Owen Anderson | d8c8788 | 2011-02-18 21:51:29 +0000 | [diff] [blame] | 1 | //===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // It contains the tablegen backend that emits the decoder functions for |
| 11 | // targets with fixed length instruction set. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #define DEBUG_TYPE "decoder-emitter" |
| 16 | |
| 17 | #include "FixedLenDecoderEmitter.h" |
| 18 | #include "CodeGenTarget.h" |
| 19 | #include "Record.h" |
| 20 | #include "llvm/ADT/StringExtras.h" |
| 21 | #include "llvm/Support/Debug.h" |
| 22 | #include "llvm/Support/raw_ostream.h" |
| 23 | |
| 24 | #include <vector> |
| 25 | #include <map> |
| 26 | #include <string> |
| 27 | |
| 28 | using namespace llvm; |
| 29 | |
| 30 | // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system |
| 31 | // for a bit value. |
| 32 | // |
| 33 | // BIT_UNFILTERED is used as the init value for a filter position. It is used |
| 34 | // only for filter processings. |
| 35 | typedef enum { |
| 36 | BIT_TRUE, // '1' |
| 37 | BIT_FALSE, // '0' |
| 38 | BIT_UNSET, // '?' |
| 39 | BIT_UNFILTERED // unfiltered |
| 40 | } bit_value_t; |
| 41 | |
| 42 | static bool ValueSet(bit_value_t V) { |
| 43 | return (V == BIT_TRUE || V == BIT_FALSE); |
| 44 | } |
| 45 | static bool ValueNotSet(bit_value_t V) { |
| 46 | return (V == BIT_UNSET); |
| 47 | } |
| 48 | static int Value(bit_value_t V) { |
| 49 | return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1); |
| 50 | } |
| 51 | static bit_value_t bitFromBits(BitsInit &bits, unsigned index) { |
| 52 | if (BitInit *bit = dynamic_cast<BitInit*>(bits.getBit(index))) |
| 53 | return bit->getValue() ? BIT_TRUE : BIT_FALSE; |
| 54 | |
| 55 | // The bit is uninitialized. |
| 56 | return BIT_UNSET; |
| 57 | } |
| 58 | // Prints the bit value for each position. |
| 59 | static void dumpBits(raw_ostream &o, BitsInit &bits) { |
| 60 | unsigned index; |
| 61 | |
| 62 | for (index = bits.getNumBits(); index > 0; index--) { |
| 63 | switch (bitFromBits(bits, index - 1)) { |
| 64 | case BIT_TRUE: |
| 65 | o << "1"; |
| 66 | break; |
| 67 | case BIT_FALSE: |
| 68 | o << "0"; |
| 69 | break; |
| 70 | case BIT_UNSET: |
| 71 | o << "_"; |
| 72 | break; |
| 73 | default: |
| 74 | assert(0 && "unexpected return value from bitFromBits"); |
| 75 | } |
| 76 | } |
| 77 | } |
| 78 | |
| 79 | static BitsInit &getBitsField(const Record &def, const char *str) { |
| 80 | BitsInit *bits = def.getValueAsBitsInit(str); |
| 81 | return *bits; |
| 82 | } |
| 83 | |
| 84 | // Forward declaration. |
| 85 | class FilterChooser; |
| 86 | |
| 87 | // FIXME: Possibly auto-detected? |
| 88 | #define BIT_WIDTH 32 |
| 89 | |
| 90 | // Representation of the instruction to work on. |
| 91 | typedef bit_value_t insn_t[BIT_WIDTH]; |
| 92 | |
| 93 | /// Filter - Filter works with FilterChooser to produce the decoding tree for |
| 94 | /// the ISA. |
| 95 | /// |
| 96 | /// It is useful to think of a Filter as governing the switch stmts of the |
| 97 | /// decoding tree in a certain level. Each case stmt delegates to an inferior |
| 98 | /// FilterChooser to decide what further decoding logic to employ, or in another |
| 99 | /// words, what other remaining bits to look at. The FilterChooser eventually |
| 100 | /// chooses a best Filter to do its job. |
| 101 | /// |
| 102 | /// This recursive scheme ends when the number of Opcodes assigned to the |
| 103 | /// FilterChooser becomes 1 or if there is a conflict. A conflict happens when |
| 104 | /// the Filter/FilterChooser combo does not know how to distinguish among the |
| 105 | /// Opcodes assigned. |
| 106 | /// |
| 107 | /// An example of a conflict is |
| 108 | /// |
| 109 | /// Conflict: |
| 110 | /// 111101000.00........00010000.... |
| 111 | /// 111101000.00........0001........ |
| 112 | /// 1111010...00........0001........ |
| 113 | /// 1111010...00.................... |
| 114 | /// 1111010......................... |
| 115 | /// 1111............................ |
| 116 | /// ................................ |
| 117 | /// VST4q8a 111101000_00________00010000____ |
| 118 | /// VST4q8b 111101000_00________00010000____ |
| 119 | /// |
| 120 | /// The Debug output shows the path that the decoding tree follows to reach the |
| 121 | /// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced |
| 122 | /// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters. |
| 123 | /// |
| 124 | /// The encoding info in the .td files does not specify this meta information, |
| 125 | /// which could have been used by the decoder to resolve the conflict. The |
| 126 | /// decoder could try to decode the even/odd register numbering and assign to |
| 127 | /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a" |
| 128 | /// version and return the Opcode since the two have the same Asm format string. |
| 129 | class Filter { |
| 130 | protected: |
| 131 | FilterChooser *Owner; // points to the FilterChooser who owns this filter |
| 132 | unsigned StartBit; // the starting bit position |
| 133 | unsigned NumBits; // number of bits to filter |
| 134 | bool Mixed; // a mixed region contains both set and unset bits |
| 135 | |
| 136 | // Map of well-known segment value to the set of uid's with that value. |
| 137 | std::map<uint64_t, std::vector<unsigned> > FilteredInstructions; |
| 138 | |
| 139 | // Set of uid's with non-constant segment values. |
| 140 | std::vector<unsigned> VariableInstructions; |
| 141 | |
| 142 | // Map of well-known segment value to its delegate. |
| 143 | std::map<unsigned, FilterChooser*> FilterChooserMap; |
| 144 | |
| 145 | // Number of instructions which fall under FilteredInstructions category. |
| 146 | unsigned NumFiltered; |
| 147 | |
| 148 | // Keeps track of the last opcode in the filtered bucket. |
| 149 | unsigned LastOpcFiltered; |
| 150 | |
| 151 | // Number of instructions which fall under VariableInstructions category. |
| 152 | unsigned NumVariable; |
| 153 | |
| 154 | public: |
| 155 | unsigned getNumFiltered() { return NumFiltered; } |
| 156 | unsigned getNumVariable() { return NumVariable; } |
| 157 | unsigned getSingletonOpc() { |
| 158 | assert(NumFiltered == 1); |
| 159 | return LastOpcFiltered; |
| 160 | } |
| 161 | // Return the filter chooser for the group of instructions without constant |
| 162 | // segment values. |
| 163 | FilterChooser &getVariableFC() { |
| 164 | assert(NumFiltered == 1); |
| 165 | assert(FilterChooserMap.size() == 1); |
| 166 | return *(FilterChooserMap.find((unsigned)-1)->second); |
| 167 | } |
| 168 | |
| 169 | Filter(const Filter &f); |
| 170 | Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed); |
| 171 | |
| 172 | ~Filter(); |
| 173 | |
| 174 | // Divides the decoding task into sub tasks and delegates them to the |
| 175 | // inferior FilterChooser's. |
| 176 | // |
| 177 | // A special case arises when there's only one entry in the filtered |
| 178 | // instructions. In order to unambiguously decode the singleton, we need to |
