blob: a8785fe0a99d86bce5e6997798723defa08a11fd [file] [log] [blame]
Chris Lattner01d1ee32002-05-21 20:50:24 +00001//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattner01d1ee32002-05-21 20:50:24 +00009//
Chris Lattnerbb190ac2002-10-08 21:36:33 +000010// Peephole optimize the CFG.
Chris Lattner01d1ee32002-05-21 20:50:24 +000011//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Transforms/Utils/Local.h"
Chris Lattner723c66d2004-02-11 03:36:04 +000015#include "llvm/Constants.h"
16#include "llvm/Instructions.h"
Chris Lattner0d560082004-02-24 05:38:11 +000017#include "llvm/Type.h"
Chris Lattner01d1ee32002-05-21 20:50:24 +000018#include "llvm/Support/CFG.h"
19#include <algorithm>
20#include <functional>
Chris Lattnerd52c2612004-02-24 07:23:58 +000021#include <set>
Chris Lattnerf7703df2004-01-09 06:12:26 +000022using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000023
Chris Lattner0d560082004-02-24 05:38:11 +000024// PropagatePredecessorsForPHIs - This gets "Succ" ready to have the
25// predecessors from "BB". This is a little tricky because "Succ" has PHI
26// nodes, which need to have extra slots added to them to hold the merge edges
27// from BB's predecessors, and BB itself might have had PHI nodes in it. This
28// function returns true (failure) if the Succ BB already has a predecessor that
29// is a predecessor of BB and incoming PHI arguments would not be discernible.
Chris Lattner01d1ee32002-05-21 20:50:24 +000030//
31// Assumption: Succ is the single successor for BB.
32//
Misha Brukmana3bbcb52002-10-29 23:06:16 +000033static bool PropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
Chris Lattner01d1ee32002-05-21 20:50:24 +000034 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
Chris Lattner3abb95d2002-09-24 00:09:26 +000035
36 if (!isa<PHINode>(Succ->front()))
37 return false; // We can make the transformation, no problem.
Chris Lattner01d1ee32002-05-21 20:50:24 +000038
39 // If there is more than one predecessor, and there are PHI nodes in
40 // the successor, then we need to add incoming edges for the PHI nodes
41 //
42 const std::vector<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB));
43
44 // Check to see if one of the predecessors of BB is already a predecessor of
Chris Lattnere2ca5402003-03-05 21:01:52 +000045 // Succ. If so, we cannot do the transformation if there are any PHI nodes
46 // with incompatible values coming in from the two edges!
Chris Lattner01d1ee32002-05-21 20:50:24 +000047 //
Chris Lattnere2ca5402003-03-05 21:01:52 +000048 for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ); PI != PE; ++PI)
49 if (find(BBPreds.begin(), BBPreds.end(), *PI) != BBPreds.end()) {
50 // Loop over all of the PHI nodes checking to see if there are
51 // incompatible values coming in.
Chris Lattner46a5f1f2003-03-05 21:36:33 +000052 for (BasicBlock::iterator I = Succ->begin();
Chris Lattnere408e252003-04-23 16:37:45 +000053 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
Chris Lattnere2ca5402003-03-05 21:01:52 +000054 // Loop up the entries in the PHI node for BB and for *PI if the values
55 // coming in are non-equal, we cannot merge these two blocks (instead we
56 // should insert a conditional move or something, then merge the
57 // blocks).
58 int Idx1 = PN->getBasicBlockIndex(BB);
59 int Idx2 = PN->getBasicBlockIndex(*PI);
60 assert(Idx1 != -1 && Idx2 != -1 &&
61 "Didn't have entries for my predecessors??");
62 if (PN->getIncomingValue(Idx1) != PN->getIncomingValue(Idx2))
63 return true; // Values are not equal...
64 }
65 }
Chris Lattner01d1ee32002-05-21 20:50:24 +000066
67 // Loop over all of the PHI nodes in the successor BB
68 for (BasicBlock::iterator I = Succ->begin();
Chris Lattnere408e252003-04-23 16:37:45 +000069 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
Chris Lattnerbb190ac2002-10-08 21:36:33 +000070 Value *OldVal = PN->removeIncomingValue(BB, false);
Chris Lattner01d1ee32002-05-21 20:50:24 +000071 assert(OldVal && "No entry in PHI for Pred BB!");
72
Chris Lattner46a5f1f2003-03-05 21:36:33 +000073 // If this incoming value is one of the PHI nodes in BB...
74 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
75 PHINode *OldValPN = cast<PHINode>(OldVal);
76 for (std::vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(),
77 End = BBPreds.end(); PredI != End; ++PredI) {
78 PN->addIncoming(OldValPN->getIncomingValueForBlock(*PredI), *PredI);
79 }
80 } else {
81 for (std::vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(),
82 End = BBPreds.end(); PredI != End; ++PredI) {
83 // Add an incoming value for each of the new incoming values...
84 PN->addIncoming(OldVal, *PredI);
85 }
Chris Lattner01d1ee32002-05-21 20:50:24 +000086 }
87 }
88 return false;
89}
90
Chris Lattner723c66d2004-02-11 03:36:04 +000091/// GetIfCondition - Given a basic block (BB) with two predecessors (and
92/// presumably PHI nodes in it), check to see if the merge at this block is due
93/// to an "if condition". If so, return the boolean condition that determines
94/// which entry into BB will be taken. Also, return by references the block
95/// that will be entered from if the condition is true, and the block that will
96/// be entered if the condition is false.
97///
98///
99static Value *GetIfCondition(BasicBlock *BB,
100 BasicBlock *&IfTrue, BasicBlock *&IfFalse) {
101 assert(std::distance(pred_begin(BB), pred_end(BB)) == 2 &&
102 "Function can only handle blocks with 2 predecessors!");
103 BasicBlock *Pred1 = *pred_begin(BB);
104 BasicBlock *Pred2 = *++pred_begin(BB);
105
106 // We can only handle branches. Other control flow will be lowered to
107 // branches if possible anyway.
