blob: 0566defd0523a137719be8aad1164ba45b24802a [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
2//
Chris Lattner3e130a22003-01-13 00:32:26 +00003// This file defines a simple peephole instruction selector for the x86 target
Chris Lattner72614082002-10-25 22:55:53 +00004//
5//===----------------------------------------------------------------------===//
6
7#include "X86.h"
Chris Lattner055c9652002-10-29 21:05:24 +00008#include "X86InstrInfo.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +00009#include "X86InstrBuilder.h"
Chris Lattner72614082002-10-25 22:55:53 +000010#include "llvm/Function.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000011#include "llvm/Instructions.h"
Brian Gaeke20244b72002-12-12 15:33:40 +000012#include "llvm/DerivedTypes.h"
Chris Lattnerc5291f52002-10-27 21:16:59 +000013#include "llvm/Constants.h"
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000014#include "llvm/Pass.h"
Chris Lattnereca195e2003-05-08 19:44:13 +000015#include "llvm/Intrinsics.h"
Chris Lattner341a9372002-10-29 17:43:55 +000016#include "llvm/CodeGen/MachineFunction.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000017#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner94af4142002-12-25 05:13:53 +000018#include "llvm/CodeGen/SSARegMap.h"
Chris Lattneraa09b752002-12-28 21:08:28 +000019#include "llvm/CodeGen/MachineFrameInfo.h"
Chris Lattner3e130a22003-01-13 00:32:26 +000020#include "llvm/CodeGen/MachineConstantPool.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000021#include "llvm/Target/TargetMachine.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000022#include "llvm/Target/MRegisterInfo.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000023#include "llvm/Support/InstVisitor.h"
Chris Lattner72614082002-10-25 22:55:53 +000024
Chris Lattner333b2fa2002-12-13 10:09:43 +000025/// BMI - A special BuildMI variant that takes an iterator to insert the
Chris Lattner8bdd1292003-04-25 21:58:54 +000026/// instruction at as well as a basic block. This is the version for when you
27/// have a destination register in mind.
Brian Gaeke71794c02002-12-13 11:22:48 +000028inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattner333b2fa2002-12-13 10:09:43 +000029 MachineBasicBlock::iterator &I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000030 int Opcode, unsigned NumOperands,
Chris Lattner333b2fa2002-12-13 10:09:43 +000031 unsigned DestReg) {
Chris Lattnerd7d38722002-12-13 13:04:04 +000032 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattner333b2fa2002-12-13 10:09:43 +000033 MachineInstr *MI = new MachineInstr(Opcode, NumOperands+1, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000034 I = MBB->insert(I, MI)+1;
Chris Lattner333b2fa2002-12-13 10:09:43 +000035 return MachineInstrBuilder(MI).addReg(DestReg, MOTy::Def);
36}
37
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000038/// BMI - A special BuildMI variant that takes an iterator to insert the
39/// instruction at as well as a basic block.
Brian Gaeke71794c02002-12-13 11:22:48 +000040inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000041 MachineBasicBlock::iterator &I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000042 int Opcode, unsigned NumOperands) {
Chris Lattner8bdd1292003-04-25 21:58:54 +000043 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000044 MachineInstr *MI = new MachineInstr(Opcode, NumOperands, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000045 I = MBB->insert(I, MI)+1;
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000046 return MachineInstrBuilder(MI);
47}
48
Chris Lattner333b2fa2002-12-13 10:09:43 +000049
Chris Lattner72614082002-10-25 22:55:53 +000050namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000051 struct ISel : public FunctionPass, InstVisitor<ISel> {
52 TargetMachine &TM;
Chris Lattnereca195e2003-05-08 19:44:13 +000053 MachineFunction *F; // The function we are compiling into
54 MachineBasicBlock *BB; // The current MBB we are compiling
55 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Chris Lattner72614082002-10-25 22:55:53 +000056
Chris Lattner72614082002-10-25 22:55:53 +000057 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
58
Chris Lattner333b2fa2002-12-13 10:09:43 +000059 // MBBMap - Mapping between LLVM BB -> Machine BB
60 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
61
Chris Lattner3e130a22003-01-13 00:32:26 +000062 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
Chris Lattner72614082002-10-25 22:55:53 +000063
64 /// runOnFunction - Top level implementation of instruction selection for
65 /// the entire function.
66 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000067 bool runOnFunction(Function &Fn) {
Chris Lattner36b36032002-10-29 23:40:58 +000068 F = &MachineFunction::construct(&Fn, TM);
Chris Lattner333b2fa2002-12-13 10:09:43 +000069
Chris Lattner065faeb2002-12-28 20:24:02 +000070 // Create all of the machine basic blocks for the function...
Chris Lattner333b2fa2002-12-13 10:09:43 +000071 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
72 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
73
Chris Lattner14aa7fe2002-12-16 22:54:46 +000074 BB = &F->front();
Chris Lattnerdbd73722003-05-06 21:32:22 +000075
Chris Lattnerdbd73722003-05-06 21:32:22 +000076 // Copy incoming arguments off of the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +000077 LoadArgumentsToVirtualRegs(Fn);
Chris Lattner14aa7fe2002-12-16 22:54:46 +000078
Chris Lattner333b2fa2002-12-13 10:09:43 +000079 // Instruction select everything except PHI nodes
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000080 visit(Fn);
Chris Lattner333b2fa2002-12-13 10:09:43 +000081
82 // Select the PHI nodes
83 SelectPHINodes();
84
Chris Lattner72614082002-10-25 22:55:53 +000085 RegMap.clear();
Chris Lattner333b2fa2002-12-13 10:09:43 +000086 MBBMap.clear();
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000087 F = 0;
Chris Lattner72614082002-10-25 22:55:53 +000088 return false; // We never modify the LLVM itself.
89 }
90
Chris Lattnerf0eb7be2002-12-15 21:13:40 +000091 virtual const char *getPassName() const {
92 return "X86 Simple Instruction Selection";
93 }
94
Chris Lattner72614082002-10-25 22:55:53 +000095 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +000096 /// block. This simply creates a new MachineBasicBlock to emit code into
97 /// and adds it to the current MachineFunction. Subsequent visit* for
98 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +000099 ///
100 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000101 BB = MBBMap[&LLVM_BB];
Chris Lattner72614082002-10-25 22:55:53 +0000102 }
103
Chris Lattner065faeb2002-12-28 20:24:02 +0000104 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
105 /// from the stack into virtual registers.
106 ///
107 void LoadArgumentsToVirtualRegs(Function &F);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000108
109 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
110 /// because we have to generate our sources into the source basic blocks,
111 /// not the current one.
112 ///
113 void SelectPHINodes();
114
Chris Lattner72614082002-10-25 22:55:53 +0000115 // Visitation methods for various instructions. These methods simply emit
116 // fixed X86 code for each instruction.
117 //
Brian Gaekefa8d5712002-11-22 11:07:01 +0000118
119 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +0000120 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +0000121 void visitBranchInst(BranchInst &BI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000122
123 struct ValueRecord {
124 unsigned Reg;
125 const Type *Ty;
126 ValueRecord(unsigned R, const Type *T) : Reg(R), Ty(T) {}
127 };
128 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
129 const std::vector<ValueRecord> &Args);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000130 void visitCallInst(CallInst &I);
Chris Lattnereca195e2003-05-08 19:44:13 +0000131 void visitIntrinsicCall(LLVMIntrinsic::ID ID, CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000132
133 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +0000134 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +0000135 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
136 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattner8a307e82002-12-16 19:32:50 +0000137 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +0000138 unsigned DestReg, const Type *DestTy,
139 unsigned Op0Reg, unsigned Op1Reg);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000140 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +0000141
Chris Lattnerf01729e2002-11-02 20:54:46 +0000142 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
143 void visitRem(BinaryOperator &B) { visitDivRem(B); }
144 void visitDivRem(BinaryOperator &B);
145
Chris Lattnere2954c82002-11-02 20:04:26 +0000146 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +0000147 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
148 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
149 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +0000150
Chris Lattner6d40c192003-01-16 16:43:00 +0000151 // Comparison operators...
152 void visitSetCondInst(SetCondInst &I);
153 bool EmitComparisonGetSignedness(unsigned OpNum, Value *Op0, Value *Op1);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000154
155 // Memory Instructions
Chris Lattner3e130a22003-01-13 00:32:26 +0000156 MachineInstr *doFPLoad(MachineBasicBlock *MBB,
157 MachineBasicBlock::iterator &MBBI,
158 const Type *Ty, unsigned DestReg);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000159 void visitLoadInst(LoadInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000160 void doFPStore(const Type *Ty, unsigned DestAddrReg, unsigned SrcReg);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000161 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000162 void visitGetElementPtrInst(GetElementPtrInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000163 void visitAllocaInst(AllocaInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000164 void visitMallocInst(MallocInst &I);
165 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000166
Chris Lattnere2954c82002-11-02 20:04:26 +0000167 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000168 void visitShiftInst(ShiftInst &I);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000169 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
Brian Gaekefa8d5712002-11-22 11:07:01 +0000170 void visitCastInst(CastInst &I);
Chris Lattnereca195e2003-05-08 19:44:13 +0000171 void visitVarArgInst(VarArgInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000172
173 void visitInstruction(Instruction &I) {
174 std::cerr << "Cannot instruction select: " << I;
175 abort();
176 }
177
Brian Gaeke95780cc2002-12-13 07:56:18 +0000178 /// promote32 - Make a value 32-bits wide, and put it somewhere.
Chris Lattner3e130a22003-01-13 00:32:26 +0000179 ///
180 void promote32(unsigned targetReg, const ValueRecord &VR);
181
182 /// EmitByteSwap - Byteswap SrcReg into DestReg.
183 ///
184 void EmitByteSwap(unsigned DestReg, unsigned SrcReg, unsigned Class);
Brian Gaeke95780cc2002-12-13 07:56:18 +0000185
Chris Lattner3e130a22003-01-13 00:32:26 +0000186 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
187 /// constant expression GEP support.
188 ///
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000189 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator&IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000190 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000191 User::op_iterator IdxEnd, unsigned TargetReg);
192
Chris Lattner548f61d2003-04-23 17:22:12 +0000193 /// emitCastOperation - Common code shared between visitCastInst and
194 /// constant expression cast support.
195 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator&IP,
196 Value *Src, const Type *DestTy, unsigned TargetReg);
197
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000198 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
199 /// and constant expression support.
200 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
201 MachineBasicBlock::iterator &IP,
202 Value *Op0, Value *Op1,
203 unsigned OperatorClass, unsigned TargetReg);
204
Chris Lattnerc5291f52002-10-27 21:16:59 +0000205 /// copyConstantToRegister - Output the instructions required to put the
206 /// specified constant into the specified register.
207 ///
Chris Lattner8a307e82002-12-16 19:32:50 +0000208 void copyConstantToRegister(MachineBasicBlock *MBB,
209 MachineBasicBlock::iterator &MBBI,
210 Constant *C, unsigned Reg);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000211
Chris Lattner3e130a22003-01-13 00:32:26 +0000212 /// makeAnotherReg - This method returns the next register number we haven't
213 /// yet used.
214 ///
215 /// Long values are handled somewhat specially. They are always allocated
216 /// as pairs of 32 bit integer values. The register number returned is the
217 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
218 /// of the long value.
219 ///
Chris Lattnerc0812d82002-12-13 06:56:29 +0000220 unsigned makeAnotherReg(const Type *Ty) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000221 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
222 const TargetRegisterClass *RC =
223 TM.getRegisterInfo()->getRegClassForType(Type::IntTy);
224 // Create the lower part
225 F->getSSARegMap()->createVirtualRegister(RC);
226 // Create the upper part.
227 return F->getSSARegMap()->createVirtualRegister(RC)-1;
228 }
229
Chris Lattnerc0812d82002-12-13 06:56:29 +0000230 // Add the mapping of regnumber => reg class to MachineFunction
Chris Lattner94af4142002-12-25 05:13:53 +0000231 const TargetRegisterClass *RC =
232 TM.getRegisterInfo()->getRegClassForType(Ty);
Chris Lattner3e130a22003-01-13 00:32:26 +0000233 return F->getSSARegMap()->createVirtualRegister(RC);
Brian Gaeke20244b72002-12-12 15:33:40 +0000234 }
235
Chris Lattner72614082002-10-25 22:55:53 +0000236 /// getReg - This method turns an LLVM value into a register number. This
237 /// is guaranteed to produce the same register number for a particular value
238 /// every time it is queried.
239 ///
240 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000241 unsigned getReg(Value *V) {
242 // Just append to the end of the current bb.
243 MachineBasicBlock::iterator It = BB->end();
244 return getReg(V, BB, It);
245 }
Brian Gaeke71794c02002-12-13 11:22:48 +0000246 unsigned getReg(Value *V, MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000247 MachineBasicBlock::iterator &IPt) {
Chris Lattner72614082002-10-25 22:55:53 +0000248 unsigned &Reg = RegMap[V];
Misha Brukmand2cc0172002-11-20 00:58:23 +0000249 if (Reg == 0) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000250 Reg = makeAnotherReg(V->getType());
Misha Brukmand2cc0172002-11-20 00:58:23 +0000251 RegMap[V] = Reg;
Misha Brukmand2cc0172002-11-20 00:58:23 +0000252 }
Chris Lattner72614082002-10-25 22:55:53 +0000253
Chris Lattner6f8fd252002-10-27 21:23:43 +0000254 // If this operand is a constant, emit the code to copy the constant into
255 // the register here...