| 179 | // match the remaining undecoded encoding bits against the singleton. |
| 180 | void recurse(); |
| 181 | |
| 182 | // Emit code to decode instructions given a segment or segments of bits. |
| 183 | void emit(raw_ostream &o, unsigned &Indentation); |
| 184 | |
| 185 | // Returns the number of fanout produced by the filter. More fanout implies |
| 186 | // the filter distinguishes more categories of instructions. |
| 187 | unsigned usefulness() const; |
| 188 | }; // End of class Filter |
| 189 | |
| 190 | // These are states of our finite state machines used in FilterChooser's |
| 191 | // filterProcessor() which produces the filter candidates to use. |
| 192 | typedef enum { |
| 193 | ATTR_NONE, |
| 194 | ATTR_FILTERED, |
| 195 | ATTR_ALL_SET, |
| 196 | ATTR_ALL_UNSET, |
| 197 | ATTR_MIXED |
| 198 | } bitAttr_t; |
| 199 | |
| 200 | /// FilterChooser - FilterChooser chooses the best filter among a set of Filters |
| 201 | /// in order to perform the decoding of instructions at the current level. |
| 202 | /// |
| 203 | /// Decoding proceeds from the top down. Based on the well-known encoding bits |
| 204 | /// of instructions available, FilterChooser builds up the possible Filters that |
| 205 | /// can further the task of decoding by distinguishing among the remaining |
| 206 | /// candidate instructions. |
| 207 | /// |
| 208 | /// Once a filter has been chosen, it is called upon to divide the decoding task |
| 209 | /// into sub-tasks and delegates them to its inferior FilterChoosers for further |
| 210 | /// processings. |
| 211 | /// |
| 212 | /// It is useful to think of a Filter as governing the switch stmts of the |
| 213 | /// decoding tree. And each case is delegated to an inferior FilterChooser to |
| 214 | /// decide what further remaining bits to look at. |
| 215 | class FilterChooser { |
| 216 | protected: |
| 217 | friend class Filter; |
| 218 | |
| 219 | // Vector of codegen instructions to choose our filter. |
| 220 | const std::vector<const CodeGenInstruction*> &AllInstructions; |
| 221 | |
| 222 | // Vector of uid's for this filter chooser to work on. |
| 223 | const std::vector<unsigned> Opcodes; |
| 224 | |
| 225 | // Lookup table for the operand decoding of instructions. |
| 226 | std::map<unsigned, std::vector<OperandInfo> > &Operands; |
| 227 | |
| 228 | // Vector of candidate filters. |
| 229 | std::vector<Filter> Filters; |
| 230 | |
| 231 | // Array of bit values passed down from our parent. |
| 232 | // Set to all BIT_UNFILTERED's for Parent == NULL. |
| 233 | bit_value_t FilterBitValues[BIT_WIDTH]; |
| 234 | |
| 235 | // Links to the FilterChooser above us in the decoding tree. |
| 236 | FilterChooser *Parent; |
| 237 | |
| 238 | // Index of the best filter from Filters. |
| 239 | int BestIndex; |
| 240 | |
| 241 | public: |
| 242 | FilterChooser(const FilterChooser &FC) : |
| 243 | AllInstructions(FC.AllInstructions), Opcodes(FC.Opcodes), |
| 244 | Operands(FC.Operands), Filters(FC.Filters), Parent(FC.Parent), |
| 245 | BestIndex(FC.BestIndex) { |
| 246 | memcpy(FilterBitValues, FC.FilterBitValues, sizeof(FilterBitValues)); |
| 247 | } |
| 248 | |
| 249 | FilterChooser(const std::vector<const CodeGenInstruction*> &Insts, |
| 250 | const std::vector<unsigned> &IDs, |
| 251 | std::map<unsigned, std::vector<OperandInfo> > &Ops) : |
| 252 | AllInstructions(Insts), Opcodes(IDs), Operands(Ops), Filters(), |
| 253 | Parent(NULL), BestIndex(-1) { |
| 254 | for (unsigned i = 0; i < BIT_WIDTH; ++i) |
| 255 | FilterBitValues[i] = BIT_UNFILTERED; |
| 256 | |
| 257 | doFilter(); |
| 258 | } |
| 259 | |
| 260 | FilterChooser(const std::vector<const CodeGenInstruction*> &Insts, |
| 261 | const std::vector<unsigned> &IDs, |
| 262 | std::map<unsigned, std::vector<OperandInfo> > &Ops, |
| 263 | bit_value_t (&ParentFilterBitValues)[BIT_WIDTH], |
| 264 | FilterChooser &parent) : |
| 265 | AllInstructions(Insts), Opcodes(IDs), Operands(Ops), |
| 266 | Filters(), Parent(&parent), BestIndex(-1) { |
| 267 | for (unsigned i = 0; i < BIT_WIDTH; ++i) |
| 268 | FilterBitValues[i] = ParentFilterBitValues[i]; |
| 269 | |
| 270 | doFilter(); |
| 271 | } |
| 272 | |
| 273 | // The top level filter chooser has NULL as its parent. |
| 274 | bool isTopLevel() { return Parent == NULL; } |
| 275 | |
| 276 | // Emit the top level typedef and decodeInstruction() function. |
| 277 | void emitTop(raw_ostream &o, unsigned Indentation); |
| 278 | |
| 279 | protected: |
| 280 | // Populates the insn given the uid. |
| 281 | void insnWithID(insn_t &Insn, unsigned Opcode) const { |
| 282 | BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst"); |
| 283 | |
| 284 | for (unsigned i = 0; i < BIT_WIDTH; ++i) |
| 285 | Insn[i] = bitFromBits(Bits, i); |
| 286 | } |
| 287 | |
| 288 | // Returns the record name. |
| 289 | const std::string &nameWithID(unsigned Opcode) const { |
| 290 | return AllInstructions[Opcode]->TheDef->getName(); |
| 291 | } |
| 292 | |
| 293 | // Populates the field of the insn given the start position and the number of |
| 294 | // consecutive bits to scan for. |
| 295 | // |
| 296 | // Returns false if there exists any uninitialized bit value in the range. |
| 297 | // Returns true, otherwise. |
| 298 | bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit, |
| 299 | unsigned NumBits) const; |
| 300 | |
| 301 | /// dumpFilterArray - dumpFilterArray prints out debugging info for the given |
| 302 | /// filter array as a series of chars. |
| 303 | void dumpFilterArray(raw_ostream &o, bit_value_t (&filter)[BIT_WIDTH]); |
| 304 | |
| 305 | /// dumpStack - dumpStack traverses the filter chooser chain and calls |
| 306 | /// dumpFilterArray on each filter chooser up to the top level one. |
| 307 | void dumpStack(raw_ostream &o, const char *prefix); |
| 308 | |
| 309 | Filter &bestFilter() { |
| 310 | assert(BestIndex != -1 && "BestIndex not set"); |
| 311 | return Filters[BestIndex]; |
| 312 | } |
| 313 | |
| 314 | // Called from Filter::recurse() when singleton exists. For debug purpose. |
| 315 | void SingletonExists(unsigned Opc); |
| 316 | |
| 317 | bool PositionFiltered(unsigned i) { |
| 318 | return ValueSet(FilterBitValues[i]); |
| 319 | } |
| 320 | |
| 321 | // Calculates the island(s) needed to decode the instruction. |
| 322 | // This returns a lit of undecoded bits of an instructions, for example, |
| 323 | // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be |
| 324 | // decoded bits in order to verify that the instruction matches the Opcode. |
| 325 | unsigned getIslands(std::vector<unsigned> &StartBits, |
| 326 | std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals, |
| 327 | insn_t &Insn); |
| 328 | |
| 329 | // Emits code to decode the singleton. Return true if we have matched all the |
| 330 | // well-known bits. |
| 331 | bool emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,unsigned Opc); |
| 332 | |
| 333 | // Emits code to decode the singleton, and then to decode the rest. |
| 334 | void emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,Filter &Best); |