108 if (!isa<BranchInst>(Pred1->getTerminator()) ||
109 !isa<BranchInst>(Pred2->getTerminator()))
110 return 0;
111 BranchInst *Pred1Br = cast<BranchInst>(Pred1->getTerminator());
112 BranchInst *Pred2Br = cast<BranchInst>(Pred2->getTerminator());
113
114 // Eliminate code duplication by ensuring that Pred1Br is conditional if
115 // either are.
116 if (Pred2Br->isConditional()) {
117 // If both branches are conditional, we don't have an "if statement". In
118 // reality, we could transform this case, but since the condition will be
119 // required anyway, we stand no chance of eliminating it, so the xform is
120 // probably not profitable.
121 if (Pred1Br->isConditional())
122 return 0;
123
124 std::swap(Pred1, Pred2);
125 std::swap(Pred1Br, Pred2Br);
126 }
127
128 if (Pred1Br->isConditional()) {
129 // If we found a conditional branch predecessor, make sure that it branches
130 // to BB and Pred2Br. If it doesn't, this isn't an "if statement".
131 if (Pred1Br->getSuccessor(0) == BB &&
132 Pred1Br->getSuccessor(1) == Pred2) {
133 IfTrue = Pred1;
134 IfFalse = Pred2;
135 } else if (Pred1Br->getSuccessor(0) == Pred2 &&
136 Pred1Br->getSuccessor(1) == BB) {
137 IfTrue = Pred2;
138 IfFalse = Pred1;
139 } else {
140 // We know that one arm of the conditional goes to BB, so the other must
141 // go somewhere unrelated, and this must not be an "if statement".
142 return 0;
143 }
144
145 // The only thing we have to watch out for here is to make sure that Pred2
146 // doesn't have incoming edges from other blocks. If it does, the condition
147 // doesn't dominate BB.
148 if (++pred_begin(Pred2) != pred_end(Pred2))
149 return 0;
150
151 return Pred1Br->getCondition();
152 }
153
154 // Ok, if we got here, both predecessors end with an unconditional branch to
155 // BB. Don't panic! If both blocks only have a single (identical)
156 // predecessor, and THAT is a conditional branch, then we're all ok!
157 if (pred_begin(Pred1) == pred_end(Pred1) ||
158 ++pred_begin(Pred1) != pred_end(Pred1) ||
159 pred_begin(Pred2) == pred_end(Pred2) ||
160 ++pred_begin(Pred2) != pred_end(Pred2) ||
161 *pred_begin(Pred1) != *pred_begin(Pred2))
162 return 0;
163
164 // Otherwise, if this is a conditional branch, then we can use it!
165 BasicBlock *CommonPred = *pred_begin(Pred1);
166 if (BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator())) {
167 assert(BI->isConditional() && "Two successors but not conditional?");
168 if (BI->getSuccessor(0) == Pred1) {
169 IfTrue = Pred1;
170 IfFalse = Pred2;
171 } else {
172 IfTrue = Pred2;
173 IfFalse = Pred1;
174 }
175 return BI->getCondition();
176 }
177 return 0;
178}
179
180
181// If we have a merge point of an "if condition" as accepted above, return true
182// if the specified value dominates the block. We don't handle the true
183// generality of domination here, just a special case which works well enough
184// for us.
185static bool DominatesMergePoint(Value *V, BasicBlock *BB) {
186 if (Instruction *I = dyn_cast<Instruction>(V)) {
187 BasicBlock *PBB = I->getParent();
188 // If this instruction is defined in a block that contains an unconditional
189 // branch to BB, then it must be in the 'conditional' part of the "if
190 // statement".
191 if (isa<BranchInst>(PBB->getTerminator()) &&
192 cast<BranchInst>(PBB->getTerminator())->isUnconditional() &&
193 cast<BranchInst>(PBB->getTerminator())->getSuccessor(0) == BB)
194 return false;
195
196 // We also don't want to allow wierd loops that might have the "if
197 // condition" in the bottom of this block.
198 if (PBB == BB) return false;
199 }
200
201 // Non-instructions all dominate instructions.
202 return true;
203}
Chris Lattner01d1ee32002-05-21 20:50:24 +0000204
Chris Lattner0d560082004-02-24 05:38:11 +0000205// GatherConstantSetEQs - Given a potentially 'or'd together collection of seteq
206// instructions that compare a value against a constant, return the value being
207// compared, and stick the constant into the Values vector.
208static Value *GatherConstantSetEQs(Value *V, std::vector<Constant*> &Values) {
209 if (Instruction *Inst = dyn_cast<Instruction>(V))
210 if (Inst->getOpcode() == Instruction::SetEQ) {
211 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(1))) {
212 Values.push_back(C);
213 return Inst->getOperand(0);
214 } else if (Constant *C = dyn_cast<Constant>(Inst->getOperand(0))) {
215 Values.push_back(C);
216 return Inst->getOperand(1);
217 }
218 } else if (Inst->getOpcode() == Instruction::Or) {
219 if (Value *LHS = GatherConstantSetEQs(Inst->getOperand(0), Values))
220 if (Value *RHS = GatherConstantSetEQs(Inst->getOperand(1), Values))
221 if (LHS == RHS)
222 return LHS;
223 }
224 return 0;
225}
226
227// GatherConstantSetNEs - Given a potentially 'and'd together collection of
228// setne instructions that compare a value against a constant, return the value
229// being compared, and stick the constant into the Values vector.
