blob: 33326e14d0c4671d765f1894be2e65e4c97a1d96 [file] [log] [blame]
Anton Korobeynikov50276522008-04-23 22:29:24 +00001//===-- CPPBackend.cpp - Library for converting LLVM code to C++ code -----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the writing of the LLVM IR as a set of C++ calls to the
11// LLVM IR interface. The input module is assumed to be verified.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CPPTargetMachine.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instruction.h"
21#include "llvm/Instructions.h"
22#include "llvm/Module.h"
23#include "llvm/Pass.h"
24#include "llvm/PassManager.h"
25#include "llvm/TypeSymbolTable.h"
26#include "llvm/Target/TargetMachineRegistry.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/Support/CommandLine.h"
Bill Wendling1a53ead2008-07-27 23:18:30 +000031#include "llvm/Support/Streams.h"
Owen Andersoncb371882008-08-21 00:14:44 +000032#include "llvm/Support/raw_ostream.h"
Anton Korobeynikov50276522008-04-23 22:29:24 +000033#include "llvm/Config/config.h"
34#include <algorithm>
Anton Korobeynikov50276522008-04-23 22:29:24 +000035#include <set>
36
37using namespace llvm;
38
39static cl::opt<std::string>
Anton Korobeynikov8d3e74e2008-04-23 22:37:03 +000040FuncName("cppfname", cl::desc("Specify the name of the generated function"),
Anton Korobeynikov50276522008-04-23 22:29:24 +000041 cl::value_desc("function name"));
42
43enum WhatToGenerate {
44 GenProgram,
45 GenModule,
46 GenContents,
47 GenFunction,
48 GenFunctions,
49 GenInline,
50 GenVariable,
51 GenType
52};
53
Anton Korobeynikov8d3e74e2008-04-23 22:37:03 +000054static cl::opt<WhatToGenerate> GenerationType("cppgen", cl::Optional,
Anton Korobeynikov50276522008-04-23 22:29:24 +000055 cl::desc("Choose what kind of output to generate"),
56 cl::init(GenProgram),
57 cl::values(
Anton Korobeynikov8d3e74e2008-04-23 22:37:03 +000058 clEnumValN(GenProgram, "program", "Generate a complete program"),
59 clEnumValN(GenModule, "module", "Generate a module definition"),
60 clEnumValN(GenContents, "contents", "Generate contents of a module"),
61 clEnumValN(GenFunction, "function", "Generate a function definition"),
62 clEnumValN(GenFunctions,"functions", "Generate all function definitions"),
63 clEnumValN(GenInline, "inline", "Generate an inline function"),
64 clEnumValN(GenVariable, "variable", "Generate a variable definition"),
65 clEnumValN(GenType, "type", "Generate a type definition"),
Anton Korobeynikov50276522008-04-23 22:29:24 +000066 clEnumValEnd
67 )
68);
69
Anton Korobeynikov8d3e74e2008-04-23 22:37:03 +000070static cl::opt<std::string> NameToGenerate("cppfor", cl::Optional,
Anton Korobeynikov50276522008-04-23 22:29:24 +000071 cl::desc("Specify the name of the thing to generate"),
72 cl::init("!bad!"));
73
Dan Gohman844731a2008-05-13 00:00:25 +000074// Register the target.
75static RegisterTarget<CPPTargetMachine> X("cpp", " C++ backend");
Anton Korobeynikov50276522008-04-23 22:29:24 +000076
Dan Gohman844731a2008-05-13 00:00:25 +000077namespace {
Anton Korobeynikov50276522008-04-23 22:29:24 +000078 typedef std::vector<const Type*> TypeList;
79 typedef std::map<const Type*,std::string> TypeMap;
80 typedef std::map<const Value*,std::string> ValueMap;
81 typedef std::set<std::string> NameSet;
82 typedef std::set<const Type*> TypeSet;
83 typedef std::set<const Value*> ValueSet;
84 typedef std::map<const Value*,std::string> ForwardRefMap;
85
86 /// CppWriter - This class is the main chunk of code that converts an LLVM
87 /// module to a C++ translation unit.
88 class CppWriter : public ModulePass {
89 const char* progname;
Owen Andersoncb371882008-08-21 00:14:44 +000090 raw_ostream &Out;
Anton Korobeynikov50276522008-04-23 22:29:24 +000091 const Module *TheModule;
92 uint64_t uniqueNum;
93 TypeMap TypeNames;
94 ValueMap ValueNames;
95 TypeMap UnresolvedTypes;
96 TypeList TypeStack;
97 NameSet UsedNames;
98 TypeSet DefinedTypes;
99 ValueSet DefinedValues;
100 ForwardRefMap ForwardRefs;
101 bool is_inline;
102
103 public:
104 static char ID;
Owen Andersoncb371882008-08-21 00:14:44 +0000105 explicit CppWriter(raw_ostream &o) :
Anton Korobeynikov966e7992008-04-29 18:16:22 +0000106 ModulePass((intptr_t)&ID), Out(o), uniqueNum(0), is_inline(false) {}
Anton Korobeynikov50276522008-04-23 22:29:24 +0000107
108 virtual const char *getPassName() const { return "C++ backend"; }
109
110 bool runOnModule(Module &M);
111
Anton Korobeynikov50276522008-04-23 22:29:24 +0000112 void printProgram(const std::string& fname, const std::string& modName );
113 void printModule(const std::string& fname, const std::string& modName );
114 void printContents(const std::string& fname, const std::string& modName );
115 void printFunction(const std::string& fname, const std::string& funcName );
116 void printFunctions();
117 void printInline(const std::string& fname, const std::string& funcName );
118 void printVariable(const std::string& fname, const std::string& varName );
119 void printType(const std::string& fname, const std::string& typeName );
120
121 void error(const std::string& msg);
122
123 private:
124 void printLinkageType(GlobalValue::LinkageTypes LT);
125 void printVisibilityType(GlobalValue::VisibilityTypes VisTypes);
126 void printCallingConv(unsigned cc);
127 void printEscapedString(const std::string& str);
128 void printCFP(const ConstantFP* CFP);
129
130 std::string getCppName(const Type* val);
131 inline void printCppName(const Type* val);
132
133 std::string getCppName(const Value* val);
134 inline void printCppName(const Value* val);
135
136 void printParamAttrs(const PAListPtr &PAL, const std::string &name);
137 bool printTypeInternal(const Type* Ty);
138 inline void printType(const Type* Ty);
139 void printTypes(const Module* M);
140
141 void printConstant(const Constant *CPV);
142 void printConstants(const Module* M);
143
144 void printVariableUses(const GlobalVariable *GV);
145 void printVariableHead(const GlobalVariable *GV);
146 void printVariableBody(const GlobalVariable *GV);
147
148 void printFunctionUses(const Function *F);
149 void printFunctionHead(const Function *F);
150 void printFunctionBody(const Function *F);
151 void printInstruction(const Instruction *I, const std::string& bbname);
152 std::string getOpName(Value*);
153
154 void printModuleBody();
155 };
156
157 static unsigned indent_level = 0;
Owen Andersoncb371882008-08-21 00:14:44 +0000158 inline raw_ostream& nl(raw_ostream& Out, int delta = 0) {
Anton Korobeynikov50276522008-04-23 22:29:24 +0000159 Out << "\n";
160 if (delta >= 0 || indent_level >= unsigned(-delta))
161 indent_level += delta;
162 for (unsigned i = 0; i < indent_level; ++i)
163 Out << " ";
164 return Out;
165 }
166
167 inline void in() { indent_level++; }
168 inline void out() { if (indent_level >0) indent_level--; }
169
170 inline void
171 sanitize(std::string& str) {
172 for (size_t i = 0; i < str.length(); ++i)
173 if (!isalnum(str[i]) && str[i] != '_')
174 str[i] = '_';
175 }
176
177 inline std::string
178 getTypePrefix(const Type* Ty ) {
179 switch (Ty->getTypeID()) {
180 case Type::VoidTyID: return "void_";
181 case Type::IntegerTyID:
182 return std::string("int") + utostr(cast<IntegerType>(Ty)->getBitWidth()) +
183 "_";
184 case Type::FloatTyID: return "float_";
185 case Type::DoubleTyID: return "double_";
186 case Type::LabelTyID: return "label_";
187 case Type::FunctionTyID: return "func_";
188 case Type::StructTyID: return "struct_";
189 case Type::ArrayTyID: return "array_";
190 case Type::PointerTyID: return "ptr_";
191 case Type::VectorTyID: return "packed_";
192 case Type::OpaqueTyID: return "opaque_";
193 default: return "other_";
194 }
195 return "unknown_";
196 }
197
198 // Looks up the type in the symbol table and returns a pointer to its name or
199 // a null pointer if it wasn't found. Note that this isn't the same as the
200 // Mode::getTypeName function which will return an empty string, not a null
201 // pointer if the name is not found.
202 inline const std::string*
203 findTypeName(const TypeSymbolTable& ST, const Type* Ty) {
204 TypeSymbolTable::const_iterator TI = ST.begin();
205 TypeSymbolTable::const_iterator TE = ST.end();
206 for (;TI != TE; ++TI)
207 if (TI->second == Ty)
208 return &(TI->first);
209 return 0;
210 }
211
212 void CppWriter::error(const std::string& msg) {
Bill Wendling1a53ead2008-07-27 23:18:30 +0000213 cerr << progname << ": " << msg << "\n";
Anton Korobeynikov50276522008-04-23 22:29:24 +0000214 exit(2);
215 }
216
217 // printCFP - Print a floating point constant .. very carefully :)
218 // This makes sure that conversion to/from floating yields the same binary
219 // result so that we don't lose precision.
220 void CppWriter::printCFP(const ConstantFP *CFP) {
221 APFloat APF = APFloat(CFP->getValueAPF()); // copy
222 if (CFP->getType() == Type::FloatTy)
223 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven);
224 Out << "ConstantFP::get(";
Anton Korobeynikov50276522008-04-23 22:29:24 +0000225 Out << "APFloat(";
226#if HAVE_PRINTF_A
227 char Buffer[100];
228 sprintf(Buffer, "%A", APF.convertToDouble());
229 if ((!strncmp(Buffer, "0x", 2) ||
230 !strncmp(Buffer, "-0x", 3) ||
231 !strncmp(Buffer, "+0x", 3)) &&
232 APF.bitwiseIsEqual(APFloat(atof(Buffer)))) {
233 if (CFP->getType() == Type::DoubleTy)
234 Out << "BitsToDouble(" << Buffer << ")";
235 else
236 Out << "BitsToFloat((float)" << Buffer << ")";
237 Out << ")";
238 } else {
239#endif
240 std::string StrVal = ftostr(CFP->getValueAPF());
241
242 while (StrVal[0] == ' ')
243 StrVal.erase(StrVal.begin());
244
245 // Check to make sure that the stringized number is not some string like
246 // "Inf" or NaN. Check that the string matches the "[-+]?[0-9]" regex.
