uint64_t HighBits = (1ULL << ShAmt)-1;
1079 HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
1080 KnownZero |= HighBits; // High bits known zero.
1081 }
1082 return;
1083 case ISD::SRA:
1084 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1085 MVT::ValueType VT = Op.getValueType();
1086 unsigned ShAmt = SA->getValue();
1087
1088 // Compute the new bits that are at the top now.
1089 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1090
1091 uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
1092 // If any of the demanded bits are produced by the sign extension, we also
1093 // demand the input sign bit.
1094 uint64_t HighBits = (1ULL << ShAmt)-1;
1095 HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
1096 if (HighBits & Mask)
1097 InDemandedMask |= MVT::getIntVTSignBit(VT);
1098
1099 ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1100 Depth+1);
1101 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1102 KnownZero &= TypeMask;
1103 KnownOne &= TypeMask;
1104 KnownZero >>= ShAmt;
1105 KnownOne >>= ShAmt;
1106
1107 // Handle the sign bits.
1108 uint64_t SignBit = MVT::getIntVTSignBit(VT);
1109 SignBit >>= ShAmt; // Adjust to where it is now in the mask.
1110
1111 if (KnownZero & SignBit) {
1112 KnownZero |= HighBits; // New bits are known zero.
1113 } else if (KnownOne & SignBit) {
1114 KnownOne |= HighBits; // New bits are known one.
1115 }
1116 }
1117 return;
1118 case ISD::SIGN_EXTEND_INREG: {
1119 MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1120
1121 // Sign extension. Compute the demanded bits in the result that are not
1122 // present in the input.
1123 uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
1124
1125 uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
1126 int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
1127
1128 // If the sign extended bits are demanded, we know that the sign
1129 // bit is demanded.
1130 if (NewBits)
1131 InputDemandedBits |= InSignBit;
1132
1133 ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1134 KnownZero, KnownOne, Depth+1);
1135 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1136
1137 // If the sign bit of the input is known set or clear, then we know the
1138 // top bits of the result.
1139 if (KnownZero & InSignBit) { // Input sign bit known clear
1140 KnownZero |= NewBits;
1141 KnownOne &= ~NewBits;
1142 } else if (KnownOne & InSignBit) { // Input sign bit known set
1143 KnownOne |= NewBits;
1144 KnownZero &= ~NewBits;
1145 } else { // Input sign bit unknown
1146 KnownZero &= ~NewBits;
1147 KnownOne &= ~NewBits;
1148 }
1149 return;
1150 }
1151 case ISD::CTTZ:
1152 case ISD::CTLZ:
1153 case ISD::CTPOP: {
1154 MVT::ValueType VT = Op.getValueType();
1155 unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
1156 KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
1157 KnownOne = 0;
1158 return;
1159 }
1160 case ISD::LOAD: {
1161 if (ISD::isZEXTLoad(Op.Val)) {
1162 LoadSDNode *LD = cast<LoadSDNode>(Op);
1163 MVT::ValueType VT = LD->getLoadedVT();
1164 KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
1165 }
1166 return;
1167 }
1168 case ISD::ZERO_EXTEND: {
1169 uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
1170 uint64_t NewBits = (~InMask) & Mask;
1171 ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1172 KnownOne, Depth+1);
1173 KnownZero |= NewBits & Mask;
1174 KnownOne &= ~NewBits;
1175 return;
1176 }
1177 case ISD::SIGN_EXTEND: {
1178 MVT::ValueType InVT = Op.getOperand(0).getValueType();
1179 unsigned InBits = MVT::getSizeInBits(InVT);
1180 uint64_t InMask = MVT::getIntVTBitMask(InVT);
1181 uint64_t InSignBit = 1ULL << (InBits-1);
1182 uint64_t NewBits = (~InMask) & Mask;
1183 uint64_t InDemandedBits = Mask & InMask;
1184
1185 // If any of the sign extended bits are demanded, we know that the sign
1186 // bit is demanded.
1187 if (NewBits & Mask)
1188 InDemandedBits |= InSignBit;
1189
1190 ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1191 KnownOne, Depth+1);
1192 // If the sign bit is known zero or one, the top bits match.
1193 if (KnownZero & InSignBit) {
1194 KnownZero |= NewBits;
1195 KnownOne &= ~NewBits;
1196 } else if (KnownOne & InSignBit) {
1197 KnownOne |= NewBits;
1198 KnownZero &= ~NewBits;
1199 } else { // Otherwise, top bits aren't known.
1200 KnownOne &= ~NewBits;
1201 KnownZero &= ~NewBits;
1202 }
1203 return;
1204 }
1205 case ISD::ANY_EXTEND: {
1206 MVT::ValueType VT = Op.getOperand(0).getValueType();
1207 ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
1208 KnownZero, KnownOne, Depth+1);
1209 return;
1210 }
1211 case ISD::TRUNCATE: {
1212 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1213 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1214 uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
1215 KnownZero &= OutMask;
1216 KnownOne &= OutMask;
1217 break;
1218 }
1219 case ISD::AssertZext: {
1220 MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1221 uint64_t InMask = MVT::getIntVTBitMask(VT);
1222 ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1223 KnownOne, Depth+1);
1224 KnownZero |= (~InMask) & Mask;
1225 return;
1226 }
1227 case ISD::ADD: {
1228 // If either the LHS or the RHS are Zero, the result is zero.
1229 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1230 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1231 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1232 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1233
1234 // Output known-0 bits are known if clear or set in both the low clear bits
1235 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
1236 // low 3 bits clear.
1237 uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
1238 CountTrailingZeros_64(~KnownZero2));
1239
1240 KnownZero = (1ULL << KnownZeroOut) - 1;
1241 KnownOne = 0;
1242 return;
1243 }
1244 case ISD::SUB: {
1245 ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1246 if (!CLHS) return;
1247
1248 // We know that the top bits of C-X are clear if X contains less bits
1249 // than C (i.e. no wrap-around can happen). For example, 20-X is
1250 // positive if we can prove that X is >= 0 and < 16.
1251 MVT::ValueType VT = CLHS->getValueType(0);
1252 if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) { // sign bit clear
1253 unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
1254 uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
1255 MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
1256 ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1257
1258 // If all of the MaskV bits are known to be zero, then we know the output
1259 // top bits are zero, because we now know that the output is from [0-C].
1260 if ((KnownZero & MaskV) == MaskV) {
1261 unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
1262 KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask; // Top bits known zero.
1263 KnownOne = 0; // No one bits known.
1264 } else {
1265 KnownZero = KnownOne = 0; // Otherwise, nothing known.
1266 }
1267 }
1268 return;
1269 }
1270 default:
1271 // Allow the target to implement this method for its nodes.
1272 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1273 case ISD::INTRINSIC_WO_CHAIN:
1274 case ISD::INTRINSIC_W_CHAIN:
1275 case ISD::INTRINSIC_VOID:
1276 TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1277 }
1278 return;
1279 }
1280}
1281
1282/// ComputeNumSignBits - Return the number of times the sign bit of the
1283/// register is replicated into the other bits. We know that at least 1 bit
1284/// is always equal to the sign bit (itself), but other cases can give us
1285/// information. For example, immediately after an "SRA X, 2", we know that
1286/// the top 3 bits are all equal to each other, so we return 3.
1287unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1288 MVT::ValueType VT = Op.getValueType();
1289 assert(MVT::isInteger(VT) && "Invalid VT!");
1290 unsigned VTBits = MVT::getSizeInBits(VT);
1291 unsigned Tmp, Tmp2;
1292
1293 if (Depth == 6)
1294 return 1; // Limit search depth.
1295
1296 switch (Op.getOpcode()) {
1297 default: break;
1298 case ISD::AssertSext:
1299 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1300 return VTBits-Tmp+1;
1301 case ISD::AssertZext:
1302 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1303 return VTBits-Tmp;
1304
1305 case ISD::Constant: {
1306 uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1307 // If negative, invert the bits, then look at it.
1308 if (Val & MVT::getIntVTSignBit(VT))
1309 Val = ~Val;
1310
1311 // Shift the bits so they are the leading bits in the int64_t.
1312 Val <<= 64-VTBits;
1313
1314 // Return # leading zeros. We use 'min' here in case Val was zero before
1315 // shifting. We don't want to return '64' as for an i32 "0".
1316 return std::min(VTBits, CountLeadingZeros_64(Val));
1317 }
1318
1319 case ISD::SIGN_EXTEND:
1320 Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1321 return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1322
1323 case ISD::SIGN_EXTEND_INREG:
1324 // Max of the input and what this extends.
1325 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1326 Tmp = VTBits-Tmp+1;
1327
1328 Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1329 return std::max(Tmp, Tmp2);
1330
1331 case ISD::SRA:
1332 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1333 // SRA X, C -> adds C sign bits.
1334 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1335 Tmp += C->getValue();
1336 if (Tmp > VTBits) Tmp = VTBits;
1337 }
1338 return Tmp;
1339 case ISD::SHL:
1340 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1341 // shl destroys sign bits.
1342 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1343 if (C->getValue() >= VTBits || // Bad shift.
1344 C->getValue() >= Tmp) break; // Shifted all sign bits out.
1345 return Tmp - C->getValue();
1346 }
1347 break;
1348 case ISD::AND:
1349 case ISD::OR:
1350 case ISD::XOR: // NOT is handled here.
1351 // Logical binary ops preserve the number of sign bits.
1352 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1353 if (Tmp == 1) return 1; // Early out.
1354 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1355 return std::min(Tmp, Tmp2);
1356
1357 case ISD::SELECT:
1358 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1359 if (Tmp == 1) return 1; // Early out.
1360 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1361 return std::min(Tmp, Tmp2);
1362
1363 case ISD::SETCC:
1364 // If setcc returns 0/-1, all bits are sign bits.
1365 if (TLI.getSetCCResultContents() ==
1366 TargetLowering::ZeroOrNegativeOneSetCCResult)
1367 return VTBits;
1368 break;
1369 case ISD::ROTL:
1370 case ISD::ROTR:
1371 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1372 unsigned RotAmt = C->getValue() & (VTBits-1);
1373
1374 // Handle rotate right by N like a rotate left by 32-N.
1375 if (Op.getOpcode() == ISD::ROTR)
1376 RotAmt = (VTBits-RotAmt) & (VTBits-1);
1377
1378 // If we aren't rotating out all of the known-in sign bits, return the
1379 // number that are left. This handles rotl(sext(x), 1) for example.
1380 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1381 if (Tmp > RotAmt+1) return Tmp-RotAmt;
1382 }
1383 break;
1384 case ISD::ADD:
1385 // Add can have at most one carry bit. Thus we know that the output
1386 // is, at worst, one more bit than the inputs.
1387 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1388 if (Tmp == 1) return 1; // Early out.
1389
1390 // Special case decrementing a value (ADD X, -1):
1391 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1392 if (CRHS->isAllOnesValue()) {
1393 uint64_t KnownZero, KnownOne;
1394 uint64_t Mask = MVT::getIntVTBitMask(VT);
1395 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1396
1397 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1398 // sign bits set.
1399 if ((KnownZero|1) == Mask)
1400 return VTBits;
1401
1402 // If we are subtracting one from a positive number, there is no carry
1403 // out of the result.
