blob: 6ab7d941ee30d2487696904b323dc556fbc2f4f8 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the default implementation of the Alias Analysis interface
11// that simply implements a few identities (two different globals cannot alias,
12// etc), but otherwise does no analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/Passes.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
Christopher Lamb6f9fad52007-08-02 01:18:14 +000021#include "llvm/ParameterAttributes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000022#include "llvm/GlobalVariable.h"
23#include "llvm/Instructions.h"
Owen Anderson37f3ffb2008-02-17 21:29:08 +000024#include "llvm/IntrinsicInst.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000025#include "llvm/Pass.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/ADT/SmallVector.h"
Owen Anderson1636de92007-09-07 04:06:50 +000028#include "llvm/ADT/STLExtras.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000029#include "llvm/Support/Compiler.h"
30#include "llvm/Support/GetElementPtrTypeIterator.h"
31#include "llvm/Support/ManagedStatic.h"
32#include <algorithm>
33using namespace llvm;
34
35namespace {
36 /// NoAA - This class implements the -no-aa pass, which always returns "I
37 /// don't know" for alias queries. NoAA is unlike other alias analysis
38 /// implementations, in that it does not chain to a previous analysis. As
39 /// such it doesn't follow many of the rules that other alias analyses must.
40 ///
41 struct VISIBILITY_HIDDEN NoAA : public ImmutablePass, public AliasAnalysis {
42 static char ID; // Class identification, replacement for typeinfo
43 NoAA() : ImmutablePass((intptr_t)&ID) {}
44 explicit NoAA(intptr_t PID) : ImmutablePass(PID) { }
45
46 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
47 AU.addRequired<TargetData>();
48 }
49
50 virtual void initializePass() {
51 TD = &getAnalysis<TargetData>();
52 }
53
54 virtual AliasResult alias(const Value *V1, unsigned V1Size,
55 const Value *V2, unsigned V2Size) {
56 return MayAlias;
57 }
58
59 virtual ModRefBehavior getModRefBehavior(Function *F, CallSite CS,
60 std::vector<PointerAccessInfo> *Info) {
61 return UnknownModRefBehavior;
62 }
63
64 virtual void getArgumentAccesses(Function *F, CallSite CS,
65 std::vector<PointerAccessInfo> &Info) {
66 assert(0 && "This method may not be called on this function!");
67 }
68
69 virtual void getMustAliases(Value *P, std::vector<Value*> &RetVals) { }
70 virtual bool pointsToConstantMemory(const Value *P) { return false; }
71 virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) {
72 return ModRef;
73 }
74 virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
75 return ModRef;
76 }
77 virtual bool hasNoModRefInfoForCalls() const { return true; }
78
79 virtual void deleteValue(Value *V) {}
80 virtual void copyValue(Value *From, Value *To) {}
81 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +000082} // End of anonymous namespace
83
Dan Gohman089efff2008-05-13 00:00:25 +000084// Register this pass...
85char NoAA::ID = 0;
86static RegisterPass<NoAA>
87U("no-aa", "No Alias Analysis (always returns 'may' alias)", true, true);
88
89// Declare that we implement the AliasAnalysis interface
90static RegisterAnalysisGroup<AliasAnalysis> V(U);
91
Dan Gohmanf17a25c2007-07-18 16:29:46 +000092ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
93
94namespace {
95 /// BasicAliasAnalysis - This is the default alias analysis implementation.
96 /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
97 /// derives from the NoAA class.
98 struct VISIBILITY_HIDDEN BasicAliasAnalysis : public NoAA {
99 static char ID; // Class identification, replacement for typeinfo
100 BasicAliasAnalysis() : NoAA((intptr_t)&ID) { }
101 AliasResult alias(const Value *V1, unsigned V1Size,
102 const Value *V2, unsigned V2Size);
103
104 ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
105 ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
106 return NoAA::getModRefInfo(CS1,CS2);
107 }
108
109 /// hasNoModRefInfoForCalls - We can provide mod/ref information against
110 /// non-escaping allocations.
111 virtual bool hasNoModRefInfoForCalls() const { return false; }
112
113 /// pointsToConstantMemory - Chase pointers until we find a (constant
114 /// global) or not.
115 bool pointsToConstantMemory(const Value *P);
116
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000117 private:
118 // CheckGEPInstructions - Check two GEP instructions with known
119 // must-aliasing base pointers. This checks to see if the index expressions
120 // preclude the pointers from aliasing...
121 AliasResult
122 CheckGEPInstructions(const Type* BasePtr1Ty,
123 Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1Size,
124 const Type *BasePtr2Ty,
125 Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2Size);
126 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000127} // End of anonymous namespace
128
Dan Gohman089efff2008-05-13 00:00:25 +0000129// Register this pass...