247 if (((StrVal[0] >= '0' && StrVal[0] <= '9') ||
248 ((StrVal[0] == '-' || StrVal[0] == '+') &&
249 (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
250 (CFP->isExactlyValue(atof(StrVal.c_str())))) {
251 if (CFP->getType() == Type::DoubleTy)
252 Out << StrVal;
253 else
254 Out << StrVal << "f";
255 } else if (CFP->getType() == Type::DoubleTy)
Owen Andersoncb371882008-08-21 00:14:44 +0000256 Out << "BitsToDouble(0x"
257 << utohexstr(CFP->getValueAPF().convertToAPInt().getZExtValue())
258 << "ULL) /* " << StrVal << " */";
Anton Korobeynikov50276522008-04-23 22:29:24 +0000259 else
Owen Andersoncb371882008-08-21 00:14:44 +0000260 Out << "BitsToFloat(0x"
261 << utohexstr((uint32_t)CFP->getValueAPF().convertToAPInt().getZExtValue())
262 << "U) /* " << StrVal << " */";
Anton Korobeynikov50276522008-04-23 22:29:24 +0000263 Out << ")";
264#if HAVE_PRINTF_A
265 }
266#endif
267 Out << ")";
268 }
269
270 void CppWriter::printCallingConv(unsigned cc){
271 // Print the calling convention.
272 switch (cc) {
273 case CallingConv::C: Out << "CallingConv::C"; break;
274 case CallingConv::Fast: Out << "CallingConv::Fast"; break;
275 case CallingConv::Cold: Out << "CallingConv::Cold"; break;
276 case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break;
277 default: Out << cc; break;
278 }
279 }
280
281 void CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) {
282 switch (LT) {
283 case GlobalValue::InternalLinkage:
284 Out << "GlobalValue::InternalLinkage"; break;
285 case GlobalValue::LinkOnceLinkage:
286 Out << "GlobalValue::LinkOnceLinkage "; break;
287 case GlobalValue::WeakLinkage:
288 Out << "GlobalValue::WeakLinkage"; break;
289 case GlobalValue::AppendingLinkage:
290 Out << "GlobalValue::AppendingLinkage"; break;
291 case GlobalValue::ExternalLinkage:
292 Out << "GlobalValue::ExternalLinkage"; break;
293 case GlobalValue::DLLImportLinkage:
294 Out << "GlobalValue::DLLImportLinkage"; break;
295 case GlobalValue::DLLExportLinkage:
296 Out << "GlobalValue::DLLExportLinkage"; break;
297 case GlobalValue::ExternalWeakLinkage:
298 Out << "GlobalValue::ExternalWeakLinkage"; break;
299 case GlobalValue::GhostLinkage:
300 Out << "GlobalValue::GhostLinkage"; break;
Dale Johannesenaafce772008-05-14 20:12:51 +0000301 case GlobalValue::CommonLinkage:
302 Out << "GlobalValue::CommonLinkage"; break;
Anton Korobeynikov50276522008-04-23 22:29:24 +0000303 }
304 }
305
306 void CppWriter::printVisibilityType(GlobalValue::VisibilityTypes VisType) {
307 switch (VisType) {
308 default: assert(0 && "Unknown GVar visibility");
309 case GlobalValue::DefaultVisibility:
310 Out << "GlobalValue::DefaultVisibility";
311 break;
312 case GlobalValue::HiddenVisibility:
313 Out << "GlobalValue::HiddenVisibility";
314 break;
315 case GlobalValue::ProtectedVisibility:
316 Out << "GlobalValue::ProtectedVisibility";
317 break;
318 }
319 }
320
321 // printEscapedString - Print each character of the specified string, escaping
322 // it if it is not printable or if it is an escape char.
323 void CppWriter::printEscapedString(const std::string &Str) {
324 for (unsigned i = 0, e = Str.size(); i != e; ++i) {
325 unsigned char C = Str[i];
326 if (isprint(C) && C != '"' && C != '\\') {
327 Out << C;
328 } else {
329 Out << "\\x"
330 << (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
331 << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
332 }
333 }
334 }
335
336 std::string CppWriter::getCppName(const Type* Ty) {
337 // First, handle the primitive types .. easy
338 if (Ty->isPrimitiveType() || Ty->isInteger()) {
339 switch (Ty->getTypeID()) {
340 case Type::VoidTyID: return "Type::VoidTy";
341 case Type::IntegerTyID: {
342 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
343 return "IntegerType::get(" + utostr(BitWidth) + ")";
344 }
345 case Type::FloatTyID: return "Type::FloatTy";
346 case Type::DoubleTyID: return "Type::DoubleTy";
347 case Type::LabelTyID: return "Type::LabelTy";
348 default:
349 error("Invalid primitive type");
350 break;
351 }
352 return "Type::VoidTy"; // shouldn't be returned, but make it sensible
353 }
354
355 // Now, see if we've seen the type before and return that
356 TypeMap::iterator I = TypeNames.find(Ty);
357 if (I != TypeNames.end())
358 return I->second;
359
360 // Okay, let's build a new name for this type. Start with a prefix
361 const char* prefix = 0;
362 switch (Ty->getTypeID()) {
363 case Type::FunctionTyID: prefix = "FuncTy_"; break;
364 case Type::StructTyID: prefix = "StructTy_"; break;
365 case Type::ArrayTyID: prefix = "ArrayTy_"; break;
366 case Type::PointerTyID: prefix = "PointerTy_"; break;
367 case Type::OpaqueTyID: prefix = "OpaqueTy_"; break;
368 case Type::VectorTyID: prefix = "VectorTy_"; break;
369 default: prefix = "OtherTy_"; break; // prevent breakage
370 }
371
372 // See if the type has a name in the symboltable and build accordingly
373 const std::string* tName = findTypeName(TheModule->getTypeSymbolTable(), Ty);
374 std::string name;
375 if (tName)
376 name = std::string(prefix) + *tName;
377 else
378 name = std::string(prefix) + utostr(uniqueNum++);
379 sanitize(name);
380
381 // Save the name
382 return TypeNames[Ty] = name;
383 }
384
385 void CppWriter::printCppName(const Type* Ty) {
386 printEscapedString(getCppName(Ty));
387 }
388
389 std::string CppWriter::getCppName(const Value* val) {
390 std::string name;
391 ValueMap::iterator I = ValueNames.find(val);
392 if (I != ValueNames.end() && I->first == val)
393 return I->second;
394
395 if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(val)) {
396 name = std::string("gvar_") +
397 getTypePrefix(GV->getType()->getElementType());
398 } else if (isa<Function>(val)) {
399 name = std::string("func_");
400 } else if (const Constant* C = dyn_cast<Constant>(val)) {
401 name = std::string("const_") + getTypePrefix(C->getType());
402 } else if (const Argument* Arg = dyn_cast<Argument>(val)) {
403 if (is_inline) {
404 unsigned argNum = std::distance(Arg->getParent()->arg_begin(),
405 Function::const_arg_iterator(Arg)) + 1;
406 name = std::string("arg_") + utostr(argNum);
407 NameSet::iterator NI = UsedNames.find(name);
408 if (NI != UsedNames.end())
409 name += std::string("_") + utostr(uniqueNum++);
410 UsedNames.insert(name);
411 return ValueNames[val] = name;
412 } else {
413 name = getTypePrefix(val->getType());
414 }
415 } else {
416 name = getTypePrefix(val->getType());
417 }
418 name += (val->hasName() ? val->getName() : utostr(uniqueNum++));
419 sanitize(name);
420 NameSet::iterator NI = UsedNames.find(name);
421 if (NI != UsedNames.end())
422 name += std::string("_") + utostr(uniqueNum++);
423 UsedNames.insert(name);
424 return ValueNames[val] = name;
425 }
426
427 void CppWriter::printCppName(const Value* val) {
428 printEscapedString(getCppName(val));
429 }
430
431 void CppWriter::printParamAttrs(const PAListPtr &PAL,
432 const std::string &name) {
Nicolas Geoffray9474ede2008-05-14 07:52:03 +0000433 Out << "PAListPtr " << name << "_PAL;";
Anton Korobeynikov50276522008-04-23 22:29:24 +0000434 nl(Out);
435 if (!PAL.isEmpty()) {
436 Out << '{'; in(); nl(Out);
437 Out << "SmallVector<ParamAttrsWithIndex, 4> Attrs;"; nl(Out);
438 Out << "ParamAttrsWithIndex PAWI;"; nl(Out);
439 for (unsigned i = 0; i < PAL.getNumSlots(); ++i) {
440 uint16_t index = PAL.getSlot(i).Index;
441 ParameterAttributes attrs = PAL.getSlot(i).Attrs;
Nicolas Geoffray9474ede2008-05-14 07:52:03 +0000442 Out << "PAWI.Index = " << index << "; PAWI.Attrs = 0 ";
Anton Korobeynikov50276522008-04-23 22:29:24 +0000443 if (attrs & ParamAttr::SExt)
444 Out << " | ParamAttr::SExt";
445 if (attrs & ParamAttr::ZExt)
446 Out << " | ParamAttr::ZExt";
447 if (attrs & ParamAttr::StructRet)
448 Out << " | ParamAttr::StructRet";
449 if (attrs & ParamAttr::InReg)
450 Out << " | ParamAttr::InReg";
451 if (attrs & ParamAttr::NoReturn)
452 Out << " | ParamAttr::NoReturn";
453 if (attrs & ParamAttr::NoUnwind)
454 Out << " | ParamAttr::NoUnwind";
455 if (attrs & ParamAttr::ByVal)
456 Out << " | ParamAttr::ByVal";
457 if (attrs & ParamAttr::NoAlias)
458 Out << " | ParamAttr::NoAlias";
459 if (attrs & ParamAttr::Nest)
460 Out << " | ParamAttr::Nest";
461 if (attrs & ParamAttr::ReadNone)
462 Out << " | ParamAttr::ReadNone";
463 if (attrs & ParamAttr::ReadOnly)
464 Out << " | ParamAttr::ReadOnly";
465 Out << ";";
466 nl(Out);
467 Out << "Attrs.push_back(PAWI);";
468 nl(Out);
469 }
470 Out << name << "_PAL = PAListPtr::get(Attrs.begin(), Attrs.end());";
471 nl(Out);
472 out(); nl(Out);
473 Out << '}'; nl(Out);
474 }
475 }
476
477 bool CppWriter::printTypeInternal(const Type* Ty) {
478 // We don't print definitions for primitive types
479 if (Ty->isPrimitiveType() || Ty->isInteger())
480 return false;
481
482 // If we already defined this type, we don't need to define it again.
483 if (DefinedTypes.find(Ty) != DefinedTypes.end())
484 return false;
485
486 // Everything below needs the name for the type so get it now.