1404 if (KnownZero & MVT::getIntVTSignBit(VT))
1405 return Tmp;
1406 }
1407
1408 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1409 if (Tmp2 == 1) return 1;
1410 return std::min(Tmp, Tmp2)-1;
1411 break;
1412
1413 case ISD::SUB:
1414 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1415 if (Tmp2 == 1) return 1;
1416
1417 // Handle NEG.
1418 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1419 if (CLHS->getValue() == 0) {
1420 uint64_t KnownZero, KnownOne;
1421 uint64_t Mask = MVT::getIntVTBitMask(VT);
1422 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1423 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1424 // sign bits set.
1425 if ((KnownZero|1) == Mask)
1426 return VTBits;
1427
1428 // If the input is known to be positive (the sign bit is known clear),
1429 // the output of the NEG has the same number of sign bits as the input.
1430 if (KnownZero & MVT::getIntVTSignBit(VT))
1431 return Tmp2;
1432
1433 // Otherwise, we treat this like a SUB.
1434 }
1435
1436 // Sub can have at most one carry bit. Thus we know that the output
1437 // is, at worst, one more bit than the inputs.
1438 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1439 if (Tmp == 1) return 1; // Early out.
1440 return std::min(Tmp, Tmp2)-1;
1441 break;
1442 case ISD::TRUNCATE:
1443 // FIXME: it's tricky to do anything useful for this, but it is an important
1444 // case for targets like X86.
1445 break;
1446 }
1447
1448 // Handle LOADX separately here. EXTLOAD case will fallthrough.
1449 if (Op.getOpcode() == ISD::LOAD) {
1450 LoadSDNode *LD = cast<LoadSDNode>(Op);
1451 unsigned ExtType = LD->getExtensionType();
1452 switch (ExtType) {
1453 default: break;
1454 case ISD::SEXTLOAD: // '17' bits known
1455 Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1456 return VTBits-Tmp+1;
1457 case ISD::ZEXTLOAD: // '16' bits known
1458 Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1459 return VTBits-Tmp;
1460 }
1461 }
1462
1463 // Allow the target to implement this method for its nodes.
1464 if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1465 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1466 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1467 Op.getOpcode() == ISD::INTRINSIC_VOID) {
1468 unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1469 if (NumBits > 1) return NumBits;
1470 }
1471
1472 // Finally, if we can prove that the top bits of the result are 0's or 1's,
1473 // use this information.
1474 uint64_t KnownZero, KnownOne;
1475 uint64_t Mask = MVT::getIntVTBitMask(VT);
1476 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1477
1478 uint64_t SignBit = MVT::getIntVTSignBit(VT);
1479 if (KnownZero & SignBit) { // SignBit is 0
1480 Mask = KnownZero;
1481 } else if (KnownOne & SignBit) { // SignBit is 1;
1482 Mask = KnownOne;
1483 } else {
1484 // Nothing known.
1485 return 1;
1486 }
1487
1488 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
1489 // the number of identical bits in the top of the input value.
1490 Mask ^= ~0ULL;
1491 Mask <<= 64-VTBits;
1492 // Return # leading zeros. We use 'min' here in case Val was zero before
1493 // shifting. We don't want to return '64' as for an i32 "0".
1494 return std::min(VTBits, CountLeadingZeros_64(Mask));
1495}
1496
1497
1498/// getNode - Gets or creates the specified node.
1499///
1500SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1501 FoldingSetNodeID ID;
1502 AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1503 void *IP = 0;
1504 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1505 return SDOperand(E, 0);
1506 SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1507 CSEMap.InsertNode(N, IP);
1508
1509 AllNodes.push_back(N);
1510 return SDOperand(N, 0);
1511}
1512
1513SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1514 SDOperand Operand) {
1515 unsigned Tmp1;
1516 // Constant fold unary operations with an integer constant operand.
1517 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1518 uint64_t Val = C->getValue();
1519 switch (Opcode) {
1520 default: break;
1521 case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1522 case ISD::ANY_EXTEND:
1523 case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1524 case ISD::TRUNCATE: return getConstant(Val, VT);
1525 case ISD::SINT_TO_FP: return getConstantFP(C->getSignExtended(), VT);
1526 case ISD::UINT_TO_FP: return getConstantFP(C->getValue(), VT);
1527 case ISD::BIT_CONVERT:
1528 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1529 return getConstantFP(BitsToFloat(Val), VT);
1530 else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1531 return getConstantFP(BitsToDouble(Val), VT);
1532 break;
1533 case ISD::BSWAP:
1534 switch(VT) {
1535 default: assert(0 && "Invalid bswap!"); break;
1536 case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1537 case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1538 case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1539 }
1540 break;
1541 case ISD::CTPOP:
1542 switch(VT) {
1543 default: assert(0 && "Invalid ctpop!"); break;
1544 case MVT::i1: return getConstant(Val != 0, VT);
1545 case MVT::i8:
1546 Tmp1 = (unsigned)Val & 0xFF;
1547 return getConstant(CountPopulation_32(Tmp1), VT);
1548 case MVT::i16:
1549 Tmp1 = (unsigned)Val & 0xFFFF;
1550 return getConstant(CountPopulation_32(Tmp1), VT);
1551 case MVT::i32:
1552 return getConstant(CountPopulation_32((unsigned)Val), VT);
1553 case MVT::i64:
1554 return getConstant(CountPopulation_64(Val), VT);
1555 }
1556 case ISD::CTLZ:
1557 switch(VT) {
1558 default: assert(0 && "Invalid ctlz!"); break;
1559 case MVT::i1: return getConstant(Val == 0, VT);
1560 case MVT::i8:
1561 Tmp1 = (unsigned)Val & 0xFF;
1562 return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1563 case MVT::i16:
1564 Tmp1 = (unsigned)Val & 0xFFFF;
1565 return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1566 case MVT::i32:
1567 return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1568 case MVT::i64:
1569 return getConstant(CountLeadingZeros_64(Val), VT);
1570 }
1571 case ISD::CTTZ:
1572 switch(VT) {
1573 default: assert(0 && "Invalid cttz!"); break;
1574 case MVT::i1: return getConstant(Val == 0, VT);
1575 case MVT::i8:
1576 Tmp1 = (unsigned)Val | 0x100;
1577 return getConstant(CountTrailingZeros_32(Tmp1), VT);
1578 case MVT::i16:
1579 Tmp1 = (unsigned)Val | 0x10000;
1580 return getConstant(CountTrailingZeros_32(Tmp1), VT);
1581 case MVT::i32:
1582 return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1583 case MVT::i64:
1584 return getConstant(CountTrailingZeros_64(Val), VT);
1585 }
1586 }
1587 }
1588
1589 // Constant fold unary operations with an floating point constant operand.
1590 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
1591 switch (Opcode) {
1592 case ISD::FNEG:
1593 return getConstantFP(-C->getValue(), VT);
1594 case ISD::FABS:
1595 return getConstantFP(fabs(C->getValue()), VT);
1596 case ISD::FP_ROUND:
1597 case ISD::FP_EXTEND:
1598 return getConstantFP(C->getValue(), VT);
1599 case ISD::FP_TO_SINT:
1600 return getConstant((int64_t)C->getValue(), VT);
1601 case ISD::FP_TO_UINT:
1602 return getConstant((uint64_t)C->getValue(), VT);
1603 case ISD::BIT_CONVERT:
1604 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1605 return getConstant(FloatToBits(C->getValue()), VT);
1606 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1607 return getConstant(DoubleToBits(C->getValue()), VT);
1608 break;
1609 }
1610
1611 unsigned OpOpcode = Operand.Val->getOpcode();
1612 switch (Opcode) {
1613 case ISD::TokenFactor:
1614 return Operand; // Factor of one node? No factor.
1615 case ISD::FP_ROUND:
1616 case ISD::FP_EXTEND:
1617 assert(MVT::isFloatingPoint(VT) &&
1618 MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1619 break;
1620 case ISD::SIGN_EXTEND:
1621 assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1622 "Invalid SIGN_EXTEND!");
1623 if (Operand.getValueType() == VT) return Operand; // noop extension
1624 assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1625 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1626 return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1627 break;
1628 case ISD::ZERO_EXTEND:
1629 assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1630 "Invalid ZERO_EXTEND!");
1631 if (Operand.getValueType() == VT) return Operand; // noop extension
1632 assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1633 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
1634 return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1635 break;
1636 case ISD::ANY_EXTEND:
1637 assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1638 "Invalid ANY_EXTEND!");
1639 if (Operand.getValueType() == VT) return Operand; // noop extension
1640 assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1641 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1642 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
1643 return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1644 break;
1645 case ISD::TRUNCATE:
1646 assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1647 "Invalid TRUNCATE!");
1648 if (Operand.getValueType() == VT) return Operand; // noop truncate
1649 assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1650 if (OpOpcode == ISD::TRUNCATE)
1651 return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1652 else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1653 OpOpcode == ISD::ANY_EXTEND) {
1654 // If the source is smaller than the dest, we still need an extend.
1655 if (Operand.Val->getOperand(0).getValueType() < VT)
1656 return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1657 else if (Operand.Val->getOperand(0).getValueType() > VT)
1658 return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1659 else
1660 return Operand.Val->getOperand(0);
1661 }
1662 break;
1663 case ISD::BIT_CONVERT:
1664 // Basic sanity checking.
1665 assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1666 && "Cannot BIT_CONVERT between types of different sizes!");
1667 if (VT == Operand.getValueType()) return Operand; // noop conversion.
1668 if (OpOpcode == ISD::BIT_CONVERT) // bitconv(bitconv(x)) -> bitconv(x)
1669 return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1670 if (OpOpcode == ISD::UNDEF)
1671 return getNode(ISD::UNDEF, VT);
1672 break;
1673 case ISD::SCALAR_TO_VECTOR:
1674 assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1675 MVT::getVectorElementType(VT) == Operand.getValueType() &&
1676 "Illegal SCALAR_TO_VECTOR node!");
1677 break;
1678 case ISD::FNEG:
1679 if (OpOpcode == ISD::FSUB) // -(X-Y) -> (Y-X)
1680 return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1681 Operand.Val->getOperand(0));
1682 if (OpOpcode == ISD::FNEG) // --X -> X
1683 return Operand.Val->getOperand(0);
1684 break;
1685 case ISD::FABS:
1686 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
1687 return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1688 break;
1689 }
1690
1691 SDNode *N;
1692 SDVTList VTs = getVTList(VT);
1693 if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1694 FoldingSetNodeID ID;
1695 SDOperand Ops[1] = { Operand };
1696 AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1697 void *IP = 0;
1698 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1699 return SDOperand(E, 0);
1700 N = new UnarySDNode(Opcode, VTs, Operand);
1701 CSEMap.InsertNode(N, IP);
1702 } else {
1703 N = new UnarySDNode(Opcode, VTs, Operand);
1704 }
1705 AllNodes.push_back(N);
1706 return SDOperand(N, 0);
1707}
1708
1709
1710
1711SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1712 SDOperand N1, SDOperand N2) {
1713#ifndef NDEBUG
1714 switch (Opcode) {
1715 case ISD::TokenFactor:
1716 assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1717 N2.getValueType() == MVT::Other && "Invalid token factor!");
1718 break;
1719 case ISD::AND:
1720 case ISD::OR:
1721 case ISD::XOR:
1722 case ISD::UDIV:
1723 case ISD::UREM:
1724 case ISD::MULHU:
1725 case ISD::MULHS:
1726 assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1727 // fall through
1728 case ISD::ADD:
1729 case ISD::SUB:
1730 case ISD::MUL:
1731 case ISD::SDIV:
1732 case ISD::SREM:
1733 assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1734 // fall through.