130char BasicAliasAnalysis::ID = 0;
131static RegisterPass<BasicAliasAnalysis>
132X("basicaa", "Basic Alias Analysis (default AA impl)", false, true);
133
134// Declare that we implement the AliasAnalysis interface
135static RegisterAnalysisGroup<AliasAnalysis, true> Y(X);
136
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000137ImmutablePass *llvm::createBasicAliasAnalysisPass() {
138 return new BasicAliasAnalysis();
139}
140
Chris Lattner9603f432008-01-24 18:00:32 +0000141/// getUnderlyingObject - This traverses the use chain to figure out what object
142/// the specified value points to. If the value points to, or is derived from,
143/// a unique object or an argument, return it. This returns:
144/// Arguments, GlobalVariables, Functions, Allocas, Mallocs.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000145static const Value *getUnderlyingObject(const Value *V) {
Chris Lattnerfc2026e2008-06-16 06:10:11 +0000146 if (!isa<PointerType>(V->getType())) return V;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000147
148 // If we are at some type of object, return it. GlobalValues and Allocations
149 // have unique addresses.
150 if (isa<GlobalValue>(V) || isa<AllocationInst>(V) || isa<Argument>(V))
151 return V;
152
153 // Traverse through different addressing mechanisms...
154 if (const Instruction *I = dyn_cast<Instruction>(V)) {
155 if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I))
156 return getUnderlyingObject(I->getOperand(0));
157 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
158 if (CE->getOpcode() == Instruction::BitCast ||
159 CE->getOpcode() == Instruction::GetElementPtr)
160 return getUnderlyingObject(CE->getOperand(0));
161 }
Chris Lattnerfc2026e2008-06-16 06:10:11 +0000162 return V;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000163}
164
165static const User *isGEP(const Value *V) {
166 if (isa<GetElementPtrInst>(V) ||
167 (isa<ConstantExpr>(V) &&
168 cast<ConstantExpr>(V)->getOpcode() == Instruction::GetElementPtr))
169 return cast<User>(V);
170 return 0;
171}
172
173static const Value *GetGEPOperands(const Value *V,
174 SmallVector<Value*, 16> &GEPOps){
175 assert(GEPOps.empty() && "Expect empty list to populate!");
176 GEPOps.insert(GEPOps.end(), cast<User>(V)->op_begin()+1,
177 cast<User>(V)->op_end());
178
179 // Accumulate all of the chained indexes into the operand array
180 V = cast<User>(V)->getOperand(0);
181
182 while (const User *G = isGEP(V)) {
183 if (!isa<Constant>(GEPOps[0]) || isa<GlobalValue>(GEPOps[0]) ||
184 !cast<Constant>(GEPOps[0])->isNullValue())
185 break; // Don't handle folding arbitrary pointer offsets yet...
186 GEPOps.erase(GEPOps.begin()); // Drop the zero index
187 GEPOps.insert(GEPOps.begin(), G->op_begin()+1, G->op_end());
188 V = G->getOperand(0);
189 }
190 return V;
191}
192
193/// pointsToConstantMemory - Chase pointers until we find a (constant
194/// global) or not.
195bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
Chris Lattnerfc2026e2008-06-16 06:10:11 +0000196 if (const GlobalVariable *GV =
197 dyn_cast<GlobalVariable>(getUnderlyingObject(P)))
198 return GV->isConstant();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000199 return false;
200}
201
202// Determine if an AllocationInst instruction escapes from the function it is
203// contained in. If it does not escape, there is no way for another function to
204// mod/ref it. We do this by looking at its uses and determining if the uses
205// can escape (recursively).
206static bool AddressMightEscape(const Value *V) {
207 for (Value::use_const_iterator UI = V->use_begin(), E = V->use_end();
208 UI != E; ++UI) {
209 const Instruction *I = cast<Instruction>(*UI);
210 switch (I->getOpcode()) {
211 case Instruction::Load:
212 break; //next use.
213 case Instruction::Store:
214 if (I->getOperand(0) == V)
215 return true; // Escapes if the pointer is stored.
216 break; // next use.
217 case Instruction::GetElementPtr:
218 if (AddressMightEscape(I))
219 return true;
Evan Cheng2e9830d2007-09-05 21:36:14 +0000220 break; // next use.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000221 case Instruction::BitCast:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000222 if (AddressMightEscape(I))
223 return true;
224 break; // next use
225 case Instruction::Ret:
226 // If returned, the address will escape to calling functions, but no
227 // callees could modify it.