487 std::string typeName(getCppName(Ty));
488
489 // Search the type stack for recursion. If we find it, then generate this
490 // as an OpaqueType, but make sure not to do this multiple times because
491 // the type could appear in multiple places on the stack. Once the opaque
492 // definition is issued, it must not be re-issued. Consequently we have to
493 // check the UnresolvedTypes list as well.
494 TypeList::const_iterator TI = std::find(TypeStack.begin(), TypeStack.end(),
495 Ty);
496 if (TI != TypeStack.end()) {
497 TypeMap::const_iterator I = UnresolvedTypes.find(Ty);
498 if (I == UnresolvedTypes.end()) {
499 Out << "PATypeHolder " << typeName << "_fwd = OpaqueType::get();";
500 nl(Out);
501 UnresolvedTypes[Ty] = typeName;
502 }
503 return true;
504 }
505
506 // We're going to print a derived type which, by definition, contains other
507 // types. So, push this one we're printing onto the type stack to assist with
508 // recursive definitions.
509 TypeStack.push_back(Ty);
510
511 // Print the type definition
512 switch (Ty->getTypeID()) {
513 case Type::FunctionTyID: {
514 const FunctionType* FT = cast<FunctionType>(Ty);
515 Out << "std::vector<const Type*>" << typeName << "_args;";
516 nl(Out);
517 FunctionType::param_iterator PI = FT->param_begin();
518 FunctionType::param_iterator PE = FT->param_end();
519 for (; PI != PE; ++PI) {
520 const Type* argTy = static_cast<const Type*>(*PI);
521 bool isForward = printTypeInternal(argTy);
522 std::string argName(getCppName(argTy));
523 Out << typeName << "_args.push_back(" << argName;
524 if (isForward)
525 Out << "_fwd";
526 Out << ");";
527 nl(Out);
528 }
529 bool isForward = printTypeInternal(FT->getReturnType());
530 std::string retTypeName(getCppName(FT->getReturnType()));
531 Out << "FunctionType* " << typeName << " = FunctionType::get(";
532 in(); nl(Out) << "/*Result=*/" << retTypeName;
533 if (isForward)
534 Out << "_fwd";
535 Out << ",";
536 nl(Out) << "/*Params=*/" << typeName << "_args,";
537 nl(Out) << "/*isVarArg=*/" << (FT->isVarArg() ? "true" : "false") << ");";
538 out();
539 nl(Out);
540 break;
541 }
542 case Type::StructTyID: {
543 const StructType* ST = cast<StructType>(Ty);
544 Out << "std::vector<const Type*>" << typeName << "_fields;";
545 nl(Out);
546 StructType::element_iterator EI = ST->element_begin();
547 StructType::element_iterator EE = ST->element_end();
548 for (; EI != EE; ++EI) {
549 const Type* fieldTy = static_cast<const Type*>(*EI);
550 bool isForward = printTypeInternal(fieldTy);
551 std::string fieldName(getCppName(fieldTy));
552 Out << typeName << "_fields.push_back(" << fieldName;
553 if (isForward)
554 Out << "_fwd";
555 Out << ");";
556 nl(Out);
557 }
558 Out << "StructType* " << typeName << " = StructType::get("
559 << typeName << "_fields, /*isPacked=*/"
560 << (ST->isPacked() ? "true" : "false") << ");";
561 nl(Out);
562 break;
563 }
564 case Type::ArrayTyID: {
565 const ArrayType* AT = cast<ArrayType>(Ty);
566 const Type* ET = AT->getElementType();
567 bool isForward = printTypeInternal(ET);
568 std::string elemName(getCppName(ET));
569 Out << "ArrayType* " << typeName << " = ArrayType::get("
570 << elemName << (isForward ? "_fwd" : "")
571 << ", " << utostr(AT->getNumElements()) << ");";
572 nl(Out);
573 break;
574 }
575 case Type::PointerTyID: {
576 const PointerType* PT = cast<PointerType>(Ty);
577 const Type* ET = PT->getElementType();
578 bool isForward = printTypeInternal(ET);
579 std::string elemName(getCppName(ET));
580 Out << "PointerType* " << typeName << " = PointerType::get("
581 << elemName << (isForward ? "_fwd" : "")
582 << ", " << utostr(PT->getAddressSpace()) << ");";
583 nl(Out);
584 break;
585 }
586 case Type::VectorTyID: {
587 const VectorType* PT = cast<VectorType>(Ty);
588 const Type* ET = PT->getElementType();
589 bool isForward = printTypeInternal(ET);
590 std::string elemName(getCppName(ET));
591 Out << "VectorType* " << typeName << " = VectorType::get("
592 << elemName << (isForward ? "_fwd" : "")
593 << ", " << utostr(PT->getNumElements()) << ");";
594 nl(Out);
595 break;
596 }
597 case Type::OpaqueTyID: {
598 Out << "OpaqueType* " << typeName << " = OpaqueType::get();";
599 nl(Out);
600 break;
601 }
602 default:
603 error("Invalid TypeID");
604 }
605
606 // If the type had a name, make sure we recreate it.
607 const std::string* progTypeName =
608 findTypeName(TheModule->getTypeSymbolTable(),Ty);
609 if (progTypeName) {
610 Out << "mod->addTypeName(\"" << *progTypeName << "\", "
611 << typeName << ");";
612 nl(Out);
613 }
614
615 // Pop us off the type stack
616 TypeStack.pop_back();
617
618 // Indicate that this type is now defined.
619 DefinedTypes.insert(Ty);
620
621 // Early resolve as many unresolved types as possible. Search the unresolved
622 // types map for the type we just printed. Now that its definition is complete
623 // we can resolve any previous references to it. This prevents a cascade of
624 // unresolved types.
625 TypeMap::iterator I = UnresolvedTypes.find(Ty);
626 if (I != UnresolvedTypes.end()) {
627 Out << "cast<OpaqueType>(" << I->second
628 << "_fwd.get())->refineAbstractTypeTo(" << I->second << ");";
629 nl(Out);
630 Out << I->second << " = cast<";
631 switch (Ty->getTypeID()) {
632 case Type::FunctionTyID: Out << "FunctionType"; break;
633 case Type::ArrayTyID: Out << "ArrayType"; break;
634 case Type::StructTyID: Out << "StructType"; break;
635 case Type::VectorTyID: Out << "VectorType"; break;
636 case Type::PointerTyID: Out << "PointerType"; break;
637 case Type::OpaqueTyID: Out << "OpaqueType"; break;
638 default: Out << "NoSuchDerivedType"; break;
639 }
640 Out << ">(" << I->second << "_fwd.get());";
641 nl(Out); nl(Out);
642 UnresolvedTypes.erase(I);
643 }
644
645 // Finally, separate the type definition from other with a newline.
646 nl(Out);
647
648 // We weren't a recursive type
649 return false;
650 }
651
652 // Prints a type definition. Returns true if it could not resolve all the
653 // types in the definition but had to use a forward reference.
654 void CppWriter::printType(const Type* Ty) {
655 assert(TypeStack.empty());
656 TypeStack.clear();
657 printTypeInternal(Ty);
658 assert(TypeStack.empty());
659 }
660
661 void CppWriter::printTypes(const Module* M) {
662 // Walk the symbol table and print out all its types
663 const TypeSymbolTable& symtab = M->getTypeSymbolTable();
664 for (TypeSymbolTable::const_iterator TI = symtab.begin(), TE = symtab.end();
665 TI != TE; ++TI) {
666
667 // For primitive types and types already defined, just add a name
668 TypeMap::const_iterator TNI = TypeNames.find(TI->second);
669 if (TI->second->isInteger() || TI->second->isPrimitiveType() ||
670 TNI != TypeNames.end()) {
671 Out << "mod->addTypeName(\"";
672 printEscapedString(TI->first);
673 Out << "\", " << getCppName(TI->second) << ");";
674 nl(Out);
675 // For everything else, define the type
676 } else {
677 printType(TI->second);
678 }
679 }
680
681 // Add all of the global variables to the value table...
682 for (Module::const_global_iterator I = TheModule->global_begin(),
683 E = TheModule->global_end(); I != E; ++I) {
684 if (I->hasInitializer())
685 printType(I->getInitializer()->getType());
686 printType(I->getType());
687 }
688
689 // Add all the functions to the table
690 for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
691 FI != FE; ++FI) {
692 printType(FI->getReturnType());
693 printType(FI->getFunctionType());
694 // Add all the function arguments
695 for (Function::const_arg_iterator AI = FI->arg_begin(),
696 AE = FI->arg_end(); AI != AE; ++AI) {
697 printType(AI->getType());
698 }
699
700 // Add all of the basic blocks and instructions
701 for (Function::const_iterator BB = FI->begin(),
702 E = FI->end(); BB != E; ++BB) {
703 printType(BB->getType());
704 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
705 ++I) {
706 printType(I->getType());
707 for (unsigned i = 0; i < I->getNumOperands(); ++i)
708 printType(I->getOperand(i)->getType());
709 }
710 }
711 }
712 }
713
714
715 // printConstant - Print out a constant pool entry...
716 void CppWriter::printConstant(const Constant *CV) {
717 // First, if the constant is actually a GlobalValue (variable or function)
718 // or its already in the constant list then we've printed it already and we
719 // can just return.
720 if (isa<GlobalValue>(CV) || ValueNames.find(CV) != ValueNames.end())
721 return;
722
723 std::string constName(getCppName(CV));
724 std::string typeName(getCppName(CV->getType()));
725 if (CV->isNullValue()) {
726 Out << "Constant* " << constName << " = Constant::getNullValue("
727 << typeName << ");";
728 nl(Out);
729 return;
730 }
731 if (isa<GlobalValue>(CV)) {
732 // Skip variables and functions, we emit them elsewhere
733 return;
734 }
735 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
Anton Korobeynikov70053c32008-08-18 20:03:45 +0000736 std::string constValue = CI->getValue().toString(10, true);
Anton Korobeynikov50276522008-04-23 22:29:24 +0000737 Out << "ConstantInt* " << constName << " = ConstantInt::get(APInt("
Chris Lattnerfad86b02008-08-17 07:19:36 +0000738 << cast<IntegerType>(CI->getType())->getBitWidth() << ", \""
Anton Korobeynikov70053c32008-08-18 20:03:45 +0000739 << constValue << "\", " << constValue.length() << ", 10));";
Anton Korobeynikov50276522008-04-23 22:29:24 +0000740 } else if (isa<ConstantAggregateZero>(CV)) {
741 Out << "ConstantAggregateZero* " << constName
742 << " = ConstantAggregateZero::get(" << typeName << ");";
743 } else if (isa<ConstantPointerNull>(CV)) {
744 Out << "ConstantPointerNull* " << constName
745 << " = ConstanPointerNull::get(" << typeName << ");";
746 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
747 Out << "ConstantFP* " << constName << " = ";
748 printCFP(CFP);
749 Out << ";";
750 } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
751 if (CA->isString() && CA->getType()->getElementType() == Type::Int8Ty) {
752 Out << "Constant* " << constName << " = ConstantArray::get(\"";
753 std::string tmp = CA->getAsString();
754 bool nullTerminate = false;
755 if (tmp[tmp.length()-1] == 0) {
756 tmp.erase(tmp.length()-1);
757 nullTerminate = true;
758 }
759 printEscapedString(tmp);
760 // Determine if we want null termination or not.