1735 case ISD::FADD:
1736 case ISD::FSUB:
1737 case ISD::FMUL:
1738 case ISD::FDIV:
1739 case ISD::FREM:
1740 assert(N1.getValueType() == N2.getValueType() &&
1741 N1.getValueType() == VT && "Binary operator types must match!");
1742 break;
1743 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
1744 assert(N1.getValueType() == VT &&
1745 MVT::isFloatingPoint(N1.getValueType()) &&
1746 MVT::isFloatingPoint(N2.getValueType()) &&
1747 "Invalid FCOPYSIGN!");
1748 break;
1749 case ISD::SHL:
1750 case ISD::SRA:
1751 case ISD::SRL:
1752 case ISD::ROTL:
1753 case ISD::ROTR:
1754 assert(VT == N1.getValueType() &&
1755 "Shift operators return type must be the same as their first arg");
1756 assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1757 VT != MVT::i1 && "Shifts only work on integers");
1758 break;
1759 case ISD::FP_ROUND_INREG: {
1760 MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1761 assert(VT == N1.getValueType() && "Not an inreg round!");
1762 assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1763 "Cannot FP_ROUND_INREG integer types");
1764 assert(EVT <= VT && "Not rounding down!");
1765 break;
1766 }
1767 case ISD::AssertSext:
1768 case ISD::AssertZext:
1769 case ISD::SIGN_EXTEND_INREG: {
1770 MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1771 assert(VT == N1.getValueType() && "Not an inreg extend!");
1772 assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1773 "Cannot *_EXTEND_INREG FP types");
1774 assert(EVT <= VT && "Not extending!");
1775 }
1776
1777 default: break;
1778 }
1779#endif
1780
1781 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1782 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1783 if (N1C) {
1784 if (Opcode == ISD::SIGN_EXTEND_INREG) {
1785 int64_t Val = N1C->getValue();
1786 unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1787 Val <<= 64-FromBits;
1788 Val >>= 64-FromBits;
1789 return getConstant(Val, VT);
1790 }
1791
1792 if (N2C) {
1793 uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1794 switch (Opcode) {
1795 case ISD::ADD: return getConstant(C1 + C2, VT);
1796 case ISD::SUB: return getConstant(C1 - C2, VT);
1797 case ISD::MUL: return getConstant(C1 * C2, VT);
1798 case ISD::UDIV:
1799 if (C2) return getConstant(C1 / C2, VT);
1800 break;
1801 case ISD::UREM :
1802 if (C2) return getConstant(C1 % C2, VT);
1803 break;
1804 case ISD::SDIV :
1805 if (C2) return getConstant(N1C->getSignExtended() /
1806 N2C->getSignExtended(), VT);
1807 break;
1808 case ISD::SREM :
1809 if (C2) return getConstant(N1C->getSignExtended() %
1810 N2C->getSignExtended(), VT);
1811 break;
1812 case ISD::AND : return getConstant(C1 & C2, VT);
1813 case ISD::OR : return getConstant(C1 | C2, VT);
1814 case ISD::XOR : return getConstant(C1 ^ C2, VT);
1815 case ISD::SHL : return getConstant(C1 << C2, VT);
1816 case ISD::SRL : return getConstant(C1 >> C2, VT);
1817 case ISD::SRA : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1818 case ISD::ROTL :
1819 return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1820 VT);
1821 case ISD::ROTR :
1822 return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1823 VT);
1824 default: break;
1825 }
1826 } else { // Cannonicalize constant to RHS if commutative
1827 if (isCommutativeBinOp(Opcode)) {
1828 std::swap(N1C, N2C);
1829 std::swap(N1, N2);
1830 }
1831 }
1832 }
1833
1834 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1835 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1836 if (N1CFP) {
1837 if (N2CFP) {
1838 double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1839 switch (Opcode) {
1840 case ISD::FADD: return getConstantFP(C1 + C2, VT);
1841 case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1842 case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1843 case ISD::FDIV:
1844 if (C2) return getConstantFP(C1 / C2, VT);
1845 break;
1846 case ISD::FREM :
1847 if (C2) return getConstantFP(fmod(C1, C2), VT);
1848 break;
1849 case ISD::FCOPYSIGN: {
1850 union {
1851 double F;
1852 uint64_t I;
1853 } u1;
1854 u1.F = C1;
1855 if (int64_t(DoubleToBits(C2)) < 0) // Sign bit of RHS set?
1856 u1.I |= 1ULL << 63; // Set the sign bit of the LHS.
1857 else
1858 u1.I &= (1ULL << 63)-1; // Clear the sign bit of the LHS.
1859 return getConstantFP(u1.F, VT);
1860 }
1861 default: break;
1862 }
1863 } else { // Cannonicalize constant to RHS if commutative
1864 if (isCommutativeBinOp(Opcode)) {
1865 std::swap(N1CFP, N2CFP);
1866 std::swap(N1, N2);
1867 }
1868 }
1869 }
1870
1871 // Canonicalize an UNDEF to the RHS, even over a constant.
1872 if (N1.getOpcode() == ISD::UNDEF) {
1873 if (isCommutativeBinOp(Opcode)) {
1874 std::swap(N1, N2);
1875 } else {
1876 switch (Opcode) {
1877 case ISD::FP_ROUND_INREG:
1878 case ISD::SIGN_EXTEND_INREG:
1879 case ISD::SUB:
1880 case ISD::FSUB:
1881 case ISD::FDIV:
1882 case ISD::FREM:
1883 case ISD::SRA:
1884 return N1; // fold op(undef, arg2) -> undef
1885 case ISD::UDIV:
1886 case ISD::SDIV:
1887 case ISD::UREM:
1888 case ISD::SREM:
1889 case ISD::SRL:
1890 case ISD::SHL:
1891 if (!MVT::isVector(VT))
1892 return getConstant(0, VT); // fold op(undef, arg2) -> 0
1893 // For vectors, we can't easily build an all zero vector, just return
1894 // the LHS.
1895 return N2;
1896 }
1897 }
1898 }
1899
1900 // Fold a bunch of operators when the RHS is undef.
1901 if (N2.getOpcode() == ISD::UNDEF) {
1902 switch (Opcode) {
1903 case ISD::ADD:
1904 case ISD::ADDC:
1905 case ISD::ADDE:
1906 case ISD::SUB:
1907 case ISD::FADD:
1908 case ISD::FSUB:
1909 case ISD::FMUL:
1910 case ISD::FDIV:
1911 case ISD::FREM:
1912 case ISD::UDIV:
1913 case ISD::SDIV:
1914 case ISD::UREM:
1915 case ISD::SREM:
1916 case ISD::XOR:
1917 return N2; // fold op(arg1, undef) -> undef
1918 case ISD::MUL:
1919 case ISD::AND:
1920 case ISD::SRL:
1921 case ISD::SHL:
1922 if (!MVT::isVector(VT))
1923 return getConstant(0, VT); // fold op(arg1, undef) -> 0
1924 // For vectors, we can't easily build an all zero vector, just return
1925 // the LHS.
1926 return N1;
1927 case ISD::OR:
1928 if (!MVT::isVector(VT))
1929 return getConstant(MVT::getIntVTBitMask(VT), VT);
1930 // For vectors, we can't easily build an all one vector, just return
1931 // the LHS.
1932 return N1;
1933 case ISD::SRA:
1934 return N1;
1935 }
1936 }
1937
1938 // Fold operations.
1939 switch (Opcode) {
1940 case ISD::TokenFactor:
1941 // Fold trivial token factors.
1942 if (N1.getOpcode() == ISD::EntryToken) return N2;
1943 if (N2.getOpcode() == ISD::EntryToken) return N1;
1944 break;
1945
1946 case ISD::AND:
1947 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
1948 // worth handling here.
1949 if (N2C && N2C->getValue() == 0)
1950 return N2;
1951 break;
1952 case ISD::OR:
1953 case ISD::XOR:
1954 // (X ^| 0) -> X. This commonly occurs when legalizing i64 values, so it's
1955 // worth handling here.
1956 if (N2C && N2C->getValue() == 0)
1957 return N1;
1958 break;
1959 case ISD::FP_ROUND_INREG:
1960 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
1961 break;
1962 case ISD::SIGN_EXTEND_INREG: {
1963 MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1964 if (EVT == VT) return N1; // Not actually extending
1965 break;
1966 }
1967 case ISD::EXTRACT_VECTOR_ELT:
1968 assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
1969
1970 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
1971 // expanding copies of large vectors from registers.
1972 if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
1973 N1.getNumOperands() > 0) {
1974 unsigned Factor =
1975 MVT::getVectorNumElements(N1.getOperand(0).getValueType());
1976 return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
1977 N1.getOperand(N2C->getValue() / Factor),
1978 getConstant(N2C->getValue() % Factor, N2.getValueType()));
1979 }
1980
1981 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
1982 // expanding large vector constants.
1983 if (N1.getOpcode() == ISD::BUILD_VECTOR)
1984 return N1.getOperand(N2C->getValue());
1985
1986 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
1987 // operations are lowered to scalars.
1988 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
1989 if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
1990 if (IEC == N2C)
1991 return N1.getOperand(1);
1992 else
1993 return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
1994 }
1995 break;
1996 case ISD::EXTRACT_ELEMENT:
1997 assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
1998
1999 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2000 // 64-bit integers into 32-bit parts. Instead of building the extract of
2001 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2002 if (N1.getOpcode() == ISD::BUILD_PAIR)
2003 return N1.getOperand(N2C->getValue());
2004
2005 // EXTRACT_ELEMENT of a constant int is also very common.
2006 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2007 unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2008 return getConstant(C->getValue() >> Shift, VT);
2009 }
2010 break;
2011
2012 // FIXME: figure out how to safely handle things like
2013 // int foo(int x) { return 1 << (x & 255); }
2014 // int bar() { return foo(256); }
2015#if 0
2016 case ISD::SHL:
2017 case ISD::SRL:
2018 case ISD::SRA:
2019 if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2020 cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
2021 return getNode(Opcode, VT, N1, N2.getOperand(0));
2022 else if (N2.getOpcode() == ISD::AND)
2023 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
2024 // If the and is only masking out bits that cannot effect the shift,
2025 // eliminate the and.
2026 unsigned NumBits = MVT::getSizeInBits(VT);
2027 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2028 return getNode(Opcode, VT, N1, N2.getOperand(0));
2029 }
2030 break;
2031#endif
2032 }
2033
2034 // Memoize this node if possible.
2035 SDNode *N;
2036 SDVTList VTs = getVTList(VT);
2037 if (VT != MVT::Flag) {
2038 SDOperand Ops[] = { N1, N2 };
2039 FoldingSetNodeID ID;
2040 AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2041 void *IP = 0;
2042 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2043 return SDOperand(E, 0);
2044 N = new BinarySDNode(Opcode, VTs, N1, N2);
2045 CSEMap.InsertNode(N, IP);
2046 } else {
2047 N = new BinarySDNode(Opcode, VTs, N1, N2);
2048 }
2049
2050 AllNodes.push_back(N);
2051 return SDOperand(N, 0);
2052}
2053
2054SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2055 SDOperand N1, SDOperand N2, SDOperand N3) {
2056 // Perform various simplifications.