228 break; // next use
Owen Anderson37f3ffb2008-02-17 21:29:08 +0000229 case Instruction::Call:
230 // If the call is to a few known safe intrinsics, we know that it does
231 // not escape
Chris Lattner4a27ab82008-02-18 02:11:28 +0000232 if (!isa<MemIntrinsic>(I))
Owen Anderson37f3ffb2008-02-17 21:29:08 +0000233 return true;
Chris Lattner4a27ab82008-02-18 02:11:28 +0000234 break; // next use
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000235 default:
236 return true;
237 }
238 }
239 return false;
240}
241
242// getModRefInfo - Check to see if the specified callsite can clobber the
243// specified memory object. Since we only look at local properties of this
244// function, we really can't say much about this query. We do, however, use
245// simple "address taken" analysis on local objects.
246//
247AliasAnalysis::ModRefResult
248BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
Chris Lattner9603f432008-01-24 18:00:32 +0000249 if (!isa<Constant>(P)) {
250 const Value *Object = getUnderlyingObject(P);
Chris Lattnerfc2026e2008-06-16 06:10:11 +0000251
252 // If this is a tail call and P points to a stack location, we know that
253 // the tail call cannot access or modify the local stack.
254 // We cannot exclude byval arguments here; these belong to the caller of
255 // the current function not to the current function, and a tail callee
256 // may reference them.
257 if (isa<AllocaInst>(Object))
258 if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
259 if (CI->isTailCall())
260 return NoModRef;
261
Chris Lattner9603f432008-01-24 18:00:32 +0000262 // Allocations and byval arguments are "new" objects.
Chris Lattnerfc2026e2008-06-16 06:10:11 +0000263 if (isa<AllocationInst>(Object) || isa<Argument>(Object)) {
Owen Anderson37f3ffb2008-02-17 21:29:08 +0000264 // Okay, the pointer is to a stack allocated (or effectively so, for
Owen Andersonf8e7e842008-02-18 03:52:21 +0000265 // for noalias parameters) object. If the address of this object doesn't
266 // escape from this function body to a callee, then we know that no
267 // callees can mod/ref it unless they are actually passed it.
Owen Anderson34f007e2008-02-18 02:31:23 +0000268 if (isa<AllocationInst>(Object) ||
269 cast<Argument>(Object)->hasByValAttr() ||
270 cast<Argument>(Object)->hasNoAliasAttr())
271 if (!AddressMightEscape(Object)) {
Owen Andersonf8e7e842008-02-18 03:52:21 +0000272 bool passedAsArg = false;
Owen Anderson34f007e2008-02-18 02:31:23 +0000273 for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
274 CI != CE; ++CI)
Chris Lattnera9ebe5b2008-02-18 17:28:21 +0000275 if (isa<PointerType>((*CI)->getType()) &&
Chris Lattnerfc2026e2008-06-16 06:10:11 +0000276 (getUnderlyingObject(*CI) == P ||
277 alias(cast<Value>(CI), ~0U, P, ~0U) != NoAlias))
Owen Andersonf8e7e842008-02-18 03:52:21 +0000278 passedAsArg = true;
279
280 if (!passedAsArg)
281 return NoModRef;
Owen Anderson34f007e2008-02-18 02:31:23 +0000282 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000283 }
Chris Lattner9603f432008-01-24 18:00:32 +0000284 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000285
286 // The AliasAnalysis base class has some smarts, lets use them.
287 return AliasAnalysis::getModRefInfo(CS, P, Size);
288}
289
Chris Lattnerfc2026e2008-06-16 06:10:11 +0000290/// isIdentifiedObject - Return true if this pointer refers to a distinct and
291/// identifiable object. This returns true for:
292/// Global Variables and Functions
293/// Allocas and Mallocs
294/// ByVal and NoAlias Arguments
295///
296static bool isIdentifiedObject(const Value *V) {
297 if (isa<GlobalValue>(V) || isa<AllocationInst>(V))
298 return true;
299 if (const Argument *A = dyn_cast<Argument>(V))
300 return A->hasNoAliasAttr() || A->hasByValAttr();
301 return false;
302}
303
304/// isKnownNonNull - Return true if we know that the specified value is never
305/// null.
306static bool isKnownNonNull(const Value *V) {
307 // Alloca never returns null, malloc might.
308 if (isa<AllocaInst>(V)) return true;
309
310 // A byval argument is never null.
311 if (const Argument *A = dyn_cast<Argument>(V))
312 return A->hasByValAttr();
313
314 // Global values are not null unless extern weak.
315 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
316 return !GV->hasExternalWeakLinkage();
317 return false;
318}
319
Chris Lattnerd26e5d82008-06-16 06:19:11 +0000320/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
321/// object that never escapes from the function.
322static bool isNonEscapingLocalObject(const Value *V) {
323 // If this is a local allocation or byval argument, check to see if it
324 // escapes.