256 //
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000257 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattner8a307e82002-12-16 19:32:50 +0000258 copyConstantToRegister(MBB, IPt, C, Reg);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000259 RegMap.erase(V); // Assign a new name to this constant if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000260 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
261 // Move the address of the global into the register
Chris Lattner3e130a22003-01-13 00:32:26 +0000262 BMI(MBB, IPt, X86::MOVir32, 1, Reg).addGlobalAddress(GV);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000263 RegMap.erase(V); // Assign a new name to this address if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000264 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000265
Chris Lattner72614082002-10-25 22:55:53 +0000266 return Reg;
267 }
Chris Lattner72614082002-10-25 22:55:53 +0000268 };
269}
270
Chris Lattner43189d12002-11-17 20:07:45 +0000271/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
272/// Representation.
273///
274enum TypeClass {
Chris Lattner94af4142002-12-25 05:13:53 +0000275 cByte, cShort, cInt, cFP, cLong
Chris Lattner43189d12002-11-17 20:07:45 +0000276};
277
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000278/// getClass - Turn a primitive type into a "class" number which is based on the
279/// size of the type, and whether or not it is floating point.
280///
Chris Lattner43189d12002-11-17 20:07:45 +0000281static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000282 switch (Ty->getPrimitiveID()) {
283 case Type::SByteTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000284 case Type::UByteTyID: return cByte; // Byte operands are class #0
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000285 case Type::ShortTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000286 case Type::UShortTyID: return cShort; // Short operands are class #1
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000287 case Type::IntTyID:
288 case Type::UIntTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000289 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000290
Chris Lattner94af4142002-12-25 05:13:53 +0000291 case Type::FloatTyID:
292 case Type::DoubleTyID: return cFP; // Floating Point is #3
Chris Lattner3e130a22003-01-13 00:32:26 +0000293
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000294 case Type::LongTyID:
Chris Lattner3e130a22003-01-13 00:32:26 +0000295 case Type::ULongTyID: return cLong; // Longs are class #4
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000296 default:
297 assert(0 && "Invalid type to getClass!");
Chris Lattner43189d12002-11-17 20:07:45 +0000298 return cByte; // not reached
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000299 }
300}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000301
Chris Lattner6b993cc2002-12-15 08:02:15 +0000302// getClassB - Just like getClass, but treat boolean values as bytes.
303static inline TypeClass getClassB(const Type *Ty) {
304 if (Ty == Type::BoolTy) return cByte;
305 return getClass(Ty);
306}
307
Chris Lattner06925362002-11-17 21:56:38 +0000308
Chris Lattnerc5291f52002-10-27 21:16:59 +0000309/// copyConstantToRegister - Output the instructions required to put the
310/// specified constant into the specified register.
311///
Chris Lattner8a307e82002-12-16 19:32:50 +0000312void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
313 MachineBasicBlock::iterator &IP,
314 Constant *C, unsigned R) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000315 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000316 unsigned Class = 0;
317 switch (CE->getOpcode()) {
318 case Instruction::GetElementPtr:
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000319 emitGEPOperation(MBB, IP, CE->getOperand(0),
Chris Lattner333b2fa2002-12-13 10:09:43 +0000320 CE->op_begin()+1, CE->op_end(), R);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000321 return;
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000322 case Instruction::Cast:
Chris Lattner548f61d2003-04-23 17:22:12 +0000323 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
Chris Lattner4b12cde2003-04-21 21:33:44 +0000324 return;
Chris Lattnerc0812d82002-12-13 06:56:29 +0000325
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000326 case Instruction::Xor: ++Class; // FALL THROUGH
327 case Instruction::Or: ++Class; // FALL THROUGH
328 case Instruction::And: ++Class; // FALL THROUGH
329 case Instruction::Sub: ++Class; // FALL THROUGH
330 case Instruction::Add:
331 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
332 Class, R);
333 return;
334
335 default:
336 std::cerr << "Offending expr: " << C << "\n";
337 assert(0 && "Constant expressions not yet handled!\n");
338 }
Brian Gaeke20244b72002-12-12 15:33:40 +0000339 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000340
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000341 if (C->getType()->isIntegral()) {
Chris Lattner6b993cc2002-12-15 08:02:15 +0000342 unsigned Class = getClassB(C->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +0000343
344 if (Class == cLong) {
345 // Copy the value into the register pair.
346 uint64_t Val;
347 if (C->getType()->isSigned())
348 Val = cast<ConstantSInt>(C)->getValue();
349 else
350 Val = cast<ConstantUInt>(C)->getValue();
351
352 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(Val & 0xFFFFFFFF);
353 BMI(MBB, IP, X86::MOVir32, 1, R+1).addZImm(Val >> 32);
354 return;
355 }
356
Chris Lattner94af4142002-12-25 05:13:53 +0000357 assert(Class <= cInt && "Type not handled yet!");
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000358
359 static const unsigned IntegralOpcodeTab[] = {
360 X86::MOVir8, X86::MOVir16, X86::MOVir32
361 };
362
Chris Lattner6b993cc2002-12-15 08:02:15 +0000363 if (C->getType() == Type::BoolTy) {
364 BMI(MBB, IP, X86::MOVir8, 1, R).addZImm(C == ConstantBool::True);
365 } else if (C->getType()->isSigned()) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000366 ConstantSInt *CSI = cast<ConstantSInt>(C);
Chris Lattner3e130a22003-01-13 00:32:26 +0000367 BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CSI->getValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000368 } else {
369 ConstantUInt *CUI = cast<ConstantUInt>(C);
Brian Gaeke71794c02002-12-13 11:22:48 +0000370 BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CUI->getValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000371 }
Chris Lattner94af4142002-12-25 05:13:53 +0000372 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
373 double Value = CFP->getValue();
374 if (Value == +0.0)
375 BMI(MBB, IP, X86::FLD0, 0, R);
376 else if (Value == +1.0)
377 BMI(MBB, IP, X86::FLD1, 0, R);
378 else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000379 // Otherwise we need to spill the constant to memory...
380 MachineConstantPool *CP = F->getConstantPool();
381 unsigned CPI = CP->getConstantPoolIndex(CFP);
382 addConstantPoolReference(doFPLoad(MBB, IP, CFP->getType(), R), CPI);
Chris Lattner94af4142002-12-25 05:13:53 +0000383 }
384
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000385 } else if (isa<ConstantPointerNull>(C)) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000386 // Copy zero (null pointer) to the register.
Brian Gaeke71794c02002-12-13 11:22:48 +0000387 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(0);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000388 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000389 unsigned SrcReg = getReg(CPR->getValue(), MBB, IP);
Brian Gaeke71794c02002-12-13 11:22:48 +0000390 BMI(MBB, IP, X86::MOVrr32, 1, R).addReg(SrcReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000391 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +0000392 std::cerr << "Offending constant: " << C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000393 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000394 }
395}
396
Chris Lattner065faeb2002-12-28 20:24:02 +0000397/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
398/// the stack into virtual registers.
399///
400void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
401 // Emit instructions to load the arguments... On entry to a function on the
402 // X86, the stack frame looks like this:
403 //
404 // [ESP] -- return address
Chris Lattner3e130a22003-01-13 00:32:26 +0000405 // [ESP + 4] -- first argument (leftmost lexically)
406 // [ESP + 8] -- second argument, if first argument is four bytes in size
Chris Lattner065faeb2002-12-28 20:24:02 +0000407 // ...
408 //
Chris Lattnerf158da22003-01-16 02:20:12 +0000409 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
Chris Lattneraa09b752002-12-28 21:08:28 +0000410 MachineFrameInfo *MFI = F->getFrameInfo();
Chris Lattner065faeb2002-12-28 20:24:02 +0000411
412 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
413 unsigned Reg = getReg(*I);
414
Chris Lattner065faeb2002-12-28 20:24:02 +0000415 int FI; // Frame object index
Chris Lattner065faeb2002-12-28 20:24:02 +0000416 switch (getClassB(I->getType())) {
417 case cByte:
Chris Lattneraa09b752002-12-28 21:08:28 +0000418 FI = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000419 addFrameReference(BuildMI(BB, X86::MOVmr8, 4, Reg), FI);
420 break;
421 case cShort:
Chris Lattneraa09b752002-12-28 21:08:28 +0000422 FI = MFI->CreateFixedObject(2, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000423 addFrameReference(BuildMI(BB, X86::MOVmr16, 4, Reg), FI);
424 break;
425 case cInt:
Chris Lattneraa09b752002-12-28 21:08:28 +0000426 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000427 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
428 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000429 case cLong:
430 FI = MFI->CreateFixedObject(8, ArgOffset);
431 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
432 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg+1), FI, 4);
433 ArgOffset += 4; // longs require 4 additional bytes
434 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000435 case cFP:
436 unsigned Opcode;
437 if (I->getType() == Type::FloatTy) {
438 Opcode = X86::FLDr32;
Chris Lattneraa09b752002-12-28 21:08:28 +0000439 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000440 } else {
441 Opcode = X86::FLDr64;
Chris Lattneraa09b752002-12-28 21:08:28 +0000442 FI = MFI->CreateFixedObject(8, ArgOffset);
Chris Lattner3e130a22003-01-13 00:32:26 +0000443 ArgOffset += 4; // doubles require 4 additional bytes
Chris Lattner065faeb2002-12-28 20:24:02 +0000444 }
445 addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
446 break;
447 default:
448 assert(0 && "Unhandled argument type!");
449 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000450 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000451 }
Chris Lattnereca195e2003-05-08 19:44:13 +0000452
453 // If the function takes variable number of arguments, add a frame offset for
454 // the start of the first vararg value... this is used to expand
455 // llvm.va_start.
456 if (Fn.getFunctionType()->isVarArg())
457 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000458}
459
460
Chris Lattner333b2fa2002-12-13 10:09:43 +0000461/// SelectPHINodes - Insert machine code to generate phis. This is tricky
462/// because we have to generate our sources into the source basic blocks, not
463/// the current one.
464///
465void ISel::SelectPHINodes() {
Chris Lattner3501fea2003-01-14 22:00:31 +0000466 const TargetInstrInfo &TII = TM.getInstrInfo();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000467 const Function &LF = *F->getFunction(); // The LLVM function...
468 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
469 const BasicBlock *BB = I;
470 MachineBasicBlock *MBB = MBBMap[I];
471
472 // Loop over all of the PHI nodes in the LLVM basic block...
473 unsigned NumPHIs = 0;
474 for (BasicBlock::const_iterator I = BB->begin();
Chris Lattner548f61d2003-04-23 17:22:12 +0000475 PHINode *PN = (PHINode*)dyn_cast<PHINode>(I); ++I) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000476
Chris Lattner333b2fa2002-12-13 10:09:43 +0000477 // Create a new machine instr PHI node, and insert it.
Chris Lattner3e130a22003-01-13 00:32:26 +0000478 unsigned PHIReg = getReg(*PN);
479 MachineInstr *PhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg);
480 MBB->insert(MBB->begin()+NumPHIs++, PhiMI);
481
482 MachineInstr *LongPhiMI = 0;
483 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) {
484 LongPhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg+1);
485 MBB->insert(MBB->begin()+NumPHIs++, LongPhiMI);
486 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000487
Chris Lattnera6e73f12003-05-12 14:22:21 +0000488 // PHIValues - Map of blocks to incoming virtual registers. We use this
489 // so that we only initialize one incoming value for a particular block,
490 // even if the block has multiple entries in the PHI node.
491 //
492 std::map<MachineBasicBlock*, unsigned> PHIValues;
493
Chris Lattner333b2fa2002-12-13 10:09:43 +0000494 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
495 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
Chris Lattnera6e73f12003-05-12 14:22:21 +0000496 unsigned ValReg;
497 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
498 PHIValues.lower_bound(PredMBB);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000499
Chris Lattnera6e73f12003-05-12 14:22:21 +0000500 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
501 // We already inserted an initialization of the register for this
502 // predecessor. Recycle it.
503 ValReg = EntryIt->second;
504
505 } else {
506 // Get the incoming value into a virtual register. If it is not
507 // already available in a virtual register, insert the computation
508 // code into PredMBB
509 //
510 MachineBasicBlock::iterator PI = PredMBB->end();
511 while (PI != PredMBB->begin() &&
512 TII.isTerminatorInstr((*(PI-1))->getOpcode()))
513 --PI;
514 ValReg = getReg(PN->getIncomingValue(i), PredMBB, PI);
515
516 // Remember that we inserted a value for this PHI for this predecessor
517 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
518 }
519
Chris Lattner3e130a22003-01-13 00:32:26 +0000520 PhiMI->addRegOperand(ValReg);
521 PhiMI->addMachineBasicBlockOperand(PredMBB);
522 if (LongPhiMI) {
523 LongPhiMI->addRegOperand(ValReg+1);
524 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
525 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000526 }
527 }
528 }
529}
530
Chris Lattner6d40c192003-01-16 16:43:00 +0000531// canFoldSetCCIntoBranch - Return the setcc instruction if we can fold it into
532// the conditional branch instruction which is the only user of the cc
533// instruction. This is the case if the conditional branch is the only user of
534// the setcc, and if the setcc is in the same basic block as the conditional
535// branch. We also don't handle long arguments below, so we reject them here as
536// well.