2057 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2058 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2059 switch (Opcode) {
2060 case ISD::SETCC: {
2061 // Use FoldSetCC to simplify SETCC's.
2062 SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2063 if (Simp.Val) return Simp;
2064 break;
2065 }
2066 case ISD::SELECT:
2067 if (N1C)
2068 if (N1C->getValue())
2069 return N2; // select true, X, Y -> X
2070 else
2071 return N3; // select false, X, Y -> Y
2072
2073 if (N2 == N3) return N2; // select C, X, X -> X
2074 break;
2075 case ISD::BRCOND:
2076 if (N2C)
2077 if (N2C->getValue()) // Unconditional branch
2078 return getNode(ISD::BR, MVT::Other, N1, N3);
2079 else
2080 return N1; // Never-taken branch
2081 break;
2082 case ISD::VECTOR_SHUFFLE:
2083 assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2084 MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2085 N3.getOpcode() == ISD::BUILD_VECTOR &&
2086 MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2087 "Illegal VECTOR_SHUFFLE node!");
2088 break;
2089 case ISD::BIT_CONVERT:
2090 // Fold bit_convert nodes from a type to themselves.
2091 if (N1.getValueType() == VT)
2092 return N1;
2093 break;
2094 }
2095
2096 // Memoize node if it doesn't produce a flag.
2097 SDNode *N;
2098 SDVTList VTs = getVTList(VT);
2099 if (VT != MVT::Flag) {
2100 SDOperand Ops[] = { N1, N2, N3 };
2101 FoldingSetNodeID ID;
2102 AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2103 void *IP = 0;
2104 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2105 return SDOperand(E, 0);
2106 N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2107 CSEMap.InsertNode(N, IP);
2108 } else {
2109 N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2110 }
2111 AllNodes.push_back(N);
2112 return SDOperand(N, 0);
2113}
2114
2115SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2116 SDOperand N1, SDOperand N2, SDOperand N3,
2117 SDOperand N4) {
2118 SDOperand Ops[] = { N1, N2, N3, N4 };
2119 return getNode(Opcode, VT, Ops, 4);
2120}
2121
2122SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2123 SDOperand N1, SDOperand N2, SDOperand N3,
2124 SDOperand N4, SDOperand N5) {
2125 SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2126 return getNode(Opcode, VT, Ops, 5);
2127}
2128
2129SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2130 SDOperand Chain, SDOperand Ptr,
2131 const Value *SV, int SVOffset,
2132 bool isVolatile, unsigned Alignment) {
2133 if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2134 const Type *Ty = 0;
2135 if (VT != MVT::iPTR) {
2136 Ty = MVT::getTypeForValueType(VT);
2137 } else if (SV) {
2138 const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2139 assert(PT && "Value for load must be a pointer");
2140 Ty = PT->getElementType();
2141 }
2142 assert(Ty && "Could not get type information for load");
2143 Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2144 }
2145 SDVTList VTs = getVTList(VT, MVT::Other);
2146 SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2147 SDOperand Ops[] = { Chain, Ptr, Undef };
2148 FoldingSetNodeID ID;
2149 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2150 ID.AddInteger(ISD::UNINDEXED);
2151 ID.AddInteger(ISD::NON_EXTLOAD);
2152 ID.AddInteger(VT);
2153 ID.AddPointer(SV);
2154 ID.AddInteger(SVOffset);
2155 ID.AddInteger(Alignment);
2156 ID.AddInteger(isVolatile);
2157 void *IP = 0;
2158 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2159 return SDOperand(E, 0);
2160 SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2161 ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2162 isVolatile);
2163 CSEMap.InsertNode(N, IP);
2164 AllNodes.push_back(N);
2165 return SDOperand(N, 0);
2166}
2167
2168SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2169 SDOperand Chain, SDOperand Ptr,
2170 const Value *SV,
2171 int SVOffset, MVT::ValueType EVT,
2172 bool isVolatile, unsigned Alignment) {
2173 // If they are asking for an extending load from/to the same thing, return a
2174 // normal load.
2175 if (VT == EVT)
2176 ExtType = ISD::NON_EXTLOAD;
2177
2178 if (MVT::isVector(VT))
2179 assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2180 else
2181 assert(EVT < VT && "Should only be an extending load, not truncating!");
2182 assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2183 "Cannot sign/zero extend a FP/Vector load!");
2184 assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2185 "Cannot convert from FP to Int or Int -> FP!");
2186
2187 if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2188 const Type *Ty = 0;
2189 if (VT != MVT::iPTR) {
2190 Ty = MVT::getTypeForValueType(VT);
2191 } else if (SV) {
2192 const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2193 assert(PT && "Value for load must be a pointer");
2194 Ty = PT->getElementType();
2195 }
2196 assert(Ty && "Could not get type information for load");
2197 Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2198 }
2199 SDVTList VTs = getVTList(VT, MVT::Other);
2200 SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2201 SDOperand Ops[] = { Chain, Ptr, Undef };
2202 FoldingSetNodeID ID;
2203 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2204 ID.AddInteger(ISD::UNINDEXED);
2205 ID.AddInteger(ExtType);
2206 ID.AddInteger(EVT);
2207 ID.AddPointer(SV);
2208 ID.AddInteger(SVOffset);
2209 ID.AddInteger(Alignment);
2210 ID.AddInteger(isVolatile);
2211 void *IP = 0;
2212 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2213 return SDOperand(E, 0);
2214 SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2215 SV, SVOffset, Alignment, isVolatile);
2216 CSEMap.InsertNode(N, IP);
2217 AllNodes.push_back(N);
2218 return SDOperand(N, 0);
2219}
2220
2221SDOperand
2222SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2223 SDOperand Offset, ISD::MemIndexedMode AM) {
2224 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2225 assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2226 "Load is already a indexed load!");
2227 MVT::ValueType VT = OrigLoad.getValueType();
2228 SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2229 SDOperand Ops[] = { LD->getChain(), Base, Offset };
2230 FoldingSetNodeID ID;
2231 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2232 ID.AddInteger(AM);
2233 ID.AddInteger(LD->getExtensionType());
2234 ID.AddInteger(LD->getLoadedVT());
2235 ID.AddPointer(LD->getSrcValue());
2236 ID.AddInteger(LD->getSrcValueOffset());
2237 ID.AddInteger(LD->getAlignment());
2238 ID.AddInteger(LD->isVolatile());
2239 void *IP = 0;
2240 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2241 return SDOperand(E, 0);
2242 SDNode *N = new LoadSDNode(Ops, VTs, AM,
2243 LD->getExtensionType(), LD->getLoadedVT(),
2244 LD->getSrcValue(), LD->getSrcValueOffset(),
2245 LD->getAlignment(), LD->isVolatile());
2246 CSEMap.InsertNode(N, IP);
2247 AllNodes.push_back(N);
2248 return SDOperand(N, 0);
2249}
2250
2251SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2252 SDOperand Ptr, const Value *SV, int SVOffset,
2253 bool isVolatile, unsigned Alignment) {
2254 MVT::ValueType VT = Val.getValueType();
2255
2256 if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2257 const Type *Ty = 0;
2258 if (VT != MVT::iPTR) {
2259 Ty = MVT::getTypeForValueType(VT);
2260 } else if (SV) {
2261 const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2262 assert(PT && "Value for store must be a pointer");
2263 Ty = PT->getElementType();
2264 }
2265 assert(Ty && "Could not get type information for store");
2266 Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2267 }
2268 SDVTList VTs = getVTList(MVT::Other);
2269 SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2270 SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2271 FoldingSetNodeID ID;
2272 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2273 ID.AddInteger(ISD::UNINDEXED);
2274 ID.AddInteger(false);
2275 ID.AddInteger(VT);
2276 ID.AddPointer(SV);
2277 ID.AddInteger(SVOffset);
2278 ID.AddInteger(Alignment);
2279 ID.AddInteger(isVolatile);
2280 void *IP = 0;
2281 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2282 return SDOperand(E, 0);
2283 SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2284 VT, SV, SVOffset, Alignment, isVolatile);
2285 CSEMap.InsertNode(N, IP);
2286 AllNodes.push_back(N);
2287 return SDOperand(N, 0);
2288}
2289
2290SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2291 SDOperand Ptr, const Value *SV,
2292 int SVOffset, MVT::ValueType SVT,
2293 bool isVolatile, unsigned Alignment) {
2294 MVT::ValueType VT = Val.getValueType();
2295 bool isTrunc = VT != SVT;
2296
2297 assert(VT > SVT && "Not a truncation?");
2298 assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2299 "Can't do FP-INT conversion!");
2300
2301 if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2302 const Type *Ty = 0;
2303 if (VT != MVT::iPTR) {
2304 Ty = MVT::getTypeForValueType(VT);
2305 } else if (SV) {
2306 const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2307 assert(PT && "Value for store must be a pointer");
2308 Ty = PT->getElementType();
2309 }
2310 assert(Ty && "Could not get type information for store");
2311 Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2312 }
2313 SDVTList VTs = getVTList(MVT::Other);
2314 SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2315 SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2316 FoldingSetNodeID ID;
2317 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2318 ID.AddInteger(ISD::UNINDEXED);
2319 ID.AddInteger(isTrunc);
2320 ID.AddInteger(SVT);
2321 ID.AddPointer(SV);
2322 ID.AddInteger(SVOffset);
2323 ID.AddInteger(Alignment);
2324 ID.AddInteger(isVolatile);
2325 void *IP = 0;
2326 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2327 return SDOperand(E, 0);
2328 SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, isTrunc,
2329 SVT, SV, SVOffset, Alignment, isVolatile);
2330 CSEMap.InsertNode(N, IP);
2331 AllNodes.push_back(N);
2332 return SDOperand(N, 0);
2333}
2334
2335SDOperand
2336SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2337 SDOperand Offset, ISD::MemIndexedMode AM) {
2338 StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2339 assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2340 "Store is already a indexed store!");
2341 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2342 SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2343 FoldingSetNodeID ID;
2344 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2345 ID.AddInteger(AM);
2346 ID.AddInteger(ST->isTruncatingStore());
2347 ID.AddInteger(ST->getStoredVT());
2348 ID.AddPointer(ST->getSrcValue());
2349 ID.AddInteger(ST->getSrcValueOffset());
2350 ID.AddInteger(ST->getAlignment());
2351 ID.AddInteger(ST->isVolatile());
2352 void *IP = 0;
2353 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2354 return SDOperand(E, 0);
2355 SDNode *N = new StoreSDNode(Ops, VTs, AM,
2356 ST->isTruncatingStore(), ST->getStoredVT(),
2357 ST->getSrcValue(), ST->getSrcValueOffset(),
2358 ST->getAlignment(), ST->isVolatile());
2359 CSEMap.InsertNode(N, IP);
2360 AllNodes.push_back(N);
2361 return SDOperand(N, 0);
2362}
2363
2364SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2365 SDOperand Chain, SDOperand Ptr,
2366 SDOperand SV) {
2367 SDOperand Ops[] = { Chain, Ptr, SV };
2368 return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2369}
2370
2371SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2372 const SDOperand *Ops, unsigned NumOps) {
2373 switch (NumOps) {
2374 case 0: return getNode(Opcode, VT);
2375 case 1: return getNode(Opcode, VT, Ops[0]);
2376 case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2377 case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2378 default: break;
2379 }
2380
2381 switch (Opcode) {
2382 default: break;
2383 case ISD::SELECT_CC: {
2384 assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2385 assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2386 "LHS and RHS of condition must have same type!");
2387 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2388 "True and False arms of SelectCC must have same type!");
2389 assert(Ops[2].getValueType() == VT &&
2390 "select_cc node must be of same type as true and false value!");
2391 break;
2392 }
2393 case ISD::BR_CC: {
2394 assert(NumOps == 5 && "BR_CC takes 5 operands!");
2395 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2396 "LHS/RHS of comparison should match types!");
2397 break;
2398 }
2399 }
2400
2401 // Memoize nodes.