325 if (isa<AllocationInst>(V) ||
326 (isa<Argument>(V) && cast<Argument>(V)->hasByValAttr()))
327 return !AddressMightEscape(V);
328 return false;
329}
330
331
Chris Lattnerfc2026e2008-06-16 06:10:11 +0000332/// isObjectSmallerThan - Return true if we can prove that the object specified
333/// by V is smaller than Size.
334static bool isObjectSmallerThan(const Value *V, unsigned Size,
335 const TargetData &TD) {
336 const Type *AccessTy = 0;
337 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
338 AccessTy = GV->getType()->getElementType();
339
340 if (const AllocationInst *AI = dyn_cast<AllocationInst>(V))
341 if (!AI->isArrayAllocation())
342 AccessTy = AI->getType()->getElementType();
343
344 if (const Argument *A = dyn_cast<Argument>(V))
345 if (A->hasByValAttr())
346 AccessTy = cast<PointerType>(A->getType())->getElementType();
347
348 if (AccessTy && AccessTy->isSized())
349 return TD.getABITypeSize(AccessTy) < Size;
350 return false;
351}
352
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000353// alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such
354// as array references. Note that this function is heavily tail recursive.
355// Hopefully we have a smart C++ compiler. :)
356//
357AliasAnalysis::AliasResult
358BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
359 const Value *V2, unsigned V2Size) {
360 // Strip off any constant expression casts if they exist
361 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V1))
362 if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
363 V1 = CE->getOperand(0);
364 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V2))
365 if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
366 V2 = CE->getOperand(0);
367
368 // Are we checking for alias of the same value?
369 if (V1 == V2) return MustAlias;
370
371 if ((!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType())) &&
372 V1->getType() != Type::Int64Ty && V2->getType() != Type::Int64Ty)
373 return NoAlias; // Scalars cannot alias each other
374
375 // Strip off cast instructions...
376 if (const BitCastInst *I = dyn_cast<BitCastInst>(V1))
377 return alias(I->getOperand(0), V1Size, V2, V2Size);
378 if (const BitCastInst *I = dyn_cast<BitCastInst>(V2))
379 return alias(V1, V1Size, I->getOperand(0), V2Size);
380
381 // Figure out what objects these things are pointing to if we can...
382 const Value *O1 = getUnderlyingObject(V1);
383 const Value *O2 = getUnderlyingObject(V2);
384
Chris Lattnerfc2026e2008-06-16 06:10:11 +0000385 if (O1 != O2) {
386 // If V1/V2 point to two different objects we know that we have no alias.
387 if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
388 return NoAlias;
389
390 // Incoming argument cannot alias locally allocated object!
391 if ((isa<Argument>(O1) && isa<AllocationInst>(O2)) ||
392 (isa<Argument>(O2) && isa<AllocationInst>(O1)))
393 return NoAlias;
394
395 // Most objects can't alias null.
396 if ((isa<ConstantPointerNull>(V2) && isKnownNonNull(O1)) ||
397 (isa<ConstantPointerNull>(V1) && isKnownNonNull(O2)))
398 return NoAlias;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000399 }
Chris Lattnerfc2026e2008-06-16 06:10:11 +0000400
401 // If the size of one access is larger than the entire object on the other
402 // side, then we know such behavior is undefined and can assume no alias.
403 const TargetData &TD = getTargetData();
404 if ((V1Size != ~0U && isObjectSmallerThan(O2, V1Size, TD)) ||
405 (V2Size != ~0U && isObjectSmallerThan(O1, V2Size, TD)))
406 return NoAlias;
407
Chris Lattnerd26e5d82008-06-16 06:19:11 +0000408 // If one pointer is the result of a call/invoke and the other is a
409 // non-escaping local object, then we know the object couldn't escape to a
410 // point where the call could return it.
411 if ((isa<CallInst>(O1) || isa<InvokeInst>(O1)) &&
412 isNonEscapingLocalObject(O2))
413 return NoAlias;
414 if ((isa<CallInst>(O2) || isa<InvokeInst>(O2)) &&
415 isNonEscapingLocalObject(O1))
416 return NoAlias;
Chris Lattnerfc2026e2008-06-16 06:10:11 +0000417
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000418 // If we have two gep instructions with must-alias'ing base pointers, figure
419 // out if the indexes to the GEP tell us anything about the derived pointer.
420 // Note that we also handle chains of getelementptr instructions as well as
421 // constant expression getelementptrs here.
422 //
423 if (isGEP(V1) && isGEP(V2)) {
424 // Drill down into the first non-gep value, to test for must-aliasing of
425 // the base pointers.