761 if (nullTerminate)
762 Out << "\", true"; // Indicate that the null terminator should be
763 // added.
764 else
765 Out << "\", false";// No null terminator
766 Out << ");";
767 } else {
768 Out << "std::vector<Constant*> " << constName << "_elems;";
769 nl(Out);
770 unsigned N = CA->getNumOperands();
771 for (unsigned i = 0; i < N; ++i) {
772 printConstant(CA->getOperand(i)); // recurse to print operands
773 Out << constName << "_elems.push_back("
774 << getCppName(CA->getOperand(i)) << ");";
775 nl(Out);
776 }
777 Out << "Constant* " << constName << " = ConstantArray::get("
778 << typeName << ", " << constName << "_elems);";
779 }
780 } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
781 Out << "std::vector<Constant*> " << constName << "_fields;";
782 nl(Out);
783 unsigned N = CS->getNumOperands();
784 for (unsigned i = 0; i < N; i++) {
785 printConstant(CS->getOperand(i));
786 Out << constName << "_fields.push_back("
787 << getCppName(CS->getOperand(i)) << ");";
788 nl(Out);
789 }
790 Out << "Constant* " << constName << " = ConstantStruct::get("
791 << typeName << ", " << constName << "_fields);";
792 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
793 Out << "std::vector<Constant*> " << constName << "_elems;";
794 nl(Out);
795 unsigned N = CP->getNumOperands();
796 for (unsigned i = 0; i < N; ++i) {
797 printConstant(CP->getOperand(i));
798 Out << constName << "_elems.push_back("
799 << getCppName(CP->getOperand(i)) << ");";
800 nl(Out);
801 }
802 Out << "Constant* " << constName << " = ConstantVector::get("
803 << typeName << ", " << constName << "_elems);";
804 } else if (isa<UndefValue>(CV)) {
805 Out << "UndefValue* " << constName << " = UndefValue::get("
806 << typeName << ");";
807 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
808 if (CE->getOpcode() == Instruction::GetElementPtr) {
809 Out << "std::vector<Constant*> " << constName << "_indices;";
810 nl(Out);
811 printConstant(CE->getOperand(0));
812 for (unsigned i = 1; i < CE->getNumOperands(); ++i ) {
813 printConstant(CE->getOperand(i));
814 Out << constName << "_indices.push_back("
815 << getCppName(CE->getOperand(i)) << ");";
816 nl(Out);
817 }
818 Out << "Constant* " << constName
819 << " = ConstantExpr::getGetElementPtr("
820 << getCppName(CE->getOperand(0)) << ", "
821 << "&" << constName << "_indices[0], "
822 << constName << "_indices.size()"
823 << " );";
824 } else if (CE->isCast()) {
825 printConstant(CE->getOperand(0));
826 Out << "Constant* " << constName << " = ConstantExpr::getCast(";
827 switch (CE->getOpcode()) {
828 default: assert(0 && "Invalid cast opcode");
829 case Instruction::Trunc: Out << "Instruction::Trunc"; break;
830 case Instruction::ZExt: Out << "Instruction::ZExt"; break;
831 case Instruction::SExt: Out << "Instruction::SExt"; break;
832 case Instruction::FPTrunc: Out << "Instruction::FPTrunc"; break;
833 case Instruction::FPExt: Out << "Instruction::FPExt"; break;
834 case Instruction::FPToUI: Out << "Instruction::FPToUI"; break;
835 case Instruction::FPToSI: Out << "Instruction::FPToSI"; break;
836 case Instruction::UIToFP: Out << "Instruction::UIToFP"; break;
837 case Instruction::SIToFP: Out << "Instruction::SIToFP"; break;
838 case Instruction::PtrToInt: Out << "Instruction::PtrToInt"; break;
839 case Instruction::IntToPtr: Out << "Instruction::IntToPtr"; break;
840 case Instruction::BitCast: Out << "Instruction::BitCast"; break;
841 }
842 Out << ", " << getCppName(CE->getOperand(0)) << ", "
843 << getCppName(CE->getType()) << ");";
844 } else {
845 unsigned N = CE->getNumOperands();
846 for (unsigned i = 0; i < N; ++i ) {
847 printConstant(CE->getOperand(i));
848 }
849 Out << "Constant* " << constName << " = ConstantExpr::";
850 switch (CE->getOpcode()) {
851 case Instruction::Add: Out << "getAdd("; break;
852 case Instruction::Sub: Out << "getSub("; break;
853 case Instruction::Mul: Out << "getMul("; break;
854 case Instruction::UDiv: Out << "getUDiv("; break;
855 case Instruction::SDiv: Out << "getSDiv("; break;
856 case Instruction::FDiv: Out << "getFDiv("; break;
857 case Instruction::URem: Out << "getURem("; break;
858 case Instruction::SRem: Out << "getSRem("; break;
859 case Instruction::FRem: Out << "getFRem("; break;
860 case Instruction::And: Out << "getAnd("; break;
861 case Instruction::Or: Out << "getOr("; break;
862 case Instruction::Xor: Out << "getXor("; break;
863 case Instruction::ICmp:
864 Out << "getICmp(ICmpInst::ICMP_";
865 switch (CE->getPredicate()) {
866 case ICmpInst::ICMP_EQ: Out << "EQ"; break;
867 case ICmpInst::ICMP_NE: Out << "NE"; break;
868 case ICmpInst::ICMP_SLT: Out << "SLT"; break;
869 case ICmpInst::ICMP_ULT: Out << "ULT"; break;
870 case ICmpInst::ICMP_SGT: Out << "SGT"; break;
871 case ICmpInst::ICMP_UGT: Out << "UGT"; break;
872 case ICmpInst::ICMP_SLE: Out << "SLE"; break;
873 case ICmpInst::ICMP_ULE: Out << "ULE"; break;
874 case ICmpInst::ICMP_SGE: Out << "SGE"; break;
875 case ICmpInst::ICMP_UGE: Out << "UGE"; break;
876 default: error("Invalid ICmp Predicate");
877 }
878 break;
879 case Instruction::FCmp:
880 Out << "getFCmp(FCmpInst::FCMP_";
881 switch (CE->getPredicate()) {
882 case FCmpInst::FCMP_FALSE: Out << "FALSE"; break;
883 case FCmpInst::FCMP_ORD: Out << "ORD"; break;
884 case FCmpInst::FCMP_UNO: Out << "UNO"; break;
885 case FCmpInst::FCMP_OEQ: Out << "OEQ"; break;
886 case FCmpInst::FCMP_UEQ: Out << "UEQ"; break;
887 case FCmpInst::FCMP_ONE: Out << "ONE"; break;
888 case FCmpInst::FCMP_UNE: Out << "UNE"; break;
889 case FCmpInst::FCMP_OLT: Out << "OLT"; break;
890 case FCmpInst::FCMP_ULT: Out << "ULT"; break;
891 case FCmpInst::FCMP_OGT: Out << "OGT"; break;
892 case FCmpInst::FCMP_UGT: Out << "UGT"; break;
893 case FCmpInst::FCMP_OLE: Out << "OLE"; break;
894 case FCmpInst::FCMP_ULE: Out << "ULE"; break;
895 case FCmpInst::FCMP_OGE: Out << "OGE"; break;
896 case FCmpInst::FCMP_UGE: Out << "UGE"; break;
897 case FCmpInst::FCMP_TRUE: Out << "TRUE"; break;
898 default: error("Invalid FCmp Predicate");
899 }
900 break;
901 case Instruction::Shl: Out << "getShl("; break;
902 case Instruction::LShr: Out << "getLShr("; break;
903 case Instruction::AShr: Out << "getAShr("; break;
904 case Instruction::Select: Out << "getSelect("; break;
905 case Instruction::ExtractElement: Out << "getExtractElement("; break;
906 case Instruction::InsertElement: Out << "getInsertElement("; break;
907 case Instruction::ShuffleVector: Out << "getShuffleVector("; break;
908 default:
909 error("Invalid constant expression");
910 break;
911 }
912 Out << getCppName(CE->getOperand(0));
913 for (unsigned i = 1; i < CE->getNumOperands(); ++i)
914 Out << ", " << getCppName(CE->getOperand(i));
915 Out << ");";
916 }
917 } else {
918 error("Bad Constant");
919 Out << "Constant* " << constName << " = 0; ";
920 }
921 nl(Out);
922 }
923
924 void CppWriter::printConstants(const Module* M) {
925 // Traverse all the global variables looking for constant initializers
926 for (Module::const_global_iterator I = TheModule->global_begin(),
927 E = TheModule->global_end(); I != E; ++I)
928 if (I->hasInitializer())
929 printConstant(I->getInitializer());
930
931 // Traverse the LLVM functions looking for constants
932 for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
933 FI != FE; ++FI) {
934 // Add all of the basic blocks and instructions
935 for (Function::const_iterator BB = FI->begin(),
936 E = FI->end(); BB != E; ++BB) {
937 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
938 ++I) {
939 for (unsigned i = 0; i < I->getNumOperands(); ++i) {
940 if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) {
941 printConstant(C);
942 }
943 }
944 }
945 }
946 }
947 }
948
949 void CppWriter::printVariableUses(const GlobalVariable *GV) {
950 nl(Out) << "// Type Definitions";
951 nl(Out);
952 printType(GV->getType());
953 if (GV->hasInitializer()) {
954 Constant* Init = GV->getInitializer();
955 printType(Init->getType());
956 if (Function* F = dyn_cast<Function>(Init)) {
957 nl(Out)<< "/ Function Declarations"; nl(Out);
958 printFunctionHead(F);
959 } else if (GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) {
960 nl(Out) << "// Global Variable Declarations"; nl(Out);
961 printVariableHead(gv);
962 } else {
963 nl(Out) << "// Constant Definitions"; nl(Out);
964 printConstant(gv);
965 }
966 if (GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) {
967 nl(Out) << "// Global Variable Definitions"; nl(Out);
968 printVariableBody(gv);
969 }
970 }
971 }
972
973 void CppWriter::printVariableHead(const GlobalVariable *GV) {
974 nl(Out) << "GlobalVariable* " << getCppName(GV);
975 if (is_inline) {
976 Out << " = mod->getGlobalVariable(";
977 printEscapedString(GV->getName());
978 Out << ", " << getCppName(GV->getType()->getElementType()) << ",true)";
979 nl(Out) << "if (!" << getCppName(GV) << ") {";
980 in(); nl(Out) << getCppName(GV);
981 }
982 Out << " = new GlobalVariable(";
983 nl(Out) << "/*Type=*/";
984 printCppName(GV->getType()->getElementType());
985 Out << ",";
986 nl(Out) << "/*isConstant=*/" << (GV->isConstant()?"true":"false");
987 Out << ",";
988 nl(Out) << "/*Linkage=*/";
989 printLinkageType(GV->getLinkage());
990 Out << ",";
991 nl(Out) << "/*Initializer=*/0, ";
992 if (GV->hasInitializer()) {
993 Out << "// has initializer, specified below";
994 }
995 nl(Out) << "/*Name=*/\"";
996 printEscapedString(GV->getName());
997 Out << "\",";
998 nl(Out) << "mod);";
999 nl(Out);
1000
1001 if (GV->hasSection()) {
1002 printCppName(GV);
1003 Out << "->setSection(\"";
1004 printEscapedString(GV->getSection());
1005 Out << "\");";
1006 nl(Out);
1007 }
1008 if (GV->getAlignment()) {
1009 printCppName(GV);
1010 Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");";
1011 nl(Out);
1012 }
1013 if (GV->getVisibility() != GlobalValue::DefaultVisibility) {
1014 printCppName(GV);
1015 Out << "->setVisibility(";
1016 printVisibilityType(GV->getVisibility());
1017 Out << ");";
1018 nl(Out);
1019 }
1020 if (is_inline) {
1021 out(); Out << "}"; nl(Out);
1022 }
1023 }
1024
1025 void CppWriter::printVariableBody(const GlobalVariable *GV) {
1026 if (GV->hasInitializer()) {
1027 printCppName(GV);
1028 Out << "->setInitializer(";
1029 Out << getCppName(GV->getInitializer()) << ");";
1030 nl(Out);
1031 }
1032 }
1033
1034 std::string CppWriter::getOpName(Value* V) {
1035 if (!isa<Instruction>(V) || DefinedValues.find(V) != DefinedValues.end())
1036 return getCppName(V);
1037
1038 // See if its alread in the map of forward references, if so just return the
1039 // name we already set up for it
1040 ForwardRefMap::const_iterator I = ForwardRefs.find(V);
1041 if (I != ForwardRefs.end())
1042 return I->second;
1043
1044 // This is a new forward reference. Generate a unique name for it
1045 std::string result(std::string("fwdref_") + utostr(uniqueNum++));
1046
1047 // Yes, this is a hack. An Argument is the smallest instantiable value that
1048 // we can make as a placeholder for the real value. We'll replace these
1049 // Argument instances later.