230static Value *GatherConstantSetNEs(Value *V, std::vector<Constant*> &Values) {
231 if (Instruction *Inst = dyn_cast<Instruction>(V))
232 if (Inst->getOpcode() == Instruction::SetNE) {
233 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(1))) {
234 Values.push_back(C);
235 return Inst->getOperand(0);
236 } else if (Constant *C = dyn_cast<Constant>(Inst->getOperand(0))) {
237 Values.push_back(C);
238 return Inst->getOperand(1);
239 }
240 } else if (Inst->getOpcode() == Instruction::Cast) {
241 // Cast of X to bool is really a comparison against zero.
242 assert(Inst->getType() == Type::BoolTy && "Can only handle bool values!");
243 Values.push_back(Constant::getNullValue(Inst->getOperand(0)->getType()));
244 return Inst->getOperand(0);
245 } else if (Inst->getOpcode() == Instruction::And) {
246 if (Value *LHS = GatherConstantSetNEs(Inst->getOperand(0), Values))
247 if (Value *RHS = GatherConstantSetNEs(Inst->getOperand(1), Values))
248 if (LHS == RHS)
249 return LHS;
250 }
251 return 0;
252}
253
254
255
256/// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
257/// bunch of comparisons of one value against constants, return the value and
258/// the constants being compared.
259static bool GatherValueComparisons(Instruction *Cond, Value *&CompVal,
260 std::vector<Constant*> &Values) {
261 if (Cond->getOpcode() == Instruction::Or) {
262 CompVal = GatherConstantSetEQs(Cond, Values);
263
264 // Return true to indicate that the condition is true if the CompVal is
265 // equal to one of the constants.
266 return true;
267 } else if (Cond->getOpcode() == Instruction::And) {
268 CompVal = GatherConstantSetNEs(Cond, Values);
269
270 // Return false to indicate that the condition is false if the CompVal is
271 // equal to one of the constants.
272 return false;
273 }
274 return false;
275}
276
277/// ErasePossiblyDeadInstructionTree - If the specified instruction is dead and
278/// has no side effects, nuke it. If it uses any instructions that become dead
279/// because the instruction is now gone, nuke them too.
280static void ErasePossiblyDeadInstructionTree(Instruction *I) {
281 if (isInstructionTriviallyDead(I)) {
282 std::vector<Value*> Operands(I->op_begin(), I->op_end());
283 I->getParent()->getInstList().erase(I);
284 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
285 if (Instruction *OpI = dyn_cast<Instruction>(Operands[i]))
286 ErasePossiblyDeadInstructionTree(OpI);
287 }
288}
289
Chris Lattnerd52c2612004-02-24 07:23:58 +0000290/// SafeToMergeTerminators - Return true if it is safe to merge these two
291/// terminator instructions together.
292///
293static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
294 if (SI1 == SI2) return false; // Can't merge with self!
295
296 // It is not safe to merge these two switch instructions if they have a common
297 // successor, and if that successor has a PHI node, and if that PHI node has
298 // conflicting incoming values from the two switch blocks.
299 BasicBlock *SI1BB = SI1->getParent();
300 BasicBlock *SI2BB = SI2->getParent();
301 std::set<BasicBlock*> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
302
303 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
304 if (SI1Succs.count(*I))
305 for (BasicBlock::iterator BBI = (*I)->begin();
306 PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI)
307 if (PN->getIncomingValueForBlock(SI1BB) !=
308 PN->getIncomingValueForBlock(SI2BB))
309 return false;
310
311 return true;
312}
313
314/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
315/// now be entries in it from the 'NewPred' block. The values that will be
316/// flowing into the PHI nodes will be the same as those coming in from
317/// ExistPred, and existing predecessor of Succ.
318static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
319 BasicBlock *ExistPred) {
320 assert(std::find(succ_begin(ExistPred), succ_end(ExistPred), Succ) !=
321 succ_end(ExistPred) && "ExistPred is not a predecessor of Succ!");
322 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
323
324 for (BasicBlock::iterator I = Succ->begin();
325 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
326 Value *V = PN->getIncomingValueForBlock(ExistPred);
327 PN->addIncoming(V, NewPred);
328 }
329}
330
Chris Lattner542f1492004-02-28 21:28:10 +0000331// isValueEqualityComparison - Return true if the specified terminator checks to
332// see if a value is equal to constant integer value.
333static Value *isValueEqualityComparison(TerminatorInst *TI) {
Chris Lattner4bebf082004-03-16 19:45:22 +0000334 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
335 // Do not permit merging of large switch instructions into their
336 // predecessors unless there is only one predecessor.
337 if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
338 pred_end(SI->getParent())) > 128)
339 return 0;
340
Chris Lattner542f1492004-02-28 21:28:10 +0000341 return SI->getCondition();
Chris Lattner4bebf082004-03-16 19:45:22 +0000342 }
Chris Lattner542f1492004-02-28 21:28:10 +0000343 if (BranchInst *BI = dyn_cast<BranchInst>(TI))
344 if (BI->isConditional() && BI->getCondition()->hasOneUse())
345 if (SetCondInst *SCI = dyn_cast<SetCondInst>(BI->getCondition()))
346 if ((SCI->getOpcode() == Instruction::SetEQ ||
347 SCI->getOpcode() == Instruction::SetNE) &&
348 isa<ConstantInt>(SCI->getOperand(1)))
349 return SCI->getOperand(0);
350 return 0;
351}
352
353// Given a value comparison instruction, decode all of the 'cases' that it
354// represents and return the 'default' block.