2402 SDNode *N;
2403 SDVTList VTs = getVTList(VT);
2404 if (VT != MVT::Flag) {
2405 FoldingSetNodeID ID;
2406 AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2407 void *IP = 0;
2408 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2409 return SDOperand(E, 0);
2410 N = new SDNode(Opcode, VTs, Ops, NumOps);
2411 CSEMap.InsertNode(N, IP);
2412 } else {
2413 N = new SDNode(Opcode, VTs, Ops, NumOps);
2414 }
2415 AllNodes.push_back(N);
2416 return SDOperand(N, 0);
2417}
2418
2419SDOperand SelectionDAG::getNode(unsigned Opcode,
2420 std::vector<MVT::ValueType> &ResultTys,
2421 const SDOperand *Ops, unsigned NumOps) {
2422 return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2423 Ops, NumOps);
2424}
2425
2426SDOperand SelectionDAG::getNode(unsigned Opcode,
2427 const MVT::ValueType *VTs, unsigned NumVTs,
2428 const SDOperand *Ops, unsigned NumOps) {
2429 if (NumVTs == 1)
2430 return getNode(Opcode, VTs[0], Ops, NumOps);
2431 return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2432}
2433
2434SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2435 const SDOperand *Ops, unsigned NumOps) {
2436 if (VTList.NumVTs == 1)
2437 return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2438
2439 switch (Opcode) {
2440 // FIXME: figure out how to safely handle things like
2441 // int foo(int x) { return 1 << (x & 255); }
2442 // int bar() { return foo(256); }
2443#if 0
2444 case ISD::SRA_PARTS:
2445 case ISD::SRL_PARTS:
2446 case ISD::SHL_PARTS:
2447 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2448 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2449 return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2450 else if (N3.getOpcode() == ISD::AND)
2451 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2452 // If the and is only masking out bits that cannot effect the shift,
2453 // eliminate the and.
2454 unsigned NumBits = MVT::getSizeInBits(VT)*2;
2455 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2456 return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2457 }
2458 break;
2459#endif
2460 }
2461
2462 // Memoize the node unless it returns a flag.
2463 SDNode *N;
2464 if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2465 FoldingSetNodeID ID;
2466 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2467 void *IP = 0;
2468 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2469 return SDOperand(E, 0);
2470 if (NumOps == 1)
2471 N = new UnarySDNode(Opcode, VTList, Ops[0]);
2472 else if (NumOps == 2)
2473 N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2474 else if (NumOps == 3)
2475 N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2476 else
2477 N = new SDNode(Opcode, VTList, Ops, NumOps);
2478 CSEMap.InsertNode(N, IP);
2479 } else {
2480 if (NumOps == 1)
2481 N = new UnarySDNode(Opcode, VTList, Ops[0]);
2482 else if (NumOps == 2)
2483 N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2484 else if (NumOps == 3)
2485 N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2486 else
2487 N = new SDNode(Opcode, VTList, Ops, NumOps);
2488 }
2489 AllNodes.push_back(N);
2490 return SDOperand(N, 0);
2491}
2492
2493SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2494 if (!MVT::isExtendedVT(VT))
2495 return makeVTList(SDNode::getValueTypeList(VT), 1);
2496
2497 for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2498 E = VTList.end(); I != E; ++I) {
2499 if (I->size() == 1 && (*I)[0] == VT)
2500 return makeVTList(&(*I)[0], 1);
2501 }
2502 std::vector<MVT::ValueType> V;
2503 V.push_back(VT);
2504 VTList.push_front(V);
2505 return makeVTList(&(*VTList.begin())[0], 1);
2506}
2507
2508SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2509 for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2510 E = VTList.end(); I != E; ++I) {
2511 if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2512 return makeVTList(&(*I)[0], 2);
2513 }
2514 std::vector<MVT::ValueType> V;
2515 V.push_back(VT1);
2516 V.push_back(VT2);
2517 VTList.push_front(V);
2518 return makeVTList(&(*VTList.begin())[0], 2);
2519}
2520SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2521 MVT::ValueType VT3) {
2522 for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2523 E = VTList.end(); I != E; ++I) {
2524 if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2525 (*I)[2] == VT3)
2526 return makeVTList(&(*I)[0], 3);
2527 }
2528 std::vector<MVT::ValueType> V;
2529 V.push_back(VT1);
2530 V.push_back(VT2);
2531 V.push_back(VT3);
2532 VTList.push_front(V);
2533 return makeVTList(&(*VTList.begin())[0], 3);
2534}
2535
2536SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2537 switch (NumVTs) {
2538 case 0: assert(0 && "Cannot have nodes without results!");
2539 case 1: return getVTList(VTs[0]);
2540 case 2: return getVTList(VTs[0], VTs[1]);
2541 case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2542 default: break;
2543 }
2544
2545 for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2546 E = VTList.end(); I != E; ++I) {
2547 if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2548
2549 bool NoMatch = false;
2550 for (unsigned i = 2; i != NumVTs; ++i)
2551 if (VTs[i] != (*I)[i]) {
2552 NoMatch = true;
2553 break;
2554 }
2555 if (!NoMatch)
2556 return makeVTList(&*I->begin(), NumVTs);
2557 }
2558
2559 VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2560 return makeVTList(&*VTList.begin()->begin(), NumVTs);
2561}
2562
2563
2564/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2565/// specified operands. If the resultant node already exists in the DAG,
2566/// this does not modify the specified node, instead it returns the node that
2567/// already exists. If the resultant node does not exist in the DAG, the
2568/// input node is returned. As a degenerate case, if you specify the same
2569/// input operands as the node already has, the input node is returned.
2570SDOperand SelectionDAG::
2571UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2572 SDNode *N = InN.Val;
2573 assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2574
2575 // Check to see if there is no change.
2576 if (Op == N->getOperand(0)) return InN;
2577
2578 // See if the modified node already exists.
2579 void *InsertPos = 0;
2580 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2581 return SDOperand(Existing, InN.ResNo);
2582
2583 // Nope it doesn't. Remove the node from it's current place in the maps.
2584 if (InsertPos)
2585 RemoveNodeFromCSEMaps(N);
2586
2587 // Now we update the operands.
2588 N->OperandList[0].Val->removeUser(N);
2589 Op.Val->addUser(N);
2590 N->OperandList[0] = Op;
2591
2592 // If this gets put into a CSE map, add it.
2593 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2594 return InN;
2595}
2596
2597SDOperand SelectionDAG::
2598UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2599 SDNode *N = InN.Val;
2600 assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2601
2602 // Check to see if there is no change.
2603 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2604 return InN; // No operands changed, just return the input node.
2605
2606 // See if the modified node already exists.
2607 void *InsertPos = 0;
2608 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2609 return SDOperand(Existing, InN.ResNo);
2610
2611 // Nope it doesn't. Remove the node from it's current place in the maps.
2612 if (InsertPos)
2613 RemoveNodeFromCSEMaps(N);
2614
2615 // Now we update the operands.
2616 if (N->OperandList[0] != Op1) {
2617 N->OperandList[0].Val->removeUser(N);
2618 Op1.Val->addUser(N);
2619 N->OperandList[0] = Op1;
2620 }
2621 if (N->OperandList[1] != Op2) {
2622 N->OperandList[1].Val->removeUser(N);
2623 Op2.Val->addUser(N);
2624 N->OperandList[1] = Op2;
2625 }
2626
2627 // If this gets put into a CSE map, add it.
2628 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2629 return InN;
2630}
2631
2632SDOperand SelectionDAG::
2633UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2634 SDOperand Ops[] = { Op1, Op2, Op3 };
2635 return UpdateNodeOperands(N, Ops, 3);
2636}
2637
2638SDOperand SelectionDAG::
2639UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2640 SDOperand Op3, SDOperand Op4) {
2641 SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2642 return UpdateNodeOperands(N, Ops, 4);
2643}
2644
2645SDOperand SelectionDAG::
2646UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2647 SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2648 SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2649 return UpdateNodeOperands(N, Ops, 5);
2650}
2651
2652
2653SDOperand SelectionDAG::
2654UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2655 SDNode *N = InN.Val;
2656 assert(N->getNumOperands() == NumOps &&
2657 "Update with wrong number of operands");
2658
2659 // Check to see if there is no change.
2660 bool AnyChange = false;
2661 for (unsigned i = 0; i != NumOps; ++i) {
2662 if (Ops[i] != N->getOperand(i)) {
2663 AnyChange = true;
2664 break;
2665 }
2666 }
2667
2668 // No operands changed, just return the input node.
2669 if (!AnyChange) return InN;
2670
2671 // See if the modified node already exists.
2672 void *InsertPos = 0;
2673 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2674 return SDOperand(Existing, InN.ResNo);
2675
2676 // Nope it doesn't. Remove the node from it's current place in the maps.
2677 if (InsertPos)
2678 RemoveNodeFromCSEMaps(N);
2679
2680 // Now we update the operands.
2681 for (unsigned i = 0; i != NumOps; ++i) {
2682 if (N->OperandList[i] != Ops[i]) {
2683 N->OperandList[i].Val->removeUser(N);
2684 Ops[i].Val->addUser(N);
2685 N->OperandList[i] = Ops[i];
2686 }
2687 }
2688
2689 // If this gets put into a CSE map, add it.
2690 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2691 return InN;
2692}
2693
2694
2695/// MorphNodeTo - This frees the operands of the current node, resets the
2696/// opcode, types, and operands to the specified value. This should only be
2697/// used by the SelectionDAG class.
2698void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2699 const SDOperand *Ops, unsigned NumOps) {
2700 NodeType = Opc;
2701 ValueList = L.VTs;
2702 NumValues = L.NumVTs;
2703
2704 // Clear the operands list, updating used nodes to remove this from their
2705 // use list.
2706 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2707 I->Val->removeUser(this);
2708
2709 // If NumOps is larger than the # of operands we currently have, reallocate
2710 // the operand list.
2711 if (NumOps > NumOperands) {
2712 if (OperandsNeedDelete)
2713 delete [] OperandList;
2714 OperandList = new SDOperand[NumOps];
2715 OperandsNeedDelete = true;
2716 }
2717
2718 // Assign the new operands.
2719 NumOperands = NumOps;
2720
2721 for (unsigned i = 0, e = NumOps; i != e; ++i) {
2722 OperandList[i] = Ops[i];
2723 SDNode *N = OperandList[i].Val;
2724 N->Uses.push_back(this);
2725 }
2726}
2727
2728/// SelectNodeTo - These are used for target selectors to *mutate* the
2729/// specified node to have the specified return type, Target opcode, and
2730/// operands. Note that target opcodes are stored as
2731/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2732///
2733/// Note that SelectNodeTo returns the resultant node. If there is already a
2734/// node of the specified opcode and operands, it returns that node instead of
2735/// the current one.