1050 Out << "Argument* " << result << " = new Argument("
1051 << getCppName(V->getType()) << ");";
1052 nl(Out);
1053 ForwardRefs[V] = result;
1054 return result;
1055 }
1056
1057 // printInstruction - This member is called for each Instruction in a function.
1058 void CppWriter::printInstruction(const Instruction *I,
1059 const std::string& bbname) {
1060 std::string iName(getCppName(I));
1061
1062 // Before we emit this instruction, we need to take care of generating any
1063 // forward references. So, we get the names of all the operands in advance
1064 std::string* opNames = new std::string[I->getNumOperands()];
1065 for (unsigned i = 0; i < I->getNumOperands(); i++) {
1066 opNames[i] = getOpName(I->getOperand(i));
1067 }
1068
1069 switch (I->getOpcode()) {
Dan Gohman26825a82008-06-09 14:09:13 +00001070 default:
1071 error("Invalid instruction");
1072 break;
1073
Anton Korobeynikov50276522008-04-23 22:29:24 +00001074 case Instruction::Ret: {
1075 const ReturnInst* ret = cast<ReturnInst>(I);
1076 Out << "ReturnInst::Create("
1077 << (ret->getReturnValue() ? opNames[0] + ", " : "") << bbname << ");";
1078 break;
1079 }
1080 case Instruction::Br: {
1081 const BranchInst* br = cast<BranchInst>(I);
1082 Out << "BranchInst::Create(" ;
1083 if (br->getNumOperands() == 3 ) {
1084 Out << opNames[0] << ", "
1085 << opNames[1] << ", "
1086 << opNames[2] << ", ";
1087
1088 } else if (br->getNumOperands() == 1) {
1089 Out << opNames[0] << ", ";
1090 } else {
1091 error("Branch with 2 operands?");
1092 }
1093 Out << bbname << ");";
1094 break;
1095 }
1096 case Instruction::Switch: {
1097 const SwitchInst* sw = cast<SwitchInst>(I);
1098 Out << "SwitchInst* " << iName << " = SwitchInst::Create("
1099 << opNames[0] << ", "
1100 << opNames[1] << ", "
1101 << sw->getNumCases() << ", " << bbname << ");";
1102 nl(Out);
1103 for (unsigned i = 2; i < sw->getNumOperands(); i += 2 ) {
1104 Out << iName << "->addCase("
1105 << opNames[i] << ", "
1106 << opNames[i+1] << ");";
1107 nl(Out);
1108 }
1109 break;
1110 }
1111 case Instruction::Invoke: {
1112 const InvokeInst* inv = cast<InvokeInst>(I);
1113 Out << "std::vector<Value*> " << iName << "_params;";
1114 nl(Out);
1115 for (unsigned i = 3; i < inv->getNumOperands(); ++i) {
1116 Out << iName << "_params.push_back("
1117 << opNames[i] << ");";
1118 nl(Out);
1119 }
1120 Out << "InvokeInst *" << iName << " = InvokeInst::Create("
1121 << opNames[0] << ", "
1122 << opNames[1] << ", "
1123 << opNames[2] << ", "
1124 << iName << "_params.begin(), " << iName << "_params.end(), \"";
1125 printEscapedString(inv->getName());
1126 Out << "\", " << bbname << ");";
1127 nl(Out) << iName << "->setCallingConv(";
1128 printCallingConv(inv->getCallingConv());
1129 Out << ");";
1130 printParamAttrs(inv->getParamAttrs(), iName);
1131 Out << iName << "->setParamAttrs(" << iName << "_PAL);";
1132 nl(Out);
1133 break;
1134 }
1135 case Instruction::Unwind: {
1136 Out << "new UnwindInst("
1137 << bbname << ");";
1138 break;
1139 }
1140 case Instruction::Unreachable:{
1141 Out << "new UnreachableInst("
1142 << bbname << ");";
1143 break;
1144 }
1145 case Instruction::Add:
1146 case Instruction::Sub:
1147 case Instruction::Mul:
1148 case Instruction::UDiv:
1149 case Instruction::SDiv:
1150 case Instruction::FDiv:
1151 case Instruction::URem:
1152 case Instruction::SRem:
1153 case Instruction::FRem:
1154 case Instruction::And:
1155 case Instruction::Or:
1156 case Instruction::Xor:
1157 case Instruction::Shl:
1158 case Instruction::LShr:
1159 case Instruction::AShr:{
Gabor Greif7cbd8a32008-05-16 19:29:10 +00001160 Out << "BinaryOperator* " << iName << " = BinaryOperator::Create(";
Anton Korobeynikov50276522008-04-23 22:29:24 +00001161 switch (I->getOpcode()) {
1162 case Instruction::Add: Out << "Instruction::Add"; break;
1163 case Instruction::Sub: Out << "Instruction::Sub"; break;
1164 case Instruction::Mul: Out << "Instruction::Mul"; break;
1165 case Instruction::UDiv:Out << "Instruction::UDiv"; break;
1166 case Instruction::SDiv:Out << "Instruction::SDiv"; break;
1167 case Instruction::FDiv:Out << "Instruction::FDiv"; break;
1168 case Instruction::URem:Out << "Instruction::URem"; break;
1169 case Instruction::SRem:Out << "Instruction::SRem"; break;
1170 case Instruction::FRem:Out << "Instruction::FRem"; break;
1171 case Instruction::And: Out << "Instruction::And"; break;
1172 case Instruction::Or: Out << "Instruction::Or"; break;
1173 case Instruction::Xor: Out << "Instruction::Xor"; break;
1174 case Instruction::Shl: Out << "Instruction::Shl"; break;
1175 case Instruction::LShr:Out << "Instruction::LShr"; break;
1176 case Instruction::AShr:Out << "Instruction::AShr"; break;
1177 default: Out << "Instruction::BadOpCode"; break;
1178 }
1179 Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1180 printEscapedString(I->getName());
1181 Out << "\", " << bbname << ");";
1182 break;
1183 }
1184 case Instruction::FCmp: {
1185 Out << "FCmpInst* " << iName << " = new FCmpInst(";
1186 switch (cast<FCmpInst>(I)->getPredicate()) {
1187 case FCmpInst::FCMP_FALSE: Out << "FCmpInst::FCMP_FALSE"; break;
1188 case FCmpInst::FCMP_OEQ : Out << "FCmpInst::FCMP_OEQ"; break;
1189 case FCmpInst::FCMP_OGT : Out << "FCmpInst::FCMP_OGT"; break;
1190 case FCmpInst::FCMP_OGE : Out << "FCmpInst::FCMP_OGE"; break;
1191 case FCmpInst::FCMP_OLT : Out << "FCmpInst::FCMP_OLT"; break;
1192 case FCmpInst::FCMP_OLE : Out << "FCmpInst::FCMP_OLE"; break;
1193 case FCmpInst::FCMP_ONE : Out << "FCmpInst::FCMP_ONE"; break;
1194 case FCmpInst::FCMP_ORD : Out << "FCmpInst::FCMP_ORD"; break;
1195 case FCmpInst::FCMP_UNO : Out << "FCmpInst::FCMP_UNO"; break;
1196 case FCmpInst::FCMP_UEQ : Out << "FCmpInst::FCMP_UEQ"; break;
1197 case FCmpInst::FCMP_UGT : Out << "FCmpInst::FCMP_UGT"; break;
1198 case FCmpInst::FCMP_UGE : Out << "FCmpInst::FCMP_UGE"; break;
1199 case FCmpInst::FCMP_ULT : Out << "FCmpInst::FCMP_ULT"; break;
1200 case FCmpInst::FCMP_ULE : Out << "FCmpInst::FCMP_ULE"; break;
1201 case FCmpInst::FCMP_UNE : Out << "FCmpInst::FCMP_UNE"; break;
1202 case FCmpInst::FCMP_TRUE : Out << "FCmpInst::FCMP_TRUE"; break;
1203 default: Out << "FCmpInst::BAD_ICMP_PREDICATE"; break;
1204 }
1205 Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1206 printEscapedString(I->getName());
1207 Out << "\", " << bbname << ");";
1208 break;
1209 }
1210 case Instruction::ICmp: {
1211 Out << "ICmpInst* " << iName << " = new ICmpInst(";
1212 switch (cast<ICmpInst>(I)->getPredicate()) {
1213 case ICmpInst::ICMP_EQ: Out << "ICmpInst::ICMP_EQ"; break;
1214 case ICmpInst::ICMP_NE: Out << "ICmpInst::ICMP_NE"; break;
1215 case ICmpInst::ICMP_ULE: Out << "ICmpInst::ICMP_ULE"; break;
1216 case ICmpInst::ICMP_SLE: Out << "ICmpInst::ICMP_SLE"; break;
1217 case ICmpInst::ICMP_UGE: Out << "ICmpInst::ICMP_UGE"; break;
1218 case ICmpInst::ICMP_SGE: Out << "ICmpInst::ICMP_SGE"; break;
1219 case ICmpInst::ICMP_ULT: Out << "ICmpInst::ICMP_ULT"; break;
1220 case ICmpInst::ICMP_SLT: Out << "ICmpInst::ICMP_SLT"; break;