537//
538static SetCondInst *canFoldSetCCIntoBranch(Value *V) {
539 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
540 if (SCI->use_size() == 1 && isa<BranchInst>(SCI->use_back()) &&
541 SCI->getParent() == cast<BranchInst>(SCI->use_back())->getParent()) {
542 const Type *Ty = SCI->getOperand(0)->getType();
543 if (Ty != Type::LongTy && Ty != Type::ULongTy)
544 return SCI;
545 }
546 return 0;
547}
Chris Lattner333b2fa2002-12-13 10:09:43 +0000548
Chris Lattner6d40c192003-01-16 16:43:00 +0000549// Return a fixed numbering for setcc instructions which does not depend on the
550// order of the opcodes.
551//
552static unsigned getSetCCNumber(unsigned Opcode) {
553 switch(Opcode) {
554 default: assert(0 && "Unknown setcc instruction!");
555 case Instruction::SetEQ: return 0;
556 case Instruction::SetNE: return 1;
557 case Instruction::SetLT: return 2;
Chris Lattner55f6fab2003-01-16 18:07:23 +0000558 case Instruction::SetGE: return 3;
559 case Instruction::SetGT: return 4;
560 case Instruction::SetLE: return 5;
Chris Lattner6d40c192003-01-16 16:43:00 +0000561 }
562}
Chris Lattner06925362002-11-17 21:56:38 +0000563
Chris Lattner6d40c192003-01-16 16:43:00 +0000564// LLVM -> X86 signed X86 unsigned
565// ----- ---------- ------------
566// seteq -> sete sete
567// setne -> setne setne
568// setlt -> setl setb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000569// setge -> setge setae
Chris Lattner6d40c192003-01-16 16:43:00 +0000570// setgt -> setg seta
571// setle -> setle setbe
Chris Lattner6d40c192003-01-16 16:43:00 +0000572static const unsigned SetCCOpcodeTab[2][6] = {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000573 {X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr},
574 {X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr},
Chris Lattner6d40c192003-01-16 16:43:00 +0000575};
576
577bool ISel::EmitComparisonGetSignedness(unsigned OpNum, Value *Op0, Value *Op1) {
578
Brian Gaeke1749d632002-11-07 17:59:21 +0000579 // The arguments are already supposed to be of the same type.
Chris Lattner6d40c192003-01-16 16:43:00 +0000580 const Type *CompTy = Op0->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +0000581 bool isSigned = CompTy->isSigned();
Chris Lattner3e130a22003-01-13 00:32:26 +0000582 unsigned Class = getClassB(CompTy);
Chris Lattner333864d2003-06-05 19:30:30 +0000583 unsigned Op0r = getReg(Op0);
584
585 // Special case handling of: cmp R, i
586 if (Class == cByte || Class == cShort || Class == cInt)
587 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
588 uint64_t Op1v;
589 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
590 Op1v = CSI->getValue();
591 else
592 Op1v = cast<ConstantUInt>(CI)->getValue();
593 // Mask off any upper bits of the constant, if there are any...
594 Op1v &= (1ULL << (8 << Class)) - 1;
595
596 switch (Class) {
597 case cByte: BuildMI(BB, X86::CMPri8, 2).addReg(Op0r).addZImm(Op1v);break;
598 case cShort: BuildMI(BB, X86::CMPri16,2).addReg(Op0r).addZImm(Op1v);break;
599 case cInt: BuildMI(BB, X86::CMPri32,2).addReg(Op0r).addZImm(Op1v);break;
600 default:
601 assert(0 && "Invalid class!");
602 }
603 return isSigned;
604 }
605
606 unsigned Op1r = getReg(Op1);
Chris Lattner3e130a22003-01-13 00:32:26 +0000607 switch (Class) {
608 default: assert(0 && "Unknown type class!");
609 // Emit: cmp <var1>, <var2> (do the comparison). We can
610 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
611 // 32-bit.
612 case cByte:
Chris Lattner333864d2003-06-05 19:30:30 +0000613 BuildMI(BB, X86::CMPrr8, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000614 break;
615 case cShort:
Chris Lattner333864d2003-06-05 19:30:30 +0000616 BuildMI(BB, X86::CMPrr16, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000617 break;
618 case cInt:
Chris Lattner333864d2003-06-05 19:30:30 +0000619 BuildMI(BB, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000620 break;
621 case cFP:
Chris Lattner333864d2003-06-05 19:30:30 +0000622 BuildMI(BB, X86::FpUCOM, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000623 BuildMI(BB, X86::FNSTSWr8, 0);
624 BuildMI(BB, X86::SAHF, 1);
625 isSigned = false; // Compare with unsigned operators
626 break;
627
628 case cLong:
629 if (OpNum < 2) { // seteq, setne
630 unsigned LoTmp = makeAnotherReg(Type::IntTy);
631 unsigned HiTmp = makeAnotherReg(Type::IntTy);
632 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Chris Lattner333864d2003-06-05 19:30:30 +0000633 BuildMI(BB, X86::XORrr32, 2, LoTmp).addReg(Op0r).addReg(Op1r);
634 BuildMI(BB, X86::XORrr32, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattner3e130a22003-01-13 00:32:26 +0000635 BuildMI(BB, X86::ORrr32, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
636 break; // Allow the sete or setne to be generated from flags set by OR
637 } else {
638 // Emit a sequence of code which compares the high and low parts once
639 // each, then uses a conditional move to handle the overflow case. For
640 // example, a setlt for long would generate code like this:
641 //
642 // AL = lo(op1) < lo(op2) // Signedness depends on operands
643 // BL = hi(op1) < hi(op2) // Always unsigned comparison
644 // dest = hi(op1) == hi(op2) ? AL : BL;
645 //
646
Chris Lattner6d40c192003-01-16 16:43:00 +0000647 // FIXME: This would be much better if we had hierarchical register
Chris Lattner3e130a22003-01-13 00:32:26 +0000648 // classes! Until then, hardcode registers so that we can deal with their
649 // aliases (because we don't have conditional byte moves).
650 //
Chris Lattner333864d2003-06-05 19:30:30 +0000651 BuildMI(BB, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner6d40c192003-01-16 16:43:00 +0000652 BuildMI(BB, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
Chris Lattner333864d2003-06-05 19:30:30 +0000653 BuildMI(BB, X86::CMPrr32, 2).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattner6d40c192003-01-16 16:43:00 +0000654 BuildMI(BB, SetCCOpcodeTab[isSigned][OpNum], 0, X86::BL);
Chris Lattner3e130a22003-01-13 00:32:26 +0000655 BuildMI(BB, X86::CMOVErr16, 2, X86::BX).addReg(X86::BX).addReg(X86::AX);
Chris Lattner6d40c192003-01-16 16:43:00 +0000656 // NOTE: visitSetCondInst knows that the value is dumped into the BL
657 // register at this point for long values...
658 return isSigned;
Chris Lattner3e130a22003-01-13 00:32:26 +0000659 }
660 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000661 return isSigned;
662}
Chris Lattner3e130a22003-01-13 00:32:26 +0000663
Chris Lattner6d40c192003-01-16 16:43:00 +0000664
665/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
666/// register, then move it to wherever the result should be.
667///
668void ISel::visitSetCondInst(SetCondInst &I) {
669 if (canFoldSetCCIntoBranch(&I)) return; // Fold this into a branch...
670
671 unsigned OpNum = getSetCCNumber(I.getOpcode());
672 unsigned DestReg = getReg(I);
673 bool isSigned = EmitComparisonGetSignedness(OpNum, I.getOperand(0),
674 I.getOperand(1));
675
676 if (getClassB(I.getOperand(0)->getType()) != cLong || OpNum < 2) {
677 // Handle normal comparisons with a setcc instruction...
678 BuildMI(BB, SetCCOpcodeTab[isSigned][OpNum], 0, DestReg);
679 } else {
680 // Handle long comparisons by copying the value which is already in BL into
681 // the register we want...
682 BuildMI(BB, X86::MOVrr8, 1, DestReg).addReg(X86::BL);
683 }
Brian Gaeke1749d632002-11-07 17:59:21 +0000684}
Chris Lattner51b49a92002-11-02 19:45:49 +0000685
Brian Gaekec2505982002-11-30 11:57:28 +0000686/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
687/// operand, in the specified target register.
Chris Lattner3e130a22003-01-13 00:32:26 +0000688void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
689 bool isUnsigned = VR.Ty->isUnsigned();
690 switch (getClassB(VR.Ty)) {
Chris Lattner94af4142002-12-25 05:13:53 +0000691 case cByte:
692 // Extend value into target register (8->32)
693 if (isUnsigned)
Chris Lattner3e130a22003-01-13 00:32:26 +0000694 BuildMI(BB, X86::MOVZXr32r8, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000695 else
Chris Lattner3e130a22003-01-13 00:32:26 +0000696 BuildMI(BB, X86::MOVSXr32r8, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000697 break;
698 case cShort:
699 // Extend value into target register (16->32)
700 if (isUnsigned)
Chris Lattner3e130a22003-01-13 00:32:26 +0000701 BuildMI(BB, X86::MOVZXr32r16, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000702 else
Chris Lattner3e130a22003-01-13 00:32:26 +0000703 BuildMI(BB, X86::MOVSXr32r16, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000704 break;
705 case cInt:
706 // Move value into target register (32->32)
Chris Lattner3e130a22003-01-13 00:32:26 +0000707 BuildMI(BB, X86::MOVrr32, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000708 break;
709 default:
710 assert(0 && "Unpromotable operand class in promote32");
711 }
Brian Gaekec2505982002-11-30 11:57:28 +0000712}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000713
Chris Lattner72614082002-10-25 22:55:53 +0000714/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
715/// we have the following possibilities:
716///
717/// ret void: No return value, simply emit a 'ret' instruction
718/// ret sbyte, ubyte : Extend value into EAX and return
719/// ret short, ushort: Extend value into EAX and return
720/// ret int, uint : Move value into EAX and return
721/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +0000722/// ret long, ulong : Move value into EAX/EDX and return
723/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +0000724///
Chris Lattner3e130a22003-01-13 00:32:26 +0000725void ISel::visitReturnInst(ReturnInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +0000726 if (I.getNumOperands() == 0) {
727 BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
728 return;
729 }
730
731 Value *RetVal = I.getOperand(0);
Chris Lattner3e130a22003-01-13 00:32:26 +0000732 unsigned RetReg = getReg(RetVal);
733 switch (getClassB(RetVal->getType())) {
Chris Lattner94af4142002-12-25 05:13:53 +0000734 case cByte: // integral return values: extend or move into EAX and return
735 case cShort:
736 case cInt:
Chris Lattner3e130a22003-01-13 00:32:26 +0000737 promote32(X86::EAX, ValueRecord(RetReg, RetVal->getType()));
Chris Lattnerdbd73722003-05-06 21:32:22 +0000738 // Declare that EAX is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000739 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000740 break;
741 case cFP: // Floats & Doubles: Return in ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +0000742 BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000743 // Declare that top-of-stack is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000744 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000745 break;
746 case cLong:
Chris Lattner3e130a22003-01-13 00:32:26 +0000747 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(RetReg);
748 BuildMI(BB, X86::MOVrr32, 1, X86::EDX).addReg(RetReg+1);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000749 // Declare that EAX & EDX are live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000750 BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX).addReg(X86::ESP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000751 break;
Chris Lattner94af4142002-12-25 05:13:53 +0000752 default:
Chris Lattner3e130a22003-01-13 00:32:26 +0000753 visitInstruction(I);
Chris Lattner94af4142002-12-25 05:13:53 +0000754 }
Chris Lattner43189d12002-11-17 20:07:45 +0000755 // Emit a 'ret' instruction
Chris Lattner94af4142002-12-25 05:13:53 +0000756 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +0000757}
758
Chris Lattner55f6fab2003-01-16 18:07:23 +0000759// getBlockAfter - Return the basic block which occurs lexically after the
760// specified one.
761static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
762 Function::iterator I = BB; ++I; // Get iterator to next block
763 return I != BB->getParent()->end() ? &*I : 0;
764}
765
Chris Lattner51b49a92002-11-02 19:45:49 +0000766/// visitBranchInst - Handle conditional and unconditional branches here. Note
767/// that since code layout is frozen at this point, that if we are trying to
768/// jump to a block that is the immediate successor of the current block, we can
Chris Lattner6d40c192003-01-16 16:43:00 +0000769/// just make a fall-through (but we don't currently).
Chris Lattner51b49a92002-11-02 19:45:49 +0000770///
Chris Lattner94af4142002-12-25 05:13:53 +0000771void ISel::visitBranchInst(BranchInst &BI) {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000772 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
773
774 if (!BI.isConditional()) { // Unconditional branch?
775 if (BI.getSuccessor(0) != NextBB)
776 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
Chris Lattner6d40c192003-01-16 16:43:00 +0000777 return;
778 }
779
780 // See if we can fold the setcc into the branch itself...
781 SetCondInst *SCI = canFoldSetCCIntoBranch(BI.getCondition());
782 if (SCI == 0) {
783 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
784 // computed some other way...