355static BasicBlock *
356GetValueEqualityComparisonCases(TerminatorInst *TI,
357 std::vector<std::pair<ConstantInt*,
358 BasicBlock*> > &Cases) {
359 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
360 Cases.reserve(SI->getNumCases());
361 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
362 Cases.push_back(std::make_pair(cast<ConstantInt>(SI->getCaseValue(i)),
363 SI->getSuccessor(i)));
364 return SI->getDefaultDest();
365 }
366
367 BranchInst *BI = cast<BranchInst>(TI);
368 SetCondInst *SCI = cast<SetCondInst>(BI->getCondition());
369 Cases.push_back(std::make_pair(cast<ConstantInt>(SCI->getOperand(1)),
370 BI->getSuccessor(SCI->getOpcode() ==
371 Instruction::SetNE)));
372 return BI->getSuccessor(SCI->getOpcode() == Instruction::SetEQ);
373}
374
375
376// FoldValueComparisonIntoPredecessors - The specified terminator is a value
377// equality comparison instruction (either a switch or a branch on "X == c").
378// See if any of the predecessors of the terminator block are value comparisons
379// on the same value. If so, and if safe to do so, fold them together.
380static bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
381 BasicBlock *BB = TI->getParent();
382 Value *CV = isValueEqualityComparison(TI); // CondVal
383 assert(CV && "Not a comparison?");
384 bool Changed = false;
385
386 std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
387 while (!Preds.empty()) {
388 BasicBlock *Pred = Preds.back();
389 Preds.pop_back();
390
391 // See if the predecessor is a comparison with the same value.
392 TerminatorInst *PTI = Pred->getTerminator();
393 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
394
395 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
396 // Figure out which 'cases' to copy from SI to PSI.
397 std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
398 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
399
400 std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
401 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
402
403 // Based on whether the default edge from PTI goes to BB or not, fill in
404 // PredCases and PredDefault with the new switch cases we would like to
405 // build.
406 std::vector<BasicBlock*> NewSuccessors;
407
408 if (PredDefault == BB) {
409 // If this is the default destination from PTI, only the edges in TI
410 // that don't occur in PTI, or that branch to BB will be activated.
411 std::set<ConstantInt*> PTIHandled;
412 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
413 if (PredCases[i].second != BB)
414 PTIHandled.insert(PredCases[i].first);
415 else {
416 // The default destination is BB, we don't need explicit targets.
417 std::swap(PredCases[i], PredCases.back());
418 PredCases.pop_back();
419 --i; --e;
420 }
421
422 // Reconstruct the new switch statement we will be building.
423 if (PredDefault != BBDefault) {
424 PredDefault->removePredecessor(Pred);
425 PredDefault = BBDefault;
426 NewSuccessors.push_back(BBDefault);
427 }
428 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
429 if (!PTIHandled.count(BBCases[i].first) &&
430 BBCases[i].second != BBDefault) {
431 PredCases.push_back(BBCases[i]);
432 NewSuccessors.push_back(BBCases[i].second);
433 }
434
435 } else {
436 // If this is not the default destination from PSI, only the edges
437 // in SI that occur in PSI with a destination of BB will be
438 // activated.
439 std::set<ConstantInt*> PTIHandled;
440 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
441 if (PredCases[i].second == BB) {
442 PTIHandled.insert(PredCases[i].first);
443 std::swap(PredCases[i], PredCases.back());
444 PredCases.pop_back();
445 --i; --e;
446 }
447
448 // Okay, now we know which constants were sent to BB from the
449 // predecessor. Figure out where they will all go now.
450 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
451 if (PTIHandled.count(BBCases[i].first)) {
452 // If this is one we are capable of getting...
453 PredCases.push_back(BBCases[i]);
454 NewSuccessors.push_back(BBCases[i].second);
455 PTIHandled.erase(BBCases[i].first);// This constant is taken care of
456 }
457
458 // If there are any constants vectored to BB that TI doesn't handle,
459 // they must go to the default destination of TI.
460 for (std::set<ConstantInt*>::iterator I = PTIHandled.begin(),
461 E = PTIHandled.end(); I != E; ++I) {
462 PredCases.push_back(std::make_pair(*I, BBDefault));
463 NewSuccessors.push_back(BBDefault);
464 }
465 }
466
467 // Okay, at this point, we know which new successor Pred will get. Make
468 // sure we update the number of entries in the PHI nodes for these
469 // successors.
470 for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
471 AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
472
473 // Now that the successors are updated, create the new Switch instruction.
474 SwitchInst *NewSI = new SwitchInst(CV, PredDefault, PTI);
475 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
476 NewSI->addCase(PredCases[i].first, PredCases[i].second);
477 Pred->getInstList().erase(PTI);
478
479 // Okay, last check. If BB is still a successor of PSI, then we must
480 // have an infinite loop case. If so, add an infinitely looping block
481 // to handle the case to preserve the behavior of the code.
482 BasicBlock *InfLoopBlock = 0;
483 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
484 if (NewSI->getSuccessor(i) == BB) {
485 if (InfLoopBlock == 0) {
486 // Insert it at the end of the loop, because it's either code,
487 // or it won't matter if it's hot. :)
488 InfLoopBlock = new BasicBlock("infloop", BB->getParent());
489 new BranchInst(InfLoopBlock, InfLoopBlock);
490 }
491 NewSI->setSuccessor(i, InfLoopBlock);
492 }
493
494 Changed = true;
495 }
496 }
497 return Changed;
498}
499
500
Chris Lattner01d1ee32002-05-21 20:50:24 +0000501// SimplifyCFG - This function is used to do simplification of a CFG. For
502// example, it adjusts branches to branches to eliminate the extra hop, it
503// eliminates unreachable basic blocks, and does other "peephole" optimization
Chris Lattnere2ca5402003-03-05 21:01:52 +0000504// of the CFG. It returns true if a modification was made.
Chris Lattner01d1ee32002-05-21 20:50:24 +0000505//
506// WARNING: The entry node of a function may not be simplified.