| 335 | |
| 336 | // Assign a single filter and run with it. |
| 337 | void runSingleFilter(FilterChooser &owner, unsigned startBit, unsigned numBit, |
| 338 | bool mixed); |
| 339 | |
| 340 | // reportRegion is a helper function for filterProcessor to mark a region as |
| 341 | // eligible for use as a filter region. |
| 342 | void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex, |
| 343 | bool AllowMixed); |
| 344 | |
| 345 | // FilterProcessor scans the well-known encoding bits of the instructions and |
| 346 | // builds up a list of candidate filters. It chooses the best filter and |
| 347 | // recursively descends down the decoding tree. |
| 348 | bool filterProcessor(bool AllowMixed, bool Greedy = true); |
| 349 | |
| 350 | // Decides on the best configuration of filter(s) to use in order to decode |
| 351 | // the instructions. A conflict of instructions may occur, in which case we |
| 352 | // dump the conflict set to the standard error. |
| 353 | void doFilter(); |
| 354 | |
| 355 | // Emits code to decode our share of instructions. Returns true if the |
| 356 | // emitted code causes a return, which occurs if we know how to decode |
| 357 | // the instruction at this level or the instruction is not decodeable. |
| 358 | bool emit(raw_ostream &o, unsigned &Indentation); |
| 359 | }; |
| 360 | |
| 361 | /////////////////////////// |
| 362 | // // |
| 363 | // Filter Implmenetation // |
| 364 | // // |
| 365 | /////////////////////////// |
| 366 | |
| 367 | Filter::Filter(const Filter &f) : |
| 368 | Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed), |
| 369 | FilteredInstructions(f.FilteredInstructions), |
| 370 | VariableInstructions(f.VariableInstructions), |
| 371 | FilterChooserMap(f.FilterChooserMap), NumFiltered(f.NumFiltered), |
| 372 | LastOpcFiltered(f.LastOpcFiltered), NumVariable(f.NumVariable) { |
| 373 | } |
| 374 | |
| 375 | Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, |
| 376 | bool mixed) : Owner(&owner), StartBit(startBit), NumBits(numBits), |
| 377 | Mixed(mixed) { |
| 378 | assert(StartBit + NumBits - 1 < BIT_WIDTH); |
| 379 | |
| 380 | NumFiltered = 0; |
| 381 | LastOpcFiltered = 0; |
| 382 | NumVariable = 0; |
| 383 | |
| 384 | for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) { |
| 385 | insn_t Insn; |
| 386 | |
| 387 | // Populates the insn given the uid. |
| 388 | Owner->insnWithID(Insn, Owner->Opcodes[i]); |
| 389 | |
| 390 | uint64_t Field; |
| 391 | // Scans the segment for possibly well-specified encoding bits. |
| 392 | bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits); |
| 393 | |
| 394 | if (ok) { |
| 395 | // The encoding bits are well-known. Lets add the uid of the |
| 396 | // instruction into the bucket keyed off the constant field value. |
| 397 | LastOpcFiltered = Owner->Opcodes[i]; |
| 398 | FilteredInstructions[Field].push_back(LastOpcFiltered); |
| 399 | ++NumFiltered; |
| 400 | } else { |
| 401 | // Some of the encoding bit(s) are unspecfied. This contributes to |
| 402 | // one additional member of "Variable" instructions. |
| 403 | VariableInstructions.push_back(Owner->Opcodes[i]); |
| 404 | ++NumVariable; |
| 405 | } |
| 406 | } |
| 407 | |
| 408 | assert((FilteredInstructions.size() + VariableInstructions.size() > 0) |
| 409 | && "Filter returns no instruction categories"); |
| 410 | } |
| 411 | |
| 412 | Filter::~Filter() { |
| 413 | std::map<unsigned, FilterChooser*>::iterator filterIterator; |
| 414 | for (filterIterator = FilterChooserMap.begin(); |
| 415 | filterIterator != FilterChooserMap.end(); |
| 416 | filterIterator++) { |
| 417 | delete filterIterator->second; |
| 418 | } |
| 419 | } |
| 420 | |
| 421 | // Divides the decoding task into sub tasks and delegates them to the |
| 422 | // inferior FilterChooser's. |
| 423 | // |
| 424 | // A special case arises when there's only one entry in the filtered |
| 425 | // instructions. In order to unambiguously decode the singleton, we need to |
| 426 | // match the remaining undecoded encoding bits against the singleton. |
| 427 | void Filter::recurse() { |
| 428 | std::map<uint64_t, std::vector<unsigned> >::const_iterator mapIterator; |
| 429 | |
| 430 | bit_value_t BitValueArray[BIT_WIDTH]; |
| 431 | // Starts by inheriting our parent filter chooser's filter bit values. |
| 432 | memcpy(BitValueArray, Owner->FilterBitValues, sizeof(BitValueArray)); |
| 433 | |
| 434 | unsigned bitIndex; |
| 435 | |
| 436 | if (VariableInstructions.size()) { |
| 437 | // Conservatively marks each segment position as BIT_UNSET. |
| 438 | for (bitIndex = 0; bitIndex < NumBits; bitIndex++) |
| 439 | BitValueArray[StartBit + bitIndex] = BIT_UNSET; |
| 440 | |
Chris Lattner | 7a2bdde | 2011-04-15 05:18:47 +0000 | [diff] [blame] | 441 | // Delegates to an inferior filter chooser for further processing on this |
Owen Anderson | d8c8788 | 2011-02-18 21:51:29 +0000 | [diff] [blame] | 442 | // group of instructions whose segment values are variable. |
| 443 | FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>( |
| 444 | (unsigned)-1, |
| 445 | new FilterChooser(Owner->AllInstructions, |
| 446 | VariableInstructions, |
| 447 | Owner->Operands, |
| 448 | BitValueArray, |
| 449 | *Owner) |
| 450 | )); |
| 451 | } |
| 452 | |
| 453 | // No need to recurse for a singleton filtered instruction. |
| 454 | // See also Filter::emit(). |
| 455 | if (getNumFiltered() == 1) { |
| 456 | //Owner->SingletonExists(LastOpcFiltered); |
| 457 | assert(FilterChooserMap.size() == 1); |
| 458 | return; |
| 459 | } |
| 460 | |
| 461 | // Otherwise, create sub choosers. |
| 462 | for (mapIterator = FilteredInstructions.begin(); |
| 463 | mapIterator != FilteredInstructions.end(); |
| 464 | mapIterator++) { |
| 465 | |
| 466 | // Marks all the segment positions with either BIT_TRUE or BIT_FALSE. |
| 467 | for (bitIndex = 0; bitIndex < NumBits; bitIndex++) { |
| 468 | if (mapIterator->first & (1ULL << bitIndex)) |
| 469 | BitValueArray[StartBit + bitIndex] = BIT_TRUE; |
| 470 | else |
| 471 | BitValueArray[StartBit + bitIndex] = BIT_FALSE; |
| 472 | } |
| 473 | |
Chris Lattner | 7a2bdde | 2011-04-15 05:18:47 +0000 | [diff] [blame] | 474 | // Delegates to an inferior filter chooser for further processing on this |
Owen Anderson | d8c8788 | 2011-02-18 21:51:29 +0000 | [diff] [blame] | 475 | // category of instructions. |
| 476 | FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>( |
| 477 | mapIterator->first, |
| 478 | new FilterChooser(Owner->AllInstructions, |
| 479 | mapIterator->second, |
| 480 | Owner->Operands, |
| 481 | BitValueArray, |
| 482 | *Owner) |
| 483 | )); |
| 484 | } |
| 485 | } |
| 486 | |
| 487 | // Emit code to decode instructions given a segment or segments of bits. |
| 488 | void Filter::emit(raw_ostream &o, unsigned &Indentation) { |
| 489 | o.indent(Indentation) << "// Check Inst{"; |
| 490 | |
| 491 | if (NumBits > 1) |
| 492 | o << (StartBit + NumBits - 1) << '-'; |
| 493 | |
| 494 | o << StartBit << "} ...\n"; |
| 495 | |