Chris Lattner065faeb2002-12-28 20:24:02 +0000785 unsigned condReg = getReg(BI.getCondition());
Chris Lattner94af4142002-12-25 05:13:53 +0000786 BuildMI(BB, X86::CMPri8, 2).addReg(condReg).addZImm(0);
Chris Lattner55f6fab2003-01-16 18:07:23 +0000787 if (BI.getSuccessor(1) == NextBB) {
788 if (BI.getSuccessor(0) != NextBB)
789 BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0));
790 } else {
791 BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1));
792
793 if (BI.getSuccessor(0) != NextBB)
794 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
795 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000796 return;
Chris Lattner94af4142002-12-25 05:13:53 +0000797 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000798
799 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
800 bool isSigned = EmitComparisonGetSignedness(OpNum, SCI->getOperand(0),
801 SCI->getOperand(1));
802
803 // LLVM -> X86 signed X86 unsigned
804 // ----- ---------- ------------
805 // seteq -> je je
806 // setne -> jne jne
807 // setlt -> jl jb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000808 // setge -> jge jae
Chris Lattner6d40c192003-01-16 16:43:00 +0000809 // setgt -> jg ja
810 // setle -> jle jbe
Chris Lattner6d40c192003-01-16 16:43:00 +0000811 static const unsigned OpcodeTab[2][6] = {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000812 { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE },
813 { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE },
Chris Lattner6d40c192003-01-16 16:43:00 +0000814 };
815
Chris Lattner55f6fab2003-01-16 18:07:23 +0000816 if (BI.getSuccessor(0) != NextBB) {
817 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0));
818 if (BI.getSuccessor(1) != NextBB)
819 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1));
820 } else {
821 // Change to the inverse condition...
822 if (BI.getSuccessor(1) != NextBB) {
823 OpNum ^= 1;
824 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1));
825 }
826 }
Chris Lattner2df035b2002-11-02 19:27:56 +0000827}
828
Chris Lattner3e130a22003-01-13 00:32:26 +0000829
830/// doCall - This emits an abstract call instruction, setting up the arguments
831/// and the return value as appropriate. For the actual function call itself,
832/// it inserts the specified CallMI instruction into the stream.
833///
834void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
835 const std::vector<ValueRecord> &Args) {
836
Chris Lattner065faeb2002-12-28 20:24:02 +0000837 // Count how many bytes are to be pushed on the stack...
838 unsigned NumBytes = 0;
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000839
Chris Lattner3e130a22003-01-13 00:32:26 +0000840 if (!Args.empty()) {
841 for (unsigned i = 0, e = Args.size(); i != e; ++i)
842 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000843 case cByte: case cShort: case cInt:
Chris Lattner3e130a22003-01-13 00:32:26 +0000844 NumBytes += 4; break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000845 case cLong:
Chris Lattner3e130a22003-01-13 00:32:26 +0000846 NumBytes += 8; break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000847 case cFP:
Chris Lattner3e130a22003-01-13 00:32:26 +0000848 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
Chris Lattner065faeb2002-12-28 20:24:02 +0000849 break;
850 default: assert(0 && "Unknown class!");
851 }
852
853 // Adjust the stack pointer for the new arguments...
854 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(NumBytes);
855
856 // Arguments go on the stack in reverse order, as specified by the ABI.
857 unsigned ArgOffset = 0;
Chris Lattner3e130a22003-01-13 00:32:26 +0000858 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
859 unsigned ArgReg = Args[i].Reg;
860 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000861 case cByte:
862 case cShort: {
863 // Promote arg to 32 bits wide into a temporary register...
864 unsigned R = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +0000865 promote32(R, Args[i]);
Chris Lattner065faeb2002-12-28 20:24:02 +0000866 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
867 X86::ESP, ArgOffset).addReg(R);
868 break;
869 }
870 case cInt:
871 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +0000872 X86::ESP, ArgOffset).addReg(ArgReg);
Chris Lattner065faeb2002-12-28 20:24:02 +0000873 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000874 case cLong:
875 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
876 X86::ESP, ArgOffset).addReg(ArgReg);
877 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
878 X86::ESP, ArgOffset+4).addReg(ArgReg+1);
879 ArgOffset += 4; // 8 byte entry, not 4.
880 break;
881
Chris Lattner065faeb2002-12-28 20:24:02 +0000882 case cFP:
Chris Lattner3e130a22003-01-13 00:32:26 +0000883 if (Args[i].Ty == Type::FloatTy) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000884 addRegOffset(BuildMI(BB, X86::FSTr32, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +0000885 X86::ESP, ArgOffset).addReg(ArgReg);
Chris Lattner065faeb2002-12-28 20:24:02 +0000886 } else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000887 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
888 addRegOffset(BuildMI(BB, X86::FSTr64, 5),
889 X86::ESP, ArgOffset).addReg(ArgReg);
890 ArgOffset += 4; // 8 byte entry, not 4.
Chris Lattner065faeb2002-12-28 20:24:02 +0000891 }
892 break;
893
Chris Lattner3e130a22003-01-13 00:32:26 +0000894 default: assert(0 && "Unknown class!");
Chris Lattner065faeb2002-12-28 20:24:02 +0000895 }
896 ArgOffset += 4;
Chris Lattner94af4142002-12-25 05:13:53 +0000897 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000898 } else {
899 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(0);
Chris Lattner94af4142002-12-25 05:13:53 +0000900 }
Chris Lattner6e49a4b2002-12-13 14:13:27 +0000901
Chris Lattner3e130a22003-01-13 00:32:26 +0000902 BB->push_back(CallMI);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000903
Chris Lattner065faeb2002-12-28 20:24:02 +0000904 BuildMI(BB, X86::ADJCALLSTACKUP, 1).addZImm(NumBytes);
Chris Lattnera3243642002-12-04 23:45:28 +0000905
906 // If there is a return value, scavenge the result from the location the call
907 // leaves it in...
908 //
Chris Lattner3e130a22003-01-13 00:32:26 +0000909 if (Ret.Ty != Type::VoidTy) {
910 unsigned DestClass = getClassB(Ret.Ty);
911 switch (DestClass) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000912 case cByte:
913 case cShort:
914 case cInt: {
915 // Integral results are in %eax, or the appropriate portion
916 // thereof.
917 static const unsigned regRegMove[] = {
918 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
919 };
920 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
Chris Lattner3e130a22003-01-13 00:32:26 +0000921 BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000922 break;
Brian Gaeke20244b72002-12-12 15:33:40 +0000923 }
Chris Lattner94af4142002-12-25 05:13:53 +0000924 case cFP: // Floating-point return values live in %ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +0000925 BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +0000926 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000927 case cLong: // Long values are left in EDX:EAX
928 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg).addReg(X86::EAX);
929 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg+1).addReg(X86::EDX);
930 break;
931 default: assert(0 && "Unknown class!");
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000932 }
Chris Lattnera3243642002-12-04 23:45:28 +0000933 }
Brian Gaekefa8d5712002-11-22 11:07:01 +0000934}
Chris Lattner2df035b2002-11-02 19:27:56 +0000935
Chris Lattner3e130a22003-01-13 00:32:26 +0000936
937/// visitCallInst - Push args on stack and do a procedure call instruction.
938void ISel::visitCallInst(CallInst &CI) {
939 MachineInstr *TheCall;
940 if (Function *F = CI.getCalledFunction()) {
Chris Lattnereca195e2003-05-08 19:44:13 +0000941 // Is it an intrinsic function call?
942 if (LLVMIntrinsic::ID ID = (LLVMIntrinsic::ID)F->getIntrinsicID()) {
943 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
944 return;
945 }
946
Chris Lattner3e130a22003-01-13 00:32:26 +0000947 // Emit a CALL instruction with PC-relative displacement.
948 TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
949 } else { // Emit an indirect call...
950 unsigned Reg = getReg(CI.getCalledValue());
951 TheCall = BuildMI(X86::CALLr32, 1).addReg(Reg);
952 }
953
954 std::vector<ValueRecord> Args;
955 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
956 Args.push_back(ValueRecord(getReg(CI.getOperand(i)),
957 CI.getOperand(i)->getType()));
958
959 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
960 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
961}
962
Chris Lattnereca195e2003-05-08 19:44:13 +0000963void ISel::visitIntrinsicCall(LLVMIntrinsic::ID ID, CallInst &CI) {
964 unsigned TmpReg1, TmpReg2;
965 switch (ID) {
966 case LLVMIntrinsic::va_start:
967 // Get the address of the first vararg value...
968 TmpReg1 = makeAnotherReg(Type::UIntTy);
969 addFrameReference(BuildMI(BB, X86::LEAr32, 5, TmpReg1), VarArgsFrameIndex);
970 TmpReg2 = getReg(CI.getOperand(1));
971 addDirectMem(BuildMI(BB, X86::MOVrm32, 5), TmpReg2).addReg(TmpReg1);
972 return;
973
974 case LLVMIntrinsic::va_end: return; // Noop on X86
975 case LLVMIntrinsic::va_copy:
976 TmpReg1 = getReg(CI.getOperand(2)); // Get existing va_list
977 TmpReg2 = getReg(CI.getOperand(1)); // Get va_list* to store into
978 addDirectMem(BuildMI(BB, X86::MOVrm32, 5), TmpReg2).addReg(TmpReg1);
979 return;
980
981 default: assert(0 && "Unknown intrinsic for X86!");
982 }
983}
984
985
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000986/// visitSimpleBinary - Implement simple binary operators for integral types...
987/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
988/// Xor.
989void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
990 unsigned DestReg = getReg(B);
991 MachineBasicBlock::iterator MI = BB->end();
992 emitSimpleBinaryOperation(BB, MI, B.getOperand(0), B.getOperand(1),
993 OperatorClass, DestReg);
994}
Chris Lattner3e130a22003-01-13 00:32:26 +0000995
Chris Lattner68aad932002-11-02 20:13:22 +0000996/// visitSimpleBinary - Implement simple binary operators for integral types...
997/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or,
998/// 4 for Xor.
999///
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001000/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1001/// and constant expression support.
1002void ISel::emitSimpleBinaryOperation(MachineBasicBlock *BB,
1003 MachineBasicBlock::iterator &IP,
1004 Value *Op0, Value *Op1,
1005 unsigned OperatorClass,unsigned TargetReg){
1006 unsigned Class = getClassB(Op0->getType());
Chris Lattner35333e12003-06-05 18:28:55 +00001007 if (!isa<ConstantInt>(Op1) || Class == cLong) {
1008 static const unsigned OpcodeTab[][4] = {
1009 // Arithmetic operators
1010 { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, X86::FpADD }, // ADD
1011 { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, X86::FpSUB }, // SUB
1012
1013 // Bitwise operators
1014 { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
1015 { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
1016 { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
Chris Lattner3e130a22003-01-13 00:32:26 +00001017 };
Chris Lattner35333e12003-06-05 18:28:55 +00001018
1019 bool isLong = false;
1020 if (Class == cLong) {
1021 isLong = true;
1022 Class = cInt; // Bottom 32 bits are handled just like ints
1023 }
1024
1025 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1026 assert(Opcode && "Floating point arguments to logical inst?");
1027 unsigned Op0r = getReg(Op0, BB, IP);
1028 unsigned Op1r = getReg(Op1, BB, IP);
1029 BMI(BB, IP, Opcode, 2, TargetReg).addReg(Op0r).addReg(Op1r);
1030
1031 if (isLong) { // Handle the upper 32 bits of long values...
1032 static const unsigned TopTab[] = {
1033 X86::ADCrr32, X86::SBBrr32, X86::ANDrr32, X86::ORrr32, X86::XORrr32
1034 };
1035 BMI(BB, IP, TopTab[OperatorClass], 2,
1036 TargetReg+1).addReg(Op0r+1).addReg(Op1r+1);
1037 }
1038 } else {
1039 // Special case: op Reg, <const>
1040 ConstantInt *Op1C = cast<ConstantInt>(Op1);
1041
1042 static const unsigned OpcodeTab[][3] = {
1043 // Arithmetic operators
1044 { X86::ADDri8, X86::ADDri16, X86::ADDri32 }, // ADD
1045 { X86::SUBri8, X86::SUBri16, X86::SUBri32 }, // SUB
1046
1047 // Bitwise operators
1048 { X86::ANDri8, X86::ANDri16, X86::ANDri32 }, // AND
1049 { X86:: ORri8, X86:: ORri16, X86:: ORri32 }, // OR
1050 { X86::XORri8, X86::XORri16, X86::XORri32 }, // XOR
1051 };
1052
1053 assert(Class < 3 && "General code handles 64-bit integer types!");
1054 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1055 unsigned Op0r = getReg(Op0, BB, IP);
1056 uint64_t Op1v;
1057 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(Op1C))
1058 Op1v = CSI->getValue();
1059 else
1060 Op1v = cast<ConstantUInt>(Op1C)->getValue();
1061
1062 // Mask off any upper bits of the constant, if there are any...
1063 Op1v &= (1ULL << (8 << Class)) - 1;
1064 BMI(BB, IP, Opcode, 2, TargetReg).addReg(Op0r).addZImm(Op1v);
Chris Lattner3e130a22003-01-13 00:32:26 +00001065 }
Chris Lattnere2954c82002-11-02 20:04:26 +00001066}
1067
Chris Lattner3e130a22003-01-13 00:32:26 +00001068/// doMultiply - Emit appropriate instructions to multiply together the
1069/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1070/// result should be given as DestTy.