507//
Chris Lattnerf7703df2004-01-09 06:12:26 +0000508bool llvm::SimplifyCFG(BasicBlock *BB) {
Chris Lattnerdc3602b2003-08-24 18:36:16 +0000509 bool Changed = false;
Chris Lattner01d1ee32002-05-21 20:50:24 +0000510 Function *M = BB->getParent();
511
512 assert(BB && BB->getParent() && "Block not embedded in function!");
513 assert(BB->getTerminator() && "Degenerate basic block encountered!");
Chris Lattner18961502002-06-25 16:12:52 +0000514 assert(&BB->getParent()->front() != BB && "Can't Simplify entry block!");
Chris Lattner01d1ee32002-05-21 20:50:24 +0000515
Chris Lattner01d1ee32002-05-21 20:50:24 +0000516 // Remove basic blocks that have no predecessors... which are unreachable.
Chris Lattnerd52c2612004-02-24 07:23:58 +0000517 if (pred_begin(BB) == pred_end(BB) ||
518 *pred_begin(BB) == BB && ++pred_begin(BB) == pred_end(BB)) {
Chris Lattner01d1ee32002-05-21 20:50:24 +0000519 //cerr << "Removing BB: \n" << BB;
520
521 // Loop through all of our successors and make sure they know that one
522 // of their predecessors is going away.
523 for_each(succ_begin(BB), succ_end(BB),
524 std::bind2nd(std::mem_fun(&BasicBlock::removePredecessor), BB));
525
526 while (!BB->empty()) {
Chris Lattner18961502002-06-25 16:12:52 +0000527 Instruction &I = BB->back();
Chris Lattner01d1ee32002-05-21 20:50:24 +0000528 // If this instruction is used, replace uses with an arbitrary
529 // constant value. Because control flow can't get here, we don't care
530 // what we replace the value with. Note that since this block is
531 // unreachable, and all values contained within it must dominate their
532 // uses, that all uses will eventually be removed.
Chris Lattner18961502002-06-25 16:12:52 +0000533 if (!I.use_empty())
Chris Lattner01d1ee32002-05-21 20:50:24 +0000534 // Make all users of this instruction reference the constant instead
Chris Lattner18961502002-06-25 16:12:52 +0000535 I.replaceAllUsesWith(Constant::getNullValue(I.getType()));
Chris Lattner01d1ee32002-05-21 20:50:24 +0000536
537 // Remove the instruction from the basic block
Chris Lattner18961502002-06-25 16:12:52 +0000538 BB->getInstList().pop_back();
Chris Lattner01d1ee32002-05-21 20:50:24 +0000539 }
Chris Lattner18961502002-06-25 16:12:52 +0000540 M->getBasicBlockList().erase(BB);
Chris Lattner01d1ee32002-05-21 20:50:24 +0000541 return true;
542 }
543
Chris Lattner694e37f2003-08-17 19:41:53 +0000544 // Check to see if we can constant propagate this terminator instruction
545 // away...
Chris Lattnerdc3602b2003-08-24 18:36:16 +0000546 Changed |= ConstantFoldTerminator(BB);
Chris Lattner694e37f2003-08-17 19:41:53 +0000547
Chris Lattner46a5f1f2003-03-05 21:36:33 +0000548 // Check to see if this block has no non-phi instructions and only a single
549 // successor. If so, replace references to this basic block with references
550 // to the successor.
Chris Lattner01d1ee32002-05-21 20:50:24 +0000551 succ_iterator SI(succ_begin(BB));
552 if (SI != succ_end(BB) && ++SI == succ_end(BB)) { // One succ?
Chris Lattner46a5f1f2003-03-05 21:36:33 +0000553
554 BasicBlock::iterator BBI = BB->begin(); // Skip over phi nodes...
555 while (isa<PHINode>(*BBI)) ++BBI;
556
557 if (BBI->isTerminator()) { // Terminator is the only non-phi instruction!
Chris Lattner01d1ee32002-05-21 20:50:24 +0000558 BasicBlock *Succ = *succ_begin(BB); // There is exactly one successor
559
560 if (Succ != BB) { // Arg, don't hurt infinite loops!
561 // If our successor has PHI nodes, then we need to update them to
562 // include entries for BB's predecessors, not for BB itself.
563 // Be careful though, if this transformation fails (returns true) then
564 // we cannot do this transformation!
565 //
Misha Brukmana3bbcb52002-10-29 23:06:16 +0000566 if (!PropagatePredecessorsForPHIs(BB, Succ)) {
Chris Lattner01d1ee32002-05-21 20:50:24 +0000567 //cerr << "Killing Trivial BB: \n" << BB;
Chris Lattner18961502002-06-25 16:12:52 +0000568 std::string OldName = BB->getName();
569
Chris Lattner3a438372003-03-07 18:13:41 +0000570 std::vector<BasicBlock*>
571 OldSuccPreds(pred_begin(Succ), pred_end(Succ));
572
Chris Lattner46a5f1f2003-03-05 21:36:33 +0000573 // Move all PHI nodes in BB to Succ if they are alive, otherwise
574 // delete them.
575 while (PHINode *PN = dyn_cast<PHINode>(&BB->front()))
576 if (PN->use_empty())
577 BB->getInstList().erase(BB->begin()); // Nuke instruction...
578 else {
579 // The instruction is alive, so this means that Succ must have
580 // *ONLY* had BB as a predecessor, and the PHI node is still valid
Chris Lattner3a438372003-03-07 18:13:41 +0000581 // now. Simply move it into Succ, because we know that BB
582 // strictly dominated Succ.
Chris Lattner46a5f1f2003-03-05 21:36:33 +0000583 BB->getInstList().remove(BB->begin());
584 Succ->getInstList().push_front(PN);
Chris Lattner3a438372003-03-07 18:13:41 +0000585
586 // We need to add new entries for the PHI node to account for
587 // predecessors of Succ that the PHI node does not take into
588 // account. At this point, since we know that BB dominated succ,
589 // this means that we should any newly added incoming edges should
590 // use the PHI node as the value for these edges, because they are
591 // loop back edges.