| 496 | o.indent(Indentation) << "switch (fieldFromInstruction(insn, " |
| 497 | << StartBit << ", " << NumBits << ")) {\n"; |
| 498 | |
| 499 | std::map<unsigned, FilterChooser*>::iterator filterIterator; |
| 500 | |
| 501 | bool DefaultCase = false; |
| 502 | for (filterIterator = FilterChooserMap.begin(); |
| 503 | filterIterator != FilterChooserMap.end(); |
| 504 | filterIterator++) { |
| 505 | |
| 506 | // Field value -1 implies a non-empty set of variable instructions. |
| 507 | // See also recurse(). |
| 508 | if (filterIterator->first == (unsigned)-1) { |
| 509 | DefaultCase = true; |
| 510 | |
| 511 | o.indent(Indentation) << "default:\n"; |
| 512 | o.indent(Indentation) << " break; // fallthrough\n"; |
| 513 | |
| 514 | // Closing curly brace for the switch statement. |
| 515 | // This is unconventional because we want the default processing to be |
| 516 | // performed for the fallthrough cases as well, i.e., when the "cases" |
| 517 | // did not prove a decoded instruction. |
| 518 | o.indent(Indentation) << "}\n"; |
| 519 | |
| 520 | } else |
| 521 | o.indent(Indentation) << "case " << filterIterator->first << ":\n"; |
| 522 | |
| 523 | // We arrive at a category of instructions with the same segment value. |
| 524 | // Now delegate to the sub filter chooser for further decodings. |
| 525 | // The case may fallthrough, which happens if the remaining well-known |
| 526 | // encoding bits do not match exactly. |
| 527 | if (!DefaultCase) { ++Indentation; ++Indentation; } |
| 528 | |
| 529 | bool finished = filterIterator->second->emit(o, Indentation); |
| 530 | // For top level default case, there's no need for a break statement. |
| 531 | if (Owner->isTopLevel() && DefaultCase) |
| 532 | break; |
| 533 | if (!finished) |
| 534 | o.indent(Indentation) << "break;\n"; |
| 535 | |
| 536 | if (!DefaultCase) { --Indentation; --Indentation; } |
| 537 | } |
| 538 | |
| 539 | // If there is no default case, we still need to supply a closing brace. |
| 540 | if (!DefaultCase) { |
| 541 | // Closing curly brace for the switch statement. |
| 542 | o.indent(Indentation) << "}\n"; |
| 543 | } |
| 544 | } |
| 545 | |
| 546 | // Returns the number of fanout produced by the filter. More fanout implies |
| 547 | // the filter distinguishes more categories of instructions. |
| 548 | unsigned Filter::usefulness() const { |
| 549 | if (VariableInstructions.size()) |
| 550 | return FilteredInstructions.size(); |
| 551 | else |
| 552 | return FilteredInstructions.size() + 1; |
| 553 | } |
| 554 | |
| 555 | ////////////////////////////////// |
| 556 | // // |
| 557 | // Filterchooser Implementation // |
| 558 | // // |
| 559 | ////////////////////////////////// |
| 560 | |
| 561 | // Emit the top level typedef and decodeInstruction() function. |
| 562 | void FilterChooser::emitTop(raw_ostream &o, unsigned Indentation) { |
| 563 | switch (BIT_WIDTH) { |
| 564 | case 8: |
| 565 | o.indent(Indentation) << "typedef uint8_t field_t;\n"; |
| 566 | break; |
| 567 | case 16: |
| 568 | o.indent(Indentation) << "typedef uint16_t field_t;\n"; |
| 569 | break; |
| 570 | case 32: |
| 571 | o.indent(Indentation) << "typedef uint32_t field_t;\n"; |
| 572 | break; |
| 573 | case 64: |
| 574 | o.indent(Indentation) << "typedef uint64_t field_t;\n"; |
| 575 | break; |
| 576 | default: |
| 577 | assert(0 && "Unexpected instruction size!"); |
| 578 | } |
| 579 | |
| 580 | o << '\n'; |
| 581 | |
| 582 | o.indent(Indentation) << "static field_t " << |
| 583 | "fieldFromInstruction(field_t insn, unsigned startBit, unsigned numBits)\n"; |
| 584 | |
| 585 | o.indent(Indentation) << "{\n"; |
| 586 | |
| 587 | ++Indentation; ++Indentation; |
| 588 | o.indent(Indentation) << "assert(startBit + numBits <= " << BIT_WIDTH |
| 589 | << " && \"Instruction field out of bounds!\");\n"; |
| 590 | o << '\n'; |
| 591 | o.indent(Indentation) << "field_t fieldMask;\n"; |
| 592 | o << '\n'; |
| 593 | o.indent(Indentation) << "if (numBits == " << BIT_WIDTH << ")\n"; |
| 594 | |
| 595 | ++Indentation; ++Indentation; |
| 596 | o.indent(Indentation) << "fieldMask = (field_t)-1;\n"; |
| 597 | --Indentation; --Indentation; |
| 598 | |
| 599 | o.indent(Indentation) << "else\n"; |
| 600 | |
| 601 | ++Indentation; ++Indentation; |
| 602 | o.indent(Indentation) << "fieldMask = ((1 << numBits) - 1) << startBit;\n"; |
| 603 | --Indentation; --Indentation; |
| 604 | |
| 605 | o << '\n'; |
| 606 | o.indent(Indentation) << "return (insn & fieldMask) >> startBit;\n"; |
| 607 | --Indentation; --Indentation; |
| 608 | |
| 609 | o.indent(Indentation) << "}\n"; |
| 610 | |
| 611 | o << '\n'; |
| 612 | |
| 613 | o.indent(Indentation) << |
Owen Anderson | 5755715 | 2011-04-18 18:42:26 +0000 | [diff] [blame] | 614 | "static bool decodeInstruction(MCInst &MI, field_t insn, " |
| 615 | "uint64_t Address, const void *Decoder) {\n"; |
Owen Anderson | d8c8788 | 2011-02-18 21:51:29 +0000 | [diff] [blame] | 616 | o.indent(Indentation) << " unsigned tmp = 0;\n"; |
| 617 | |
| 618 | ++Indentation; ++Indentation; |
| 619 | // Emits code to decode the instructions. |
| 620 | emit(o, Indentation); |
| 621 | |
| 622 | o << '\n'; |
| 623 | o.indent(Indentation) << "return false;\n"; |
| 624 | --Indentation; --Indentation; |
| 625 | |
| 626 | o.indent(Indentation) << "}\n"; |
| 627 | |
| 628 | o << '\n'; |
| 629 | } |
| 630 | |
| 631 | // Populates the field of the insn given the start position and the number of |
| 632 | // consecutive bits to scan for. |
| 633 | // |
| 634 | // Returns false if and on the first uninitialized bit value encountered. |
| 635 | // Returns true, otherwise. |
| 636 | bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn, |
| 637 | unsigned StartBit, unsigned NumBits) const { |
| 638 | Field = 0; |
| 639 | |
| 640 | for (unsigned i = 0; i < NumBits; ++i) { |
| 641 | if (Insn[StartBit + i] == BIT_UNSET) |
| 642 | return false; |
| 643 | |
| 644 | if (Insn[StartBit + i] == BIT_TRUE) |
| 645 | Field = Field | (1ULL << i); |
| 646 | } |
| 647 | |
| 648 | return true; |
| 649 | } |
| 650 | |
| 651 | /// dumpFilterArray - dumpFilterArray prints out debugging info for the given |
| 652 | /// filter array as a series of chars. |
| 653 | void FilterChooser::dumpFilterArray(raw_ostream &o, |
| 654 | bit_value_t (&filter)[BIT_WIDTH]) { |
| 655 | unsigned bitIndex; |
| 656 | |
| 657 | for (bitIndex = BIT_WIDTH; bitIndex > 0; bitIndex--) { |
| 658 | switch (filter[bitIndex - 1]) { |
| 659 | case BIT_UNFILTERED: |
| 660 | o << "."; |
| 661 | break; |
| 662 | case BIT_UNSET: |
| 663 | o << "_"; |
| 664 | break; |
| 665 | case BIT_TRUE: |
| 666 | o << "1"; |
| 667 | break; |
| 668 | case BIT_FALSE: |
| 669 | o << "0"; |
| 670 | break; |
| 671 | } |
| 672 | } |
| 673 | } |
| 674 | |
| 675 | /// dumpStack - dumpStack traverses the filter chooser chain and calls |
| 676 | /// dumpFilterArray on each filter chooser up to the top level one. |
| 677 | void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) { |
| 678 | FilterChooser *current = this; |