Wojciech Matyjewicz170707f2007-12-13 16:22:58 +0000426 const User *G = cast<User>(V1);
427 while (isGEP(G->getOperand(0)) &&
428 G->getOperand(1) ==
429 Constant::getNullValue(G->getOperand(1)->getType()))
430 G = cast<User>(G->getOperand(0));
431 const Value *BasePtr1 = G->getOperand(0);
432
433 G = cast<User>(V2);
434 while (isGEP(G->getOperand(0)) &&
435 G->getOperand(1) ==
436 Constant::getNullValue(G->getOperand(1)->getType()))
437 G = cast<User>(G->getOperand(0));
438 const Value *BasePtr2 = G->getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000439
440 // Do the base pointers alias?
441 AliasResult BaseAlias = alias(BasePtr1, ~0U, BasePtr2, ~0U);
442 if (BaseAlias == NoAlias) return NoAlias;
443 if (BaseAlias == MustAlias) {
444 // If the base pointers alias each other exactly, check to see if we can
445 // figure out anything about the resultant pointers, to try to prove
446 // non-aliasing.
447
448 // Collect all of the chained GEP operands together into one simple place
449 SmallVector<Value*, 16> GEP1Ops, GEP2Ops;
450 BasePtr1 = GetGEPOperands(V1, GEP1Ops);
451 BasePtr2 = GetGEPOperands(V2, GEP2Ops);
452
453 // If GetGEPOperands were able to fold to the same must-aliased pointer,
454 // do the comparison.
455 if (BasePtr1 == BasePtr2) {
456 AliasResult GAlias =
457 CheckGEPInstructions(BasePtr1->getType(),
458 &GEP1Ops[0], GEP1Ops.size(), V1Size,
459 BasePtr2->getType(),
460 &GEP2Ops[0], GEP2Ops.size(), V2Size);
461 if (GAlias != MayAlias)
462 return GAlias;
463 }
464 }
465 }
466
467 // Check to see if these two pointers are related by a getelementptr
468 // instruction. If one pointer is a GEP with a non-zero index of the other
469 // pointer, we know they cannot alias.
470 //
471 if (isGEP(V2)) {
472 std::swap(V1, V2);
473 std::swap(V1Size, V2Size);
474 }
475
476 if (V1Size != ~0U && V2Size != ~0U)
477 if (isGEP(V1)) {
478 SmallVector<Value*, 16> GEPOperands;
479 const Value *BasePtr = GetGEPOperands(V1, GEPOperands);
480
481 AliasResult R = alias(BasePtr, V1Size, V2, V2Size);
482 if (R == MustAlias) {
483 // If there is at least one non-zero constant index, we know they cannot
484 // alias.
485 bool ConstantFound = false;
486 bool AllZerosFound = true;
487 for (unsigned i = 0, e = GEPOperands.size(); i != e; ++i)
488 if (const Constant *C = dyn_cast<Constant>(GEPOperands[i])) {
489 if (!C->isNullValue()) {
490 ConstantFound = true;
491 AllZerosFound = false;
492 break;
493 }
494 } else {
495 AllZerosFound = false;
496 }
497
498 // If we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 must aliases
499 // the ptr, the end result is a must alias also.
500 if (AllZerosFound)
501 return MustAlias;
502
503 if (ConstantFound) {
504 if (V2Size <= 1 && V1Size <= 1) // Just pointer check?
505 return NoAlias;
506
507 // Otherwise we have to check to see that the distance is more than
508 // the size of the argument... build an index vector that is equal to
509 // the arguments provided, except substitute 0's for any variable
510 // indexes we find...
511 if (cast<PointerType>(
512 BasePtr->getType())->getElementType()->isSized()) {
513 for (unsigned i = 0; i != GEPOperands.size(); ++i)
514 if (!isa<ConstantInt>(GEPOperands[i]))
515 GEPOperands[i] =
516 Constant::getNullValue(GEPOperands[i]->getType());
517 int64_t Offset =
518 getTargetData().getIndexedOffset(BasePtr->getType(),
519 &GEPOperands[0],
520 GEPOperands.size());
521
522 if (Offset >= (int64_t)V2Size || Offset <= -(int64_t)V1Size)
523 return NoAlias;
524 }
525 }
526 }
527 }
528
529 return MayAlias;
530}
531
532// This function is used to determin if the indices of two GEP instructions are
533// equal. V1 and V2 are the indices.