1221 case ICmpInst::ICMP_UGT: Out << "ICmpInst::ICMP_UGT"; break;
1222 case ICmpInst::ICMP_SGT: Out << "ICmpInst::ICMP_SGT"; break;
1223 default: Out << "ICmpInst::BAD_ICMP_PREDICATE"; break;
1224 }
1225 Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1226 printEscapedString(I->getName());
1227 Out << "\", " << bbname << ");";
1228 break;
1229 }
1230 case Instruction::Malloc: {
1231 const MallocInst* mallocI = cast<MallocInst>(I);
1232 Out << "MallocInst* " << iName << " = new MallocInst("
1233 << getCppName(mallocI->getAllocatedType()) << ", ";
1234 if (mallocI->isArrayAllocation())
1235 Out << opNames[0] << ", " ;
1236 Out << "\"";
1237 printEscapedString(mallocI->getName());
1238 Out << "\", " << bbname << ");";
1239 if (mallocI->getAlignment())
1240 nl(Out) << iName << "->setAlignment("
1241 << mallocI->getAlignment() << ");";
1242 break;
1243 }
1244 case Instruction::Free: {
1245 Out << "FreeInst* " << iName << " = new FreeInst("
1246 << getCppName(I->getOperand(0)) << ", " << bbname << ");";
1247 break;
1248 }
1249 case Instruction::Alloca: {
1250 const AllocaInst* allocaI = cast<AllocaInst>(I);
1251 Out << "AllocaInst* " << iName << " = new AllocaInst("
1252 << getCppName(allocaI->getAllocatedType()) << ", ";
1253 if (allocaI->isArrayAllocation())
1254 Out << opNames[0] << ", ";
1255 Out << "\"";
1256 printEscapedString(allocaI->getName());
1257 Out << "\", " << bbname << ");";
1258 if (allocaI->getAlignment())
1259 nl(Out) << iName << "->setAlignment("
1260 << allocaI->getAlignment() << ");";
1261 break;
1262 }
1263 case Instruction::Load:{
1264 const LoadInst* load = cast<LoadInst>(I);
1265 Out << "LoadInst* " << iName << " = new LoadInst("
1266 << opNames[0] << ", \"";
1267 printEscapedString(load->getName());
1268 Out << "\", " << (load->isVolatile() ? "true" : "false" )
1269 << ", " << bbname << ");";
1270 break;
1271 }
1272 case Instruction::Store: {
1273 const StoreInst* store = cast<StoreInst>(I);
1274 Out << "StoreInst* " << iName << " = new StoreInst("
1275 << opNames[0] << ", "
1276 << opNames[1] << ", "
1277 << (store->isVolatile() ? "true" : "false")
1278 << ", " << bbname << ");";
1279 break;
1280 }
1281 case Instruction::GetElementPtr: {
1282 const GetElementPtrInst* gep = cast<GetElementPtrInst>(I);
1283 if (gep->getNumOperands() <= 2) {
1284 Out << "GetElementPtrInst* " << iName << " = GetElementPtrInst::Create("
1285 << opNames[0];
1286 if (gep->getNumOperands() == 2)
1287 Out << ", " << opNames[1];
1288 } else {
1289 Out << "std::vector<Value*> " << iName << "_indices;";
1290 nl(Out);
1291 for (unsigned i = 1; i < gep->getNumOperands(); ++i ) {
1292 Out << iName << "_indices.push_back("
1293 << opNames[i] << ");";
1294 nl(Out);
1295 }
1296 Out << "Instruction* " << iName << " = GetElementPtrInst::Create("
1297 << opNames[0] << ", " << iName << "_indices.begin(), "
1298 << iName << "_indices.end()";
1299 }
1300 Out << ", \"";
1301 printEscapedString(gep->getName());
1302 Out << "\", " << bbname << ");";
1303 break;
1304 }
1305 case Instruction::PHI: {
1306 const PHINode* phi = cast<PHINode>(I);
1307
1308 Out << "PHINode* " << iName << " = PHINode::Create("
1309 << getCppName(phi->getType()) << ", \"";
1310 printEscapedString(phi->getName());
1311 Out << "\", " << bbname << ");";
1312 nl(Out) << iName << "->reserveOperandSpace("
1313 << phi->getNumIncomingValues()
1314 << ");";
1315 nl(Out);
1316 for (unsigned i = 0; i < phi->getNumOperands(); i+=2) {
1317 Out << iName << "->addIncoming("
1318 << opNames[i] << ", " << opNames[i+1] << ");";
1319 nl(Out);
1320 }
1321 break;
1322 }
1323 case Instruction::Trunc:
1324 case Instruction::ZExt:
1325 case Instruction::SExt:
1326 case Instruction::FPTrunc:
1327 case Instruction::FPExt:
1328 case Instruction::FPToUI:
1329 case Instruction::FPToSI:
1330 case Instruction::UIToFP:
1331 case Instruction::SIToFP:
1332 case Instruction::PtrToInt:
1333 case Instruction::IntToPtr:
1334 case Instruction::BitCast: {
1335 const CastInst* cst = cast<CastInst>(I);
1336 Out << "CastInst* " << iName << " = new ";
1337 switch (I->getOpcode()) {
1338 case Instruction::Trunc: Out << "TruncInst"; break;
1339 case Instruction::ZExt: Out << "ZExtInst"; break;
1340 case Instruction::SExt: Out << "SExtInst"; break;
1341 case Instruction::FPTrunc: Out << "FPTruncInst"; break;
1342 case Instruction::FPExt: Out << "FPExtInst"; break;
1343 case Instruction::FPToUI: Out << "FPToUIInst"; break;
1344 case Instruction::FPToSI: Out << "FPToSIInst"; break;
1345 case Instruction::UIToFP: Out << "UIToFPInst"; break;
1346 case Instruction::SIToFP: Out << "SIToFPInst"; break;
1347 case Instruction::PtrToInt: Out << "PtrToIntInst"; break;
1348 case Instruction::IntToPtr: Out << "IntToPtrInst"; break;
1349 case Instruction::BitCast: Out << "BitCastInst"; break;
1350 default: assert(!"Unreachable"); break;
1351 }
1352 Out << "(" << opNames[0] << ", "
1353 << getCppName(cst->getType()) << ", \"";
1354 printEscapedString(cst->getName());
1355 Out << "\", " << bbname << ");";
1356 break;
1357 }
1358 case Instruction::Call:{
1359 const CallInst* call = cast<CallInst>(I);
1360 if (InlineAsm* ila = dyn_cast<InlineAsm>(call->getOperand(0))) {
1361 Out << "InlineAsm* " << getCppName(ila) << " = InlineAsm::get("
1362 << getCppName(ila->getFunctionType()) << ", \""
1363 << ila->getAsmString() << "\", \""
1364 << ila->getConstraintString() << "\","
1365 << (ila->hasSideEffects() ? "true" : "false") << ");";
1366 nl(Out);
1367 }
1368 if (call->getNumOperands() > 2) {
1369 Out << "std::vector<Value*> " << iName << "_params;";
1370 nl(Out);
1371 for (unsigned i = 1; i < call->getNumOperands(); ++i) {
1372 Out << iName << "_params.push_back(" << opNames[i] << ");";
1373 nl(Out);
1374 }
1375 Out << "CallInst* " << iName << " = CallInst::Create("
1376 << opNames[0] << ", " << iName << "_params.begin(), "
1377 << iName << "_params.end(), \"";
1378 } else if (call->getNumOperands() == 2) {
1379 Out << "CallInst* " << iName << " = CallInst::Create("
1380 << opNames[0] << ", " << opNames[1] << ", \"";
1381 } else {
1382 Out << "CallInst* " << iName << " = CallInst::Create(" << opNames[0]
1383 << ", \"";
1384 }
1385 printEscapedString(call->getName());
1386 Out << "\", " << bbname << ");";
1387 nl(Out) << iName << "->setCallingConv(";
1388 printCallingConv(call->getCallingConv());
1389 Out << ");";
1390 nl(Out) << iName << "->setTailCall("
1391 << (call->isTailCall() ? "true":"false");
1392 Out << ");";
1393 printParamAttrs(call->getParamAttrs(), iName);
1394 Out << iName << "->setParamAttrs(" << iName << "_PAL);";
1395 nl(Out);
1396 break;
1397 }
1398 case Instruction::Select: {
1399 const SelectInst* sel = cast<SelectInst>(I);
1400 Out << "SelectInst* " << getCppName(sel) << " = SelectInst::Create(";
1401 Out << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1402 printEscapedString(sel->getName());
1403 Out << "\", " << bbname << ");";
1404 break;
1405 }
1406 case Instruction::UserOp1:
1407 /// FALL THROUGH
1408 case Instruction::UserOp2: {
1409 /// FIXME: What should be done here?