| 679 | |
| 680 | while (current) { |
| 681 | o << prefix; |
| 682 | dumpFilterArray(o, current->FilterBitValues); |
| 683 | o << '\n'; |
| 684 | current = current->Parent; |
| 685 | } |
| 686 | } |
| 687 | |
| 688 | // Called from Filter::recurse() when singleton exists. For debug purpose. |
| 689 | void FilterChooser::SingletonExists(unsigned Opc) { |
| 690 | insn_t Insn0; |
| 691 | insnWithID(Insn0, Opc); |
| 692 | |
| 693 | errs() << "Singleton exists: " << nameWithID(Opc) |
| 694 | << " with its decoding dominating "; |
| 695 | for (unsigned i = 0; i < Opcodes.size(); ++i) { |
| 696 | if (Opcodes[i] == Opc) continue; |
| 697 | errs() << nameWithID(Opcodes[i]) << ' '; |
| 698 | } |
| 699 | errs() << '\n'; |
| 700 | |
| 701 | dumpStack(errs(), "\t\t"); |
| 702 | for (unsigned i = 0; i < Opcodes.size(); i++) { |
| 703 | const std::string &Name = nameWithID(Opcodes[i]); |
| 704 | |
| 705 | errs() << '\t' << Name << " "; |
| 706 | dumpBits(errs(), |
| 707 | getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst")); |
| 708 | errs() << '\n'; |
| 709 | } |
| 710 | } |
| 711 | |
| 712 | // Calculates the island(s) needed to decode the instruction. |
| 713 | // This returns a list of undecoded bits of an instructions, for example, |
| 714 | // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be |
| 715 | // decoded bits in order to verify that the instruction matches the Opcode. |
| 716 | unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits, |
| 717 | std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals, |
| 718 | insn_t &Insn) { |
| 719 | unsigned Num, BitNo; |
| 720 | Num = BitNo = 0; |
| 721 | |
| 722 | uint64_t FieldVal = 0; |
| 723 | |
| 724 | // 0: Init |
| 725 | // 1: Water (the bit value does not affect decoding) |
| 726 | // 2: Island (well-known bit value needed for decoding) |
| 727 | int State = 0; |
| 728 | int Val = -1; |
| 729 | |
| 730 | for (unsigned i = 0; i < BIT_WIDTH; ++i) { |
| 731 | Val = Value(Insn[i]); |
| 732 | bool Filtered = PositionFiltered(i); |
| 733 | switch (State) { |
| 734 | default: |
| 735 | assert(0 && "Unreachable code!"); |
| 736 | break; |
| 737 | case 0: |
| 738 | case 1: |
| 739 | if (Filtered || Val == -1) |
| 740 | State = 1; // Still in Water |
| 741 | else { |
| 742 | State = 2; // Into the Island |
| 743 | BitNo = 0; |
| 744 | StartBits.push_back(i); |
| 745 | FieldVal = Val; |
| 746 | } |
| 747 | break; |
| 748 | case 2: |
| 749 | if (Filtered || Val == -1) { |
| 750 | State = 1; // Into the Water |
| 751 | EndBits.push_back(i - 1); |
| 752 | FieldVals.push_back(FieldVal); |
| 753 | ++Num; |
| 754 | } else { |
| 755 | State = 2; // Still in Island |
| 756 | ++BitNo; |
| 757 | FieldVal = FieldVal | Val << BitNo; |
| 758 | } |
| 759 | break; |
| 760 | } |
| 761 | } |
| 762 | // If we are still in Island after the loop, do some housekeeping. |
| 763 | if (State == 2) { |
| 764 | EndBits.push_back(BIT_WIDTH - 1); |
| 765 | FieldVals.push_back(FieldVal); |
| 766 | ++Num; |
| 767 | } |
| 768 | |
| 769 | assert(StartBits.size() == Num && EndBits.size() == Num && |
| 770 | FieldVals.size() == Num); |
| 771 | return Num; |
| 772 | } |
| 773 | |
| 774 | // Emits code to decode the singleton. Return true if we have matched all the |
| 775 | // well-known bits. |
| 776 | bool FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation, |
| 777 | unsigned Opc) { |
| 778 | std::vector<unsigned> StartBits; |
| 779 | std::vector<unsigned> EndBits; |
| 780 | std::vector<uint64_t> FieldVals; |
| 781 | insn_t Insn; |
| 782 | insnWithID(Insn, Opc); |
| 783 | |
| 784 | // Look for islands of undecoded bits of the singleton. |
| 785 | getIslands(StartBits, EndBits, FieldVals, Insn); |
| 786 | |
| 787 | unsigned Size = StartBits.size(); |
| 788 | unsigned I, NumBits; |
| 789 | |
| 790 | // If we have matched all the well-known bits, just issue a return. |
| 791 | if (Size == 0) { |
| 792 | o.indent(Indentation) << "{\n"; |
| 793 | o.indent(Indentation) << " MI.setOpcode(" << Opc << ");\n"; |
| 794 | std::vector<OperandInfo>& InsnOperands = Operands[Opc]; |
| 795 | for (std::vector<OperandInfo>::iterator |
| 796 | I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) { |
| 797 | // If a custom instruction decoder was specified, use that. |
| 798 | if (I->FieldBase == ~0U && I->FieldLength == ~0U) { |
Owen Anderson | 5755715 | 2011-04-18 18:42:26 +0000 | [diff] [blame] | 799 | o.indent(Indentation) << " " << I->Decoder |
| 800 | << "(MI, insn, Address, Decoder);\n"; |
Owen Anderson | d8c8788 | 2011-02-18 21:51:29 +0000 | [diff] [blame] | 801 | break; |
| 802 | } |
| 803 | |
| 804 | o.indent(Indentation) |
| 805 | << " tmp = fieldFromInstruction(insn, " << I->FieldBase |
| 806 | << ", " << I->FieldLength << ");\n"; |
| 807 | if (I->Decoder != "") { |
Owen Anderson | 5755715 | 2011-04-18 18:42:26 +0000 | [diff] [blame] | 808 | o.indent(Indentation) << " " << I->Decoder |
| 809 | << "(MI, tmp, Address, Decoder);\n"; |
Owen Anderson | d8c8788 | 2011-02-18 21:51:29 +0000 | [diff] [blame] | 810 | } else { |
| 811 | o.indent(Indentation) |
| 812 | << " MI.addOperand(MCOperand::CreateImm(tmp));\n"; |
| 813 | } |
| 814 | } |
| 815 | |
| 816 | o.indent(Indentation) << " return true; // " << nameWithID(Opc) |
| 817 | << '\n'; |
| 818 | o.indent(Indentation) << "}\n"; |
| 819 | return true; |
| 820 | } |
| 821 | |
| 822 | // Otherwise, there are more decodings to be done! |
| 823 | |
| 824 | // Emit code to match the island(s) for the singleton. |
| 825 | o.indent(Indentation) << "// Check "; |
| 826 | |
| 827 | for (I = Size; I != 0; --I) { |
| 828 | o << "Inst{" << EndBits[I-1] << '-' << StartBits[I-1] << "} "; |
| 829 | if (I > 1) |
| 830 | o << "&& "; |
| 831 | else |
| 832 | o << "for singleton decoding...\n"; |
| 833 | } |
| 834 | |
| 835 | o.indent(Indentation) << "if ("; |
| 836 | |
| 837 | for (I = Size; I != 0; --I) { |
| 838 | NumBits = EndBits[I-1] - StartBits[I-1] + 1; |
| 839 | o << "fieldFromInstruction(insn, " << StartBits[I-1] << ", " << NumBits |
| 840 | << ") == " << FieldVals[I-1]; |
| 841 | if (I > 1) |
| 842 | o << " && "; |
| 843 | else |
| 844 | o << ") {\n"; |
| 845 | } |
| 846 | o.indent(Indentation) << " MI.setOpcode(" << Opc << ");\n"; |
| 847 | std::vector<OperandInfo>& InsnOperands = Operands[Opc]; |
| 848 | for (std::vector<OperandInfo>::iterator |
| 849 | I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) { |
| 850 | // If a custom instruction decoder was specified, use that. |
| 851 | if (I->FieldBase == ~0U && I->FieldLength == ~0U) { |
Owen Anderson | 5755715 | 2011-04-18 18:42:26 +0000 | [diff] [blame] | 852 | o.indent(Indentation) << " " << I->Decoder |
| 853 | << "(MI, insn, Address, Decoder);\n"; |
Owen Anderson | d8c8788 | 2011-02-18 21:51:29 +0000 | [diff] [blame] | 854 | break; |
| 855 | } |
| 856 | |
| 857 | o.indent(Indentation) |
| 858 | << " tmp = fieldFromInstruction(insn, " << I->FieldBase |
| 859 | << ", " << I->FieldLength << ");\n"; |
| 860 | if (I->Decoder != "") { |