2736SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2737 MVT::ValueType VT) {
2738 SDVTList VTs = getVTList(VT);
2739 FoldingSetNodeID ID;
2740 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2741 void *IP = 0;
2742 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2743 return ON;
2744
2745 RemoveNodeFromCSEMaps(N);
2746
2747 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2748
2749 CSEMap.InsertNode(N, IP);
2750 return N;
2751}
2752
2753SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2754 MVT::ValueType VT, SDOperand Op1) {
2755 // If an identical node already exists, use it.
2756 SDVTList VTs = getVTList(VT);
2757 SDOperand Ops[] = { Op1 };
2758
2759 FoldingSetNodeID ID;
2760 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2761 void *IP = 0;
2762 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2763 return ON;
2764
2765 RemoveNodeFromCSEMaps(N);
2766 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2767 CSEMap.InsertNode(N, IP);
2768 return N;
2769}
2770
2771SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2772 MVT::ValueType VT, SDOperand Op1,
2773 SDOperand Op2) {
2774 // If an identical node already exists, use it.
2775 SDVTList VTs = getVTList(VT);
2776 SDOperand Ops[] = { Op1, Op2 };
2777
2778 FoldingSetNodeID ID;
2779 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2780 void *IP = 0;
2781 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2782 return ON;
2783
2784 RemoveNodeFromCSEMaps(N);
2785
2786 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2787
2788 CSEMap.InsertNode(N, IP); // Memoize the new node.
2789 return N;
2790}
2791
2792SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2793 MVT::ValueType VT, SDOperand Op1,
2794 SDOperand Op2, SDOperand Op3) {
2795 // If an identical node already exists, use it.
2796 SDVTList VTs = getVTList(VT);
2797 SDOperand Ops[] = { Op1, Op2, Op3 };
2798 FoldingSetNodeID ID;
2799 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2800 void *IP = 0;
2801 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2802 return ON;
2803
2804 RemoveNodeFromCSEMaps(N);
2805
2806 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2807
2808 CSEMap.InsertNode(N, IP); // Memoize the new node.
2809 return N;
2810}
2811
2812SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2813 MVT::ValueType VT, const SDOperand *Ops,
2814 unsigned NumOps) {
2815 // If an identical node already exists, use it.
2816 SDVTList VTs = getVTList(VT);
2817 FoldingSetNodeID ID;
2818 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2819 void *IP = 0;
2820 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2821 return ON;
2822
2823 RemoveNodeFromCSEMaps(N);
2824 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2825
2826 CSEMap.InsertNode(N, IP); // Memoize the new node.
2827 return N;
2828}
2829
2830SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2831 MVT::ValueType VT1, MVT::ValueType VT2,
2832 SDOperand Op1, SDOperand Op2) {
2833 SDVTList VTs = getVTList(VT1, VT2);
2834 FoldingSetNodeID ID;
2835 SDOperand Ops[] = { Op1, Op2 };
2836 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2837 void *IP = 0;
2838 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2839 return ON;
2840
2841 RemoveNodeFromCSEMaps(N);
2842 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2843 CSEMap.InsertNode(N, IP); // Memoize the new node.
2844 return N;
2845}
2846
2847SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2848 MVT::ValueType VT1, MVT::ValueType VT2,
2849 SDOperand Op1, SDOperand Op2,
2850 SDOperand Op3) {
2851 // If an identical node already exists, use it.
2852 SDVTList VTs = getVTList(VT1, VT2);
2853 SDOperand Ops[] = { Op1, Op2, Op3 };
2854 FoldingSetNodeID ID;
2855 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2856 void *IP = 0;
2857 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2858 return ON;
2859
2860 RemoveNodeFromCSEMaps(N);
2861
2862 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2863 CSEMap.InsertNode(N, IP); // Memoize the new node.
2864 return N;
2865}
2866
2867
2868/// getTargetNode - These are used for target selectors to create a new node
2869/// with specified return type(s), target opcode, and operands.
2870///
2871/// Note that getTargetNode returns the resultant node. If there is already a
2872/// node of the specified opcode and operands, it returns that node instead of
2873/// the current one.
2874SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
2875 return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
2876}
2877SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2878 SDOperand Op1) {
2879 return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
2880}
2881SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2882 SDOperand Op1, SDOperand Op2) {
2883 return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
2884}
2885SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2886 SDOperand Op1, SDOperand Op2,
2887 SDOperand Op3) {
2888 return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
2889}
2890SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2891 const SDOperand *Ops, unsigned NumOps) {
2892 return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
2893}
2894SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2895 MVT::ValueType VT2, SDOperand Op1) {
2896 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2897 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
2898}
2899SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2900 MVT::ValueType VT2, SDOperand Op1,
2901 SDOperand Op2) {
2902 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2903 SDOperand Ops[] = { Op1, Op2 };
2904 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
2905}
2906SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2907 MVT::ValueType VT2, SDOperand Op1,
2908 SDOperand Op2, SDOperand Op3) {
2909 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2910 SDOperand Ops[] = { Op1, Op2, Op3 };
2911 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
2912}
2913SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2914 MVT::ValueType VT2,
2915 const SDOperand *Ops, unsigned NumOps) {
2916 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2917 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
2918}
2919SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2920 MVT::ValueType VT2, MVT::ValueType VT3,
2921 SDOperand Op1, SDOperand Op2) {
2922 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2923 SDOperand Ops[] = { Op1, Op2 };
2924 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
2925}
2926SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2927 MVT::ValueType VT2, MVT::ValueType VT3,
2928 SDOperand Op1, SDOperand Op2,
2929 SDOperand Op3) {
2930 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2931 SDOperand Ops[] = { Op1, Op2, Op3 };
2932 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
2933}
2934SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2935 MVT::ValueType VT2, MVT::ValueType VT3,
2936 const SDOperand *Ops, unsigned NumOps) {
2937 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2938 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
2939}
2940
2941/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2942/// This can cause recursive merging of nodes in the DAG.
2943///
2944/// This version assumes From/To have a single result value.
2945///
2946void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2947 std::vector<SDNode*> *Deleted) {
2948 SDNode *From = FromN.Val, *To = ToN.Val;
2949 assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2950 "Cannot replace with this method!");
2951 assert(From != To && "Cannot replace uses of with self");
2952
2953 while (!From->use_empty()) {
2954 // Process users until they are all gone.
2955 SDNode *U = *From->use_begin();
2956
2957 // This node is about to morph, remove its old self from the CSE maps.
2958 RemoveNodeFromCSEMaps(U);
2959
2960 for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2961 I != E; ++I)
2962 if (I->Val == From) {
2963 From->removeUser(U);
2964 I->Val = To;
2965 To->addUser(U);
2966 }
2967
2968 // Now that we have modified U, add it back to the CSE maps. If it already
2969 // exists there, recursively merge the results together.
2970 if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2971 ReplaceAllUsesWith(U, Existing, Deleted);
2972 // U is now dead.
2973 if (Deleted) Deleted->push_back(U);
2974 DeleteNodeNotInCSEMaps(U);
2975 }
2976 }
2977}
2978
2979/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2980/// This can cause recursive merging of nodes in the DAG.
2981///
2982/// This version assumes From/To have matching types and numbers of result
2983/// values.
2984///
2985void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2986 std::vector<SDNode*> *Deleted) {
2987 assert(From != To && "Cannot replace uses of with self");
2988 assert(From->getNumValues() == To->getNumValues() &&
2989 "Cannot use this version of ReplaceAllUsesWith!");
2990 if (From->getNumValues() == 1) { // If possible, use the faster version.
2991 ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2992 return;
2993 }
2994
2995 while (!From->use_empty()) {
2996 // Process users until they are all gone.
2997 SDNode *U = *From->use_begin();
2998
2999 // This node is about to morph, remove its old self from the CSE maps.
3000 RemoveNodeFromCSEMaps(U);
3001
3002 for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3003 I != E; ++I)
3004 if (I->Val == From) {
3005 From->removeUser(U);
3006 I->Val = To;
3007 To->addUser(U);
3008 }
3009
3010 // Now that we have modified U, add it back to the CSE maps. If it already
3011 // exists there, recursively merge the results together.
3012 if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3013 ReplaceAllUsesWith(U, Existing, Deleted);
3014 // U is now dead.
3015 if (Deleted) Deleted->push_back(U);
3016 DeleteNodeNotInCSEMaps(U);
3017 }
3018 }
3019}
3020
3021/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3022/// This can cause recursive merging of nodes in the DAG.
3023///
3024/// This version can replace From with any result values. To must match the
3025/// number and types of values returned by From.
3026void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3027 const SDOperand *To,
3028 std::vector<SDNode*> *Deleted) {
3029 if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
3030 // Degenerate case handled above.
3031 ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
3032 return;
3033 }
3034
3035 while (!From->use_empty()) {
3036 // Process users until they are all gone.
3037 SDNode *U = *From->use_begin();
3038
3039 // This node is about to morph, remove its old self from the CSE maps.
3040 RemoveNodeFromCSEMaps(U);
3041
3042 for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3043 I != E; ++I)
3044 if (I->Val == From) {
3045 const SDOperand &ToOp = To[I->ResNo];
3046 From->removeUser(U);
3047 *I = ToOp;
3048 ToOp.Val->addUser(U);
3049 }
3050
3051 // Now that we have modified U, add it back to the CSE maps. If it already
3052 // exists there, recursively merge the results together.
3053 if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3054 ReplaceAllUsesWith(U, Existing, Deleted);
3055 // U is now dead.
3056 if (Deleted) Deleted->push_back(U);
3057 DeleteNodeNotInCSEMaps(U);
3058 }
3059 }
3060}
3061
3062/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3063/// uses of other values produced by From.Val alone. The Deleted vector is
3064/// handled the same was as for ReplaceAllUsesWith.
3065void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3066 std::vector<SDNode*> &Deleted) {
3067 assert(From != To && "Cannot replace a value with itself");
3068 // Handle the simple, trivial, case efficiently.
3069 if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
3070 ReplaceAllUsesWith(From, To, &Deleted);
3071 return;
3072 }
3073
3074 // Get all of the users of From.Val. We want these in a nice,
3075 // deterministically ordered and uniqued set, so we use a SmallSetVector.
3076 SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3077
3078 while (!Users.empty()) {
3079 // We know that this user uses some value of From. If it is the right
3080 // value, update it.
3081 SDNode *User = Users.back();
3082 Users.pop_back();
3083
3084 for (SDOperand *Op = User->OperandList,
3085 *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
3086 if (*Op == From) {
3087 // Okay, we know this user needs to be updated. Remove its old self
3088 // from the CSE maps.
3089 RemoveNodeFromCSEMaps(User);
3090
3091 // Update all operands that match "From".
3092 for (; Op != E; ++Op) {
3093 if (*Op == From) {
3094 From.Val->removeUser(User);
3095 *Op = To;
3096 To.Val->addUser(User);
3097 }
3098 }
3099
3100 // Now that we have modified User, add it back to the CSE maps. If it
3101 // already exists there, recursively merge the results together.
3102 if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
3103 unsigned NumDeleted = Deleted.size();
3104 ReplaceAllUsesWith(User, Existing, &Deleted);
3105
3106 // User is now dead.