592
593 for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i)
594 if (OldSuccPreds[i] != BB)
595 PN->addIncoming(PN, OldSuccPreds[i]);
Chris Lattner46a5f1f2003-03-05 21:36:33 +0000596 }
597
Chris Lattner3a438372003-03-07 18:13:41 +0000598 // Everything that jumped to BB now goes to Succ...
599 BB->replaceAllUsesWith(Succ);
600
Chris Lattner18961502002-06-25 16:12:52 +0000601 // Delete the old basic block...
602 M->getBasicBlockList().erase(BB);
Chris Lattner01d1ee32002-05-21 20:50:24 +0000603
Chris Lattner18961502002-06-25 16:12:52 +0000604 if (!OldName.empty() && !Succ->hasName()) // Transfer name if we can
605 Succ->setName(OldName);
Chris Lattner01d1ee32002-05-21 20:50:24 +0000606
607 //cerr << "Function after removal: \n" << M;
608 return true;
609 }
610 }
611 }
612 }
613
Chris Lattner19831ec2004-02-16 06:35:48 +0000614 // If this is a returning block with only PHI nodes in it, fold the return
615 // instruction into any unconditional branch predecessors.
616 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
617 BasicBlock::iterator BBI = BB->getTerminator();
618 if (BBI == BB->begin() || isa<PHINode>(--BBI)) {
619 // Find predecessors that end with unconditional branches.
620 std::vector<BasicBlock*> UncondBranchPreds;
621 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
622 TerminatorInst *PTI = (*PI)->getTerminator();
623 if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
624 if (BI->isUnconditional())
625 UncondBranchPreds.push_back(*PI);
626 }
627
628 // If we found some, do the transformation!
629 if (!UncondBranchPreds.empty()) {
630 while (!UncondBranchPreds.empty()) {
631 BasicBlock *Pred = UncondBranchPreds.back();
632 UncondBranchPreds.pop_back();
633 Instruction *UncondBranch = Pred->getTerminator();
634 // Clone the return and add it to the end of the predecessor.
635 Instruction *NewRet = RI->clone();
636 Pred->getInstList().push_back(NewRet);
637
638 // If the return instruction returns a value, and if the value was a
639 // PHI node in "BB", propagate the right value into the return.
640 if (NewRet->getNumOperands() == 1)
641 if (PHINode *PN = dyn_cast<PHINode>(NewRet->getOperand(0)))
642 if (PN->getParent() == BB)
643 NewRet->setOperand(0, PN->getIncomingValueForBlock(Pred));
644 // Update any PHI nodes in the returning block to realize that we no
645 // longer branch to them.
646 BB->removePredecessor(Pred);
647 Pred->getInstList().erase(UncondBranch);
648 }
649
650 // If we eliminated all predecessors of the block, delete the block now.
651 if (pred_begin(BB) == pred_end(BB))
652 // We know there are no successors, so just nuke the block.
653 M->getBasicBlockList().erase(BB);
654
Chris Lattner19831ec2004-02-16 06:35:48 +0000655 return true;
656 }
657 }
Chris Lattnere14ea082004-02-24 05:54:22 +0000658 } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->begin())) {
659 // Check to see if the first instruction in this block is just an unwind.
660 // If so, replace any invoke instructions which use this as an exception
661 // destination with call instructions.
662 //
663 std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
664 while (!Preds.empty()) {
665 BasicBlock *Pred = Preds.back();
666 if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
667 if (II->getUnwindDest() == BB) {
668 // Insert a new branch instruction before the invoke, because this
669 // is now a fall through...
670 BranchInst *BI = new BranchInst(II->getNormalDest(), II);
671 Pred->getInstList().remove(II); // Take out of symbol table
672
673 // Insert the call now...
674 std::vector<Value*> Args(II->op_begin()+3, II->op_end());
675 CallInst *CI = new CallInst(II->getCalledValue(), Args,
676 II->getName(), BI);
677 // If the invoke produced a value, the Call now does instead
678 II->replaceAllUsesWith(CI);
679 delete II;
680 Changed = true;
681 }
682
683 Preds.pop_back();
684 }
Chris Lattner8e509dd2004-02-24 16:09:21 +0000685
686 // If this block is now dead, remove it.
687 if (pred_begin(BB) == pred_end(BB)) {
688 // We know there are no successors, so just nuke the block.
689 M->getBasicBlockList().erase(BB);
690 return true;
691 }
692
Chris Lattnerd52c2612004-02-24 07:23:58 +0000693 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->begin())) {
Chris Lattner7acd1cc2004-03-17 02:02:47 +0000694 if (isValueEqualityComparison(SI))
695 if (FoldValueComparisonIntoPredecessors(SI))
696 return SimplifyCFG(BB) || 1;
Chris Lattner542f1492004-02-28 21:28:10 +0000697 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
698 if (Value *CompVal = isValueEqualityComparison(BB->getTerminator())) {
699 // This block must be empty, except for the setcond inst, if it exists.
700 BasicBlock::iterator I = BB->begin();
701 if (&*I == BI ||
702 (&*I == cast<Instruction>(BI->getCondition()) &&
703 &*++I == BI))
704 if (FoldValueComparisonIntoPredecessors(BI))
705 return SimplifyCFG(BB) || 1;
Chris Lattnerd52c2612004-02-24 07:23:58 +0000706 }
Chris Lattner19831ec2004-02-16 06:35:48 +0000707 }
708
Chris Lattner01d1ee32002-05-21 20:50:24 +0000709 // Merge basic blocks into their predecessor if there is only one distinct
710 // pred, and if there is only one distinct successor of the predecessor, and
711 // if there are no PHI nodes.