1071///
Chris Lattner8a307e82002-12-16 19:32:50 +00001072void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +00001073 unsigned DestReg, const Type *DestTy,
Chris Lattner8a307e82002-12-16 19:32:50 +00001074 unsigned op0Reg, unsigned op1Reg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001075 unsigned Class = getClass(DestTy);
Chris Lattner94af4142002-12-25 05:13:53 +00001076 switch (Class) {
1077 case cFP: // Floating point multiply
Chris Lattner3e130a22003-01-13 00:32:26 +00001078 BMI(BB, MBBI, X86::FpMUL, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001079 return;
Chris Lattner0f1c4612003-06-21 17:16:58 +00001080 case cInt:
1081 case cShort:
1082 BMI(BB, MBBI, Class == cInt ? X86::IMULr32 : X86::IMULr16, 2, DestReg)
1083 .addReg(op0Reg).addReg(op1Reg);
1084 return;
1085 case cByte:
1086 // Must use the MUL instruction, which forces use of AL...
1087 BMI(MBB, MBBI, X86::MOVrr8, 1, X86::AL).addReg(op0Reg);
1088 BMI(MBB, MBBI, X86::MULr8, 1).addReg(op1Reg);
1089 BMI(MBB, MBBI, X86::MOVrr8, 1, DestReg).addReg(X86::AL);
1090 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001091 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00001092 case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
Chris Lattner94af4142002-12-25 05:13:53 +00001093 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001094}
1095
Chris Lattnerca9671d2002-11-02 20:28:58 +00001096/// visitMul - Multiplies are not simple binary operators because they must deal
1097/// with the EAX register explicitly.
1098///
1099void ISel::visitMul(BinaryOperator &I) {
Chris Lattner202a2d02002-12-13 13:07:42 +00001100 unsigned Op0Reg = getReg(I.getOperand(0));
1101 unsigned Op1Reg = getReg(I.getOperand(1));
Chris Lattner3e130a22003-01-13 00:32:26 +00001102 unsigned DestReg = getReg(I);
1103
1104 // Simple scalar multiply?
1105 if (I.getType() != Type::LongTy && I.getType() != Type::ULongTy) {
1106 MachineBasicBlock::iterator MBBI = BB->end();
1107 doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg);
1108 } else {
1109 // Long value. We have to do things the hard way...
1110 // Multiply the two low parts... capturing carry into EDX
1111 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(Op0Reg);
1112 BuildMI(BB, X86::MULr32, 1).addReg(Op1Reg); // AL*BL
1113
1114 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
1115 BuildMI(BB, X86::MOVrr32, 1, DestReg).addReg(X86::EAX); // AL*BL
1116 BuildMI(BB, X86::MOVrr32, 1, OverflowReg).addReg(X86::EDX); // AL*BL >> 32
1117
1118 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001119 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
1120 BMI(BB, MBBI, X86::IMULr32, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001121
1122 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
1123 BuildMI(BB, X86::ADDrr32, 2, // AH*BL+(AL*BL >> 32)
1124 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
1125
1126 MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001127 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
1128 BMI(BB, MBBI, X86::IMULr32, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001129
1130 BuildMI(BB, X86::ADDrr32, 2, // AL*BH + AH*BL + (AL*BL >> 32)
1131 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1132 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001133}
Chris Lattnerca9671d2002-11-02 20:28:58 +00001134
Chris Lattner06925362002-11-17 21:56:38 +00001135
Chris Lattnerf01729e2002-11-02 20:54:46 +00001136/// visitDivRem - Handle division and remainder instructions... these
1137/// instruction both require the same instructions to be generated, they just
1138/// select the result from a different register. Note that both of these
1139/// instructions work differently for signed and unsigned operands.
1140///
1141void ISel::visitDivRem(BinaryOperator &I) {
Chris Lattner94af4142002-12-25 05:13:53 +00001142 unsigned Class = getClass(I.getType());
1143 unsigned Op0Reg = getReg(I.getOperand(0));
1144 unsigned Op1Reg = getReg(I.getOperand(1));
1145 unsigned ResultReg = getReg(I);
1146
1147 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001148 case cFP: // Floating point divide
Chris Lattner94af4142002-12-25 05:13:53 +00001149 if (I.getOpcode() == Instruction::Div)
1150 BuildMI(BB, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001151 else { // Floating point remainder...
1152 MachineInstr *TheCall =
1153 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
1154 std::vector<ValueRecord> Args;
1155 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
1156 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
1157 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
1158 }
Chris Lattner94af4142002-12-25 05:13:53 +00001159 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001160 case cLong: {
1161 static const char *FnName[] =
1162 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
1163
1164 unsigned NameIdx = I.getType()->isUnsigned()*2;
1165 NameIdx += I.getOpcode() == Instruction::Div;
1166 MachineInstr *TheCall =
1167 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
1168
1169 std::vector<ValueRecord> Args;
1170 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
1171 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
1172 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
1173 return;
1174 }
1175 case cByte: case cShort: case cInt:
1176 break; // Small integerals, handled below...
1177 default: assert(0 && "Unknown class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001178 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001179
1180 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
1181 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
Chris Lattner7b52c032003-06-22 03:31:18 +00001182 static const unsigned SarOpcode[]={ X86::SARir8, X86::SARir16, X86::SARir32 };
Chris Lattnerf01729e2002-11-02 20:54:46 +00001183 static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 };
1184 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
1185
1186 static const unsigned DivOpcode[][4] = {
Chris Lattner3e130a22003-01-13 00:32:26 +00001187 { X86::DIVr8 , X86::DIVr16 , X86::DIVr32 , 0 }, // Unsigned division
1188 { X86::IDIVr8, X86::IDIVr16, X86::IDIVr32, 0 }, // Signed division
Chris Lattnerf01729e2002-11-02 20:54:46 +00001189 };
1190
1191 bool isSigned = I.getType()->isSigned();
1192 unsigned Reg = Regs[Class];
1193 unsigned ExtReg = ExtRegs[Class];
Chris Lattnerf01729e2002-11-02 20:54:46 +00001194
1195 // Put the first operand into one of the A registers...
1196 BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
1197
1198 if (isSigned) {
1199 // Emit a sign extension instruction...
Chris Lattner7b52c032003-06-22 03:31:18 +00001200 unsigned ShiftResult = makeAnotherReg(I.getType());
1201 BuildMI(BB, SarOpcode[Class], 2, ShiftResult).addReg(Op0Reg).addZImm(31);
1202 BuildMI(BB, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001203 } else {
1204 // If unsigned, emit a zeroing instruction... (reg = xor reg, reg)
1205 BuildMI(BB, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg);
1206 }
1207
Chris Lattner06925362002-11-17 21:56:38 +00001208 // Emit the appropriate divide or remainder instruction...
Chris Lattner92845e32002-11-21 18:54:29 +00001209 BuildMI(BB, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
Chris Lattner06925362002-11-17 21:56:38 +00001210
Chris Lattnerf01729e2002-11-02 20:54:46 +00001211 // Figure out which register we want to pick the result out of...
1212 unsigned DestReg = (I.getOpcode() == Instruction::Div) ? Reg : ExtReg;
1213
Chris Lattnerf01729e2002-11-02 20:54:46 +00001214 // Put the result into the destination register...
Chris Lattner94af4142002-12-25 05:13:53 +00001215 BuildMI(BB, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +00001216}
Chris Lattnere2954c82002-11-02 20:04:26 +00001217
Chris Lattner06925362002-11-17 21:56:38 +00001218
Brian Gaekea1719c92002-10-31 23:03:59 +00001219/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
1220/// for constant immediate shift values, and for constant immediate
1221/// shift values equal to 1. Even the general case is sort of special,
1222/// because the shift amount has to be in CL, not just any old register.
1223///
Chris Lattner3e130a22003-01-13 00:32:26 +00001224void ISel::visitShiftInst(ShiftInst &I) {
1225 unsigned SrcReg = getReg(I.getOperand(0));
Chris Lattnerf01729e2002-11-02 20:54:46 +00001226 unsigned DestReg = getReg(I);
Chris Lattnere9913f22002-11-02 01:41:55 +00001227 bool isLeftShift = I.getOpcode() == Instruction::Shl;
Chris Lattner3e130a22003-01-13 00:32:26 +00001228 bool isSigned = I.getType()->isSigned();
1229 unsigned Class = getClass(I.getType());
1230
1231 static const unsigned ConstantOperand[][4] = {
1232 { X86::SHRir8, X86::SHRir16, X86::SHRir32, X86::SHRDir32 }, // SHR
1233 { X86::SARir8, X86::SARir16, X86::SARir32, X86::SHRDir32 }, // SAR
1234 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SHL
1235 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SAL = SHL
1236 };
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001237
Chris Lattner3e130a22003-01-13 00:32:26 +00001238 static const unsigned NonConstantOperand[][4] = {
1239 { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32 }, // SHR
1240 { X86::SARrr8, X86::SARrr16, X86::SARrr32 }, // SAR
1241 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SHL
1242 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SAL = SHL
1243 };
Chris Lattner796df732002-11-02 00:44:25 +00001244
Chris Lattner3e130a22003-01-13 00:32:26 +00001245 // Longs, as usual, are handled specially...
1246 if (Class == cLong) {
1247 // If we have a constant shift, we can generate much more efficient code
1248 // than otherwise...
1249 //
1250 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getOperand(1))) {
1251 unsigned Amount = CUI->getValue();
1252 if (Amount < 32) {
1253 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
1254 if (isLeftShift) {
1255 BuildMI(BB, Opc[3], 3,
1256 DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addZImm(Amount);
1257 BuildMI(BB, Opc[2], 2, DestReg).addReg(SrcReg).addZImm(Amount);
1258 } else {
1259 BuildMI(BB, Opc[3], 3,
1260 DestReg).addReg(SrcReg ).addReg(SrcReg+1).addZImm(Amount);
1261 BuildMI(BB, Opc[2], 2, DestReg+1).addReg(SrcReg+1).addZImm(Amount);
1262 }
1263 } else { // Shifting more than 32 bits
1264 Amount -= 32;
1265 if (isLeftShift) {
1266 BuildMI(BB, X86::SHLir32, 2,DestReg+1).addReg(SrcReg).addZImm(Amount);
1267 BuildMI(BB, X86::MOVir32, 1,DestReg ).addZImm(0);
1268 } else {
1269 unsigned Opcode = isSigned ? X86::SARir32 : X86::SHRir32;
1270 BuildMI(BB, Opcode, 2, DestReg).addReg(SrcReg+1).addZImm(Amount);
1271 BuildMI(BB, X86::MOVir32, 1, DestReg+1).addZImm(0);
1272 }
1273 }
1274 } else {
Chris Lattner9171ef52003-06-01 01:56:54 +00001275 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1276
1277 if (!isLeftShift && isSigned) {
1278 // If this is a SHR of a Long, then we need to do funny sign extension
1279 // stuff. TmpReg gets the value to use as the high-part if we are
1280 // shifting more than 32 bits.
1281 BuildMI(BB, X86::SARir32, 2, TmpReg).addReg(SrcReg).addZImm(31);
1282 } else {
1283 // Other shifts use a fixed zero value if the shift is more than 32
1284 // bits.
1285 BuildMI(BB, X86::MOVir32, 1, TmpReg).addZImm(0);
1286 }
1287
1288 // Initialize CL with the shift amount...
1289 unsigned ShiftAmount = getReg(I.getOperand(1));
1290 BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(ShiftAmount);
1291
1292 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
1293 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
1294 if (isLeftShift) {
1295 // TmpReg2 = shld inHi, inLo
1296 BuildMI(BB, X86::SHLDrr32, 2, TmpReg2).addReg(SrcReg+1).addReg(SrcReg);
1297 // TmpReg3 = shl inLo, CL
1298 BuildMI(BB, X86::SHLrr32, 1, TmpReg3).addReg(SrcReg);
1299
1300 // Set the flags to indicate whether the shift was by more than 32 bits.
1301 BuildMI(BB, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
1302
1303 // DestHi = (>32) ? TmpReg3 : TmpReg2;
1304 BuildMI(BB, X86::CMOVNErr32, 2,
1305 DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
1306 // DestLo = (>32) ? TmpReg : TmpReg3;
1307 BuildMI(BB, X86::CMOVNErr32, 2, DestReg).addReg(TmpReg3).addReg(TmpReg);
1308 } else {
1309 // TmpReg2 = shrd inLo, inHi
1310 BuildMI(BB, X86::SHRDrr32, 2, TmpReg2).addReg(SrcReg).addReg(SrcReg+1);
1311 // TmpReg3 = s[ah]r inHi, CL
1312 BuildMI(BB, isSigned ? X86::SARrr32 : X86::SHRrr32, 1, TmpReg3)
1313 .addReg(SrcReg+1);
1314
1315 // Set the flags to indicate whether the shift was by more than 32 bits.
1316 BuildMI(BB, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
1317
1318 // DestLo = (>32) ? TmpReg3 : TmpReg2;
1319 BuildMI(BB, X86::CMOVNErr32, 2,
1320 DestReg).addReg(TmpReg2).addReg(TmpReg3);
1321
1322 // DestHi = (>32) ? TmpReg : TmpReg3;
1323 BuildMI(BB, X86::CMOVNErr32, 2,
1324 DestReg+1).addReg(TmpReg3).addReg(TmpReg);
1325 }
Brian Gaekea1719c92002-10-31 23:03:59 +00001326 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001327 return;
1328 }
Chris Lattnere9913f22002-11-02 01:41:55 +00001329
Chris Lattner3e130a22003-01-13 00:32:26 +00001330 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getOperand(1))) {
1331 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
1332 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001333
Chris Lattner3e130a22003-01-13 00:32:26 +00001334 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
1335 BuildMI(BB, Opc[Class], 2, DestReg).addReg(SrcReg).addZImm(CUI->getValue());
1336 } else { // The shift amount is non-constant.