3107 Deleted.push_back(User);
3108 DeleteNodeNotInCSEMaps(User);
3109
3110 // We have to be careful here, because ReplaceAllUsesWith could have
3111 // deleted a user of From, which means there may be dangling pointers
3112 // in the "Users" setvector. Scan over the deleted node pointers and
3113 // remove them from the setvector.
3114 for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
3115 Users.remove(Deleted[i]);
3116 }
3117 break; // Exit the operand scanning loop.
3118 }
3119 }
3120 }
3121}
3122
3123
3124/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3125/// their allnodes order. It returns the maximum id.
3126unsigned SelectionDAG::AssignNodeIds() {
3127 unsigned Id = 0;
3128 for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3129 SDNode *N = I;
3130 N->setNodeId(Id++);
3131 }
3132 return Id;
3133}
3134
3135/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3136/// based on their topological order. It returns the maximum id and a vector
3137/// of the SDNodes* in assigned order by reference.
3138unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3139 unsigned DAGSize = AllNodes.size();
3140 std::vector<unsigned> InDegree(DAGSize);
3141 std::vector<SDNode*> Sources;
3142
3143 // Use a two pass approach to avoid using a std::map which is slow.
3144 unsigned Id = 0;
3145 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3146 SDNode *N = I;
3147 N->setNodeId(Id++);
3148 unsigned Degree = N->use_size();
3149 InDegree[N->getNodeId()] = Degree;
3150 if (Degree == 0)
3151 Sources.push_back(N);
3152 }
3153
3154 TopOrder.clear();
3155 while (!Sources.empty()) {
3156 SDNode *N = Sources.back();
3157 Sources.pop_back();
3158 TopOrder.push_back(N);
3159 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3160 SDNode *P = I->Val;
3161 unsigned Degree = --InDegree[P->getNodeId()];
3162 if (Degree == 0)
3163 Sources.push_back(P);
3164 }
3165 }
3166
3167 // Second pass, assign the actual topological order as node ids.
3168 Id = 0;
3169 for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3170 TI != TE; ++TI)
3171 (*TI)->setNodeId(Id++);
3172
3173 return Id;
3174}
3175
3176
3177
3178//===----------------------------------------------------------------------===//
3179// SDNode Class
3180//===----------------------------------------------------------------------===//
3181
3182// Out-of-line virtual method to give class a home.
3183void SDNode::ANCHOR() {}
3184void UnarySDNode::ANCHOR() {}
3185void BinarySDNode::ANCHOR() {}
3186void TernarySDNode::ANCHOR() {}
3187void HandleSDNode::ANCHOR() {}
3188void StringSDNode::ANCHOR() {}
3189void ConstantSDNode::ANCHOR() {}
3190void ConstantFPSDNode::ANCHOR() {}
3191void GlobalAddressSDNode::ANCHOR() {}
3192void FrameIndexSDNode::ANCHOR() {}
3193void JumpTableSDNode::ANCHOR() {}
3194void ConstantPoolSDNode::ANCHOR() {}
3195void BasicBlockSDNode::ANCHOR() {}
3196void SrcValueSDNode::ANCHOR() {}
3197void RegisterSDNode::ANCHOR() {}
3198void ExternalSymbolSDNode::ANCHOR() {}
3199void CondCodeSDNode::ANCHOR() {}
3200void VTSDNode::ANCHOR() {}
3201void LoadSDNode::ANCHOR() {}
3202void StoreSDNode::ANCHOR() {}
3203
3204HandleSDNode::~HandleSDNode() {
3205 SDVTList VTs = { 0, 0 };
3206 MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0); // Drops operand uses.
3207}
3208
3209GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3210 MVT::ValueType VT, int o)
3211 : SDNode(isa<GlobalVariable>(GA) &&
Dan Gohman53491e92007-07-23 20:24:29 +00003212 cast<GlobalVariable>(GA)->isThreadLocal() ?
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003213 // Thread Local
3214 (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3215 // Non Thread Local
3216 (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3217 getSDVTList(VT)), Offset(o) {
3218 TheGlobal = const_cast<GlobalValue*>(GA);
3219}
3220
3221/// Profile - Gather unique data for the node.
3222///
3223void SDNode::Profile(FoldingSetNodeID &ID) {
3224 AddNodeIDNode(ID, this);
3225}
3226
3227/// getValueTypeList - Return a pointer to the specified value type.
3228///
3229MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3230 static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3231 VTs[VT] = VT;
3232 return &VTs[VT];
3233}
3234
3235/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3236/// indicated value. This method ignores uses of other values defined by this
3237/// operation.
3238bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3239 assert(Value < getNumValues() && "Bad value!");
3240
3241 // If there is only one value, this is easy.
3242 if (getNumValues() == 1)
3243 return use_size() == NUses;
Evan Cheng0af04f72007-08-02 05:29:38 +00003244 if (use_size() < NUses) return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003245
3246 SDOperand TheValue(const_cast<SDNode *>(this), Value);
3247
3248 SmallPtrSet<SDNode*, 32> UsersHandled;
3249
3250 for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3251 SDNode *User = *UI;
3252 if (User->getNumOperands() == 1 ||
3253 UsersHandled.insert(User)) // First time we've seen this?
3254 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3255 if (User->getOperand(i) == TheValue) {
3256 if (NUses == 0)
3257 return false; // too many uses
3258 --NUses;
3259 }
3260 }
3261
3262 // Found exactly the right number of uses?
3263 return NUses == 0;
3264}
3265
3266
Evan Cheng0af04f72007-08-02 05:29:38 +00003267/// hasAnyUseOfValue - Return true if there are any use of the indicated
3268/// value. This method ignores uses of other values defined by this operation.
3269bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3270 assert(Value < getNumValues() && "Bad value!");
3271
3272 if (use_size() == 0) return false;
3273
3274 SDOperand TheValue(const_cast<SDNode *>(this), Value);
3275
3276 SmallPtrSet<SDNode*, 32> UsersHandled;
3277
3278 for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3279 SDNode *User = *UI;
3280 if (User->getNumOperands() == 1 ||
3281 UsersHandled.insert(User)) // First time we've seen this?
3282 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3283 if (User->getOperand(i) == TheValue) {
3284 return true;
3285 }
3286 }
3287
3288 return false;
3289}
3290
3291
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003292/// isOnlyUse - Return true if this node is the only use of N.
3293///
3294bool SDNode::isOnlyUse(SDNode *N) const {
3295 bool Seen = false;
3296 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3297 SDNode *User = *I;
3298 if (User == this)
3299 Seen = true;
3300 else
3301 return false;
3302 }
3303
3304 return Seen;
3305}
3306
3307/// isOperand - Return true if this node is an operand of N.
3308///
3309bool SDOperand::isOperand(SDNode *N) const {
3310 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3311 if (*this == N->getOperand(i))
3312 return true;
3313 return false;
3314}
3315
3316bool SDNode::isOperand(SDNode *N) const {
3317 for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3318 if (this == N->OperandList[i].Val)
3319 return true;
3320 return false;
3321}
3322
3323static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3324 SmallPtrSet<SDNode *, 32> &Visited) {
3325 if (found || !Visited.insert(N))
3326 return;
3327
3328 for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3329 SDNode *Op = N->getOperand(i).Val;
3330 if (Op == P) {
3331 found = true;
3332 return;
3333 }
3334 findPredecessor(Op, P, found, Visited);
3335 }
3336}
3337
3338/// isPredecessor - Return true if this node is a predecessor of N. This node
3339/// is either an operand of N or it can be reached by recursively traversing
3340/// up the operands.
3341/// NOTE: this is an expensive method. Use it carefully.
3342bool SDNode::isPredecessor(SDNode *N) const {
3343 SmallPtrSet<SDNode *, 32> Visited;
3344 bool found = false;
3345 findPredecessor(N, this, found, Visited);
3346 return found;
3347}
3348
3349uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3350 assert(Num < NumOperands && "Invalid child # of SDNode!");
3351 return cast<ConstantSDNode>(OperandList[Num])->getValue();
3352}
3353
3354std::string SDNode::getOperationName(const SelectionDAG *G) const {
3355 switch (getOpcode()) {
3356 default:
3357 if (getOpcode() < ISD::BUILTIN_OP_END)
3358 return "<<Unknown DAG Node>>";
3359 else {
3360 if (G) {
3361 if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3362 if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3363 return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
3364
3365 TargetLowering &TLI = G->getTargetLoweringInfo();
3366 const char *Name =
3367 TLI.getTargetNodeName(getOpcode());
3368 if (Name) return Name;
3369 }
3370
3371 return "<<Unknown Target Node>>";
3372 }
3373
3374 case ISD::PCMARKER: return "PCMarker";
3375 case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3376 case ISD::SRCVALUE: return "SrcValue";
3377 case ISD::EntryToken: return "EntryToken";
3378 case ISD::TokenFactor: return "TokenFactor";
3379 case ISD::AssertSext: return "AssertSext";
3380 case ISD::AssertZext: return "AssertZext";
3381
3382 case ISD::STRING: return "String";
3383 case ISD::BasicBlock: return "BasicBlock";
3384 case ISD::VALUETYPE: return "ValueType";
3385 case ISD::Register: return "Register";
3386
3387 case ISD::Constant: return "Constant";
3388 case ISD::ConstantFP: return "ConstantFP";
3389 case ISD::GlobalAddress: return "GlobalAddress";
3390 case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3391 case ISD::FrameIndex: return "FrameIndex";
3392 case ISD::JumpTable: return "JumpTable";
3393 case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3394 case ISD::RETURNADDR: return "RETURNADDR";
3395 case ISD::FRAMEADDR: return "FRAMEADDR";
3396 case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3397 case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3398 case ISD::EHSELECTION: return "EHSELECTION";
3399 case ISD::EH_RETURN: return "EH_RETURN";
3400 case ISD::ConstantPool: return "ConstantPool";
3401 case ISD::ExternalSymbol: return "ExternalSymbol";
3402 case ISD::INTRINSIC_WO_CHAIN: {
3403 unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3404 return Intrinsic::getName((Intrinsic::ID)IID);
3405 }
3406 case ISD::INTRINSIC_VOID:
3407 case ISD::INTRINSIC_W_CHAIN: {
3408 unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3409 return Intrinsic::getName((Intrinsic::ID)IID);
3410 }
3411
3412 case ISD::BUILD_VECTOR: return "BUILD_VECTOR";
3413 case ISD::TargetConstant: return "TargetConstant";
3414 case ISD::TargetConstantFP:return "TargetConstantFP";
3415 case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3416 case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3417 case ISD::TargetFrameIndex: return "TargetFrameIndex";
3418 case ISD::TargetJumpTable: return "TargetJumpTable";
3419 case ISD::TargetConstantPool: return "TargetConstantPool";
3420 case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3421
3422 case ISD::CopyToReg: return "CopyToReg";
3423 case ISD::CopyFromReg: return "CopyFromReg";
3424 case ISD::UNDEF: return "undef";
3425 case ISD::MERGE_VALUES: return "merge_values";
3426 case ISD::INLINEASM: return "inlineasm";
3427 case ISD::LABEL: return "label";
3428 case ISD::HANDLENODE: return "handlenode";
3429 case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3430 case ISD::CALL: return "call";
3431
3432 // Unary operators
3433 case ISD::FABS: return "fabs";
3434 case ISD::FNEG: return "fneg";
3435 case ISD::FSQRT: return "fsqrt";
3436 case ISD::FSIN: return "fsin";
3437 case ISD::FCOS: return "fcos";
3438 case ISD::FPOWI: return "fpowi";
3439
3440 // Binary operators
3441 case ISD::ADD: return "add";
3442 case ISD::SUB: return "sub";
3443 case ISD::MUL: return "mul";
3444 case ISD::MULHU: return "mulhu";
3445 case ISD::MULHS: return "mulhs";
3446 case ISD::SDIV: return "sdiv";
3447 case ISD::UDIV: return "udiv";
3448 case ISD::SREM: return "srem";
3449 case ISD::UREM: return "urem";
3450 case ISD::AND: return "and";
3451 case ISD::OR: return "or";
3452 case ISD::XOR: return "xor";
3453 case ISD::SHL: return "shl";
3454 case ISD::SRA: return "sra";
3455 case ISD::SRL: return "srl";
3456 case ISD::ROTL: return "rotl";
3457 case ISD::ROTR: return "rotr";
3458 case ISD::FADD: return "fadd";
3459 case ISD::FSUB: return "fsub";
3460 case ISD::FMUL: return "fmul";
3461 case ISD::FDIV: return "fdiv";
3462 case ISD::FREM: return "frem";
3463 case ISD::FCOPYSIGN: return "fcopysign";
3464
3465 case ISD::SETCC: return "setcc";
3466 case ISD::SELECT: return "select";
3467 case ISD::SELECT_CC: return "select_cc";
3468 case ISD::INSERT_VECTOR_ELT: return "insert_vector_elt";
3469 case ISD::EXTRACT_VECTOR_ELT: return "extract_vector_elt";
3470 case ISD::CONCAT_VECTORS: return "concat_vectors";
3471 case ISD::EXTRACT_SUBVECTOR: return "extract_subvector";
3472 case ISD::SCALAR_TO_VECTOR: return "scalar_to_vector";
3473 case ISD::VECTOR_SHUFFLE: return "vector_shuffle";
3474 case ISD::CARRY_FALSE: return "carry_false";
3475 case ISD::ADDC: return "addc";
3476 case ISD::ADDE: return "adde";
3477 case ISD::SUBC: return "subc";
3478 case ISD::SUBE: return "sube";
3479 case ISD::SHL_PARTS: return "shl_parts";
3480 case ISD::SRA_PARTS: return "sra_parts";
3481 case ISD::SRL_PARTS: return "srl_parts";
Christopher Lambb768c2e2007-07-26 07:34:40 +00003482
3483 case ISD::EXTRACT_SUBREG: return "extract_subreg";
3484 case ISD::INSERT_SUBREG: return "insert_subreg";
3485
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003486 // Conversion operators.