Owen Anderson | 5755715 | 2011-04-18 18:42:26 +0000 | [diff] [blame] | 861 | o.indent(Indentation) << " " << I->Decoder |
| 862 | << "(MI, tmp, Address, Decoder);\n"; |
Owen Anderson | d8c8788 | 2011-02-18 21:51:29 +0000 | [diff] [blame] | 863 | } else { |
| 864 | o.indent(Indentation) |
| 865 | << " MI.addOperand(MCOperand::CreateImm(tmp));\n"; |
| 866 | } |
| 867 | } |
| 868 | o.indent(Indentation) << " return true; // " << nameWithID(Opc) |
| 869 | << '\n'; |
| 870 | o.indent(Indentation) << "}\n"; |
| 871 | |
| 872 | return false; |
| 873 | } |
| 874 | |
| 875 | // Emits code to decode the singleton, and then to decode the rest. |
| 876 | void FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation, |
| 877 | Filter &Best) { |
| 878 | |
| 879 | unsigned Opc = Best.getSingletonOpc(); |
| 880 | |
| 881 | emitSingletonDecoder(o, Indentation, Opc); |
| 882 | |
| 883 | // Emit code for the rest. |
| 884 | o.indent(Indentation) << "else\n"; |
| 885 | |
| 886 | Indentation += 2; |
| 887 | Best.getVariableFC().emit(o, Indentation); |
| 888 | Indentation -= 2; |
| 889 | } |
| 890 | |
| 891 | // Assign a single filter and run with it. Top level API client can initialize |
| 892 | // with a single filter to start the filtering process. |
| 893 | void FilterChooser::runSingleFilter(FilterChooser &owner, unsigned startBit, |
| 894 | unsigned numBit, bool mixed) { |
| 895 | Filters.clear(); |
| 896 | Filter F(*this, startBit, numBit, true); |
| 897 | Filters.push_back(F); |
| 898 | BestIndex = 0; // Sole Filter instance to choose from. |
| 899 | bestFilter().recurse(); |
| 900 | } |
| 901 | |
| 902 | // reportRegion is a helper function for filterProcessor to mark a region as |
| 903 | // eligible for use as a filter region. |
| 904 | void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit, |
| 905 | unsigned BitIndex, bool AllowMixed) { |
| 906 | if (RA == ATTR_MIXED && AllowMixed) |
| 907 | Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, true)); |
| 908 | else if (RA == ATTR_ALL_SET && !AllowMixed) |
| 909 | Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, false)); |
| 910 | } |
| 911 | |
| 912 | // FilterProcessor scans the well-known encoding bits of the instructions and |
| 913 | // builds up a list of candidate filters. It chooses the best filter and |
| 914 | // recursively descends down the decoding tree. |
| 915 | bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) { |
| 916 | Filters.clear(); |
| 917 | BestIndex = -1; |
| 918 | unsigned numInstructions = Opcodes.size(); |
| 919 | |
| 920 | assert(numInstructions && "Filter created with no instructions"); |
| 921 | |
| 922 | // No further filtering is necessary. |
| 923 | if (numInstructions == 1) |
| 924 | return true; |
| 925 | |
| 926 | // Heuristics. See also doFilter()'s "Heuristics" comment when num of |
| 927 | // instructions is 3. |
| 928 | if (AllowMixed && !Greedy) { |
| 929 | assert(numInstructions == 3); |
| 930 | |
| 931 | for (unsigned i = 0; i < Opcodes.size(); ++i) { |
| 932 | std::vector<unsigned> StartBits; |
| 933 | std::vector<unsigned> EndBits; |
| 934 | std::vector<uint64_t> FieldVals; |
| 935 | insn_t Insn; |
| 936 | |
| 937 | insnWithID(Insn, Opcodes[i]); |
| 938 | |
| 939 | // Look for islands of undecoded bits of any instruction. |
| 940 | if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) { |
| 941 | // Found an instruction with island(s). Now just assign a filter. |
| 942 | runSingleFilter(*this, StartBits[0], EndBits[0] - StartBits[0] + 1, |
| 943 | true); |
| 944 | return true; |
| 945 | } |
| 946 | } |
| 947 | } |
| 948 | |
| 949 | unsigned BitIndex, InsnIndex; |
| 950 | |
| 951 | // We maintain BIT_WIDTH copies of the bitAttrs automaton. |
| 952 | // The automaton consumes the corresponding bit from each |
| 953 | // instruction. |
| 954 | // |
| 955 | // Input symbols: 0, 1, and _ (unset). |
| 956 | // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED. |
| 957 | // Initial state: NONE. |
| 958 | // |
| 959 | // (NONE) ------- [01] -> (ALL_SET) |
| 960 | // (NONE) ------- _ ----> (ALL_UNSET) |
| 961 | // (ALL_SET) ---- [01] -> (ALL_SET) |
| 962 | // (ALL_SET) ---- _ ----> (MIXED) |
| 963 | // (ALL_UNSET) -- [01] -> (MIXED) |
| 964 | // (ALL_UNSET) -- _ ----> (ALL_UNSET) |
| 965 | // (MIXED) ------ . ----> (MIXED) |
| 966 | // (FILTERED)---- . ----> (FILTERED) |
| 967 | |
| 968 | bitAttr_t bitAttrs[BIT_WIDTH]; |
| 969 | |
| 970 | // FILTERED bit positions provide no entropy and are not worthy of pursuing. |
| 971 | // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position. |
| 972 | for (BitIndex = 0; BitIndex < BIT_WIDTH; ++BitIndex) |
| 973 | if (FilterBitValues[BitIndex] == BIT_TRUE || |
| 974 | FilterBitValues[BitIndex] == BIT_FALSE) |
| 975 | bitAttrs[BitIndex] = ATTR_FILTERED; |
| 976 | else |
| 977 | bitAttrs[BitIndex] = ATTR_NONE; |
| 978 | |
| 979 | for (InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) { |
| 980 | insn_t insn; |
| 981 | |
| 982 | insnWithID(insn, Opcodes[InsnIndex]); |
| 983 | |
| 984 | for (BitIndex = 0; BitIndex < BIT_WIDTH; ++BitIndex) { |
| 985 | switch (bitAttrs[BitIndex]) { |
| 986 | case ATTR_NONE: |
| 987 | if (insn[BitIndex] == BIT_UNSET) |
| 988 | bitAttrs[BitIndex] = ATTR_ALL_UNSET; |
| 989 | else |
| 990 | bitAttrs[BitIndex] = ATTR_ALL_SET; |
| 991 | break; |
| 992 | case ATTR_ALL_SET: |
| 993 | if (insn[BitIndex] == BIT_UNSET) |
| 994 | bitAttrs[BitIndex] = ATTR_MIXED; |
| 995 | break; |
| 996 | case ATTR_ALL_UNSET: |
| 997 | if (insn[BitIndex] != BIT_UNSET) |
| 998 | bitAttrs[BitIndex] = ATTR_MIXED; |
| 999 | break; |
| 1000 | case ATTR_MIXED: |
| 1001 | case ATTR_FILTERED: |
| 1002 | break; |
| 1003 | } |
| 1004 | } |
| 1005 | } |
| 1006 | |
| 1007 | // The regionAttr automaton consumes the bitAttrs automatons' state, |
| 1008 | // lowest-to-highest. |
| 1009 | // |
| 1010 | // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed) |
| 1011 | // States: NONE, ALL_SET, MIXED |
| 1012 | // Initial state: NONE |
| 1013 | // |
| 1014 | // (NONE) ----- F --> (NONE) |
| 1015 | // (NONE) ----- S --> (ALL_SET) ; and set region start |
| 1016 | // (NONE) ----- U --> (NONE) |
| 1017 | // (NONE) ----- M --> (MIXED) ; and set region start |
| 1018 | // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region |
| 1019 | // (ALL_SET) -- S --> (ALL_SET) |
| 1020 | // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region |
| 1021 | // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region |
| 1022 | // (MIXED) ---- F --> (NONE) ; and report a MIXED region |
| 1023 | // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region |
| 1024 | // (MIXED) ---- U --> (NONE) ; and report a MIXED region |
| 1025 | // (MIXED) ---- M --> (MIXED) |
| 1026 | |
| 1027 | bitAttr_t RA = ATTR_NONE; |
| 1028 | unsigned StartBit = 0; |
| 1029 | |
| 1030 | for (BitIndex = 0; BitIndex < BIT_WIDTH; BitIndex++) { |
| 1031 | bitAttr_t bitAttr = bitAttrs[BitIndex]; |
| 1032 | |
| 1033 | assert(bitAttr != ATTR_NONE && "Bit without attributes"); |