1410 break;
1411 }
1412 case Instruction::VAArg: {
1413 const VAArgInst* va = cast<VAArgInst>(I);
1414 Out << "VAArgInst* " << getCppName(va) << " = new VAArgInst("
1415 << opNames[0] << ", " << getCppName(va->getType()) << ", \"";
1416 printEscapedString(va->getName());
1417 Out << "\", " << bbname << ");";
1418 break;
1419 }
1420 case Instruction::ExtractElement: {
1421 const ExtractElementInst* eei = cast<ExtractElementInst>(I);
1422 Out << "ExtractElementInst* " << getCppName(eei)
1423 << " = new ExtractElementInst(" << opNames[0]
1424 << ", " << opNames[1] << ", \"";
1425 printEscapedString(eei->getName());
1426 Out << "\", " << bbname << ");";
1427 break;
1428 }
1429 case Instruction::InsertElement: {
1430 const InsertElementInst* iei = cast<InsertElementInst>(I);
1431 Out << "InsertElementInst* " << getCppName(iei)
1432 << " = InsertElementInst::Create(" << opNames[0]
1433 << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1434 printEscapedString(iei->getName());
1435 Out << "\", " << bbname << ");";
1436 break;
1437 }
1438 case Instruction::ShuffleVector: {
1439 const ShuffleVectorInst* svi = cast<ShuffleVectorInst>(I);
1440 Out << "ShuffleVectorInst* " << getCppName(svi)
1441 << " = new ShuffleVectorInst(" << opNames[0]
1442 << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1443 printEscapedString(svi->getName());
1444 Out << "\", " << bbname << ");";
1445 break;
1446 }
Dan Gohman75146a62008-06-09 14:12:10 +00001447 case Instruction::ExtractValue: {
1448 const ExtractValueInst *evi = cast<ExtractValueInst>(I);
1449 Out << "std::vector<unsigned> " << iName << "_indices;";
1450 nl(Out);
1451 for (unsigned i = 0; i < evi->getNumIndices(); ++i) {
1452 Out << iName << "_indices.push_back("
1453 << evi->idx_begin()[i] << ");";
1454 nl(Out);
1455 }
1456 Out << "ExtractValueInst* " << getCppName(evi)
1457 << " = ExtractValueInst::Create(" << opNames[0]
1458 << ", "
1459 << iName << "_indices.begin(), " << iName << "_indices.end(), \"";
1460 printEscapedString(evi->getName());
1461 Out << "\", " << bbname << ");";
1462 break;
1463 }
1464 case Instruction::InsertValue: {
1465 const InsertValueInst *ivi = cast<InsertValueInst>(I);
1466 Out << "std::vector<unsigned> " << iName << "_indices;";
1467 nl(Out);
1468 for (unsigned i = 0; i < ivi->getNumIndices(); ++i) {
1469 Out << iName << "_indices.push_back("
1470 << ivi->idx_begin()[i] << ");";
1471 nl(Out);
1472 }
1473 Out << "InsertValueInst* " << getCppName(ivi)
1474 << " = InsertValueInst::Create(" << opNames[0]
1475 << ", " << opNames[1] << ", "
1476 << iName << "_indices.begin(), " << iName << "_indices.end(), \"";
1477 printEscapedString(ivi->getName());
1478 Out << "\", " << bbname << ");";
1479 break;
1480 }
Anton Korobeynikov50276522008-04-23 22:29:24 +00001481 }
1482 DefinedValues.insert(I);
1483 nl(Out);
1484 delete [] opNames;
1485}
1486
1487 // Print out the types, constants and declarations needed by one function
1488 void CppWriter::printFunctionUses(const Function* F) {
1489 nl(Out) << "// Type Definitions"; nl(Out);
1490 if (!is_inline) {
1491 // Print the function's return type
1492 printType(F->getReturnType());
1493
1494 // Print the function's function type
1495 printType(F->getFunctionType());
1496
1497 // Print the types of each of the function's arguments
1498 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1499 AI != AE; ++AI) {
1500 printType(AI->getType());
1501 }
1502 }
1503
1504 // Print type definitions for every type referenced by an instruction and
1505 // make a note of any global values or constants that are referenced
1506 SmallPtrSet<GlobalValue*,64> gvs;
1507 SmallPtrSet<Constant*,64> consts;
1508 for (Function::const_iterator BB = F->begin(), BE = F->end();
1509 BB != BE; ++BB){
1510 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1511 I != E; ++I) {
1512 // Print the type of the instruction itself
1513 printType(I->getType());
1514
1515 // Print the type of each of the instruction's operands
1516 for (unsigned i = 0; i < I->getNumOperands(); ++i) {
1517 Value* operand = I->getOperand(i);
1518 printType(operand->getType());
1519
1520 // If the operand references a GVal or Constant, make a note of it
1521 if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
1522 gvs.insert(GV);
1523 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1524 if (GVar->hasInitializer())
1525 consts.insert(GVar->getInitializer());
1526 } else if (Constant* C = dyn_cast<Constant>(operand))
1527 consts.insert(C);
1528 }
1529 }
1530 }
1531
1532 // Print the function declarations for any functions encountered
1533 nl(Out) << "// Function Declarations"; nl(Out);
1534 for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1535 I != E; ++I) {
1536 if (Function* Fun = dyn_cast<Function>(*I)) {
1537 if (!is_inline || Fun != F)
1538 printFunctionHead(Fun);
1539 }
1540 }
1541
1542 // Print the global variable declarations for any variables encountered
1543 nl(Out) << "// Global Variable Declarations"; nl(Out);
1544 for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1545 I != E; ++I) {
1546 if (GlobalVariable* F = dyn_cast<GlobalVariable>(*I))
1547 printVariableHead(F);
1548 }
1549
1550 // Print the constants found
1551 nl(Out) << "// Constant Definitions"; nl(Out);
1552 for (SmallPtrSet<Constant*,64>::iterator I = consts.begin(),
1553 E = consts.end(); I != E; ++I) {
1554 printConstant(*I);
1555 }
1556
1557 // Process the global variables definitions now that all the constants have
1558 // been emitted. These definitions just couple the gvars with their constant
1559 // initializers.
1560 nl(Out) << "// Global Variable Definitions"; nl(Out);
1561 for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1562 I != E; ++I) {
1563 if (GlobalVariable* GV = dyn_cast<GlobalVariable>(*I))
1564 printVariableBody(GV);
1565 }
1566 }
1567
1568 void CppWriter::printFunctionHead(const Function* F) {
1569 nl(Out) << "Function* " << getCppName(F);
1570 if (is_inline) {
1571 Out << " = mod->getFunction(\"";
1572 printEscapedString(F->getName());
1573 Out << "\", " << getCppName(F->getFunctionType()) << ");";
1574 nl(Out) << "if (!" << getCppName(F) << ") {";
1575 nl(Out) << getCppName(F);
1576 }
1577 Out<< " = Function::Create(";
1578 nl(Out,1) << "/*Type=*/" << getCppName(F->getFunctionType()) << ",";
1579 nl(Out) << "/*Linkage=*/";
1580 printLinkageType(F->getLinkage());
1581 Out << ",";
1582 nl(Out) << "/*Name=*/\"";
1583 printEscapedString(F->getName());
1584 Out << "\", mod); " << (F->isDeclaration()? "// (external, no body)" : "");
1585 nl(Out,-1);
1586 printCppName(F);
1587 Out << "->setCallingConv(";
1588 printCallingConv(F->getCallingConv());
1589 Out << ");";
1590 nl(Out);
1591 if (F->hasSection()) {
1592 printCppName(F);
1593 Out << "->setSection(\"" << F->getSection() << "\");";
1594 nl(Out);
1595 }
1596 if (F->getAlignment()) {
1597 printCppName(F);
1598 Out << "->setAlignment(" << F->getAlignment() << ");";
1599 nl(Out);
1600 }
1601 if (F->getVisibility() != GlobalValue::DefaultVisibility) {
1602 printCppName(F);
1603 Out << "->setVisibility(";
1604 printVisibilityType(F->getVisibility());
1605 Out << ");";
1606 nl(Out);
1607 }
Gordon Henriksen5eca0752008-08-17 18:44:35 +00001608 if (F->hasGC()) {
Anton Korobeynikov50276522008-04-23 22:29:24 +00001609 printCppName(F);
Gordon Henriksen5eca0752008-08-17 18:44:35 +00001610 Out << "->setGC(\"" << F->getGC() << "\");";
Anton Korobeynikov50276522008-04-23 22:29:24 +00001611 nl(Out);
1612 }
1613 if (is_inline) {
1614 Out << "}";
1615 nl(Out);
1616 }
1617 printParamAttrs(F->getParamAttrs(), getCppName(F));
1618 printCppName(F);
1619 Out << "->setParamAttrs(" << getCppName(F) << "_PAL);";
1620 nl(Out);
1621 }
1622
1623 void CppWriter::printFunctionBody(const Function *F) {
1624 if (F->isDeclaration())
1625 return; // external functions have no bodies.
1626
1627 // Clear the DefinedValues and ForwardRefs maps because we can't have
1628 // cross-function forward refs
1629 ForwardRefs.clear();
1630 DefinedValues.clear();
1631
1632 // Create all the argument values
1633 if (!is_inline) {
1634 if (!F->arg_empty()) {
1635 Out << "Function::arg_iterator args = " << getCppName(F)
1636 << "->arg_begin();";
1637 nl(Out);
1638 }
1639 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1640 AI != AE; ++AI) {
1641 Out << "Value* " << getCppName(AI) << " = args++;";
1642 nl(Out);
1643 if (AI->hasName()) {
1644 Out << getCppName(AI) << "->setName(\"" << AI->getName() << "\");";
1645 nl(Out);
1646 }
1647 }
1648 }
1649
1650 // Create all the basic blocks
1651 nl(Out);
1652 for (Function::const_iterator BI = F->begin(), BE = F->end();
1653 BI != BE; ++BI) {
1654 std::string bbname(getCppName(BI));
1655 Out << "BasicBlock* " << bbname << " = BasicBlock::Create(\"";
1656 if (BI->hasName())
1657 printEscapedString(BI->getName());
1658 Out << "\"," << getCppName(BI->getParent()) << ",0);";
1659 nl(Out);
1660 }
1661
1662 // Output all of its basic blocks... for the function
1663 for (Function::const_iterator BI = F->begin(), BE = F->end();
1664 BI != BE; ++BI) {
1665 std::string bbname(getCppName(BI));
1666 nl(Out) << "// Block " << BI->getName() << " (" << bbname << ")";
1667 nl(Out);
1668
1669 // Output all of the instructions in the basic block...
1670 for (BasicBlock::const_iterator I = BI->begin(), E = BI->end();
1671 I != E; ++I) {
1672 printInstruction(I,bbname);
1673 }
1674 }
1675
1676 // Loop over the ForwardRefs and resolve them now that all instructions
1677 // are generated.
1678 if (!ForwardRefs.empty()) {
1679 nl(Out) << "// Resolve Forward References";
1680 nl(Out);
1681 }
1682
1683 while (!ForwardRefs.empty()) {
1684 ForwardRefMap::iterator I = ForwardRefs.begin();
1685 Out << I->second << "->replaceAllUsesWith("
1686 << getCppName(I->first) << "); delete " << I->second << ";";
1687 nl(Out);
1688 ForwardRefs.erase(I);
1689 }
1690 }
1691
1692 void CppWriter::printInline(const std::string& fname,
1693 const std::string& func) {
1694 const Function* F = TheModule->getFunction(func);
1695 if (!F) {
1696 error(std::string("Function '") + func + "' not found in input module");
1697 return;
1698 }
1699 if (F->isDeclaration()) {
1700 error(std::string("Function '") + func + "' is external!");
1701 return;
1702 }
1703 nl(Out) << "BasicBlock* " << fname << "(Module* mod, Function *"
1704 << getCppName(F);
1705 unsigned arg_count = 1;
1706 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1707 AI != AE; ++AI) {
1708 Out << ", Value* arg_" << arg_count;
1709 }
1710 Out << ") {";
1711 nl(Out);
1712 is_inline = true;
1713 printFunctionUses(F);
1714 printFunctionBody(F);
1715 is_inline = false;
1716 Out << "return " << getCppName(F->begin()) << ";";
1717 nl(Out) << "}";
1718 nl(Out);
1719 }
1720
1721 void CppWriter::printModuleBody() {
1722 // Print out all the type definitions
1723 nl(Out) << "// Type Definitions"; nl(Out);
1724 printTypes(TheModule);
1725
1726 // Functions can call each other and global variables can reference them so
1727 // define all the functions first before emitting their function bodies.