712 //
Chris Lattner2355f942004-02-11 01:17:07 +0000713 pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
714 BasicBlock *OnlyPred = *PI++;
715 for (; PI != PE; ++PI) // Search all predecessors, see if they are all same
716 if (*PI != OnlyPred) {
717 OnlyPred = 0; // There are multiple different predecessors...
718 break;
719 }
720
721 BasicBlock *OnlySucc = 0;
722 if (OnlyPred && OnlyPred != BB && // Don't break self loops
723 OnlyPred->getTerminator()->getOpcode() != Instruction::Invoke) {
724 // Check to see if there is only one distinct successor...
725 succ_iterator SI(succ_begin(OnlyPred)), SE(succ_end(OnlyPred));
726 OnlySucc = BB;
727 for (; SI != SE; ++SI)
728 if (*SI != OnlySucc) {
729 OnlySucc = 0; // There are multiple distinct successors!
Chris Lattner01d1ee32002-05-21 20:50:24 +0000730 break;
731 }
Chris Lattner2355f942004-02-11 01:17:07 +0000732 }
733
734 if (OnlySucc) {
735 //cerr << "Merging: " << BB << "into: " << OnlyPred;
736 TerminatorInst *Term = OnlyPred->getTerminator();
737
738 // Resolve any PHI nodes at the start of the block. They are all
739 // guaranteed to have exactly one entry if they exist, unless there are
740 // multiple duplicate (but guaranteed to be equal) entries for the
741 // incoming edges. This occurs when there are multiple edges from
742 // OnlyPred to OnlySucc.
743 //
744 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
745 PN->replaceAllUsesWith(PN->getIncomingValue(0));
746 BB->getInstList().pop_front(); // Delete the phi node...
Chris Lattner01d1ee32002-05-21 20:50:24 +0000747 }
748
Chris Lattner2355f942004-02-11 01:17:07 +0000749 // Delete the unconditional branch from the predecessor...
750 OnlyPred->getInstList().pop_back();
Chris Lattner01d1ee32002-05-21 20:50:24 +0000751
Chris Lattner2355f942004-02-11 01:17:07 +0000752 // Move all definitions in the successor to the predecessor...
753 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
Chris Lattner18961502002-06-25 16:12:52 +0000754
Chris Lattner2355f942004-02-11 01:17:07 +0000755 // Make all PHI nodes that referred to BB now refer to Pred as their
756 // source...
757 BB->replaceAllUsesWith(OnlyPred);
Chris Lattner18961502002-06-25 16:12:52 +0000758
Chris Lattner2355f942004-02-11 01:17:07 +0000759 std::string OldName = BB->getName();
Chris Lattner18961502002-06-25 16:12:52 +0000760
Chris Lattner2355f942004-02-11 01:17:07 +0000761 // Erase basic block from the function...
762 M->getBasicBlockList().erase(BB);
Chris Lattner18961502002-06-25 16:12:52 +0000763
Chris Lattner2355f942004-02-11 01:17:07 +0000764 // Inherit predecessors name if it exists...
765 if (!OldName.empty() && !OnlyPred->hasName())
766 OnlyPred->setName(OldName);
Chris Lattner01d1ee32002-05-21 20:50:24 +0000767
Chris Lattner2355f942004-02-11 01:17:07 +0000768 return true;
Chris Lattner01d1ee32002-05-21 20:50:24 +0000769 }
Chris Lattner723c66d2004-02-11 03:36:04 +0000770
Chris Lattner0d560082004-02-24 05:38:11 +0000771 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
772 if (BranchInst *BI = dyn_cast<BranchInst>((*PI)->getTerminator()))
773 // Change br (X == 0 | X == 1), T, F into a switch instruction.
774 if (BI->isConditional() && isa<Instruction>(BI->getCondition())) {
775 Instruction *Cond = cast<Instruction>(BI->getCondition());
776 // If this is a bunch of seteq's or'd together, or if it's a bunch of
777 // 'setne's and'ed together, collect them.
778 Value *CompVal = 0;
779 std::vector<Constant*> Values;
780 bool TrueWhenEqual = GatherValueComparisons(Cond, CompVal, Values);
781 if (CompVal && CompVal->getType()->isInteger()) {
782 // There might be duplicate constants in the list, which the switch
783 // instruction can't handle, remove them now.
784 std::sort(Values.begin(), Values.end());
785 Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
786
787 // Figure out which block is which destination.
788 BasicBlock *DefaultBB = BI->getSuccessor(1);
789 BasicBlock *EdgeBB = BI->getSuccessor(0);
790 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
791
792 // Create the new switch instruction now.
793 SwitchInst *New = new SwitchInst(CompVal, DefaultBB, BI);
794
795 // Add all of the 'cases' to the switch instruction.
796 for (unsigned i = 0, e = Values.size(); i != e; ++i)
797 New->addCase(Values[i], EdgeBB);
798
799 // We added edges from PI to the EdgeBB. As such, if there were any
800 // PHI nodes in EdgeBB, they need entries to be added corresponding to
801 // the number of edges added.
802 for (BasicBlock::iterator BBI = EdgeBB->begin();
803 PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) {
804 Value *InVal = PN->getIncomingValueForBlock(*PI);
805 for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
806 PN->addIncoming(InVal, *PI);
807 }
808
809 // Erase the old branch instruction.
810 (*PI)->getInstList().erase(BI);
811
812 // Erase the potentially condition tree that was used to computed the
813 // branch condition.
814 ErasePossiblyDeadInstructionTree(Cond);
815 return true;
816 }
817 }
818
Chris Lattner723c66d2004-02-11 03:36:04 +0000819 // If there is a trivial two-entry PHI node in this basic block, and we can
820 // eliminate it, do so now.