534static bool IndexOperandsEqual(Value *V1, Value *V2) {
535 if (V1->getType() == V2->getType())
536 return V1 == V2;
537 if (Constant *C1 = dyn_cast<Constant>(V1))
538 if (Constant *C2 = dyn_cast<Constant>(V2)) {
539 // Sign extend the constants to long types, if necessary
540 if (C1->getType() != Type::Int64Ty)
541 C1 = ConstantExpr::getSExt(C1, Type::Int64Ty);
542 if (C2->getType() != Type::Int64Ty)
543 C2 = ConstantExpr::getSExt(C2, Type::Int64Ty);
544 return C1 == C2;
545 }
546 return false;
547}
548
549/// CheckGEPInstructions - Check two GEP instructions with known must-aliasing
550/// base pointers. This checks to see if the index expressions preclude the
551/// pointers from aliasing...
552AliasAnalysis::AliasResult
553BasicAliasAnalysis::CheckGEPInstructions(
554 const Type* BasePtr1Ty, Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1S,
555 const Type *BasePtr2Ty, Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2S) {
556 // We currently can't handle the case when the base pointers have different
557 // primitive types. Since this is uncommon anyway, we are happy being
558 // extremely conservative.
559 if (BasePtr1Ty != BasePtr2Ty)
560 return MayAlias;
561
562 const PointerType *GEPPointerTy = cast<PointerType>(BasePtr1Ty);
563
564 // Find the (possibly empty) initial sequence of equal values... which are not
565 // necessarily constants.
566 unsigned NumGEP1Operands = NumGEP1Ops, NumGEP2Operands = NumGEP2Ops;
567 unsigned MinOperands = std::min(NumGEP1Operands, NumGEP2Operands);
568 unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands);
569 unsigned UnequalOper = 0;
570 while (UnequalOper != MinOperands &&
571 IndexOperandsEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper])) {
572 // Advance through the type as we go...
573 ++UnequalOper;
574 if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
575 BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[UnequalOper-1]);
576 else {
577 // If all operands equal each other, then the derived pointers must
578 // alias each other...
579 BasePtr1Ty = 0;
580 assert(UnequalOper == NumGEP1Operands && UnequalOper == NumGEP2Operands &&
581 "Ran out of type nesting, but not out of operands?");
582 return MustAlias;
583 }
584 }
585
586 // If we have seen all constant operands, and run out of indexes on one of the
587 // getelementptrs, check to see if the tail of the leftover one is all zeros.
588 // If so, return mustalias.
589 if (UnequalOper == MinOperands) {
590 if (NumGEP1Ops < NumGEP2Ops) {
591 std::swap(GEP1Ops, GEP2Ops);
592 std::swap(NumGEP1Ops, NumGEP2Ops);
593 }
594
595 bool AllAreZeros = true;
596 for (unsigned i = UnequalOper; i != MaxOperands; ++i)
597 if (!isa<Constant>(GEP1Ops[i]) ||
598 !cast<Constant>(GEP1Ops[i])->isNullValue()) {
599 AllAreZeros = false;
600 break;
601 }
602 if (AllAreZeros) return MustAlias;
603 }
604
605
606 // So now we know that the indexes derived from the base pointers,
607 // which are known to alias, are different. We can still determine a
608 // no-alias result if there are differing constant pairs in the index
609 // chain. For example:
610 // A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
611 //
612 // We have to be careful here about array accesses. In particular, consider:
613 // A[1][0] vs A[0][i]
614 // In this case, we don't *know* that the array will be accessed in bounds:
615 // the index could even be negative. Because of this, we have to
616 // conservatively *give up* and return may alias. We disregard differing
617 // array subscripts that are followed by a variable index without going
618 // through a struct.
619 //
620 unsigned SizeMax = std::max(G1S, G2S);
621 if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work.
622
623 // Scan for the first operand that is constant and unequal in the
624 // two getelementptrs...
625 unsigned FirstConstantOper = UnequalOper;
626 for (; FirstConstantOper != MinOperands; ++FirstConstantOper) {
627 const Value *G1Oper = GEP1Ops[FirstConstantOper];
628 const Value *G2Oper = GEP2Ops[FirstConstantOper];
629
630 if (G1Oper != G2Oper) // Found non-equal constant indexes...
631 if (Constant *G1OC = dyn_cast<ConstantInt>(const_cast<Value*>(G1Oper)))
632 if (Constant *G2OC = dyn_cast<ConstantInt>(const_cast<Value*>(G2Oper))){
633 if (G1OC->getType() != G2OC->getType()) {
634 // Sign extend both operands to long.
635 if (G1OC->getType() != Type::Int64Ty)
636 G1OC = ConstantExpr::getSExt(G1OC, Type::Int64Ty);
637 if (G2OC->getType() != Type::Int64Ty)
638 G2OC = ConstantExpr::getSExt(G2OC, Type::Int64Ty);
639 GEP1Ops[FirstConstantOper] = G1OC;
640 GEP2Ops[FirstConstantOper] = G2OC;
641 }
642
643 if (G1OC != G2OC) {
644 // Handle the "be careful" case above: if this is an array/vector
645 // subscript, scan for a subsequent variable array index.