1337 BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(getReg(I.getOperand(1)));
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001338
Chris Lattner3e130a22003-01-13 00:32:26 +00001339 const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
1340 BuildMI(BB, Opc[Class], 1, DestReg).addReg(SrcReg);
1341 }
1342}
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001343
Chris Lattner3e130a22003-01-13 00:32:26 +00001344
1345/// doFPLoad - This method is used to load an FP value from memory using the
1346/// current endianness. NOTE: This method returns a partially constructed load
1347/// instruction which needs to have the memory source filled in still.
1348///
1349MachineInstr *ISel::doFPLoad(MachineBasicBlock *MBB,
1350 MachineBasicBlock::iterator &MBBI,
1351 const Type *Ty, unsigned DestReg) {
1352 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1353 unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLDr32 : X86::FLDr64;
1354
1355 if (TM.getTargetData().isLittleEndian()) // fast path...
1356 return BMI(MBB, MBBI, LoadOpcode, 4, DestReg);
1357
1358 // If we are big-endian, start by creating an LEA instruction to represent the
1359 // address of the memory location to load from...
1360 //
1361 unsigned SrcAddrReg = makeAnotherReg(Type::UIntTy);
1362 MachineInstr *Result = BMI(MBB, MBBI, X86::LEAr32, 5, SrcAddrReg);
1363
1364 // Allocate a temporary stack slot to transform the value into...
1365 int FrameIdx = F->getFrameInfo()->CreateStackObject(Ty, TM.getTargetData());
1366
1367 // Perform the bswaps 32 bits at a time...
1368 unsigned TmpReg1 = makeAnotherReg(Type::UIntTy);
1369 unsigned TmpReg2 = makeAnotherReg(Type::UIntTy);
1370 addDirectMem(BMI(MBB, MBBI, X86::MOVmr32, 4, TmpReg1), SrcAddrReg);
1371 BMI(MBB, MBBI, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1372 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1373 addFrameReference(BMI(MBB, MBBI, X86::MOVrm32, 5),
1374 FrameIdx, Offset).addReg(TmpReg2);
1375
1376 if (Ty == Type::DoubleTy) { // Swap the other 32 bits of a double value...
1377 TmpReg1 = makeAnotherReg(Type::UIntTy);
1378 TmpReg2 = makeAnotherReg(Type::UIntTy);
1379
1380 addRegOffset(BMI(MBB, MBBI, X86::MOVmr32, 4, TmpReg1), SrcAddrReg, 4);
1381 BMI(MBB, MBBI, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1382 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1383 addFrameReference(BMI(MBB, MBBI, X86::MOVrm32,5), FrameIdx).addReg(TmpReg2);
1384 }
1385
1386 // Now we can reload the final byteswapped result into the final destination.
1387 addFrameReference(BMI(MBB, MBBI, LoadOpcode, 4, DestReg), FrameIdx);
1388 return Result;
1389}
1390
1391/// EmitByteSwap - Byteswap SrcReg into DestReg.
1392///
1393void ISel::EmitByteSwap(unsigned DestReg, unsigned SrcReg, unsigned Class) {
1394 // Emit the byte swap instruction...
1395 switch (Class) {
1396 case cByte:
Misha Brukmanbaf06072003-04-22 17:54:23 +00001397 // No byteswap necessary for 8 bit value...
Chris Lattner3e130a22003-01-13 00:32:26 +00001398 BuildMI(BB, X86::MOVrr8, 1, DestReg).addReg(SrcReg);
1399 break;
1400 case cInt:
1401 // Use the 32 bit bswap instruction to do a 32 bit swap...
1402 BuildMI(BB, X86::BSWAPr32, 1, DestReg).addReg(SrcReg);
1403 break;
1404
1405 case cShort:
1406 // For 16 bit we have to use an xchg instruction, because there is no
Misha Brukmanbaf06072003-04-22 17:54:23 +00001407 // 16-bit bswap. XCHG is necessarily not in SSA form, so we force things
Chris Lattner3e130a22003-01-13 00:32:26 +00001408 // into AX to do the xchg.
1409 //
1410 BuildMI(BB, X86::MOVrr16, 1, X86::AX).addReg(SrcReg);
1411 BuildMI(BB, X86::XCHGrr8, 2).addReg(X86::AL, MOTy::UseAndDef)
1412 .addReg(X86::AH, MOTy::UseAndDef);
1413 BuildMI(BB, X86::MOVrr16, 1, DestReg).addReg(X86::AX);
1414 break;
1415 default: assert(0 && "Cannot byteswap this class!");
1416 }
Brian Gaekea1719c92002-10-31 23:03:59 +00001417}
1418
Chris Lattner06925362002-11-17 21:56:38 +00001419
Chris Lattner6fc3c522002-11-17 21:11:55 +00001420/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
Chris Lattnere8f0d922002-12-24 00:03:11 +00001421/// instruction. The load and store instructions are the only place where we
1422/// need to worry about the memory layout of the target machine.
Chris Lattner6fc3c522002-11-17 21:11:55 +00001423///
1424void ISel::visitLoadInst(LoadInst &I) {
Chris Lattnere8f0d922002-12-24 00:03:11 +00001425 bool isLittleEndian = TM.getTargetData().isLittleEndian();
1426 bool hasLongPointers = TM.getTargetData().getPointerSize() == 8;
Chris Lattner94af4142002-12-25 05:13:53 +00001427 unsigned SrcAddrReg = getReg(I.getOperand(0));
1428 unsigned DestReg = getReg(I);
Chris Lattnere8f0d922002-12-24 00:03:11 +00001429
Chris Lattner6fc3c522002-11-17 21:11:55 +00001430 unsigned Class = getClass(I.getType());
Chris Lattner94af4142002-12-25 05:13:53 +00001431 switch (Class) {
Chris Lattner94af4142002-12-25 05:13:53 +00001432 case cFP: {
Chris Lattner3e130a22003-01-13 00:32:26 +00001433 MachineBasicBlock::iterator MBBI = BB->end();
1434 addDirectMem(doFPLoad(BB, MBBI, I.getType(), DestReg), SrcAddrReg);
Chris Lattner94af4142002-12-25 05:13:53 +00001435 return;
1436 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001437 case cLong: case cInt: case cShort: case cByte:
1438 break; // Integers of various sizes handled below
1439 default: assert(0 && "Unknown memory class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001440 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00001441
Chris Lattnere8f0d922002-12-24 00:03:11 +00001442 // We need to adjust the input pointer if we are emulating a big-endian
1443 // long-pointer target. On these systems, the pointer that we are interested
1444 // in is in the upper part of the eight byte memory image of the pointer. It
1445 // also happens to be byte-swapped, but this will be handled later.
1446 //
1447 if (!isLittleEndian && hasLongPointers && isa<PointerType>(I.getType())) {
1448 unsigned R = makeAnotherReg(Type::UIntTy);
1449 BuildMI(BB, X86::ADDri32, 2, R).addReg(SrcAddrReg).addZImm(4);
1450 SrcAddrReg = R;
1451 }
Chris Lattner94af4142002-12-25 05:13:53 +00001452
Chris Lattnere8f0d922002-12-24 00:03:11 +00001453 unsigned IReg = DestReg;
Chris Lattner3e130a22003-01-13 00:32:26 +00001454 if (!isLittleEndian) // If big endian we need an intermediate stage
1455 DestReg = makeAnotherReg(Class != cLong ? I.getType() : Type::UIntTy);
Chris Lattner94af4142002-12-25 05:13:53 +00001456
Chris Lattner3e130a22003-01-13 00:32:26 +00001457 static const unsigned Opcode[] = {
1458 X86::MOVmr8, X86::MOVmr16, X86::MOVmr32, 0, X86::MOVmr32
1459 };
Chris Lattnere8f0d922002-12-24 00:03:11 +00001460 addDirectMem(BuildMI(BB, Opcode[Class], 4, DestReg), SrcAddrReg);
1461
Chris Lattner3e130a22003-01-13 00:32:26 +00001462 // Handle long values now...
1463 if (Class == cLong) {
1464 if (isLittleEndian) {
1465 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), SrcAddrReg, 4);
1466 } else {
1467 EmitByteSwap(IReg+1, DestReg, cInt);
1468 unsigned TempReg = makeAnotherReg(Type::IntTy);
1469 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, TempReg), SrcAddrReg, 4);
1470 EmitByteSwap(IReg, TempReg, cInt);
Chris Lattner94af4142002-12-25 05:13:53 +00001471 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001472 return;
1473 }
1474
1475 if (!isLittleEndian)
1476 EmitByteSwap(IReg, DestReg, Class);
1477}
1478
1479
1480/// doFPStore - This method is used to store an FP value to memory using the
1481/// current endianness.
1482///
1483void ISel::doFPStore(const Type *Ty, unsigned DestAddrReg, unsigned SrcReg) {
1484 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1485 unsigned StoreOpcode = Ty == Type::FloatTy ? X86::FSTr32 : X86::FSTr64;
1486
1487 if (TM.getTargetData().isLittleEndian()) { // fast path...
1488 addDirectMem(BuildMI(BB, StoreOpcode,5), DestAddrReg).addReg(SrcReg);
1489 return;
1490 }
1491
1492 // Allocate a temporary stack slot to transform the value into...
1493 int FrameIdx = F->getFrameInfo()->CreateStackObject(Ty, TM.getTargetData());
1494 unsigned SrcAddrReg = makeAnotherReg(Type::UIntTy);
1495 addFrameReference(BuildMI(BB, X86::LEAr32, 5, SrcAddrReg), FrameIdx);
1496
1497 // Store the value into a temporary stack slot...
1498 addDirectMem(BuildMI(BB, StoreOpcode, 5), SrcAddrReg).addReg(SrcReg);
1499
1500 // Perform the bswaps 32 bits at a time...
1501 unsigned TmpReg1 = makeAnotherReg(Type::UIntTy);
1502 unsigned TmpReg2 = makeAnotherReg(Type::UIntTy);
1503 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, TmpReg1), SrcAddrReg);
1504 BuildMI(BB, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1505 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1506 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1507 DestAddrReg, Offset).addReg(TmpReg2);
1508
1509 if (Ty == Type::DoubleTy) { // Swap the other 32 bits of a double value...
1510 TmpReg1 = makeAnotherReg(Type::UIntTy);
1511 TmpReg2 = makeAnotherReg(Type::UIntTy);
1512
1513 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, TmpReg1), SrcAddrReg, 4);
1514 BuildMI(BB, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1515 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1516 addDirectMem(BuildMI(BB, X86::MOVrm32, 5), DestAddrReg).addReg(TmpReg2);
Chris Lattnere8f0d922002-12-24 00:03:11 +00001517 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00001518}
1519
Chris Lattner06925362002-11-17 21:56:38 +00001520
Chris Lattner6fc3c522002-11-17 21:11:55 +00001521/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
1522/// instruction.
1523///
1524void ISel::visitStoreInst(StoreInst &I) {
Chris Lattnere8f0d922002-12-24 00:03:11 +00001525 bool isLittleEndian = TM.getTargetData().isLittleEndian();
1526 bool hasLongPointers = TM.getTargetData().getPointerSize() == 8;
Chris Lattner3e130a22003-01-13 00:32:26 +00001527 unsigned ValReg = getReg(I.getOperand(0));
1528 unsigned AddressReg = getReg(I.getOperand(1));
Chris Lattnere8f0d922002-12-24 00:03:11 +00001529
Chris Lattner94af4142002-12-25 05:13:53 +00001530 unsigned Class = getClass(I.getOperand(0)->getType());
1531 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001532 case cLong:
1533 if (isLittleEndian) {
1534 addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(ValReg);
1535 addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4),
1536 AddressReg, 4).addReg(ValReg+1);
1537 } else {
1538 unsigned T1 = makeAnotherReg(Type::IntTy);
1539 unsigned T2 = makeAnotherReg(Type::IntTy);
1540 EmitByteSwap(T1, ValReg , cInt);
1541 EmitByteSwap(T2, ValReg+1, cInt);
1542 addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(T2);
1543 addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg, 4).addReg(T1);
1544 }
Chris Lattner94af4142002-12-25 05:13:53 +00001545 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001546 case cFP:
1547 doFPStore(I.getOperand(0)->getType(), AddressReg, ValReg);
1548 return;
1549 case cInt: case cShort: case cByte:
1550 break; // Integers of various sizes handled below
1551 default: assert(0 && "Unknown memory class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001552 }
1553
1554 if (!isLittleEndian && hasLongPointers &&
1555 isa<PointerType>(I.getOperand(0)->getType())) {
Chris Lattnere8f0d922002-12-24 00:03:11 +00001556 unsigned R = makeAnotherReg(Type::UIntTy);
1557 BuildMI(BB, X86::ADDri32, 2, R).addReg(AddressReg).addZImm(4);
1558 AddressReg = R;
1559 }
1560
Chris Lattner94af4142002-12-25 05:13:53 +00001561 if (!isLittleEndian && Class != cByte) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001562 unsigned R = makeAnotherReg(I.getOperand(0)->getType());
1563 EmitByteSwap(R, ValReg, Class);
1564 ValReg = R;
Chris Lattnere8f0d922002-12-24 00:03:11 +00001565 }
1566
Chris Lattner94af4142002-12-25 05:13:53 +00001567 static const unsigned Opcode[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
Chris Lattner6fc3c522002-11-17 21:11:55 +00001568 addDirectMem(BuildMI(BB, Opcode[Class], 1+4), AddressReg).addReg(ValReg);
1569}
1570
1571
Brian Gaekec11232a2002-11-26 10:43:30 +00001572/// visitCastInst - Here we have various kinds of copying with or without
1573/// sign extension going on.