821 if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
822 if (PN->getNumIncomingValues() == 2) {
823 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
824 // statement", which has a very simple dominance structure. Basically, we
825 // are trying to find the condition that is being branched on, which
826 // subsequently causes this merge to happen. We really want control
827 // dependence information for this check, but simplifycfg can't keep it up
828 // to date, and this catches most of the cases we care about anyway.
829 //
830 BasicBlock *IfTrue, *IfFalse;
831 if (Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse)) {
832 //std::cerr << "FOUND IF CONDITION! " << *IfCond << " T: "
833 // << IfTrue->getName() << " F: " << IfFalse->getName() << "\n";
834
835 // Figure out where to insert instructions as necessary.
836 BasicBlock::iterator AfterPHIIt = BB->begin();
837 while (isa<PHINode>(AfterPHIIt)) ++AfterPHIIt;
838
839 BasicBlock::iterator I = BB->begin();
840 while (PHINode *PN = dyn_cast<PHINode>(I)) {
841 ++I;
842
843 // If we can eliminate this PHI by directly computing it based on the
844 // condition, do so now. We can't eliminate PHI nodes where the
845 // incoming values are defined in the conditional parts of the branch,
846 // so check for this.
847 //
848 if (DominatesMergePoint(PN->getIncomingValue(0), BB) &&
849 DominatesMergePoint(PN->getIncomingValue(1), BB)) {
850 Value *TrueVal =
851 PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
852 Value *FalseVal =
853 PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
854
855 // FIXME: when we have a 'select' statement, we can be completely
856 // generic and clean here and let the instcombine pass clean up
857 // after us, by folding the select instructions away when possible.
858 //
859 if (TrueVal == FalseVal) {
860 // Degenerate case...
861 PN->replaceAllUsesWith(TrueVal);
862 BB->getInstList().erase(PN);
863 Changed = true;
864 } else if (isa<ConstantBool>(TrueVal) &&
865 isa<ConstantBool>(FalseVal)) {
866 if (TrueVal == ConstantBool::True) {
867 // The PHI node produces the same thing as the condition.
868 PN->replaceAllUsesWith(IfCond);
869 } else {
870 // The PHI node produces the inverse of the condition. Insert a
871 // "NOT" instruction, which is really a XOR.
872 Value *InverseCond =
873 BinaryOperator::createNot(IfCond, IfCond->getName()+".inv",
874 AfterPHIIt);
875 PN->replaceAllUsesWith(InverseCond);
876 }
877 BB->getInstList().erase(PN);
878 Changed = true;
879 } else if (isa<ConstantInt>(TrueVal) && isa<ConstantInt>(FalseVal)){
880 // If this is a PHI of two constant integers, we insert a cast of
881 // the boolean to the integer type in question, giving us 0 or 1.
882 // Then we multiply this by the difference of the two constants,
883 // giving us 0 if false, and the difference if true. We add this
884 // result to the base constant, giving us our final value. We
885 // rely on the instruction combiner to eliminate many special
886 // cases, like turning multiplies into shifts when possible.
887 std::string Name = PN->getName(); PN->setName("");
888 Value *TheCast = new CastInst(IfCond, TrueVal->getType(),
889 Name, AfterPHIIt);
890 Constant *TheDiff = ConstantExpr::get(Instruction::Sub,
891 cast<Constant>(TrueVal),
892 cast<Constant>(FalseVal));
893 Value *V = TheCast;
894 if (TheDiff != ConstantInt::get(TrueVal->getType(), 1))
895 V = BinaryOperator::create(Instruction::Mul, TheCast,
896 TheDiff, TheCast->getName()+".scale",
897 AfterPHIIt);
898 if (!cast<Constant>(FalseVal)->isNullValue())
899 V = BinaryOperator::create(Instruction::Add, V, FalseVal,
900 V->getName()+".offs", AfterPHIIt);
901 PN->replaceAllUsesWith(V);
902 BB->getInstList().erase(PN);
903 Changed = true;
904 } else if (isa<ConstantInt>(FalseVal) &&
905 cast<Constant>(FalseVal)->isNullValue()) {
906 // If the false condition is an integral zero value, we can
907 // compute the PHI by multiplying the condition by the other
908 // value.
909 std::string Name = PN->getName(); PN->setName("");
910 Value *TheCast = new CastInst(IfCond, TrueVal->getType(),
911 Name+".c", AfterPHIIt);
912 Value *V = BinaryOperator::create(Instruction::Mul, TrueVal,
913 TheCast, Name, AfterPHIIt);
914 PN->replaceAllUsesWith(V);
915 BB->getInstList().erase(PN);
916 Changed = true;
917 } else if (isa<ConstantInt>(TrueVal) &&
918 cast<Constant>(TrueVal)->isNullValue()) {
919 // If the true condition is an integral zero value, we can compute
920 // the PHI by multiplying the inverse condition by the other
921 // value.
922 std::string Name = PN->getName(); PN->setName("");
923 Value *NotCond = BinaryOperator::createNot(IfCond, Name+".inv",
924 AfterPHIIt);
925 Value *TheCast = new CastInst(NotCond, TrueVal->getType(),
926 Name+".inv", AfterPHIIt);
927 Value *V = BinaryOperator::create(Instruction::Mul, FalseVal,
928 TheCast, Name, AfterPHIIt);
929 PN->replaceAllUsesWith(V);
930 BB->getInstList().erase(PN);
931 Changed = true;
932 }
933 }
934 }
935 }
936 }
Chris Lattner01d1ee32002-05-21 20:50:24 +0000937
Chris Lattner694e37f2003-08-17 19:41:53 +0000938 return Changed;
Chris Lattner01d1ee32002-05-21 20:50:24 +0000939}