1728 nl(Out) << "// Function Declarations"; nl(Out);
1729 for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1730 I != E; ++I)
1731 printFunctionHead(I);
1732
1733 // Process the global variables declarations. We can't initialze them until
1734 // after the constants are printed so just print a header for each global
1735 nl(Out) << "// Global Variable Declarations\n"; nl(Out);
1736 for (Module::const_global_iterator I = TheModule->global_begin(),
1737 E = TheModule->global_end(); I != E; ++I) {
1738 printVariableHead(I);
1739 }
1740
1741 // Print out all the constants definitions. Constants don't recurse except
1742 // through GlobalValues. All GlobalValues have been declared at this point
1743 // so we can proceed to generate the constants.
1744 nl(Out) << "// Constant Definitions"; nl(Out);
1745 printConstants(TheModule);
1746
1747 // Process the global variables definitions now that all the constants have
1748 // been emitted. These definitions just couple the gvars with their constant
1749 // initializers.
1750 nl(Out) << "// Global Variable Definitions"; nl(Out);
1751 for (Module::const_global_iterator I = TheModule->global_begin(),
1752 E = TheModule->global_end(); I != E; ++I) {
1753 printVariableBody(I);
1754 }
1755
1756 // Finally, we can safely put out all of the function bodies.
1757 nl(Out) << "// Function Definitions"; nl(Out);
1758 for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1759 I != E; ++I) {
1760 if (!I->isDeclaration()) {
1761 nl(Out) << "// Function: " << I->getName() << " (" << getCppName(I)
1762 << ")";
1763 nl(Out) << "{";
1764 nl(Out,1);
1765 printFunctionBody(I);
1766 nl(Out,-1) << "}";
1767 nl(Out);
1768 }
1769 }
1770 }
1771
1772 void CppWriter::printProgram(const std::string& fname,
1773 const std::string& mName) {
1774 Out << "#include <llvm/Module.h>\n";
1775 Out << "#include <llvm/DerivedTypes.h>\n";
1776 Out << "#include <llvm/Constants.h>\n";
1777 Out << "#include <llvm/GlobalVariable.h>\n";
1778 Out << "#include <llvm/Function.h>\n";
1779 Out << "#include <llvm/CallingConv.h>\n";
1780 Out << "#include <llvm/BasicBlock.h>\n";
1781 Out << "#include <llvm/Instructions.h>\n";
1782 Out << "#include <llvm/InlineAsm.h>\n";
1783 Out << "#include <llvm/Support/MathExtras.h>\n";
1784 Out << "#include <llvm/Pass.h>\n";
1785 Out << "#include <llvm/PassManager.h>\n";
Nicolas Geoffray9474ede2008-05-14 07:52:03 +00001786 Out << "#include <llvm/ADT/SmallVector.h>\n";
Anton Korobeynikov50276522008-04-23 22:29:24 +00001787 Out << "#include <llvm/Analysis/Verifier.h>\n";
1788 Out << "#include <llvm/Assembly/PrintModulePass.h>\n";
1789 Out << "#include <algorithm>\n";
1790 Out << "#include <iostream>\n\n";
1791 Out << "using namespace llvm;\n\n";
1792 Out << "Module* " << fname << "();\n\n";
1793 Out << "int main(int argc, char**argv) {\n";
1794 Out << " Module* Mod = " << fname << "();\n";
1795 Out << " verifyModule(*Mod, PrintMessageAction);\n";
1796 Out << " std::cerr.flush();\n";
1797 Out << " std::cout.flush();\n";
1798 Out << " PassManager PM;\n";
1799 Out << " PM.add(new PrintModulePass(&llvm::cout));\n";
1800 Out << " PM.run(*Mod);\n";
1801 Out << " return 0;\n";
1802 Out << "}\n\n";
1803 printModule(fname,mName);
1804 }
1805
1806 void CppWriter::printModule(const std::string& fname,
1807 const std::string& mName) {
1808 nl(Out) << "Module* " << fname << "() {";
1809 nl(Out,1) << "// Module Construction";
1810 nl(Out) << "Module* mod = new Module(\"" << mName << "\");";
1811 if (!TheModule->getTargetTriple().empty()) {
1812 nl(Out) << "mod->setDataLayout(\"" << TheModule->getDataLayout() << "\");";
1813 }
1814 if (!TheModule->getTargetTriple().empty()) {
1815 nl(Out) << "mod->setTargetTriple(\"" << TheModule->getTargetTriple()
1816 << "\");";
1817 }
1818
1819 if (!TheModule->getModuleInlineAsm().empty()) {
1820 nl(Out) << "mod->setModuleInlineAsm(\"";
1821 printEscapedString(TheModule->getModuleInlineAsm());
1822 Out << "\");";
1823 }
1824 nl(Out);
1825
1826 // Loop over the dependent libraries and emit them.
1827 Module::lib_iterator LI = TheModule->lib_begin();
1828 Module::lib_iterator LE = TheModule->lib_end();
1829 while (LI != LE) {
1830 Out << "mod->addLibrary(\"" << *LI << "\");";
1831 nl(Out);
1832 ++LI;
1833 }
1834 printModuleBody();
1835 nl(Out) << "return mod;";
1836 nl(Out,-1) << "}";
1837 nl(Out);
1838 }
1839
1840 void CppWriter::printContents(const std::string& fname,
1841 const std::string& mName) {
1842 Out << "\nModule* " << fname << "(Module *mod) {\n";
1843 Out << "\nmod->setModuleIdentifier(\"" << mName << "\");\n";
1844 printModuleBody();
1845 Out << "\nreturn mod;\n";
1846 Out << "\n}\n";
1847 }
1848
1849 void CppWriter::printFunction(const std::string& fname,
1850 const std::string& funcName) {
1851 const Function* F = TheModule->getFunction(funcName);
1852 if (!F) {
1853 error(std::string("Function '") + funcName + "' not found in input module");
1854 return;
1855 }
1856 Out << "\nFunction* " << fname << "(Module *mod) {\n";
1857 printFunctionUses(F);
1858 printFunctionHead(F);
1859 printFunctionBody(F);
1860 Out << "return " << getCppName(F) << ";\n";
1861 Out << "}\n";
1862 }
1863
1864 void CppWriter::printFunctions() {
1865 const Module::FunctionListType &funcs = TheModule->getFunctionList();
1866 Module::const_iterator I = funcs.begin();
1867 Module::const_iterator IE = funcs.end();
1868
1869 for (; I != IE; ++I) {
1870 const Function &func = *I;
1871 if (!func.isDeclaration()) {
1872 std::string name("define_");
1873 name += func.getName();
1874 printFunction(name, func.getName());
1875 }
1876 }
1877 }
1878
1879 void CppWriter::printVariable(const std::string& fname,
1880 const std::string& varName) {
1881 const GlobalVariable* GV = TheModule->getNamedGlobal(varName);
1882
1883 if (!GV) {
1884 error(std::string("Variable '") + varName + "' not found in input module");
1885 return;
1886 }
1887 Out << "\nGlobalVariable* " << fname << "(Module *mod) {\n";
1888 printVariableUses(GV);
1889 printVariableHead(GV);
1890 printVariableBody(GV);
1891 Out << "return " << getCppName(GV) << ";\n";
1892 Out << "}\n";
1893 }
1894
1895 void CppWriter::printType(const std::string& fname,
1896 const std::string& typeName) {
1897 const Type* Ty = TheModule->getTypeByName(typeName);
1898 if (!Ty) {
1899 error(std::string("Type '") + typeName + "' not found in input module");
1900 return;
1901 }
1902 Out << "\nType* " << fname << "(Module *mod) {\n";
1903 printType(Ty);
1904 Out << "return " << getCppName(Ty) << ";\n";
1905 Out << "}\n";
1906 }
1907
1908 bool CppWriter::runOnModule(Module &M) {
1909 TheModule = &M;
1910
1911 // Emit a header
1912 Out << "// Generated by llvm2cpp - DO NOT MODIFY!\n\n";
1913
1914 // Get the name of the function we're supposed to generate
1915 std::string fname = FuncName.getValue();
1916
1917 // Get the name of the thing we are to generate
1918 std::string tgtname = NameToGenerate.getValue();
1919 if (GenerationType == GenModule ||
1920 GenerationType == GenContents ||
1921 GenerationType == GenProgram ||
1922 GenerationType == GenFunctions) {
1923 if (tgtname == "!bad!") {
1924 if (M.getModuleIdentifier() == "-")
1925 tgtname = "<stdin>";
1926 else
1927 tgtname = M.getModuleIdentifier();
1928 }
1929 } else if (tgtname == "!bad!")
1930 error("You must use the -for option with -gen-{function,variable,type}");
1931
1932 switch (WhatToGenerate(GenerationType)) {
1933 case GenProgram:
1934 if (fname.empty())
1935 fname = "makeLLVMModule";
1936 printProgram(fname,tgtname);
1937 break;
1938 case GenModule:
1939 if (fname.empty())
1940 fname = "makeLLVMModule";
1941 printModule(fname,tgtname);
1942 break;
1943 case GenContents:
1944 if (fname.empty())
1945 fname = "makeLLVMModuleContents";
1946 printContents(fname,tgtname);
1947 break;
1948 case GenFunction:
1949 if (fname.empty())
1950 fname = "makeLLVMFunction";
1951 printFunction(fname,tgtname);
1952 break;
1953 case GenFunctions:
1954 printFunctions();
1955 break;
1956 case GenInline:
1957 if (fname.empty())
1958 fname = "makeLLVMInline";
1959 printInline(fname,tgtname);
1960 break;
1961 case GenVariable:
1962 if (fname.empty())
1963 fname = "makeLLVMVariable";
1964 printVariable(fname,tgtname);
1965 break;
1966 case GenType:
1967 if (fname.empty())
1968 fname = "makeLLVMType";
1969 printType(fname,tgtname);
1970 break;
1971 default:
1972 error("Invalid generation option");
1973 }
1974
1975 return false;
1976 }
1977}
1978
1979char CppWriter::ID = 0;
1980
1981//===----------------------------------------------------------------------===//
1982// External Interface declaration
1983//===----------------------------------------------------------------------===//
1984
1985bool CPPTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
Owen Andersoncb371882008-08-21 00:14:44 +00001986 raw_ostream &o,
Anton Korobeynikov50276522008-04-23 22:29:24 +00001987 CodeGenFileType FileType,
1988 bool Fast) {
1989 if (FileType != TargetMachine::AssemblyFile) return true;
1990 PM.add(new CppWriter(o));
1991 return false;
1992}