Chris Lattner3e130a22003-01-13 00:32:26 +00001574void ISel::visitCastInst(CastInst &CI) {
Chris Lattnerf5854472003-06-21 16:01:24 +00001575 Value *Op = CI.getOperand(0);
1576 // If this is a cast from a 32-bit integer to a Long type, and the only uses
1577 // of the case are GEP instructions, then the cast does not need to be
1578 // generated explicitly, it will be folded into the GEP.
1579 if (CI.getType() == Type::LongTy &&
1580 (Op->getType() == Type::IntTy || Op->getType() == Type::UIntTy)) {
1581 bool AllUsesAreGEPs = true;
1582 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
1583 if (!isa<GetElementPtrInst>(*I)) {
1584 AllUsesAreGEPs = false;
1585 break;
1586 }
1587
1588 // No need to codegen this cast if all users are getelementptr instrs...
1589 if (AllUsesAreGEPs) return;
1590 }
1591
Chris Lattner548f61d2003-04-23 17:22:12 +00001592 unsigned DestReg = getReg(CI);
1593 MachineBasicBlock::iterator MI = BB->end();
Chris Lattnerf5854472003-06-21 16:01:24 +00001594 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
Chris Lattner548f61d2003-04-23 17:22:12 +00001595}
1596
1597/// emitCastOperation - Common code shared between visitCastInst and
1598/// constant expression cast support.
1599void ISel::emitCastOperation(MachineBasicBlock *BB,
1600 MachineBasicBlock::iterator &IP,
1601 Value *Src, const Type *DestTy,
1602 unsigned DestReg) {
Chris Lattner3907d112003-04-23 17:57:48 +00001603 unsigned SrcReg = getReg(Src, BB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001604 const Type *SrcTy = Src->getType();
1605 unsigned SrcClass = getClassB(SrcTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00001606 unsigned DestClass = getClassB(DestTy);
Chris Lattner7d255892002-12-13 11:31:59 +00001607
Chris Lattner3e130a22003-01-13 00:32:26 +00001608 // Implement casts to bool by using compare on the operand followed by set if
1609 // not zero on the result.
1610 if (DestTy == Type::BoolTy) {
Chris Lattner20772542003-06-01 03:38:24 +00001611 switch (SrcClass) {
1612 case cByte:
1613 BMI(BB, IP, X86::TESTrr8, 2).addReg(SrcReg).addReg(SrcReg);
1614 break;
1615 case cShort:
1616 BMI(BB, IP, X86::TESTrr16, 2).addReg(SrcReg).addReg(SrcReg);
1617 break;
1618 case cInt:
1619 BMI(BB, IP, X86::TESTrr32, 2).addReg(SrcReg).addReg(SrcReg);
1620 break;
1621 case cLong: {
1622 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1623 BMI(BB, IP, X86::ORrr32, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
1624 break;
1625 }
1626 case cFP:
1627 assert(0 && "FIXME: implement cast FP to bool");
1628 abort();
1629 }
1630
1631 // If the zero flag is not set, then the value is true, set the byte to
1632 // true.
Chris Lattner548f61d2003-04-23 17:22:12 +00001633 BMI(BB, IP, X86::SETNEr, 1, DestReg);
Chris Lattner94af4142002-12-25 05:13:53 +00001634 return;
1635 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001636
1637 static const unsigned RegRegMove[] = {
1638 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32, X86::FpMOV, X86::MOVrr32
1639 };
1640
1641 // Implement casts between values of the same type class (as determined by
1642 // getClass) by using a register-to-register move.
1643 if (SrcClass == DestClass) {
1644 if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001645 BMI(BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001646 } else if (SrcClass == cFP) {
1647 if (SrcTy == Type::FloatTy) { // double -> float
1648 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001649 BMI(BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001650 } else { // float -> double
1651 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
1652 "Unknown cFP member!");
1653 // Truncate from double to float by storing to memory as short, then
1654 // reading it back.
1655 unsigned FltAlign = TM.getTargetData().getFloatAlignment();
1656 int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
Chris Lattner548f61d2003-04-23 17:22:12 +00001657 addFrameReference(BMI(BB, IP, X86::FSTr32, 5), FrameIdx).addReg(SrcReg);
1658 addFrameReference(BMI(BB, IP, X86::FLDr32, 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001659 }
1660 } else if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001661 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
1662 BMI(BB, IP, X86::MOVrr32, 1, DestReg+1).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001663 } else {
Chris Lattnerc53544a2003-05-12 20:16:58 +00001664 assert(0 && "Cannot handle this type of cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001665 abort();
Brian Gaeked474e9c2002-12-06 10:49:33 +00001666 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001667 return;
1668 }
1669
1670 // Handle cast of SMALLER int to LARGER int using a move with sign extension
1671 // or zero extension, depending on whether the source type was signed.
1672 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
1673 SrcClass < DestClass) {
1674 bool isLong = DestClass == cLong;
1675 if (isLong) DestClass = cInt;
1676
1677 static const unsigned Opc[][4] = {
1678 { X86::MOVSXr16r8, X86::MOVSXr32r8, X86::MOVSXr32r16, X86::MOVrr32 }, // s
1679 { X86::MOVZXr16r8, X86::MOVZXr32r8, X86::MOVZXr32r16, X86::MOVrr32 } // u
1680 };
1681
1682 bool isUnsigned = SrcTy->isUnsigned();
Chris Lattner548f61d2003-04-23 17:22:12 +00001683 BMI(BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
1684 DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001685
1686 if (isLong) { // Handle upper 32 bits as appropriate...
1687 if (isUnsigned) // Zero out top bits...
Chris Lattner548f61d2003-04-23 17:22:12 +00001688 BMI(BB, IP, X86::MOVir32, 1, DestReg+1).addZImm(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00001689 else // Sign extend bottom half...
Chris Lattner548f61d2003-04-23 17:22:12 +00001690 BMI(BB, IP, X86::SARir32, 2, DestReg+1).addReg(DestReg).addZImm(31);
Brian Gaeked474e9c2002-12-06 10:49:33 +00001691 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001692 return;
1693 }
1694
1695 // Special case long -> int ...
1696 if (SrcClass == cLong && DestClass == cInt) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001697 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001698 return;
1699 }
1700
1701 // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
1702 // move out of AX or AL.
1703 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
1704 && SrcClass > DestClass) {
1705 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
Chris Lattner548f61d2003-04-23 17:22:12 +00001706 BMI(BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
1707 BMI(BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
Chris Lattner3e130a22003-01-13 00:32:26 +00001708 return;
1709 }
1710
1711 // Handle casts from integer to floating point now...
1712 if (DestClass == cFP) {
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001713 // Promote the integer to a type supported by FLD. We do this because there
1714 // are no unsigned FLD instructions, so we must promote an unsigned value to
1715 // a larger signed value, then use FLD on the larger value.
1716 //
1717 const Type *PromoteType = 0;
1718 unsigned PromoteOpcode;
1719 switch (SrcTy->getPrimitiveID()) {
1720 case Type::BoolTyID:
1721 case Type::SByteTyID:
1722 // We don't have the facilities for directly loading byte sized data from
1723 // memory (even signed). Promote it to 16 bits.
1724 PromoteType = Type::ShortTy;
1725 PromoteOpcode = X86::MOVSXr16r8;
1726 break;
1727 case Type::UByteTyID:
1728 PromoteType = Type::ShortTy;
1729 PromoteOpcode = X86::MOVZXr16r8;
1730 break;
1731 case Type::UShortTyID:
1732 PromoteType = Type::IntTy;
1733 PromoteOpcode = X86::MOVZXr32r16;
1734 break;
1735 case Type::UIntTyID: {
1736 // Make a 64 bit temporary... and zero out the top of it...
1737 unsigned TmpReg = makeAnotherReg(Type::LongTy);
1738 BMI(BB, IP, X86::MOVrr32, 1, TmpReg).addReg(SrcReg);
1739 BMI(BB, IP, X86::MOVir32, 1, TmpReg+1).addZImm(0);
1740 SrcTy = Type::LongTy;
1741 SrcClass = cLong;
1742 SrcReg = TmpReg;
1743 break;
1744 }
1745 case Type::ULongTyID:
1746 assert("FIXME: not implemented: cast ulong X to fp type!");
1747 default: // No promotion needed...
1748 break;
1749 }
1750
1751 if (PromoteType) {
1752 unsigned TmpReg = makeAnotherReg(PromoteType);
Chris Lattner548f61d2003-04-23 17:22:12 +00001753 BMI(BB, IP, SrcTy->isSigned() ? X86::MOVSXr16r8 : X86::MOVZXr16r8,
1754 1, TmpReg).addReg(SrcReg);
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001755 SrcTy = PromoteType;
1756 SrcClass = getClass(PromoteType);
Chris Lattner3e130a22003-01-13 00:32:26 +00001757 SrcReg = TmpReg;
1758 }
1759
1760 // Spill the integer to memory and reload it from there...
1761 int FrameIdx =
1762 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
1763
1764 if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001765 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5), FrameIdx).addReg(SrcReg);
1766 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +00001767 FrameIdx, 4).addReg(SrcReg+1);
1768 } else {
1769 static const unsigned Op1[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001770 addFrameReference(BMI(BB, IP, Op1[SrcClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001771 }
1772
1773 static const unsigned Op2[] =
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001774 { 0/*byte*/, X86::FILDr16, X86::FILDr32, 0/*FP*/, X86::FILDr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001775 addFrameReference(BMI(BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001776 return;
1777 }
1778
1779 // Handle casts from floating point to integer now...
1780 if (SrcClass == cFP) {
1781 // Change the floating point control register to use "round towards zero"
1782 // mode when truncating to an integer value.
1783 //
1784 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
Chris Lattner548f61d2003-04-23 17:22:12 +00001785 addFrameReference(BMI(BB, IP, X86::FNSTCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001786
1787 // Load the old value of the high byte of the control word...
1788 unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
Chris Lattner548f61d2003-04-23 17:22:12 +00001789 addFrameReference(BMI(BB, IP, X86::MOVmr8, 4, HighPartOfCW), CWFrameIdx, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001790
1791 // Set the high part to be round to zero...
Chris Lattner548f61d2003-04-23 17:22:12 +00001792 addFrameReference(BMI(BB, IP, X86::MOVim8, 5), CWFrameIdx, 1).addZImm(12);
Chris Lattner3e130a22003-01-13 00:32:26 +00001793
1794 // Reload the modified control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00001795 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001796
1797 // Restore the memory image of control word to original value
Chris Lattner548f61d2003-04-23 17:22:12 +00001798 addFrameReference(BMI(BB, IP, X86::MOVrm8, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +00001799 CWFrameIdx, 1).addReg(HighPartOfCW);
1800
1801 // We don't have the facilities for directly storing byte sized data to
1802 // memory. Promote it to 16 bits. We also must promote unsigned values to
1803 // larger classes because we only have signed FP stores.
1804 unsigned StoreClass = DestClass;
1805 const Type *StoreTy = DestTy;
1806 if (StoreClass == cByte || DestTy->isUnsigned())
1807 switch (StoreClass) {
1808 case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
1809 case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
1810 case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
Chris Lattner9d6d1182003-05-12 21:16:26 +00001811 case cLong:
1812 assert(0 &&"FIXME not implemented: cast FP to unsigned long long");
1813 abort();
Chris Lattner3e130a22003-01-13 00:32:26 +00001814 default: assert(0 && "Unknown store class!");
1815 }
1816
1817 // Spill the integer to memory and reload it from there...
1818 int FrameIdx =
1819 F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
1820
1821 static const unsigned Op1[] =
1822 { 0, X86::FISTr16, X86::FISTr32, 0, X86::FISTPr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001823 addFrameReference(BMI(BB, IP, Op1[StoreClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001824
1825 if (DestClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001826 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg), FrameIdx);
1827 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg+1), FrameIdx, 4);
Chris Lattner3e130a22003-01-13 00:32:26 +00001828 } else {
1829 static const unsigned Op2[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001830 addFrameReference(BMI(BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001831 }
1832
1833 // Reload the original control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00001834 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001835 return;
1836 }
1837
Brian Gaeked474e9c2002-12-06 10:49:33 +00001838 // Anything we haven't handled already, we can't (yet) handle at all.
Chris Lattnerc53544a2003-05-12 20:16:58 +00001839 assert(0 && "Unhandled cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001840 abort();
Brian Gaekefa8d5712002-11-22 11:07:01 +00001841}
Brian Gaekea1719c92002-10-31 23:03:59 +00001842
Chris Lattnereca195e2003-05-08 19:44:13 +00001843/// visitVarArgInst - Implement the va_arg instruction...
1844///
1845void ISel::visitVarArgInst(VarArgInst &I) {
1846 unsigned SrcReg = getReg(I.getOperand(0));
1847 unsigned DestReg = getReg(I);
1848
1849 // Load the va_list into a register...