646 if (isa<SequentialType>(BasePtr1Ty)) {
647 const Type *NextTy =
648 cast<SequentialType>(BasePtr1Ty)->getElementType();
649 bool isBadCase = false;
650
651 for (unsigned Idx = FirstConstantOper+1;
652 Idx != MinOperands && isa<SequentialType>(NextTy); ++Idx) {
653 const Value *V1 = GEP1Ops[Idx], *V2 = GEP2Ops[Idx];
654 if (!isa<Constant>(V1) || !isa<Constant>(V2)) {
655 isBadCase = true;
656 break;
657 }
658 NextTy = cast<SequentialType>(NextTy)->getElementType();
659 }
660
661 if (isBadCase) G1OC = 0;
662 }
663
664 // Make sure they are comparable (ie, not constant expressions), and
665 // make sure the GEP with the smaller leading constant is GEP1.
666 if (G1OC) {
667 Constant *Compare = ConstantExpr::getICmp(ICmpInst::ICMP_SGT,
668 G1OC, G2OC);
669 if (ConstantInt *CV = dyn_cast<ConstantInt>(Compare)) {
670 if (CV->getZExtValue()) { // If they are comparable and G2 > G1
671 std::swap(GEP1Ops, GEP2Ops); // Make GEP1 < GEP2
672 std::swap(NumGEP1Ops, NumGEP2Ops);
673 }
674 break;
675 }
676 }
677 }
678 }
679 BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(G1Oper);
680 }
681
682 // No shared constant operands, and we ran out of common operands. At this
683 // point, the GEP instructions have run through all of their operands, and we
684 // haven't found evidence that there are any deltas between the GEP's.
685 // However, one GEP may have more operands than the other. If this is the
686 // case, there may still be hope. Check this now.
687 if (FirstConstantOper == MinOperands) {
688 // Make GEP1Ops be the longer one if there is a longer one.
689 if (NumGEP1Ops < NumGEP2Ops) {
690 std::swap(GEP1Ops, GEP2Ops);
691 std::swap(NumGEP1Ops, NumGEP2Ops);
692 }
693
694 // Is there anything to check?
695 if (NumGEP1Ops > MinOperands) {
696 for (unsigned i = FirstConstantOper; i != MaxOperands; ++i)
697 if (isa<ConstantInt>(GEP1Ops[i]) &&
698 !cast<ConstantInt>(GEP1Ops[i])->isZero()) {
699 // Yup, there's a constant in the tail. Set all variables to
Wojciech Matyjewicze1709452008-06-02 17:26:12 +0000700 // constants in the GEP instruction to make it suitable for
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000701 // TargetData::getIndexedOffset.
702 for (i = 0; i != MaxOperands; ++i)
703 if (!isa<ConstantInt>(GEP1Ops[i]))
704 GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
705 // Okay, now get the offset. This is the relative offset for the full
706 // instruction.
707 const TargetData &TD = getTargetData();
708 int64_t Offset1 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops,
709 NumGEP1Ops);
710
711 // Now check without any constants at the end.
712 int64_t Offset2 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops,
713 MinOperands);
714
Wojciech Matyjewicze1709452008-06-02 17:26:12 +0000715 // Make sure we compare the absolute difference.
716 if (Offset1 > Offset2)
717 std::swap(Offset1, Offset2);
718
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000719 // If the tail provided a bit enough offset, return noalias!
720 if ((uint64_t)(Offset2-Offset1) >= SizeMax)
721 return NoAlias;
Wojciech Matyjewicze1709452008-06-02 17:26:12 +0000722 // Otherwise break - we don't look for another constant in the tail.
723 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000724 }
725 }
726
727 // Couldn't find anything useful.
728 return MayAlias;
729 }
730
731 // If there are non-equal constants arguments, then we can figure
732 // out a minimum known delta between the two index expressions... at
733 // this point we know that the first constant index of GEP1 is less
734 // than the first constant index of GEP2.
735
736 // Advance BasePtr[12]Ty over this first differing constant operand.
737 BasePtr2Ty = cast<CompositeType>(BasePtr1Ty)->
738 getTypeAtIndex(GEP2Ops[FirstConstantOper]);
739 BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->
740 getTypeAtIndex(GEP1Ops[FirstConstantOper]);
741
742 // We are going to be using TargetData::getIndexedOffset to determine the
743 // offset that each of the GEP's is reaching. To do this, we have to convert
744 // all variable references to constant references. To do this, we convert the
745 // initial sequence of array subscripts into constant zeros to start with.