3487 case ISD::SIGN_EXTEND: return "sign_extend";
3488 case ISD::ZERO_EXTEND: return "zero_extend";
3489 case ISD::ANY_EXTEND: return "any_extend";
3490 case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3491 case ISD::TRUNCATE: return "truncate";
3492 case ISD::FP_ROUND: return "fp_round";
3493 case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3494 case ISD::FP_EXTEND: return "fp_extend";
3495
3496 case ISD::SINT_TO_FP: return "sint_to_fp";
3497 case ISD::UINT_TO_FP: return "uint_to_fp";
3498 case ISD::FP_TO_SINT: return "fp_to_sint";
3499 case ISD::FP_TO_UINT: return "fp_to_uint";
3500 case ISD::BIT_CONVERT: return "bit_convert";
3501
3502 // Control flow instructions
3503 case ISD::BR: return "br";
3504 case ISD::BRIND: return "brind";
3505 case ISD::BR_JT: return "br_jt";
3506 case ISD::BRCOND: return "brcond";
3507 case ISD::BR_CC: return "br_cc";
3508 case ISD::RET: return "ret";
3509 case ISD::CALLSEQ_START: return "callseq_start";
3510 case ISD::CALLSEQ_END: return "callseq_end";
3511
3512 // Other operators
3513 case ISD::LOAD: return "load";
3514 case ISD::STORE: return "store";
3515 case ISD::VAARG: return "vaarg";
3516 case ISD::VACOPY: return "vacopy";
3517 case ISD::VAEND: return "vaend";
3518 case ISD::VASTART: return "vastart";
3519 case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3520 case ISD::EXTRACT_ELEMENT: return "extract_element";
3521 case ISD::BUILD_PAIR: return "build_pair";
3522 case ISD::STACKSAVE: return "stacksave";
3523 case ISD::STACKRESTORE: return "stackrestore";
3524
3525 // Block memory operations.
3526 case ISD::MEMSET: return "memset";
3527 case ISD::MEMCPY: return "memcpy";
3528 case ISD::MEMMOVE: return "memmove";
3529
3530 // Bit manipulation
3531 case ISD::BSWAP: return "bswap";
3532 case ISD::CTPOP: return "ctpop";
3533 case ISD::CTTZ: return "cttz";
3534 case ISD::CTLZ: return "ctlz";
3535
3536 // Debug info
3537 case ISD::LOCATION: return "location";
3538 case ISD::DEBUG_LOC: return "debug_loc";
3539
Duncan Sands38947cd2007-07-27 12:58:54 +00003540 // Trampolines
3541 case ISD::ADJUST_TRAMP: return "adjust_tramp";
3542 case ISD::TRAMPOLINE: return "trampoline";
3543
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003544 case ISD::CONDCODE:
3545 switch (cast<CondCodeSDNode>(this)->get()) {
3546 default: assert(0 && "Unknown setcc condition!");
3547 case ISD::SETOEQ: return "setoeq";
3548 case ISD::SETOGT: return "setogt";
3549 case ISD::SETOGE: return "setoge";
3550 case ISD::SETOLT: return "setolt";
3551 case ISD::SETOLE: return "setole";
3552 case ISD::SETONE: return "setone";
3553
3554 case ISD::SETO: return "seto";
3555 case ISD::SETUO: return "setuo";
3556 case ISD::SETUEQ: return "setue";
3557 case ISD::SETUGT: return "setugt";
3558 case ISD::SETUGE: return "setuge";
3559 case ISD::SETULT: return "setult";
3560 case ISD::SETULE: return "setule";
3561 case ISD::SETUNE: return "setune";
3562
3563 case ISD::SETEQ: return "seteq";
3564 case ISD::SETGT: return "setgt";
3565 case ISD::SETGE: return "setge";
3566 case ISD::SETLT: return "setlt";
3567 case ISD::SETLE: return "setle";
3568 case ISD::SETNE: return "setne";
3569 }
3570 }
3571}
3572
3573const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
3574 switch (AM) {
3575 default:
3576 return "";
3577 case ISD::PRE_INC:
3578 return "<pre-inc>";
3579 case ISD::PRE_DEC:
3580 return "<pre-dec>";
3581 case ISD::POST_INC:
3582 return "<post-inc>";
3583 case ISD::POST_DEC:
3584 return "<post-dec>";
3585 }
3586}
3587
3588void SDNode::dump() const { dump(0); }
3589void SDNode::dump(const SelectionDAG *G) const {
3590 cerr << (void*)this << ": ";
3591
3592 for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
3593 if (i) cerr << ",";
3594 if (getValueType(i) == MVT::Other)
3595 cerr << "ch";
3596 else
3597 cerr << MVT::getValueTypeString(getValueType(i));
3598 }
3599 cerr << " = " << getOperationName(G);
3600
3601 cerr << " ";
3602 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3603 if (i) cerr << ", ";
3604 cerr << (void*)getOperand(i).Val;
3605 if (unsigned RN = getOperand(i).ResNo)
3606 cerr << ":" << RN;
3607 }
3608
3609 if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
3610 cerr << "<" << CSDN->getValue() << ">";
3611 } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
3612 cerr << "<" << CSDN->getValue() << ">";
3613 } else if (const GlobalAddressSDNode *GADN =
3614 dyn_cast<GlobalAddressSDNode>(this)) {
3615 int offset = GADN->getOffset();
3616 cerr << "<";
3617 WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
3618 if (offset > 0)
3619 cerr << " + " << offset;
3620 else
3621 cerr << " " << offset;
3622 } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
3623 cerr << "<" << FIDN->getIndex() << ">";
3624 } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
3625 cerr << "<" << JTDN->getIndex() << ">";
3626 } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
3627 int offset = CP->getOffset();
3628 if (CP->isMachineConstantPoolEntry())
3629 cerr << "<" << *CP->getMachineCPVal() << ">";
3630 else
3631 cerr << "<" << *CP->getConstVal() << ">";
3632 if (offset > 0)
3633 cerr << " + " << offset;
3634 else
3635 cerr << " " << offset;
3636 } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
3637 cerr << "<";
3638 const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
3639 if (LBB)
3640 cerr << LBB->getName() << " ";
3641 cerr << (const void*)BBDN->getBasicBlock() << ">";
3642 } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
3643 if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
3644 cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
3645 } else {
3646 cerr << " #" << R->getReg();
3647 }
3648 } else if (const ExternalSymbolSDNode *ES =
3649 dyn_cast<ExternalSymbolSDNode>(this)) {
3650 cerr << "'" << ES->getSymbol() << "'";
3651 } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
3652 if (M->getValue())
3653 cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
3654 else
3655 cerr << "<null:" << M->getOffset() << ">";
3656 } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
3657 cerr << ":" << MVT::getValueTypeString(N->getVT());
3658 } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
3659 bool doExt = true;
3660 switch (LD->getExtensionType()) {
3661 default: doExt = false; break;
3662 case ISD::EXTLOAD:
3663 cerr << " <anyext ";
3664 break;
3665 case ISD::SEXTLOAD:
3666 cerr << " <sext ";
3667 break;
3668 case ISD::ZEXTLOAD:
3669 cerr << " <zext ";
3670 break;
3671 }
3672 if (doExt)
3673 cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">";
3674
3675 const char *AM = getIndexedModeName(LD->getAddressingMode());
Duncan Sandsf9a44972007-07-19 07:31:58 +00003676 if (*AM)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003677 cerr << " " << AM;
3678 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
3679 if (ST->isTruncatingStore())
3680 cerr << " <trunc "
3681 << MVT::getValueTypeString(ST->getStoredVT()) << ">";
3682
3683 const char *AM = getIndexedModeName(ST->getAddressingMode());
Duncan Sandsf9a44972007-07-19 07:31:58 +00003684 if (*AM)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003685 cerr << " " << AM;
3686 }
3687}
3688
3689static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
3690 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3691 if (N->getOperand(i).Val->hasOneUse())
3692 DumpNodes(N->getOperand(i).Val, indent+2, G);
3693 else
3694 cerr << "\n" << std::string(indent+2, ' ')
3695 << (void*)N->getOperand(i).Val << ": <multiple use>";
3696
3697
3698 cerr << "\n" << std::string(indent, ' ');
3699 N->dump(G);
3700}
3701
3702void SelectionDAG::dump() const {
3703 cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
3704 std::vector<const SDNode*> Nodes;
3705 for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
3706 I != E; ++I)
3707 Nodes.push_back(I);
3708
3709 std::sort(Nodes.begin(), Nodes.end());
3710
3711 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3712 if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
3713 DumpNodes(Nodes[i], 2, this);
3714 }
3715
3716 if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
3717
3718 cerr << "\n\n";
3719}
3720
3721const Type *ConstantPoolSDNode::getType() const {
3722 if (isMachineConstantPoolEntry())
3723 return Val.MachineCPVal->getType();
3724 return Val.ConstVal->getType();
3725}