| 1034 | |
| 1035 | switch (RA) { |
| 1036 | case ATTR_NONE: |
| 1037 | switch (bitAttr) { |
| 1038 | case ATTR_FILTERED: |
| 1039 | break; |
| 1040 | case ATTR_ALL_SET: |
| 1041 | StartBit = BitIndex; |
| 1042 | RA = ATTR_ALL_SET; |
| 1043 | break; |
| 1044 | case ATTR_ALL_UNSET: |
| 1045 | break; |
| 1046 | case ATTR_MIXED: |
| 1047 | StartBit = BitIndex; |
| 1048 | RA = ATTR_MIXED; |
| 1049 | break; |
| 1050 | default: |
| 1051 | assert(0 && "Unexpected bitAttr!"); |
| 1052 | } |
| 1053 | break; |
| 1054 | case ATTR_ALL_SET: |
| 1055 | switch (bitAttr) { |
| 1056 | case ATTR_FILTERED: |
| 1057 | reportRegion(RA, StartBit, BitIndex, AllowMixed); |
| 1058 | RA = ATTR_NONE; |
| 1059 | break; |
| 1060 | case ATTR_ALL_SET: |
| 1061 | break; |
| 1062 | case ATTR_ALL_UNSET: |
| 1063 | reportRegion(RA, StartBit, BitIndex, AllowMixed); |
| 1064 | RA = ATTR_NONE; |
| 1065 | break; |
| 1066 | case ATTR_MIXED: |
| 1067 | reportRegion(RA, StartBit, BitIndex, AllowMixed); |
| 1068 | StartBit = BitIndex; |
| 1069 | RA = ATTR_MIXED; |
| 1070 | break; |
| 1071 | default: |
| 1072 | assert(0 && "Unexpected bitAttr!"); |
| 1073 | } |
| 1074 | break; |
| 1075 | case ATTR_MIXED: |
| 1076 | switch (bitAttr) { |
| 1077 | case ATTR_FILTERED: |
| 1078 | reportRegion(RA, StartBit, BitIndex, AllowMixed); |
| 1079 | StartBit = BitIndex; |
| 1080 | RA = ATTR_NONE; |
| 1081 | break; |
| 1082 | case ATTR_ALL_SET: |
| 1083 | reportRegion(RA, StartBit, BitIndex, AllowMixed); |
| 1084 | StartBit = BitIndex; |
| 1085 | RA = ATTR_ALL_SET; |
| 1086 | break; |
| 1087 | case ATTR_ALL_UNSET: |
| 1088 | reportRegion(RA, StartBit, BitIndex, AllowMixed); |
| 1089 | RA = ATTR_NONE; |
| 1090 | break; |
| 1091 | case ATTR_MIXED: |
| 1092 | break; |
| 1093 | default: |
| 1094 | assert(0 && "Unexpected bitAttr!"); |
| 1095 | } |
| 1096 | break; |
| 1097 | case ATTR_ALL_UNSET: |
| 1098 | assert(0 && "regionAttr state machine has no ATTR_UNSET state"); |
| 1099 | case ATTR_FILTERED: |
| 1100 | assert(0 && "regionAttr state machine has no ATTR_FILTERED state"); |
| 1101 | } |
| 1102 | } |
| 1103 | |
| 1104 | // At the end, if we're still in ALL_SET or MIXED states, report a region |
| 1105 | switch (RA) { |
| 1106 | case ATTR_NONE: |
| 1107 | break; |
| 1108 | case ATTR_FILTERED: |
| 1109 | break; |
| 1110 | case ATTR_ALL_SET: |
| 1111 | reportRegion(RA, StartBit, BitIndex, AllowMixed); |
| 1112 | break; |
| 1113 | case ATTR_ALL_UNSET: |
| 1114 | break; |
| 1115 | case ATTR_MIXED: |
| 1116 | reportRegion(RA, StartBit, BitIndex, AllowMixed); |
| 1117 | break; |
| 1118 | } |
| 1119 | |
| 1120 | // We have finished with the filter processings. Now it's time to choose |
| 1121 | // the best performing filter. |
| 1122 | BestIndex = 0; |
| 1123 | bool AllUseless = true; |
| 1124 | unsigned BestScore = 0; |
| 1125 | |
| 1126 | for (unsigned i = 0, e = Filters.size(); i != e; ++i) { |
| 1127 | unsigned Usefulness = Filters[i].usefulness(); |
| 1128 | |
| 1129 | if (Usefulness) |
| 1130 | AllUseless = false; |
| 1131 | |
| 1132 | if (Usefulness > BestScore) { |
| 1133 | BestIndex = i; |
| 1134 | BestScore = Usefulness; |
| 1135 | } |
| 1136 | } |
| 1137 | |
| 1138 | if (!AllUseless) |
| 1139 | bestFilter().recurse(); |
| 1140 | |
| 1141 | return !AllUseless; |
| 1142 | } // end of FilterChooser::filterProcessor(bool) |
| 1143 | |
| 1144 | // Decides on the best configuration of filter(s) to use in order to decode |
| 1145 | // the instructions. A conflict of instructions may occur, in which case we |
| 1146 | // dump the conflict set to the standard error. |
| 1147 | void FilterChooser::doFilter() { |
| 1148 | unsigned Num = Opcodes.size(); |
| 1149 | assert(Num && "FilterChooser created with no instructions"); |
| 1150 | |
| 1151 | // Try regions of consecutive known bit values first. |
| 1152 | if (filterProcessor(false)) |
| 1153 | return; |
| 1154 | |
| 1155 | // Then regions of mixed bits (both known and unitialized bit values allowed). |
| 1156 | if (filterProcessor(true)) |
| 1157 | return; |
| 1158 | |
| 1159 | // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where |
| 1160 | // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a |
| 1161 | // well-known encoding pattern. In such case, we backtrack and scan for the |
| 1162 | // the very first consecutive ATTR_ALL_SET region and assign a filter to it. |
| 1163 | if (Num == 3 && filterProcessor(true, false)) |
| 1164 | return; |
| 1165 | |
| 1166 | // If we come to here, the instruction decoding has failed. |
| 1167 | // Set the BestIndex to -1 to indicate so. |
| 1168 | BestIndex = -1; |
| 1169 | } |
| 1170 | |
| 1171 | // Emits code to decode our share of instructions. Returns true if the |
| 1172 | // emitted code causes a return, which occurs if we know how to decode |
| 1173 | // the instruction at this level or the instruction is not decodeable. |
| 1174 | bool FilterChooser::emit(raw_ostream &o, unsigned &Indentation) { |
| 1175 | if (Opcodes.size() == 1) |
| 1176 | // There is only one instruction in the set, which is great! |
| 1177 | // Call emitSingletonDecoder() to see whether there are any remaining |
| 1178 | // encodings bits. |
| 1179 | return emitSingletonDecoder(o, Indentation, Opcodes[0]); |
| 1180 | |
| 1181 | // Choose the best filter to do the decodings! |
| 1182 | if (BestIndex != -1) { |
| 1183 | Filter &Best = bestFilter(); |
| 1184 | if (Best.getNumFiltered() == 1) |
| 1185 | emitSingletonDecoder(o, Indentation, Best); |
| 1186 | else |
| 1187 | bestFilter().emit(o, Indentation); |
| 1188 | return false; |
| 1189 | } |
| 1190 | |
| 1191 | // We don't know how to decode these instructions! Return 0 and dump the |
| 1192 | // conflict set! |
| 1193 | o.indent(Indentation) << "return 0;" << " // Conflict set: "; |
| 1194 | for (int i = 0, N = Opcodes.size(); i < N; ++i) { |
| 1195 | o << nameWithID(Opcodes[i]); |
| 1196 | if (i < (N - 1)) |
| 1197 | o << ", "; |
| 1198 | else |
| 1199 | o << '\n'; |
| 1200 | } |
| 1201 | |
| 1202 | // Print out useful conflict information for postmortem analysis. |
| 1203 | errs() << "Decoding Conflict:\n"; |
| 1204 | |
| 1205 | dumpStack(errs(), "\t\t"); |
| 1206 | |
| 1207 | for (unsigned i = 0; i < Opcodes.size(); i++) { |
| 1208 | const std::string &Name = nameWithID(Opcodes[i]); |
| 1209 | |
| 1210 | errs() << '\t' << Name << " "; |
| 1211 | dumpBits(errs(), |
| 1212 | getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst")); |
| 1213 | errs() << '\n'; |
| 1214 | } |
| 1215 | |
| 1216 | return true; |
| 1217 | } |
| 1218 | |
| 1219 | bool FixedLenDecoderEmitter::populateInstruction(const CodeGenInstruction &CGI, |
| 1220 | unsigned Opc){ |
| 1221 | const Record &Def = *CGI.TheDef; |
| 1222 | // If all the bit positions are not specified; do not decode this instruction. |
| 1223 | // We are bound to fail! For proper disassembly, the well-known encoding bits |
| 1224 | // of the instruction must be fully specified. |
| 1225 | // |
