Nick Lewycky | 81e4804 | 2013-07-27 01:24:00 +0000 | [diff] [blame^] | 1 | //===-- CFG.cpp - BasicBlock analysis --------------------------------------==// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This family of functions performs analyses on basic blocks, and instructions |
| 11 | // contained within basic blocks. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "llvm/Analysis/CFG.h" |
| 16 | |
| 17 | #include "llvm/ADT/SmallSet.h" |
| 18 | #include "llvm/Analysis/Dominators.h" |
| 19 | #include "llvm/Analysis/LoopInfo.h" |
| 20 | |
| 21 | using namespace llvm; |
| 22 | |
| 23 | /// FindFunctionBackedges - Analyze the specified function to find all of the |
| 24 | /// loop backedges in the function and return them. This is a relatively cheap |
| 25 | /// (compared to computing dominators and loop info) analysis. |
| 26 | /// |
| 27 | /// The output is added to Result, as pairs of <from,to> edge info. |
| 28 | void llvm::FindFunctionBackedges(const Function &F, |
| 29 | SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) { |
| 30 | const BasicBlock *BB = &F.getEntryBlock(); |
| 31 | if (succ_begin(BB) == succ_end(BB)) |
| 32 | return; |
| 33 | |
| 34 | SmallPtrSet<const BasicBlock*, 8> Visited; |
| 35 | SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack; |
| 36 | SmallPtrSet<const BasicBlock*, 8> InStack; |
| 37 | |
| 38 | Visited.insert(BB); |
| 39 | VisitStack.push_back(std::make_pair(BB, succ_begin(BB))); |
| 40 | InStack.insert(BB); |
| 41 | do { |
| 42 | std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back(); |
| 43 | const BasicBlock *ParentBB = Top.first; |
| 44 | succ_const_iterator &I = Top.second; |
| 45 | |
| 46 | bool FoundNew = false; |
| 47 | while (I != succ_end(ParentBB)) { |
| 48 | BB = *I++; |
| 49 | if (Visited.insert(BB)) { |
| 50 | FoundNew = true; |
| 51 | break; |
| 52 | } |
| 53 | // Successor is in VisitStack, it's a back edge. |
| 54 | if (InStack.count(BB)) |
| 55 | Result.push_back(std::make_pair(ParentBB, BB)); |
| 56 | } |
| 57 | |
| 58 | if (FoundNew) { |
| 59 | // Go down one level if there is a unvisited successor. |
| 60 | InStack.insert(BB); |
| 61 | VisitStack.push_back(std::make_pair(BB, succ_begin(BB))); |
| 62 | } else { |
| 63 | // Go up one level. |
| 64 | InStack.erase(VisitStack.pop_back_val().first); |
| 65 | } |
| 66 | } while (!VisitStack.empty()); |
| 67 | } |
| 68 | |
| 69 | /// GetSuccessorNumber - Search for the specified successor of basic block BB |
| 70 | /// and return its position in the terminator instruction's list of |
| 71 | /// successors. It is an error to call this with a block that is not a |
| 72 | /// successor. |
| 73 | unsigned llvm::GetSuccessorNumber(BasicBlock *BB, BasicBlock *Succ) { |
| 74 | TerminatorInst *Term = BB->getTerminator(); |
| 75 | #ifndef NDEBUG |
| 76 | unsigned e = Term->getNumSuccessors(); |
| 77 | #endif |
| 78 | for (unsigned i = 0; ; ++i) { |
| 79 | assert(i != e && "Didn't find edge?"); |
| 80 | if (Term->getSuccessor(i) == Succ) |
| 81 | return i; |
| 82 | } |
| 83 | } |
| 84 | |
| 85 | /// isCriticalEdge - Return true if the specified edge is a critical edge. |
| 86 | /// Critical edges are edges from a block with multiple successors to a block |
| 87 | /// with multiple predecessors. |
| 88 | bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum, |
| 89 | bool AllowIdenticalEdges) { |
| 90 | assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!"); |
| 91 | if (TI->getNumSuccessors() == 1) return false; |
| 92 | |
| 93 | const BasicBlock *Dest = TI->getSuccessor(SuccNum); |
| 94 | const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest); |
| 95 | |
| 96 | // If there is more than one predecessor, this is a critical edge... |
| 97 | assert(I != E && "No preds, but we have an edge to the block?"); |
| 98 | const BasicBlock *FirstPred = *I; |
| 99 | ++I; // Skip one edge due to the incoming arc from TI. |
| 100 | if (!AllowIdenticalEdges) |
| 101 | return I != E; |
| 102 | |
| 103 | // If AllowIdenticalEdges is true, then we allow this edge to be considered |
| 104 | // non-critical iff all preds come from TI's block. |
| 105 | while (I != E) { |
| 106 | const BasicBlock *P = *I; |
| 107 | if (P != FirstPred) |
| 108 | return true; |
| 109 | // Note: leave this as is until no one ever compiles with either gcc 4.0.1 |
| 110 | // or Xcode 2. This seems to work around the pred_iterator assert in PR 2207 |
| 111 | E = pred_end(P); |
| 112 | ++I; |
| 113 | } |
| 114 | return false; |
| 115 | } |
| 116 | |
| 117 | // LoopInfo contains a mapping from basic block to the innermost loop. Find |