1850 unsigned VAList = makeAnotherReg(Type::UIntTy);
1851 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, VAList), SrcReg);
1852
1853 unsigned Size;
1854 switch (I.getType()->getPrimitiveID()) {
1855 default:
1856 std::cerr << I;
1857 assert(0 && "Error: bad type for va_arg instruction!");
1858 return;
1859 case Type::PointerTyID:
1860 case Type::UIntTyID:
1861 case Type::IntTyID:
1862 Size = 4;
1863 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
1864 break;
1865 case Type::ULongTyID:
1866 case Type::LongTyID:
1867 Size = 8;
1868 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
1869 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), VAList, 4);
1870 break;
1871 case Type::DoubleTyID:
1872 Size = 8;
1873 addDirectMem(BuildMI(BB, X86::FLDr64, 4, DestReg), VAList);
1874 break;
1875 }
1876
1877 // Increment the VAList pointer...
1878 unsigned NextVAList = makeAnotherReg(Type::UIntTy);
1879 BuildMI(BB, X86::ADDri32, 2, NextVAList).addReg(VAList).addZImm(Size);
1880
1881 // Update the VAList in memory...
1882 addDirectMem(BuildMI(BB, X86::MOVrm32, 5), SrcReg).addReg(NextVAList);
1883}
1884
1885
Chris Lattner8a307e82002-12-16 19:32:50 +00001886// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1887// returns zero when the input is not exactly a power of two.
1888static unsigned ExactLog2(unsigned Val) {
1889 if (Val == 0) return 0;
1890 unsigned Count = 0;
1891 while (Val != 1) {
1892 if (Val & 1) return 0;
1893 Val >>= 1;
1894 ++Count;
1895 }
1896 return Count+1;
1897}
1898
Chris Lattner3e130a22003-01-13 00:32:26 +00001899void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
1900 unsigned outputReg = getReg(I);
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00001901 MachineBasicBlock::iterator MI = BB->end();
1902 emitGEPOperation(BB, MI, I.getOperand(0),
Brian Gaeke68b1edc2002-12-16 04:23:29 +00001903 I.op_begin()+1, I.op_end(), outputReg);
Chris Lattnerc0812d82002-12-13 06:56:29 +00001904}
1905
Brian Gaeke71794c02002-12-13 11:22:48 +00001906void ISel::emitGEPOperation(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00001907 MachineBasicBlock::iterator &IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +00001908 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +00001909 User::op_iterator IdxEnd, unsigned TargetReg) {
1910 const TargetData &TD = TM.getTargetData();
1911 const Type *Ty = Src->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +00001912 unsigned BaseReg = getReg(Src, MBB, IP);
Chris Lattnerc0812d82002-12-13 06:56:29 +00001913
Brian Gaeke20244b72002-12-12 15:33:40 +00001914 // GEPs have zero or more indices; we must perform a struct access
1915 // or array access for each one.
Chris Lattnerc0812d82002-12-13 06:56:29 +00001916 for (GetElementPtrInst::op_iterator oi = IdxBegin,
1917 oe = IdxEnd; oi != oe; ++oi) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001918 Value *idx = *oi;
Chris Lattner3e130a22003-01-13 00:32:26 +00001919 unsigned NextReg = BaseReg;
Chris Lattner065faeb2002-12-28 20:24:02 +00001920 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001921 // It's a struct access. idx is the index into the structure,
1922 // which names the field. This index must have ubyte type.
Chris Lattner065faeb2002-12-28 20:24:02 +00001923 const ConstantUInt *CUI = cast<ConstantUInt>(idx);
1924 assert(CUI->getType() == Type::UByteTy
Brian Gaeke20244b72002-12-12 15:33:40 +00001925 && "Funny-looking structure index in GEP");
1926 // Use the TargetData structure to pick out what the layout of
1927 // the structure is in memory. Since the structure index must
1928 // be constant, we can get its value and use it to find the
1929 // right byte offset from the StructLayout class's list of
1930 // structure member offsets.
Chris Lattnere8f0d922002-12-24 00:03:11 +00001931 unsigned idxValue = CUI->getValue();
Chris Lattner3e130a22003-01-13 00:32:26 +00001932 unsigned FieldOff = TD.getStructLayout(StTy)->MemberOffsets[idxValue];
1933 if (FieldOff) {
1934 NextReg = makeAnotherReg(Type::UIntTy);
1935 // Emit an ADD to add FieldOff to the basePtr.
1936 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(FieldOff);
1937 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001938 // The next type is the member of the structure selected by the
1939 // index.
Chris Lattner065faeb2002-12-28 20:24:02 +00001940 Ty = StTy->getElementTypes()[idxValue];
1941 } else if (const SequentialType *SqTy = cast<SequentialType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001942 // It's an array or pointer access: [ArraySize x ElementType].
Chris Lattner8a307e82002-12-16 19:32:50 +00001943
Brian Gaeke20244b72002-12-12 15:33:40 +00001944 // idx is the index into the array. Unlike with structure
1945 // indices, we may not know its actual value at code-generation
1946 // time.
Chris Lattner8a307e82002-12-16 19:32:50 +00001947 assert(idx->getType() == Type::LongTy && "Bad GEP array index!");
1948
Chris Lattnerf5854472003-06-21 16:01:24 +00001949 // Most GEP instructions use a [cast (int/uint) to LongTy] as their
1950 // operand on X86. Handle this case directly now...
1951 if (CastInst *CI = dyn_cast<CastInst>(idx))
1952 if (CI->getOperand(0)->getType() == Type::IntTy ||
1953 CI->getOperand(0)->getType() == Type::UIntTy)
1954 idx = CI->getOperand(0);
1955
Chris Lattner3e130a22003-01-13 00:32:26 +00001956 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
Chris Lattner8a307e82002-12-16 19:32:50 +00001957 // must find the size of the pointed-to type (Not coincidentally, the next
1958 // type is the type of the elements in the array).
1959 Ty = SqTy->getElementType();
1960 unsigned elementSize = TD.getTypeSize(Ty);
1961
1962 // If idxReg is a constant, we don't need to perform the multiply!
1963 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001964 if (!CSI->isNullValue()) {
Chris Lattner8a307e82002-12-16 19:32:50 +00001965 unsigned Offset = elementSize*CSI->getValue();
Chris Lattner3e130a22003-01-13 00:32:26 +00001966 NextReg = makeAnotherReg(Type::UIntTy);
1967 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(Offset);
Chris Lattner8a307e82002-12-16 19:32:50 +00001968 }
1969 } else if (elementSize == 1) {
1970 // If the element size is 1, we don't have to multiply, just add
1971 unsigned idxReg = getReg(idx, MBB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001972 NextReg = makeAnotherReg(Type::UIntTy);
1973 BMI(MBB, IP, X86::ADDrr32, 2, NextReg).addReg(BaseReg).addReg(idxReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00001974 } else {
1975 unsigned idxReg = getReg(idx, MBB, IP);
1976 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
1977 if (unsigned Shift = ExactLog2(elementSize)) {
1978 // If the element size is exactly a power of 2, use a shift to get it.
Chris Lattner8a307e82002-12-16 19:32:50 +00001979 BMI(MBB, IP, X86::SHLir32, 2,
1980 OffsetReg).addReg(idxReg).addZImm(Shift-1);
1981 } else {
1982 // Most general case, emit a multiply...
1983 unsigned elementSizeReg = makeAnotherReg(Type::LongTy);
1984 BMI(MBB, IP, X86::MOVir32, 1, elementSizeReg).addZImm(elementSize);
1985
1986 // Emit a MUL to multiply the register holding the index by
1987 // elementSize, putting the result in OffsetReg.
Chris Lattner3e130a22003-01-13 00:32:26 +00001988 doMultiply(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSizeReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00001989 }
1990 // Emit an ADD to add OffsetReg to the basePtr.
Chris Lattner3e130a22003-01-13 00:32:26 +00001991 NextReg = makeAnotherReg(Type::UIntTy);
1992 BMI(MBB, IP, X86::ADDrr32, 2,NextReg).addReg(BaseReg).addReg(OffsetReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00001993 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001994 }
1995 // Now that we are here, further indices refer to subtypes of this
Chris Lattner3e130a22003-01-13 00:32:26 +00001996 // one, so we don't need to worry about BaseReg itself, anymore.
1997 BaseReg = NextReg;
Brian Gaeke20244b72002-12-12 15:33:40 +00001998 }
1999 // After we have processed all the indices, the result is left in
Chris Lattner3e130a22003-01-13 00:32:26 +00002000 // BaseReg. Move it to the register where we were expected to
Brian Gaeke20244b72002-12-12 15:33:40 +00002001 // put the answer. A 32-bit move should do it, because we are in
2002 // ILP32 land.
Chris Lattner3e130a22003-01-13 00:32:26 +00002003 BMI(MBB, IP, X86::MOVrr32, 1, TargetReg).addReg(BaseReg);
Brian Gaeke20244b72002-12-12 15:33:40 +00002004}
2005
2006
Chris Lattner065faeb2002-12-28 20:24:02 +00002007/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2008/// frame manager, otherwise do it the hard way.
2009///
2010void ISel::visitAllocaInst(AllocaInst &I) {
Brian Gaekee48ec012002-12-13 06:46:31 +00002011 // Find the data size of the alloca inst's getAllocatedType.
Chris Lattner065faeb2002-12-28 20:24:02 +00002012 const Type *Ty = I.getAllocatedType();
2013 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2014
2015 // If this is a fixed size alloca in the entry block for the function,
2016 // statically stack allocate the space.
2017 //
2018 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getArraySize())) {
2019 if (I.getParent() == I.getParent()->getParent()->begin()) {
2020 TySize *= CUI->getValue(); // Get total allocated size...
2021 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
2022
2023 // Create a new stack object using the frame manager...
2024 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
2025 addFrameReference(BuildMI(BB, X86::LEAr32, 5, getReg(I)), FrameIdx);
2026 return;
2027 }
2028 }
2029
2030 // Create a register to hold the temporary result of multiplying the type size
2031 // constant by the variable amount.
2032 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2033 unsigned SrcReg1 = getReg(I.getArraySize());
2034 unsigned SizeReg = makeAnotherReg(Type::UIntTy);
2035 BuildMI(BB, X86::MOVir32, 1, SizeReg).addZImm(TySize);
2036
2037 // TotalSizeReg = mul <numelements>, <TypeSize>
2038 MachineBasicBlock::iterator MBBI = BB->end();
2039 doMultiply(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, SizeReg);
2040
2041 // AddedSize = add <TotalSizeReg>, 15
2042 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2043 BuildMI(BB, X86::ADDri32, 2, AddedSizeReg).addReg(TotalSizeReg).addZImm(15);
2044
2045 // AlignedSize = and <AddedSize>, ~15
2046 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
2047 BuildMI(BB, X86::ANDri32, 2, AlignedSize).addReg(AddedSizeReg).addZImm(~15);
2048
Brian Gaekee48ec012002-12-13 06:46:31 +00002049 // Subtract size from stack pointer, thereby allocating some space.
Chris Lattner3e130a22003-01-13 00:32:26 +00002050 BuildMI(BB, X86::SUBrr32, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
Chris Lattner065faeb2002-12-28 20:24:02 +00002051
Brian Gaekee48ec012002-12-13 06:46:31 +00002052 // Put a pointer to the space into the result register, by copying
2053 // the stack pointer.
Chris Lattner065faeb2002-12-28 20:24:02 +00002054 BuildMI(BB, X86::MOVrr32, 1, getReg(I)).addReg(X86::ESP);
2055
Misha Brukman48196b32003-05-03 02:18:17 +00002056 // Inform the Frame Information that we have just allocated a variable-sized
Chris Lattner065faeb2002-12-28 20:24:02 +00002057 // object.
2058 F->getFrameInfo()->CreateVariableSizedObject();
Brian Gaeke20244b72002-12-12 15:33:40 +00002059}
Chris Lattner3e130a22003-01-13 00:32:26 +00002060
2061/// visitMallocInst - Malloc instructions are code generated into direct calls
2062/// to the library malloc.
2063///
2064void ISel::visitMallocInst(MallocInst &I) {
2065 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2066 unsigned Arg;
2067
2068 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2069 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2070 } else {
2071 Arg = makeAnotherReg(Type::UIntTy);
2072 unsigned Op0Reg = getReg(ConstantUInt::get(Type::UIntTy, AllocSize));
2073 unsigned Op1Reg = getReg(I.getOperand(0));
2074 MachineBasicBlock::iterator MBBI = BB->end();
2075 doMultiply(BB, MBBI, Arg, Type::UIntTy, Op0Reg, Op1Reg);
2076
2077
2078 }
2079
2080 std::vector<ValueRecord> Args;
2081 Args.push_back(ValueRecord(Arg, Type::UIntTy));
2082 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
2083 1).addExternalSymbol("malloc", true);
2084 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
2085}
2086
2087
2088/// visitFreeInst - Free instructions are code gen'd to call the free libc
2089/// function.
2090///
2091void ISel::visitFreeInst(FreeInst &I) {
2092 std::vector<ValueRecord> Args;
2093 Args.push_back(ValueRecord(getReg(I.getOperand(0)),
2094 I.getOperand(0)->getType()));
2095 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
2096 1).addExternalSymbol("free", true);
2097 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
2098}
2099
Brian Gaeke20244b72002-12-12 15:33:40 +00002100
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00002101/// createSimpleX86InstructionSelector - This pass converts an LLVM function
2102/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +00002103/// generated code sucks but the implementation is nice and simple.
2104///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00002105Pass *createSimpleX86InstructionSelector(TargetMachine &TM) {
2106 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +00002107}