746 const Type *ZeroIdxTy = GEPPointerTy;
747 for (unsigned i = 0; i != FirstConstantOper; ++i) {
748 if (!isa<StructType>(ZeroIdxTy))
749 GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Type::Int32Ty);
750
751 if (const CompositeType *CT = dyn_cast<CompositeType>(ZeroIdxTy))
752 ZeroIdxTy = CT->getTypeAtIndex(GEP1Ops[i]);
753 }
754
755 // We know that GEP1Ops[FirstConstantOper] & GEP2Ops[FirstConstantOper] are ok
756
757 // Loop over the rest of the operands...
758 for (unsigned i = FirstConstantOper+1; i != MaxOperands; ++i) {
759 const Value *Op1 = i < NumGEP1Ops ? GEP1Ops[i] : 0;
760 const Value *Op2 = i < NumGEP2Ops ? GEP2Ops[i] : 0;
761 // If they are equal, use a zero index...
762 if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) {
763 if (!isa<ConstantInt>(Op1))
764 GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Op1->getType());
765 // Otherwise, just keep the constants we have.
766 } else {
767 if (Op1) {
768 if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
769 // If this is an array index, make sure the array element is in range.
770 if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty)) {
771 if (Op1C->getZExtValue() >= AT->getNumElements())
772 return MayAlias; // Be conservative with out-of-range accesses
Chris Lattnereaf7b232007-12-09 07:35:13 +0000773 } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty)) {
774 if (Op1C->getZExtValue() >= VT->getNumElements())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000775 return MayAlias; // Be conservative with out-of-range accesses
776 }
777
778 } else {
779 // GEP1 is known to produce a value less than GEP2. To be
780 // conservatively correct, we must assume the largest possible
781 // constant is used in this position. This cannot be the initial
782 // index to the GEP instructions (because we know we have at least one
783 // element before this one with the different constant arguments), so
784 // we know that the current index must be into either a struct or
785 // array. Because we know it's not constant, this cannot be a
786 // structure index. Because of this, we can calculate the maximum
787 // value possible.
788 //
789 if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
790 GEP1Ops[i] = ConstantInt::get(Type::Int64Ty,AT->getNumElements()-1);
Chris Lattnerc0656ad2007-11-06 05:58:42 +0000791 else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty))
792 GEP1Ops[i] = ConstantInt::get(Type::Int64Ty,VT->getNumElements()-1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000793 }
794 }
795
796 if (Op2) {
797 if (const ConstantInt *Op2C = dyn_cast<ConstantInt>(Op2)) {
798 // If this is an array index, make sure the array element is in range.
Chris Lattnereaf7b232007-12-09 07:35:13 +0000799 if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr2Ty)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000800 if (Op2C->getZExtValue() >= AT->getNumElements())
801 return MayAlias; // Be conservative with out-of-range accesses
Chris Lattnereaf7b232007-12-09 07:35:13 +0000802 } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr2Ty)) {
Chris Lattnerc0656ad2007-11-06 05:58:42 +0000803 if (Op2C->getZExtValue() >= VT->getNumElements())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000804 return MayAlias; // Be conservative with out-of-range accesses
805 }
806 } else { // Conservatively assume the minimum value for this index
807 GEP2Ops[i] = Constant::getNullValue(Op2->getType());
808 }
809 }
810 }
811
812 if (BasePtr1Ty && Op1) {
813 if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
814 BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[i]);
815 else
816 BasePtr1Ty = 0;
817 }
818
819 if (BasePtr2Ty && Op2) {
820 if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr2Ty))
821 BasePtr2Ty = CT->getTypeAtIndex(GEP2Ops[i]);
822 else
823 BasePtr2Ty = 0;
824 }
825 }
826
827 if (GEPPointerTy->getElementType()->isSized()) {
828 int64_t Offset1 =
829 getTargetData().getIndexedOffset(GEPPointerTy, GEP1Ops, NumGEP1Ops);
830 int64_t Offset2 =
831 getTargetData().getIndexedOffset(GEPPointerTy, GEP2Ops, NumGEP2Ops);
Chris Lattnerc0656ad2007-11-06 05:58:42 +0000832 assert(Offset1 != Offset2 &&
833 "There is at least one different constant here!");
834
835 // Make sure we compare the absolute difference.
836 if (Offset1 > Offset2)
837 std::swap(Offset1, Offset2);
838
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000839 if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
840 //cerr << "Determined that these two GEP's don't alias ["
841 // << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
842 return NoAlias;
843 }
844 }
845 return MayAlias;
846}
847
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000848// Make sure that anything that uses AliasAnalysis pulls in this file...
849DEFINING_FILE_FOR(BasicAliasAnalysis)