| 118 | // the outermost loop in the loop nest that contains BB. |
| 119 | static const Loop *getOutermostLoop(LoopInfo *LI, const BasicBlock *BB) { |
| 120 | const Loop *L = LI->getLoopFor(BB); |
| 121 | if (L) { |
| 122 | while (const Loop *Parent = L->getParentLoop()) |
| 123 | L = Parent; |
| 124 | } |
| 125 | return L; |
| 126 | } |
| 127 | |
| 128 | // True if there is a loop which contains both BB1 and BB2. |
| 129 | static bool loopContainsBoth(LoopInfo *LI, |
| 130 | const BasicBlock *BB1, const BasicBlock *BB2) { |
| 131 | const Loop *L1 = getOutermostLoop(LI, BB1); |
| 132 | const Loop *L2 = getOutermostLoop(LI, BB2); |
| 133 | return L1 != NULL && L1 == L2; |
| 134 | } |
| 135 | |
| 136 | static bool isPotentiallyReachableSameBlock(const Instruction *A, |
| 137 | const Instruction *B, |
| 138 | LoopInfo *LI) { |
| 139 | // The same block case is special because it's the only time we're looking |
| 140 | // within a single block to see which comes first. Once we start looking at |
| 141 | // multiple blocks, the first instruction of the block is reachable, so we |
| 142 | // only need to determine reachability between whole blocks. |
| 143 | |
| 144 | const BasicBlock *BB = A->getParent(); |
| 145 | // If the block is in a loop then we can reach any instruction in the block |
| 146 | // from any other instruction in the block by going around the backedge. |
| 147 | // Check whether we're in a loop (or aren't sure). |
| 148 | |
| 149 | // Can't be in a loop if it's the entry block -- the entry block may not |
| 150 | // have predecessors. |
| 151 | bool HasLoop = BB != &BB->getParent()->getEntryBlock(); |
| 152 | |
| 153 | // Can't be in a loop if LoopInfo doesn't know about it. |
| 154 | if (LI && HasLoop) { |
| 155 | HasLoop = LI->getLoopFor(BB) != 0; |
| 156 | } |
| 157 | if (HasLoop) |
| 158 | return true; |
| 159 | |
| 160 | // Linear scan, start at 'A', see whether we hit 'B' or the end first. |
| 161 | for (BasicBlock::const_iterator I = A, E = BB->end(); I != E; ++I) { |
| 162 | if (&*I == B) |
| 163 | return true; |
| 164 | } |
| 165 | return false; |
| 166 | } |
| 167 | |
| 168 | bool llvm::isPotentiallyReachable(const Instruction *A, const Instruction *B, |
| 169 | DominatorTree *DT, LoopInfo *LI) { |
| 170 | assert(A->getParent()->getParent() == B->getParent()->getParent() && |
| 171 | "This analysis is function-local!"); |
| 172 | |
| 173 | const BasicBlock *StopBB = B->getParent(); |
| 174 | |
| 175 | if (A->getParent() == B->getParent()) |
| 176 | return isPotentiallyReachableSameBlock(A, B, LI); |
| 177 | |
| 178 | if (A->getParent() == &A->getParent()->getParent()->getEntryBlock()) |
| 179 | return true; |
| 180 | if (B->getParent() == &A->getParent()->getParent()->getEntryBlock()) |
| 181 | return false; |
| 182 | |
| 183 | // When the stop block is unreachable, it's dominated from everywhere, |
| 184 | // regardless of whether there's a path between the two blocks. |
| 185 | if (DT && !DT->isReachableFromEntry(StopBB)) |
| 186 | DT = 0; |
| 187 | |
| 188 | // Limit the number of blocks we visit. The goal is to avoid run-away compile |
| 189 | // times on large CFGs without hampering sensible code. Arbitrarily chosen. |
| 190 | unsigned Limit = 32; |
| 191 | |
| 192 | SmallSet<const BasicBlock*, 64> Visited; |
| 193 | SmallVector<BasicBlock*, 32> Worklist; |
| 194 | Worklist.push_back(const_cast<BasicBlock*>(A->getParent())); |
| 195 | |
| 196 | do { |
| 197 | BasicBlock *BB = Worklist.pop_back_val(); |
| 198 | if (!Visited.insert(BB)) |
| 199 | continue; |
| 200 | if (BB == StopBB) |
| 201 | return true; |
| 202 | if (DT && DT->dominates(BB, StopBB)) |
| 203 | return true; |
| 204 | if (LI && loopContainsBoth(LI, BB, StopBB)) |
| 205 | return true; |
| 206 | |
| 207 | if (!--Limit) { |
| 208 | // We haven't been able to prove it one way or the other. Conservatively |
| 209 | // answer true -- that there is potentially a path. |
| 210 | return true; |
| 211 | } |
| 212 | |
| 213 | if (const Loop *Outer = LI ? getOutermostLoop(LI, BB) : 0) { |
| 214 | // All blocks in a single loop are reachable from all other blocks. From |
| 215 | // any of these blocks, we can skip directly to the exits of the loop, |
| 216 | // ignoring any other blocks inside the loop body. |
| 217 | Outer->getExitBlocks(Worklist); |
| 218 | } else { |
| 219 | for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) |
| 220 | Worklist.push_back(*I); |
| 221 | } |
| 222 | } while (!Worklist.empty()); |
| 223 | |
| 224 | // We have exhaustived all possible paths and are certain that 'To' can not |
| 225 | // be reached from 'From'. |
| 226 | return false; |
| 227 | } |