| 1226 | // This also removes pseudo instructions from considerations of disassembly, |
| 1227 | // which is a better design and less fragile than the name matchings. |
| 1228 | BitsInit &Bits = getBitsField(Def, "Inst"); |
| 1229 | if (Bits.allInComplete()) return false; |
| 1230 | |
| 1231 | // Ignore "asm parser only" instructions. |
Owen Anderson | 4dd27eb | 2011-03-14 20:58:49 +0000 | [diff] [blame] | 1232 | if (Def.getValueAsBit("isAsmParserOnly") || |
| 1233 | Def.getValueAsBit("isCodeGenOnly")) |
Owen Anderson | d8c8788 | 2011-02-18 21:51:29 +0000 | [diff] [blame] | 1234 | return false; |
| 1235 | |
| 1236 | std::vector<OperandInfo> InsnOperands; |
| 1237 | |
| 1238 | // If the instruction has specified a custom decoding hook, use that instead |
| 1239 | // of trying to auto-generate the decoder. |
| 1240 | std::string InstDecoder = Def.getValueAsString("DecoderMethod"); |
| 1241 | if (InstDecoder != "") { |
| 1242 | InsnOperands.push_back(OperandInfo(~0U, ~0U, InstDecoder)); |
| 1243 | Operands[Opc] = InsnOperands; |
| 1244 | return true; |
| 1245 | } |
| 1246 | |
| 1247 | // Generate a description of the operand of the instruction that we know |
| 1248 | // how to decode automatically. |
| 1249 | // FIXME: We'll need to have a way to manually override this as needed. |
| 1250 | |
| 1251 | // Gather the outputs/inputs of the instruction, so we can find their |
| 1252 | // positions in the encoding. This assumes for now that they appear in the |
| 1253 | // MCInst in the order that they're listed. |
| 1254 | std::vector<std::pair<Init*, std::string> > InOutOperands; |
| 1255 | DagInit *Out = Def.getValueAsDag("OutOperandList"); |
| 1256 | DagInit *In = Def.getValueAsDag("InOperandList"); |
| 1257 | for (unsigned i = 0; i < Out->getNumArgs(); ++i) |
| 1258 | InOutOperands.push_back(std::make_pair(Out->getArg(i), Out->getArgName(i))); |
| 1259 | for (unsigned i = 0; i < In->getNumArgs(); ++i) |
| 1260 | InOutOperands.push_back(std::make_pair(In->getArg(i), In->getArgName(i))); |
| 1261 | |
| 1262 | // For each operand, see if we can figure out where it is encoded. |
| 1263 | for (std::vector<std::pair<Init*, std::string> >::iterator |
| 1264 | NI = InOutOperands.begin(), NE = InOutOperands.end(); NI != NE; ++NI) { |
| 1265 | unsigned PrevBit = ~0; |
| 1266 | unsigned Base = ~0; |
| 1267 | unsigned PrevPos = ~0; |
| 1268 | std::string Decoder = ""; |
| 1269 | |
| 1270 | for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) { |
| 1271 | VarBitInit *BI = dynamic_cast<VarBitInit*>(Bits.getBit(bi)); |
| 1272 | if (!BI) continue; |
| 1273 | |
| 1274 | VarInit *Var = dynamic_cast<VarInit*>(BI->getVariable()); |
| 1275 | assert(Var); |
| 1276 | unsigned CurrBit = BI->getBitNum(); |
| 1277 | if (Var->getName() != NI->second) continue; |
| 1278 | |
| 1279 | // Figure out the lowest bit of the value, and the width of the field. |
| 1280 | // Deliberately don't try to handle cases where the field is scattered, |
| 1281 | // or where not all bits of the the field are explicit. |
| 1282 | if (Base == ~0U && PrevBit == ~0U && PrevPos == ~0U) { |
| 1283 | if (CurrBit == 0) |
| 1284 | Base = bi; |
| 1285 | else |
| 1286 | continue; |
| 1287 | } |
| 1288 | |
| 1289 | if ((PrevPos != ~0U && bi-1 != PrevPos) || |
| 1290 | (CurrBit != ~0U && CurrBit-1 != PrevBit)) { |
| 1291 | PrevBit = ~0; |
| 1292 | Base = ~0; |
| 1293 | PrevPos = ~0; |
| 1294 | } |
| 1295 | |
| 1296 | PrevPos = bi; |
| 1297 | PrevBit = CurrBit; |
| 1298 | |
| 1299 | // At this point, we can locate the field, but we need to know how to |
| 1300 | // interpret it. As a first step, require the target to provide callbacks |
| 1301 | // for decoding register classes. |
| 1302 | // FIXME: This need to be extended to handle instructions with custom |
| 1303 | // decoder methods, and operands with (simple) MIOperandInfo's. |
| 1304 | TypedInit *TI = dynamic_cast<TypedInit*>(NI->first); |
| 1305 | RecordRecTy *Type = dynamic_cast<RecordRecTy*>(TI->getType()); |
| 1306 | Record *TypeRecord = Type->getRecord(); |
| 1307 | bool isReg = false; |
Owen Anderson | bea6f61 | 2011-06-27 21:06:21 +0000 | [diff] [blame] | 1308 | if (TypeRecord->isSubClassOf("RegisterOperand")) |
| 1309 | TypeRecord = TypeRecord->getValueAsDef("RegClass"); |
Owen Anderson | d8c8788 | 2011-02-18 21:51:29 +0000 | [diff] [blame] | 1310 | if (TypeRecord->isSubClassOf("RegisterClass")) { |
Owen Anderson | bea6f61 | 2011-06-27 21:06:21 +0000 | [diff] [blame] | 1311 | Decoder = "Decode" + TypeRecord->getName() + "RegisterClass"; |
Owen Anderson | d8c8788 | 2011-02-18 21:51:29 +0000 | [diff] [blame] | 1312 | isReg = true; |
| 1313 | } |
| 1314 | |
| 1315 | RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod"); |
| 1316 | StringInit *String = DecoderString ? |
| 1317 | dynamic_cast<StringInit*>(DecoderString->getValue()) : |
| 1318 | 0; |
| 1319 | if (!isReg && String && String->getValue() != "") |
| 1320 | Decoder = String->getValue(); |
| 1321 | } |
| 1322 | |
| 1323 | if (Base != ~0U) { |
| 1324 | InsnOperands.push_back(OperandInfo(Base, PrevBit+1, Decoder)); |
| 1325 | DEBUG(errs() << "ENCODED OPERAND: $" << NI->second << " @ (" |
| 1326 | << utostr(Base+PrevBit) << ", " << utostr(Base) << ")\n"); |
| 1327 | } |
| 1328 | } |
| 1329 | |
| 1330 | Operands[Opc] = InsnOperands; |
| 1331 | |
| 1332 | |
| 1333 | #if 0 |
| 1334 | DEBUG({ |
| 1335 | // Dumps the instruction encoding bits. |
| 1336 | dumpBits(errs(), Bits); |
| 1337 | |
| 1338 | errs() << '\n'; |
| 1339 | |
| 1340 | // Dumps the list of operand info. |
| 1341 | for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) { |
| 1342 | const CGIOperandList::OperandInfo &Info = CGI.Operands[i]; |
| 1343 | const std::string &OperandName = Info.Name; |
| 1344 | const Record &OperandDef = *Info.Rec; |
| 1345 | |
| 1346 | errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n"; |
| 1347 | } |
| 1348 | }); |
| 1349 | #endif |
| 1350 | |
| 1351 | return true; |
| 1352 | } |
| 1353 | |
| 1354 | void FixedLenDecoderEmitter::populateInstructions() { |
| 1355 | for (unsigned i = 0, e = NumberedInstructions.size(); i < e; ++i) { |
| 1356 | Record *R = NumberedInstructions[i]->TheDef; |
| 1357 | if (R->getValueAsString("Namespace") == "TargetOpcode") |
| 1358 | continue; |
| 1359 | |
| 1360 | if (populateInstruction(*NumberedInstructions[i], i)) |
| 1361 | Opcodes.push_back(i); |
| 1362 | } |
| 1363 | } |
| 1364 | |
| 1365 | // Emits disassembler code for instruction decoding. |
| 1366 | void FixedLenDecoderEmitter::run(raw_ostream &o) |
| 1367 | { |
| 1368 | o << "#include \"llvm/MC/MCInst.h\"\n"; |
| 1369 | o << "#include \"llvm/Support/DataTypes.h\"\n"; |
| 1370 | o << "#include <assert.h>\n"; |
| 1371 | o << '\n'; |
| 1372 | o << "namespace llvm {\n\n"; |
| 1373 | |
| 1374 | NumberedInstructions = Target.getInstructionsByEnumValue(); |
| 1375 | populateInstructions(); |
| 1376 | FilterChooser FC(NumberedInstructions, Opcodes, Operands); |
| 1377 | FC.emitTop(o, 0); |
| 1378 | |
| 1379 | o << "\n} // End llvm namespace \n"; |
| 1380 | } |